JP2009203860A - Prime mover system - Google Patents

Prime mover system Download PDF

Info

Publication number
JP2009203860A
JP2009203860A JP2008046207A JP2008046207A JP2009203860A JP 2009203860 A JP2009203860 A JP 2009203860A JP 2008046207 A JP2008046207 A JP 2008046207A JP 2008046207 A JP2008046207 A JP 2008046207A JP 2009203860 A JP2009203860 A JP 2009203860A
Authority
JP
Japan
Prior art keywords
working fluid
turbine
combustion
prime mover
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008046207A
Other languages
Japanese (ja)
Inventor
Takeo Tomota
健夫 友田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008046207A priority Critical patent/JP2009203860A/en
Publication of JP2009203860A publication Critical patent/JP2009203860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a primer mover system capable of driving a turbine by preventing energy loss of working fluid without having an effect on the ozone layer or dependence on working fluid with high reactivity, having no problems of radioactive waste, and facilitating treatment of carbon dioxide exhausted following combustion of fuel. <P>SOLUTION: The prime mover system 1A includes a combustion part 20 for burning fuel, a supercriticality forming part 21 for converting the working fluid into a supercritical state by combustion heat of the fuel, a fluid circulation part 30 for circulating the working fluid between the supercriticality forming part and the turbine part by connecting the supercriticality forming part and a turbine part 10, introducing the working fluid into the turbine part, and returning the working fluid to the supercriticality forming part, a condenser 91 cooling the working fluid, a liquid oxygen supplying part 50 for supplying oxygen for combustion to the combustion part, and a heat exchange separation part 60 for cooling exhaust gas discharged from the combustion part by using the cold of the oxygen supplied from the liquid oxygen supplying part to the combustion part, and separating carbon dioxide and water in the exhaust gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原動機システムに関し、特に超臨界状態の動作流体を用いてタービンを駆動する原動機システムに関する。   The present invention relates to a prime mover system, and more particularly to a prime mover system that drives a turbine using a supercritical fluid.

一般に、火力発電所等におけるタービンは、ボイラにて高温、高圧化した水蒸気により駆動される。この水蒸気は超臨界状態の動作流体である。タービン駆動後の水蒸気は復水器等を経て水となった後、再度ボイラにより加熱される。この経路においては、動作流体は復水器を経由するため、水と水蒸気の状態変化を含め、途中のエネルギー損失が生じる。そこで、水以外の動作流体の使用が提唱されてきた。   In general, a turbine in a thermal power plant or the like is driven by steam that has been heated and heated at a high temperature by a boiler. This water vapor is a working fluid in a supercritical state. After the turbine is driven, the steam is converted into water through a condenser or the like and then heated again by the boiler. In this route, since the working fluid passes through the condenser, energy loss occurs along the way, including changes in the state of water and water vapor. Thus, the use of working fluids other than water has been proposed.

例えば、R12(CFC12)等のフロン類を動作流体として利用し、これを加熱、凝縮しながら循環させる低沸点媒体のタービンプラントである(特許文献1参照)。あるいは、動作流体として二酸化炭素等を使用することもできる(特許文献2参照)。特許文献2は、原子炉の冷却剤として二酸化炭素を用いると共に、核分裂の熱により超臨界状態となった二酸化炭素によりタービンを駆動する直接サイクル炉である。   For example, it is a turbine plant of a low boiling point medium using CFCs such as R12 (CFC12) as a working fluid and circulating this while heating and condensing (see Patent Document 1). Or carbon dioxide etc. can also be used as a working fluid (refer patent document 2). Patent Document 2 is a direct cycle reactor in which carbon dioxide is used as a coolant for a nuclear reactor and a turbine is driven by carbon dioxide that has become a supercritical state by the heat of fission.

特許文献1のフロン類はオゾン層に極めて大きな影響を与えるガスである。フロン類を動作流体として循環させた場合、外部へのフロン類の漏洩を完全になくすことは難しい。現在では、環境問題の観点からフロン類の使用を抑制することが望まれる。特許文献2は、運転時に二酸化炭素の排出がほとんど生じない点で優れている。しかし、放射性廃棄物、核燃料の処理、設置場所等の問題を総合的に勘案するならば、建設、取り扱い、運転コスト等において、必ずしも利点を享受できない。   The chlorofluorocarbons of Patent Document 1 are gases that have an extremely large influence on the ozone layer. When CFCs are circulated as working fluid, it is difficult to completely eliminate leakage of CFCs to the outside. At present, it is desired to suppress the use of chlorofluorocarbons from the viewpoint of environmental problems. Patent Document 2 is excellent in that almost no carbon dioxide is emitted during operation. However, if problems such as the treatment of radioactive waste, nuclear fuel, and installation location are comprehensively considered, it is not always possible to enjoy advantages in construction, handling, operating costs, and the like.

その一方、火力発電において石炭等を燃料とすることにより、原料等の経費を抑制しエネルギー効率を高めたガス化複合発電システムが数多く提唱されている(例えば、特許文献3等参照)。特許文献3によると、空気分離装置により分離された酸素を用いて石炭等をガス化燃料とするため、石炭等のよりも燃焼効率は高まる。さらに、ガス化燃料の燃焼により生じた燃焼ガスと共に空気分離装置から生産された窒素をガス化燃料の燃焼部に供給している。動作流体として燃焼ガスに窒素も加わるため、タービンの出力は増大する。   On the other hand, many gasification combined power generation systems that use coal or the like as fuel in thermal power generation to suppress the cost of raw materials and improve energy efficiency have been proposed (see, for example, Patent Document 3). According to Patent Document 3, since coal or the like is gasified fuel using oxygen separated by an air separation device, the combustion efficiency is higher than that of coal or the like. Further, nitrogen produced from the air separation device together with the combustion gas generated by the combustion of the gasified fuel is supplied to the combustion portion of the gasified fuel. Since nitrogen is also added to the combustion gas as a working fluid, the output of the turbine increases.

特許文献3の発電システムにおいては、ガス化燃料の燃焼に際し、コンプレッサにより加圧された空気が供給される。一般に、ガスタービンでは空気圧縮器(コンプレッサ)は必要である。このため、純粋な酸素による燃焼と比較すると必要エネルギー量は下がる。また、燃焼により生じた二酸化炭素を分離することは難しいのでそのまま大気中に排出される。
特公昭61−57446号公報 特許第3407037号公報 特開2000−240466号公報
In the power generation system of Patent Document 3, air compressed by a compressor is supplied when gasified fuel is combusted. In general, an air compressor (compressor) is necessary in a gas turbine. This reduces the amount of energy required compared to combustion with pure oxygen. Further, since it is difficult to separate carbon dioxide generated by combustion, it is discharged into the atmosphere as it is.
Japanese Examined Patent Publication No. 61-57446 Japanese Patent No. 3407037 JP 2000-240466 A

本発明は上記の点に鑑みなされたものであり、オゾン層への影響や反応性の高い動作流体に依存することなく、動作流体のエネルギー損失を抑制してタービンを駆動することができ、放射性廃棄物の問題もなく、燃料の燃焼に伴い排出される二酸化炭素の処理も容易となる原動機システムを提供する。   The present invention has been made in view of the above points, and can control the energy loss of the working fluid and drive the turbine without depending on the influence on the ozone layer and the highly reactive working fluid. Provided is a prime mover system that can easily handle carbon dioxide emitted from combustion of fuel without waste problems.

すなわち、請求項1の発明は、超臨界状態の動作流体をタービン部に導入して回転駆動力を得る原動機システムであって、燃料を燃焼する燃焼部と、燃料の燃焼熱により前記動作流体を超臨界状態にする超臨界形成部と、前記超臨界形成部と前記タービン部を接続して前記動作流体をタービン部に導入すると共に前記動作流体を再び前記超臨界形成部に戻すことにより前記臨界形成部と前記タービン部との間で前記動作流体を循環させる流体循環部と、前記動作流体を冷却する凝縮器と、前記燃焼部へ燃焼用の酸素を供給する液体酸素供給部と、前記液体酸素供給部から前記燃焼部へ供給される酸素の冷熱を用いて前記燃焼部から排出される排気ガスを冷却し、前記排気ガス中の水と二酸化炭素を分離する熱交換分離部とを備えたことを特徴とする原動機システムに係る。   That is, the invention of claim 1 is a prime mover system that obtains rotational driving force by introducing a working fluid in a supercritical state into a turbine section, wherein the working fluid is burned by the combustion heat of the fuel and the combustion heat of the fuel. A supercritical forming part to be in a supercritical state, the supercritical forming part and the turbine part are connected, the working fluid is introduced into the turbine part, and the working fluid is returned to the supercritical forming part again. A fluid circulation section for circulating the working fluid between the forming section and the turbine section; a condenser for cooling the working fluid; a liquid oxygen supply section for supplying combustion oxygen to the combustion section; and the liquid A heat exchange separation unit that cools exhaust gas discharged from the combustion unit using cold oxygen supplied from the oxygen supply unit to the combustion unit and separates water and carbon dioxide in the exhaust gas. That features According to the prime mover system.

請求項2の発明は、前記液体酸素供給部が深冷空気分離装置を備え、前記深冷空気分離装置により分離された酸素が前記燃焼部へ供給される請求項1に記載の原動機システムに係る。   The invention according to claim 2 relates to the prime mover system according to claim 1, wherein the liquid oxygen supply unit includes a cryogenic air separation device, and oxygen separated by the cryogenic air separation device is supplied to the combustion unit. .

請求項3の発明は、前記深冷空気分離装置により分離された液体窒素が、前記凝縮器に導入される請求項2に記載の原動機システムに係る。   The invention according to claim 3 relates to the prime mover system according to claim 2, wherein the liquid nitrogen separated by the cryogenic air separation device is introduced into the condenser.

請求項4の発明は、前記動作流体が、二酸化炭素、窒素または希ガスのいずれかである請求項1に記載の原動機システムに係る。   The invention according to claim 4 relates to the prime mover system according to claim 1, wherein the working fluid is any one of carbon dioxide, nitrogen, and a rare gas.

請求項5の発明は、前記タービン部に導入された前記動作流体を用いて駆動する副タービン部が、前記流体循環部に設けられている請求項1に記載の原動機システムに係る。   The invention according to claim 5 relates to the prime mover system according to claim 1, wherein a sub-turbine section driven by using the working fluid introduced into the turbine section is provided in the fluid circulation section.

請求項6の発明は、前記タービン部に発電機が接続されている請求項1に記載の原動機システムに係る。   The invention according to claim 6 relates to the prime mover system according to claim 1, wherein a generator is connected to the turbine section.

請求項7の発明は、超臨界状態の動作流体をタービン部に導入して回転駆動力を得る原動機システムであって、燃料を燃焼する燃焼部と、前記燃焼部に供給する酸素及び前記動作流体となる窒素を生産する深冷空気分離装置と、燃料の燃焼熱により前記動作流体となる窒素を超臨界状態にする超臨界形成部と、前記超臨界形成部と前記タービン部を接続して前記動作流体の窒素をタービン部へ供給する流体供給部と、前記深冷空気分離装置により分離された酸素または窒素のいずれか一方もしくは両方の冷熱を用いて前記燃焼部から排出される排気ガスを冷却し、前記排気ガス中の二酸化炭素と水を分離する熱交換分離部とを備えたことを特徴とする原動機システムに係る。   The invention of claim 7 is a prime mover system that obtains a rotational driving force by introducing a working fluid in a supercritical state into a turbine portion, a combustion portion that burns fuel, oxygen supplied to the combustion portion, and the working fluid A cryogenic air separator that produces nitrogen to become, a supercritical forming part that brings the nitrogen that becomes the working fluid into a supercritical state by the combustion heat of fuel, and the supercritical forming part and the turbine part connected to each other, and The exhaust gas discharged from the combustion section is cooled using a fluid supply section that supplies nitrogen as a working fluid to the turbine section, and the cold energy of either or both of oxygen and nitrogen separated by the deep air separator. In addition, the present invention relates to a prime mover system comprising a heat exchange separation unit that separates carbon dioxide and water in the exhaust gas.

請求項8の発明は、前記タービン部に導入された前記動作流体を用いて駆動する副タービン部が、前記タービン部の下流側に設けられている請求項7に記載の原動機システムに係る。   The invention according to claim 8 relates to the prime mover system according to claim 7, wherein a sub-turbine section driven by using the working fluid introduced into the turbine section is provided on the downstream side of the turbine section.

請求項9の発明は、前記タービン部に発電機が接続されている請求項7に記載の原動機システムに係る。   The invention according to claim 9 relates to the prime mover system according to claim 7, wherein a generator is connected to the turbine section.

請求項1の発明に係る原動機システムによると、超臨界状態の動作流体をタービン部に導入して回転駆動力を得る原動機システムであって、燃料を燃焼する燃焼部と、燃料の燃焼熱により前記動作流体を超臨界状態にする超臨界形成部と、前記超臨界形成部と前記タービン部を接続して前記動作流体をタービン部に導入すると共に前記動作流体を再び前記超臨界形成部に戻すことにより前記臨界形成部と前記タービン部との間で前記動作流体を循環させる流体循環部と、前記動作流体を冷却する凝縮器と、前記燃焼部へ燃焼用の酸素を供給する液体酸素供給部と、前記液体酸素供給部から前記燃焼部へ供給される酸素の冷熱を用いて前記燃焼部から排出される排気ガスを冷却し、前記排気ガス中の水と二酸化炭素を分離する熱交換分離部とを備えたため、動作流体のエネルギー損失を抑制してタービン部を駆動することができ、放射性廃棄物の問題もなく、燃料の燃焼に伴い排出される二酸化炭素の処理も容易となる。また、はじめから純粋な酸素が燃料の燃焼用に供給されるため、空気圧縮機等が不要となる。従って、原動機システムの設備を簡素化することができる。   According to the prime mover system according to the first aspect of the present invention, there is provided a prime mover system that obtains rotational driving force by introducing a supercritical working fluid into a turbine portion, wherein the combustion portion combusts fuel and the combustion heat of the fuel A supercritical forming section for bringing the working fluid into a supercritical state; connecting the supercritical forming section and the turbine section to introduce the working fluid into the turbine section; and returning the working fluid to the supercritical forming section again. A fluid circulation section for circulating the working fluid between the critical formation section and the turbine section, a condenser for cooling the working fluid, and a liquid oxygen supply section for supplying combustion oxygen to the combustion section. A heat exchange separation unit that cools the exhaust gas discharged from the combustion unit using cold oxygen supplied from the liquid oxygen supply unit to the combustion unit and separates water and carbon dioxide in the exhaust gas; The Because there was example, to suppress the energy loss of the working fluid can drive the turbine unit, without problems of radioactive waste, the process of carbon dioxide emitted due to combustion of the fuel is facilitated. Also, since pure oxygen is supplied for fuel combustion from the beginning, an air compressor or the like is not necessary. Therefore, the equipment of the prime mover system can be simplified.

請求項2の発明に係る原動機システムによると、請求項1の発明において、前記液体酸素供給部が深冷空気分離装置を備え、前記深冷空気分離装置により分離された酸素が前記燃焼部へ供給されるため、燃料の燃焼に必要な酸素を常時安定して燃焼部に供給することができる。   According to the prime mover system of the invention of claim 2, in the invention of claim 1, the liquid oxygen supply unit includes a chilled air separation device, and oxygen separated by the chilled air separation device is supplied to the combustion unit. Therefore, oxygen necessary for the combustion of the fuel can be constantly supplied to the combustion unit.

請求項3の発明に係る原動機システムによると、請求項2の発明において、前記深冷空気分離装置により分離された液体窒素が、前記凝縮器に導入されるため、深冷空気分離装置から分離された液体窒素を有効に活用して動作流体の冷却を簡素化することができる。   According to the prime mover system of the invention of claim 3, in the invention of claim 2, since the liquid nitrogen separated by the cryogenic air separation device is introduced into the condenser, it is separated from the cryogenic air separation device. The liquid nitrogen can be effectively used to simplify the cooling of the working fluid.

請求項4の発明に係る原動機システムによると、請求項1の発明において、前記動作流体が、二酸化炭素、窒素または希ガスのいずれかであるため、動作流体にオゾン層への影響が懸念されるフロン類や反応性が高い動作流体を用いる必要がない。   According to the prime mover system according to the invention of claim 4, in the invention of claim 1, since the working fluid is any one of carbon dioxide, nitrogen, or a rare gas, there is a concern that the working fluid may affect the ozone layer. There is no need to use chlorofluorocarbons or highly reactive working fluid.

請求項5の発明に係る原動機システムによると、請求項1の発明において、前記タービン部に導入された前記動作流体を用いて駆動する副タービン部が、前記流体循環部に設けられているため、単一の流体循環部に設置できるタービン部の数を増やすことができる。そこで、燃焼部における燃焼熱を有効に生かすことができ、一の原動機システムから獲得できる駆動エネルギーは増加する。   According to the prime mover system according to the invention of claim 5, in the invention of claim 1, the sub-turbine part driven using the working fluid introduced into the turbine part is provided in the fluid circulation part. The number of turbine sections that can be installed in a single fluid circulation section can be increased. Therefore, the combustion heat in the combustion section can be utilized effectively, and the drive energy that can be acquired from one prime mover system increases.

請求項6の発明に係る原動機システムによると、請求項1の発明において、前記タービン部に発電機が接続されているため、エネルギー利用効率の高い火力発電所を得ることができる。   According to the prime mover system according to the sixth aspect of the present invention, in the first aspect of the present invention, since the generator is connected to the turbine section, a thermal power plant with high energy utilization efficiency can be obtained.

請求項7の発明に係る原動機システムによると、超臨界状態の動作流体をタービン部に導入して回転駆動力を得る原動機システムであって、燃料を燃焼する燃焼部と、前記燃焼部に供給する酸素及び前記動作流体となる窒素を生産する深冷空気分離装置と、燃料の燃焼熱により前記動作流体となる窒素を超臨界状態にする超臨界形成部と、前記超臨界形成部と前記タービン部を接続して前記動作流体の窒素をタービン部へ供給する流体供給部と、前記深冷空気分離装置により分離された酸素または窒素のいずれか一方もしくは両方の冷熱を用いて前記燃焼部から排出される排気ガスを冷却し、前記排気ガス中の二酸化炭素と水を分離する熱交換分離部とを備えたため、オゾン層への影響や反応性の高い動作流体に依存することなく、動作流体のエネルギー損失を抑制してタービン部を駆動することができ、放射性廃棄物の問題もなく、燃料の燃焼に伴い排出される二酸化炭素の処理も容易となる。また、はじめから純粋な酸素が燃料の燃焼用に供給されるため、空気圧縮機等が不要となる。従って、原動機システムの設備を簡素化することができる。   According to the prime mover system of the seventh aspect of the present invention, there is provided a prime mover system for obtaining a rotational driving force by introducing a supercritical working fluid into the turbine portion, the combustion portion for burning fuel, and supplying the combustion portion to the combustion portion. A cryogenic air separation device that produces oxygen and nitrogen as the working fluid, a supercritical formation section that brings the working fluid nitrogen into a supercritical state by the combustion heat of fuel, the supercritical formation section, and the turbine section And a fluid supply unit for supplying nitrogen of the working fluid to the turbine unit, and one or both of the oxygen and nitrogen separated by the deep air separation device are discharged from the combustion unit. The exhaust gas is cooled and the heat exchange separation part that separates the carbon dioxide and water in the exhaust gas is provided, so that the working fluid does not depend on the influence of the ozone layer or the highly reactive working fluid. By suppressing the energy loss can drive the turbine unit, without problems of radioactive waste, the process of carbon dioxide emitted due to combustion of the fuel is facilitated. Also, since pure oxygen is supplied for fuel combustion from the beginning, an air compressor or the like is not necessary. Therefore, the equipment of the prime mover system can be simplified.

さらに、深冷空気分離装置より分離された窒素を動作流体として有効に活用することができ、タービン部を駆動した後に動作流体を問題なく排気することができる。   Furthermore, nitrogen separated from the cryogenic air separation device can be effectively utilized as the working fluid, and the working fluid can be exhausted without any problem after the turbine section is driven.

請求項8の発明に係る原動機システムによると、請求項7の発明において、前記タービン部に導入された前記動作流体を用いて駆動する副タービン部が、前記タービン部の下流側に設けられているため、単一の流体供給部に設置できるタービン部の数を増やすことができる。そこで、燃焼部における燃焼熱を有効に生かすことができ、一の原動機システムから獲得できる駆動エネルギーは増加する。   According to the prime mover system of the eighth aspect of the present invention, in the seventh aspect of the present invention, the auxiliary turbine section that is driven by using the working fluid introduced into the turbine section is provided on the downstream side of the turbine section. Therefore, the number of turbine units that can be installed in a single fluid supply unit can be increased. Therefore, the combustion heat in the combustion section can be utilized effectively, and the drive energy that can be acquired from one prime mover system increases.

請求項9の発明に係る原動機システムによると、請求項7の発明において、前記タービン部に発電機が接続されているため、エネルギー利用効率の高い火力発電所を得ることができる。   According to the prime mover system of the ninth aspect of the invention, in the seventh aspect of the invention, since the generator is connected to the turbine section, a thermal power plant with high energy utilization efficiency can be obtained.

以下添付の図面に従って本発明を説明する。
図1は本発明の第1実施形態の原動機システムを示す概略図、図2は第2実施形態の原動機システムを示す概略図、図3は第3実施形態の原動機システムを示す概略図、図4は第4実施形態の原動機システムを示す概略図である。
The present invention will be described below with reference to the accompanying drawings.
1 is a schematic diagram showing a prime mover system according to a first embodiment of the present invention, FIG. 2 is a schematic diagram showing a prime mover system according to a second embodiment, FIG. 3 is a schematic diagram showing a prime mover system according to a third embodiment, and FIG. These are the schematic diagrams which show the motor | power_engine system of 4th Embodiment.

本発明の原動機システムとは、超臨界状態の温度、圧力を有する動作流体をタービン部に導入して同タービン部から回転駆動力を得るランキンサイクルを用いたシステムである。同時に、動作流体を超臨界状態とする際の燃料の燃焼に伴い排出される排気ガス中より二酸化炭素等の分離も行うことができるシステムである。   The prime mover system of the present invention is a system using a Rankine cycle in which a working fluid having a temperature and pressure in a supercritical state is introduced into the turbine section to obtain a rotational driving force from the turbine section. At the same time, the system is capable of separating carbon dioxide and the like from the exhaust gas discharged with the combustion of fuel when the working fluid is brought into a supercritical state.

本発明の原動機システムに用いる動作流体は次の特性を備える必要がある。第1に、タービンや各種配管等に対する腐食性が低く、配管等から漏洩したとしても人体を含め環境に対する影響が少ない流体であることが必要である。第2に、後述する燃焼部における燃焼熱により超臨界状態へ容易に移行可能な流体であることが必要である。特に、超臨界状態に移行すると物質の反応性は高まるため、各部材に与える影響が甚大となる。これらの点を加味し、動作流体を二酸化炭素、窒素、または希ガスのいずれかから選択することが好ましい。   The working fluid used in the prime mover system of the present invention must have the following characteristics. First, it must be a fluid that has low corrosiveness to the turbine, various pipes, etc., and has little influence on the environment including the human body even if leaked from the pipes. Secondly, the fluid needs to be capable of easily shifting to the supercritical state by the combustion heat in the combustion section described later. In particular, since the reactivity of the substance increases when the state transitions to a supercritical state, the influence on each member is enormous. In consideration of these points, it is preferable to select the working fluid from carbon dioxide, nitrogen, or a rare gas.

次に、本発明の原動機システムに用いることができる燃料としては、メタン、エタン、プロパン、ブタン等の炭化水素ガス、炭化水素ガスを主成分とする天然ガス(LNG等)、メタノール、エタノール等のアルコール類、ジメチルエーテル、ジエチルエーテル等のエーテル類である。他に、食用油等の油脂類、ガソリン、軽油、重油、石炭、あるいは公知の手法により石炭や重油を加工した燃料ガス(CO,H2等)も用いることができる。加えて、可燃ゴミ、廃材、海藻類、間伐材、サトウキビの絞りかす、その他の各種バイオマスに由来するガス類やアルコール類、さらには海底に堆積しているメタンハイドレート由来のガスも含めることができる。 Next, examples of the fuel that can be used in the prime mover system of the present invention include hydrocarbon gas such as methane, ethane, propane, and butane, natural gas mainly containing hydrocarbon gas (such as LNG), methanol, ethanol, and the like. Alcohols, ethers such as dimethyl ether and diethyl ether. In addition, fats and oils such as edible oil, gasoline, light oil, heavy oil, coal, or fuel gas (CO, H 2 or the like) obtained by processing coal or heavy oil by a known method can be used. In addition, combustible waste, waste wood, seaweed, thinned wood, sugarcane residue, other biomass-derived gases and alcohols, and methane hydrate-derived gas deposited on the seabed may also be included. it can.

列記の燃料のうち、炭化水素ガスは、燃焼時に生じる煤煙等が少なく、燃料の完全燃焼により排気ガスはほぼ水と二酸化炭素となる。このため、後記する排気ガス中の水と二酸化炭素の分離処理に要する負担が少ない。これより開示する第1ないし第4実施形態は、主にLNGを燃料とする例示である。当然ながら、前記の各種燃料を適用することも可能である。   Of the listed fuels, hydrocarbon gas produces less soot and the like produced during combustion, and exhaust gas becomes almost water and carbon dioxide due to complete combustion of the fuel. For this reason, the burden required for the separation process of water and carbon dioxide in the exhaust gas described later is small. The first to fourth embodiments disclosed here are examples mainly using LNG as fuel. Of course, it is also possible to apply the various fuels described above.

以下、各実施形態に合わせて本発明の原動機システムを図示し説明する。各図において、矢印の付記は、動作流体、排気ガス、酸素、窒素等の流体の進路を示す。なお、本発明の内容は、図示並びに説明の実施形態の構造に必ずしも限定されない。   Hereinafter, the prime mover system of the present invention will be illustrated and described according to each embodiment. In each of the drawings, a supplementary arrow indicates a course of a fluid such as working fluid, exhaust gas, oxygen, and nitrogen. The contents of the present invention are not necessarily limited to the structures of the illustrated and described embodiments.

図1の概略図は、第1実施形態の原動機システム1Aを示す。請求項1の発明として規定されるように、原動機システム1Aには、燃料を燃焼する燃焼部20、その内部に設けられた超臨界形成部21、同超臨界形成部とタービン部10を接続して動作流体を循環させる流体循環部30が備えられ、さらに流体循環部に備えられた凝縮器、液体酸素供給部50、熱交換分離部60が備えられる。   The schematic diagram of FIG. 1 shows a prime mover system 1A of the first embodiment. As defined in the invention of claim 1, the prime mover system 1 </ b> A includes a combustion unit 20 that burns fuel, a supercritical formation unit 21 provided therein, and the supercritical formation unit and the turbine unit 10. In addition, a fluid circulation unit 30 that circulates the working fluid is provided, and further, a condenser, a liquid oxygen supply unit 50, and a heat exchange separation unit 60 that are provided in the fluid circulation unit are provided.

燃料貯蔵部70に貯蔵されている燃料は燃料配管71を通じ、燃料を燃焼する燃焼部20に供給される。この実施形態の燃料はLNGであり、燃料貯蔵部70は燃料タンクとなる。燃料は、後記する液体酸素供給部50から供給される酸素により燃焼する。   The fuel stored in the fuel storage unit 70 is supplied through the fuel pipe 71 to the combustion unit 20 that burns the fuel. The fuel of this embodiment is LNG, and the fuel storage unit 70 is a fuel tank. The fuel burns with oxygen supplied from a liquid oxygen supply unit 50 described later.

燃焼部20の構造、形状は燃焼効率を考慮して適宜設計される。燃料の燃焼効率を高めるためにスワラー(swirler)等(図示せず)が燃料配管71の燃焼部側末端に配される。燃料は酸化され、燃料は水と二酸化炭素からなる排気ガスとして燃焼部20から排出される。燃焼部20における燃料の燃焼では、燃料である炭化水素の酸化、生じた一酸化炭素の酸化も進行する。図中の符号Lfは輝炎である。   The structure and shape of the combustion unit 20 are appropriately designed in consideration of combustion efficiency. In order to increase the combustion efficiency of fuel, a swirler or the like (not shown) is disposed at the end of the fuel pipe 71 on the combustion section side. The fuel is oxidized, and the fuel is discharged from the combustion unit 20 as an exhaust gas composed of water and carbon dioxide. In the combustion of the fuel in the combustion unit 20, the oxidation of the hydrocarbon as the fuel and the oxidation of the generated carbon monoxide also proceed. The symbol Lf in the figure is a luminous flame.

燃焼部20の内部には超臨界形成部21が備えられる。動作流体は液体の状態で臨界圧力以上に加圧され、超臨界形成部21を通過することにより、燃料の燃焼熱を受けて臨界温度以上に加熱、昇温される。従って、動作流体は超臨界状態になる。超臨界形成部21は、超臨界状態の動作流体の流通と燃焼熱にも対応した耐久性を備える熱交換機となる。   A supercritical forming part 21 is provided inside the combustion part 20. The working fluid is pressurized to a critical pressure or higher in a liquid state and passes through the supercritical forming portion 21 to receive the heat of combustion of the fuel and to be heated and heated to a critical temperature or higher. Therefore, the working fluid is in a supercritical state. The supercritical forming part 21 is a heat exchanger having durability corresponding to the flow of the supercritical working fluid and the combustion heat.

第1実施形態の原動機システム1Aにおいて、超臨界形成部21を通過することにより超臨界状態となった動作流体は、流体循環部30を通じてタービン部10に導入される。そして、超臨界状態以下の温度、圧力に低下した動作流体は、タービン部10から排出され、再び超臨界形成部21に戻される。こうして、動作流体は超臨界形成部21とタービン部10との間で循環する。図中、符号31はタービン部上流配管、32はタービン部下流配管である。むろん、流体循環部30(タービン部上部流配管31、タービン部下流配管32)は耐圧設計となる。超臨界状態の動作流体が流入するタービン部は、超高圧タービン、もしくは後記の超高圧と高圧タービンを組み合わせた構造とすることもできる。   In the prime mover system 1 </ b> A of the first embodiment, the working fluid that has reached the supercritical state by passing through the supercritical forming unit 21 is introduced into the turbine unit 10 through the fluid circulation unit 30. Then, the working fluid that has fallen to a temperature and pressure below the supercritical state is discharged from the turbine unit 10 and returned to the supercritical forming unit 21 again. Thus, the working fluid circulates between the supercritical forming part 21 and the turbine part 10. In the figure, reference numeral 31 is a turbine section upstream pipe, and 32 is a turbine section downstream pipe. Of course, the fluid circulation section 30 (the turbine section upper flow pipe 31 and the turbine section downstream pipe 32) has a pressure resistance design. The turbine section into which the working fluid in the supercritical state flows may be a super high pressure turbine or a structure in which a super high pressure and a high pressure turbine described later are combined.

当該原動機システム1Aの動作流体は、前述の安定性、無毒性等の理由から、また、請求項4の発明に規定するように、二酸化炭素、窒素、または希ガスのいずれかから選択することが好ましい。加えて、タービン部(図示しないタービン軸)を回転するための荷重を考慮すると、分子量は水等と同等あるいはそれよりも大きいことが望ましい。このことから水素やヘリウムよりも、ネオン、アルゴン、クリプトン、キセノン等が好ましい。動作流体となる希ガスには、量的な調達が容易であることから、アルゴンが用いられる。   The working fluid of the prime mover system 1A may be selected from carbon dioxide, nitrogen, or a rare gas for reasons of the above-described stability and non-toxicity, and as defined in the invention of claim 4. preferable. In addition, considering the load for rotating the turbine section (turbine shaft (not shown)), it is desirable that the molecular weight is equal to or larger than that of water or the like. Therefore, neon, argon, krypton, xenon, etc. are preferable to hydrogen and helium. Argon is used for the rare gas as the working fluid because it can be easily procured quantitatively.

動作流体の臨界点における圧力と温度は、CO2:{7.39Mpa,304K(31℃)}、N2:{3.4MPa,126K(−147℃)}、Ar:{4.86MPa,151K(−122℃)}となる。かっこ内前者は圧力、後者は温度である。これに対し、水の臨界点は、22.12MPa,647.3K(374℃)である。それぞれの臨界点の比較から、動作流体となるCO2、N2、Ar等を超臨界形成部において超臨界状態とするために要するエネルギーは、水を超臨界状態にするために要するエネルギーよりも低いと考えられる。現在、火力発電所等において水を動作流体として用いる場合、タービン部の駆動に際し、水を31Mpa、556℃の超臨界状態にして実用化されている。この点からも、動作流体となるCO2、N2、Ar等を超臨界状態にするために要するエネルギーは、水の場合と比較しても低くなる。結果的に、燃焼熱量の抑制による燃焼部の燃料消費量の削減が可能であると想定される。 The pressure and temperature at the critical point of the working fluid are as follows: CO 2 : {7.39 Mpa, 304 K (31 ° C.)}, N 2 : {3.4 MPa, 126 K (−147 ° C.)}, Ar: {4.86 MPa, 151 K (−122 ° C.)}. The former in parentheses is pressure and the latter is temperature. On the other hand, the critical point of water is 22.12 MPa, 647.3 K (374 ° C.). From the comparison of the critical points, the energy required to bring the working fluid CO 2 , N 2 , Ar, etc. into the supercritical state in the supercritical formation part is more than the energy required to bring water into the supercritical state. It is considered low. At present, when water is used as a working fluid in a thermal power plant or the like, it is put into practical use by setting water to a supercritical state of 31 Mpa and 556 ° C. when driving the turbine section. Also from this point, the energy required to make the working fluid CO 2 , N 2 , Ar, etc. into a supercritical state is lower than that of water. As a result, it is assumed that the fuel consumption of the combustion part can be reduced by suppressing the amount of combustion heat.

流体循環部30において、凝縮器91はタービン部10から超臨界形成部21に戻る経路に備えられる。図示では、タービン部下流配管32の途中に備えられる。また、タービン部下流配管32の途中、タービン部10から超臨界形成部21に戻る経路に循環ポンプ92も備えられる。動作流体の流体循環部30における循環、圧送(臨界圧力以上の加圧)は、当該循環ポンプ92により行われる。   In the fluid circulation unit 30, the condenser 91 is provided in a path returning from the turbine unit 10 to the supercritical forming unit 21. In the figure, it is provided in the middle of the turbine section downstream pipe 32. In addition, a circulation pump 92 is also provided in a path returning from the turbine unit 10 to the supercritical forming unit 21 in the middle of the turbine unit downstream pipe 32. Circulation and pressure feeding (pressurization higher than the critical pressure) of the working fluid in the fluid circulation unit 30 are performed by the circulation pump 92.

凝縮器91には、動作流体を冷却するための公知の装置が用いられる。凝縮器がタービン部の下流側の流体循環部に備えられていることから、動作流体は凝縮器を通じて冷却され液化する。そこで、タービン部の上流側と下流側の間で動作流体の圧力差が生じる。タービン部の下流側の圧力が下がり、動作流体はタービン部への流入しやすくなる。このため、タービン部の回転効率は向上する。   A known device for cooling the working fluid is used for the condenser 91. Since the condenser is provided in the fluid circulation section on the downstream side of the turbine section, the working fluid is cooled and liquefied through the condenser. Therefore, a pressure difference of the working fluid occurs between the upstream side and the downstream side of the turbine unit. The pressure on the downstream side of the turbine section decreases, and the working fluid easily flows into the turbine section. For this reason, the rotational efficiency of a turbine part improves.

この説明から把握されるように、第1実施形態の原動機システム1Aにおいて、動作流体は、「超臨界状態」と「超臨界状態よりもエンタルピーが低下した状態」とを繰り返しながら、閉鎖した流体循環部内を流動する。常にタービン部では回転駆動力を得ることができる。なお、動作流体はCO2、N2、Ar等であるため、動作流体の漏出により規定量を下回る場合、同種の動作流体が適量流体循環部に補填される。 As can be understood from this description, in the prime mover system 1A of the first embodiment, the working fluid repeats the “supercritical state” and the “state in which the enthalpy is lower than the supercritical state” while repeating the closed fluid circulation. Flow in the club. A rotational driving force can always be obtained in the turbine section. Since the working fluid is CO 2 , N 2 , Ar, or the like, when the working fluid is less than the specified amount due to the leakage of the working fluid, an appropriate amount of the working fluid is supplemented in the fluid circulation portion.

燃焼部20における燃料の燃焼に必要な酸素は、液体酸素供給部50から供給される。酸素源を液体酸素とする理由は、後記するとおり、液体酸素自体の冷熱(極低温の冷たさ)を利用するためである。原動機システムが小規模設備や移動設備等の場合、液体酸素供給部50は液体酸素のタンク、そのタンク車等となる。   Oxygen necessary for fuel combustion in the combustion unit 20 is supplied from the liquid oxygen supply unit 50. The reason why the oxygen source is liquid oxygen is to use the cold heat of the liquid oxygen itself (coldness at an extremely low temperature), as will be described later. When the prime mover system is a small-scale facility, a mobile facility, or the like, the liquid oxygen supply unit 50 is a liquid oxygen tank, a tank car, or the like.

原動機システムが大規模の作業プラント等の場合、燃料の燃焼に常時大量の酸素が必要となる。この場合、請求項2の発明に規定され、図示の実施形態のように、液体酸素供給部50は深冷空気分離装置51を備える。深冷空気分離装置51より分離して生産された酸素が燃焼部20に供給される。よって、液体酸素を逐次補充とする必要はなく、常時安定した液体酸素の供給が可能となる。   When the prime mover system is a large-scale work plant or the like, a large amount of oxygen is always required for fuel combustion. In this case, as defined in the second aspect of the invention, the liquid oxygen supply unit 50 includes a cryogenic air separation device 51 as in the illustrated embodiment. Oxygen produced by being separated from the cryogenic air separation device 51 is supplied to the combustion unit 20. Therefore, it is not necessary to replenish liquid oxygen sequentially, and stable supply of liquid oxygen is always possible.

当然ながら、炭化水素ガス等の各種燃料を燃焼する場合には、水(水蒸気)と二酸化炭素を含む排気ガスの排出は不可避である。ただし、水と二酸化炭素の分離を精度良く行うことができれば、排気ガスの排出コストの削減、排出された二酸化炭素の回収、埋設処理にも寄与できる。   Naturally, when various fuels such as hydrocarbon gas are burned, exhaust gas containing water (water vapor) and carbon dioxide is inevitable. However, if separation of water and carbon dioxide can be performed with high accuracy, it can contribute to reduction of exhaust gas emission cost, recovery of discharged carbon dioxide, and burial processing.

二酸化炭素の凝固点は常圧下で−79℃である。これに対し、酸素の沸点は−183℃であり、酸素の冷熱の方が十分に低温である。そこで、液体酸素供給部50から供給される酸素は、燃焼部20から排出される排気ガスの熱量や燃焼熱をもって気化される。これと併行して、排気ガスは液体酸素の冷熱により冷却される。水、二酸化炭素等の排気ガス中に含まれていた成分は、排気ガスの冷却に伴い沸点や凝固点の差により、それぞれ各成分毎に分離される。一連の熱交換と分離は熱交換分離部60において行われる。   The freezing point of carbon dioxide is -79 ° C under normal pressure. On the other hand, the boiling point of oxygen is −183 ° C., and the cold temperature of oxygen is sufficiently low. Therefore, the oxygen supplied from the liquid oxygen supply unit 50 is vaporized with the heat quantity and combustion heat of the exhaust gas discharged from the combustion unit 20. At the same time, the exhaust gas is cooled by the cold heat of liquid oxygen. Components contained in the exhaust gas such as water and carbon dioxide are separated for each component due to differences in boiling point and freezing point as the exhaust gas is cooled. A series of heat exchange and separation is performed in the heat exchange separation unit 60.

すなわち、液体酸素自体の冷熱を有効に生かして、二酸化炭素の固化または液化まで可能となる。よって、排気ガス中の二酸化炭素の分離処理に要する別途の負担は軽減され、相対的に運転コストは少なくなる。また、はじめから純粋な酸素が燃料の燃焼に供給されるため、空気圧縮機等が不要となる。従って、原動機システムの設備は簡素化される。なお、排気ガス中の二酸化炭素の分離処理を容易にする点を考慮すると、煤煙等が生じにくく燃焼が容易なため、燃料には炭化水素ガスが好ましい。   That is, it is possible to solidify or liquefy carbon dioxide by effectively utilizing the cold heat of liquid oxygen itself. Therefore, the additional burden required for the separation process of carbon dioxide in the exhaust gas is reduced, and the operation cost is relatively reduced. Moreover, since pure oxygen is supplied to the combustion of fuel from the beginning, an air compressor or the like is not necessary. Therefore, the equipment of the prime mover system is simplified. In view of facilitating the separation process of carbon dioxide in the exhaust gas, soot and the like are hardly generated and combustion is easy. Therefore, hydrocarbon gas is preferable as the fuel.

図示の実施形態によると、燃焼部20から排出される排気ガスは、排気ガス流路80(排気ガス配管81)を通じて熱交換分離部60内の排気ガス冷却部82に導入される。液体酸素供給部50から供給される液体酸素は、液体酸素配管52を通じて熱交換分離部60内の酸素気化部53に導入される。   According to the illustrated embodiment, the exhaust gas discharged from the combustion unit 20 is introduced into the exhaust gas cooling unit 82 in the heat exchange separation unit 60 through the exhaust gas passage 80 (exhaust gas pipe 81). Liquid oxygen supplied from the liquid oxygen supply unit 50 is introduced into the oxygen vaporization unit 53 in the heat exchange separation unit 60 through the liquid oxygen pipe 52.

特に第1実施形態においては、深冷空気分離装置51から生産される副産物である液体窒素の冷熱も併せて利用される。すなわち、請求項3の発明に規定するように、深冷空気分離装置51により分離された液体窒素が凝縮器配管58を通じて凝縮器91へ導入される。そして、液体窒素の冷熱により流体循環部30を流通する動作流体は冷却され、動作流体は液体となる。深冷空気分離装置から分離された液体窒素を有効に活用することによって動作流体の冷却設備を簡素化することができる。併せて、深冷空気分離装置51により分離された液体窒素は液体窒素配管55を通じて熱交換分離部60内の窒素気化部56にも導入される。   In particular, in the first embodiment, the cold heat of liquid nitrogen, which is a byproduct produced from the cryogenic air separation device 51, is also used. That is, as specified in the invention of claim 3, the liquid nitrogen separated by the chilled air separation device 51 is introduced into the condenser 91 through the condenser pipe 58. And the working fluid which distribute | circulates the fluid circulation part 30 with the cold heat | fever of liquid nitrogen is cooled, and a working fluid turns into a liquid. By effectively utilizing the liquid nitrogen separated from the cryogenic air separation device, the cooling equipment for the working fluid can be simplified. At the same time, the liquid nitrogen separated by the cryogenic air separation device 51 is also introduced into the nitrogen vaporization section 56 in the heat exchange separation section 60 through the liquid nitrogen pipe 55.

酸素気化部53、窒素気化部56、及び排気ガス冷却部82は、互いに近接、接触した配置である。そこで、排気ガス冷却部82内を流通する排気ガスは冷却され、逆に、酸素気化部53内を流通する液体酸素、及び窒素気化部56内を流通する液体窒素は、熱交換に伴い気化される。酸素気化部、排気ガス冷却部等には、適宜の熱交換やガス移送の部材が用いられる。ここで、燃焼部における燃焼熱を酸素気化部等へ誘導して温度上昇が補助される場合もある。   The oxygen vaporization unit 53, the nitrogen vaporization unit 56, and the exhaust gas cooling unit 82 are arranged close to and in contact with each other. Therefore, the exhaust gas flowing through the exhaust gas cooling unit 82 is cooled, and conversely, the liquid oxygen flowing through the oxygen vaporization unit 53 and the liquid nitrogen flowing through the nitrogen vaporization unit 56 are vaporized along with heat exchange. The Appropriate heat exchange and gas transfer members are used for the oxygen vaporization section, the exhaust gas cooling section, and the like. Here, in some cases, the temperature rise is assisted by inducing combustion heat in the combustion section to the oxygen vaporization section or the like.

排気ガスは、熱交換分離部60(排気ガス冷却部82)を通過して水、二酸化炭素、その他酸素等に分離され、水は排水溜め83に、二酸化炭素は排二酸化炭素溜め84に向かう。熱交換分離部60(酸素気化部53)を通過して気化した酸素は、気化酸素配管54を経由して燃焼部20へ導入され、前述のとおり燃料の燃焼に用いられる。熱交換分離部60(窒素気化部56)を通過して気化した窒素は、気化窒素配管57を経由して排気される。熱交換分離部60(窒素気化部56)を通過して気化した窒素は、気化窒素配管57を経由して排気される。気化窒素配管や凝縮器から排気される窒素(液体窒素の状態も含む)は、必要に応じて適宜用途に利用される。   The exhaust gas passes through the heat exchange separation unit 60 (exhaust gas cooling unit 82) and is separated into water, carbon dioxide, and other oxygen, and the water is directed to the waste water reservoir 83 and the carbon dioxide is directed to the exhaust carbon dioxide reservoir 84. Oxygen vaporized through the heat exchange separation unit 60 (oxygen vaporization unit 53) is introduced into the combustion unit 20 via the vaporized oxygen pipe 54 and used for fuel combustion as described above. Nitrogen vaporized through the heat exchange separation unit 60 (nitrogen vaporization unit 56) is exhausted through a vaporized nitrogen pipe 57. Nitrogen vaporized through the heat exchange separation unit 60 (nitrogen vaporization unit 56) is exhausted through a vaporized nitrogen pipe 57. Nitrogen (including the state of liquid nitrogen) exhausted from the vaporized nitrogen piping and the condenser is appropriately used for applications as necessary.

図2の概略図は、第2実施形態の原動機システム1Bを示す。当該原動機システム1Bでは、請求項5の発明に規定されるように、タービン部11に導入された動作流体を用いて駆動する副タービン部が流体循環部35に設けられる。第2実施形態の原動機システム1Bにおいて、前出の第1実施形態の原動機システム1Aと共通する箇所は同一符号とし、関連する説明を省略する。当該第2実施形態における第2タービン部が副タービン部に相当する。第2実施形態の原動機システム1Bにおける動作流体の経路は、次の説明のとおりとなる。   The schematic diagram of FIG. 2 shows a prime mover system 1B of the second embodiment. In the prime mover system 1 </ b> B, as defined in the invention of claim 5, a sub-turbine section that is driven using the working fluid introduced into the turbine section 11 is provided in the fluid circulation section 35. In the motor | power_engine system 1B of 2nd Embodiment, the location which is common in the motor | power_engine system 1A of above-mentioned 1st Embodiment sets it as the same code | symbol, and abbreviate | omits related description. The second turbine part in the second embodiment corresponds to the sub turbine part. The path of the working fluid in the prime mover system 1B of the second embodiment is as described below.

図2から把握されるように、燃焼部20内の第1超臨界形成部25の通過により超臨界状態となった動作流体は、流体循環部35の第1タービン部上流配管36を通じて第1タービン部11に導入される。第1タービン部11の駆動に伴い臨界点以下の温度に低下した動作流体は、第1タービン部11から排出され、第1タービン部下流配管37を通じて第2超臨界形成部26に戻される。第2超臨界形成部26に戻された動作流体は加熱されて再び超臨界状態に昇温され、動作流体のエンタルピーは増加する。動作流体は第2タービン部上流配管38を通じて副タービンとなる第2タービン部12に導入される。第2タービン部12の駆動に伴い臨界点以下の温度、圧力に低下した動作流体は、第2タービン部12から排出され、第2タービン部下流配管39を通じて第1超臨界形成部25に戻される。動作流体は、凝縮器91により冷却され、循環ポンプ92により加圧され燃焼部20内へ戻される。この後、動作流体は第1超臨界形成部25にて超臨界状態となり、流体循環部35内を循環する。   As can be understood from FIG. 2, the working fluid that has become a supercritical state by passing through the first supercritical forming section 25 in the combustion section 20 passes through the first turbine section upstream pipe 36 of the fluid circulation section 35 to the first turbine. Part 11 is introduced. The working fluid that has dropped to a temperature below the critical point as the first turbine unit 11 is driven is discharged from the first turbine unit 11 and returned to the second supercritical forming unit 26 through the first turbine unit downstream pipe 37. The working fluid returned to the second supercritical forming section 26 is heated and heated again to the supercritical state, and the enthalpy of the working fluid increases. The working fluid is introduced into the second turbine section 12 serving as a sub turbine through the second turbine section upstream pipe 38. The working fluid that has decreased to a temperature and pressure below the critical point as the second turbine unit 12 is driven is discharged from the second turbine unit 12 and returned to the first supercritical forming unit 25 through the second turbine unit downstream pipe 39. . The working fluid is cooled by the condenser 91, pressurized by the circulation pump 92, and returned to the combustion unit 20. Thereafter, the working fluid becomes a supercritical state in the first supercritical forming unit 25 and circulates in the fluid circulating unit 35.

第2実施形態の原動機システム1Bによると、単一の流体循環部35に設置できるタービン部の数を増やすことができる。そこで、燃焼部における燃焼熱を有効に生かすことができるため、一の原動機システムから獲得できる駆動エネルギーは増加する。発電所等を想定すると複数の発電機の運転が可能となるため、電力供給量は増加する。特に、いずれのタービン部とも超臨界状態の動作流体が導入するため、超高圧タービンにより強力な回転駆動力を得ることができる。タービン部の設置数は図示の2台に限られることはなく、必要数まで増設することができる。   According to the prime mover system 1B of the second embodiment, the number of turbine units that can be installed in a single fluid circulation unit 35 can be increased. Therefore, since the combustion heat in the combustion section can be effectively utilized, the drive energy that can be obtained from one prime mover system increases. Assuming a power plant or the like, since a plurality of generators can be operated, the amount of power supply increases. In particular, since a working fluid in a supercritical state is introduced into any turbine section, a strong rotational driving force can be obtained by the ultrahigh pressure turbine. The number of installed turbine units is not limited to the two illustrated, and can be increased to the required number.

開示の実施形態は、いずれのタービン部にも超臨界状態の動作流体を導入する構造である。例えば、第2超臨界形成部を加熱昇温部とすることにより、第1タービン部から排出される動作流体を加熱、昇温してエンタルピーが高い(多い)状態にして、第2タービン部へ導入することもできる。エンタルピーが超臨界状態よりも低い状態の動作流体であっても、有効にタービン部の駆動に用いることができる。この場合、図示しないが、第1タービン部と第2タービン部とを組み合わせた同軸のタービン部としてもよく、エンタルピーが高い動作流体、及び加熱、昇温によりエンタルピーを高くした動作流体の両方の導入により、タービン部の回転駆動力の増強が可能となる。   The disclosed embodiment is a structure for introducing a supercritical working fluid into any turbine section. For example, by setting the second supercritical forming portion as a heating temperature raising portion, the working fluid discharged from the first turbine portion is heated and heated to a state where the enthalpy is high (large), and then to the second turbine portion. It can also be introduced. Even a working fluid whose enthalpy is lower than the supercritical state can be used effectively for driving the turbine section. In this case, although not shown in the drawing, a coaxial turbine portion combining the first turbine portion and the second turbine portion may be used, and both the working fluid having a high enthalpy and the working fluid having a high enthalpy by heating and heating are introduced. As a result, the rotational driving force of the turbine section can be increased.

図3の概略図は、第3実施形態の原動機システム1Cを示す。請求項7の発明として規定されるように、原動機システム1Cには、燃料を燃焼する燃焼部20、この燃焼部20に供給する酸素及び動作流体となる窒素を生産する深冷空気分離装置51、燃焼部20の内部に設けられた超臨界形成部21、同超臨界形成部とタービン部10を接続して動作流体の窒素をタービン部10へ供給する流体供給部40が備えられ、さらに熱交換分離部60が備えられる。第3実施形態の原動機システム1Cにおいて、前出の第1実施形態の原動機システム1Aと共通する箇所は同一符号とし、関連する説明を省略する。   The schematic diagram of FIG. 3 shows a prime mover system 1C of the third embodiment. As defined in the invention of claim 7, the prime mover system 1 </ b> C includes a combustion unit 20 that burns fuel, oxygen supplied to the combustion unit 20, and a cryogenic air separation device 51 that produces nitrogen as a working fluid, A supercritical forming unit 21 provided inside the combustion unit 20, a fluid supply unit 40 that connects the supercritical forming unit and the turbine unit 10 to supply nitrogen as a working fluid to the turbine unit 10, and heat exchange are further provided. A separation unit 60 is provided. In the motor | power_engine system 1C of 3rd Embodiment, the location which is common in the motor | power_engine system 1A of above-mentioned 1st Embodiment sets it as the same code | symbol, and abbreviate | omits related description.

燃料の燃焼効率は、純粋な酸素存在下による燃焼とすることにより、格段に向上する。深冷空気分離装置は純粋な酸素を常時供給できるため効率よい。ただし、同時に生産される液体窒素は、前述の実施形態では一部の活用に留まっている。   The combustion efficiency of fuel is remarkably improved by performing combustion in the presence of pure oxygen. The cryogenic air separation device is efficient because it can always supply pure oxygen. However, the liquid nitrogen produced at the same time is only partially utilized in the above-described embodiment.

これに対し、第3実施形態の原動機システム1Cの特徴は、深冷空気分離装置において液体酸素生産時に分離される窒素を動作流体として用いる点である。すなわち、深冷空気分離装置の副産物を積極的に動作流体に活用してタービン部の駆動に利用する原動機システムである。   On the other hand, the motor system 1C of the third embodiment is characterized in that nitrogen that is separated during liquid oxygen production in the cryogenic air separation device is used as the working fluid. That is, this is a prime mover system that actively uses the by-product of the chilled air separation device as a working fluid and drives the turbine section.

はじめに空気は深冷空気分離装置51に供給され、同装置により液体酸素と液体窒素に分離される。液体酸素は、前述のとおり、液体酸素配管52、熱交換分離部60(酸素気化部53)、気化酸素配管54を経由して燃焼部20へ導入され、燃料の燃焼に用いられる。液体窒素の一部は、熱交換分離部60において排気ガスの冷却に用いられる。前述の実施形態と同じく、液体窒素配管55、熱交換分離部60(窒素気化部56)、気化窒素配管57を経由して排気される。熱交換分離部60における液体酸素及び液体窒素の気化並びに昇温、排気ガスの冷却と排気ガス中からの水、二酸化炭素の分離は、前述の実施形態と同様である。   First, air is supplied to a chilled air separation device 51, where it is separated into liquid oxygen and liquid nitrogen. As described above, liquid oxygen is introduced into the combustion section 20 via the liquid oxygen pipe 52, the heat exchange separation section 60 (oxygen vaporization section 53), and the vaporized oxygen pipe 54, and is used for fuel combustion. A part of the liquid nitrogen is used for cooling the exhaust gas in the heat exchange separation unit 60. As in the above-described embodiment, exhaust is performed via the liquid nitrogen pipe 55, the heat exchange separation unit 60 (nitrogen vaporization unit 56), and the vaporized nitrogen pipe 57. The vaporization and temperature rise of liquid oxygen and liquid nitrogen, the cooling of the exhaust gas, and the separation of water and carbon dioxide from the exhaust gas in the heat exchange separation unit 60 are the same as in the above-described embodiment.

動作流体は、深冷空気分離装置51にて空気から分離された液体窒素である。液体窒素は、液体窒素供給配管59を経由して液体窒素圧送ポンプ93により臨界圧力以上に加圧され、燃焼部20内の超臨界形成部21に導入される。動作流体の液体窒素は、超臨界形成部21において燃料の燃焼熱により、臨界温度以上に加熱、昇温され、動作流体の窒素は超臨界状態となる。超臨界状態の動作流体(窒素)は、流体供給部40(タービン部上流配管41)を通じてタービン部10に導入される。タービン部を回転駆動することによりエンタルピーが低下した動作流体は、タービン部下流配管42を通じて大気中に排気される。図示の原動機システム1Cの場合、請求項9の発明に規定するように、タービン部10に発電機100が接続されている。当該原動機システムは発電所である。   The working fluid is liquid nitrogen separated from air by the cryogenic air separation device 51. The liquid nitrogen is pressurized to a critical pressure or higher by the liquid nitrogen pumping pump 93 via the liquid nitrogen supply pipe 59 and is introduced into the supercritical forming part 21 in the combustion part 20. The liquid nitrogen of the working fluid is heated to a temperature higher than the critical temperature by the combustion heat of the fuel in the supercritical forming section 21 and the temperature of the working fluid nitrogen becomes supercritical. The supercritical working fluid (nitrogen) is introduced into the turbine unit 10 through the fluid supply unit 40 (turbine unit upstream pipe 41). The working fluid whose enthalpy has been reduced by rotationally driving the turbine section is exhausted to the atmosphere through the turbine section downstream pipe 42. In the illustrated prime mover system 1 </ b> C, a generator 100 is connected to the turbine section 10 as defined in claim 9. The prime mover system is a power plant.

第3実施形態の原動機システムに関する図示、説明のとおり、動作流体である窒素は、もともと空気中に存在していた成分であるため、排気に際し問題は生じない。排気はほぼ純粋な窒素であるため、気化窒素配管やタービン部下流配管から回収して工業用途等に用いることも可能である。また、流体供給部は動作流体の循環を目的としないため、管路は簡素となる。   As illustrated and described with respect to the prime mover system of the third embodiment, since nitrogen, which is a working fluid, is a component that originally existed in the air, no problem occurs during exhaust. Since the exhaust gas is almost pure nitrogen, it can be recovered from the vaporized nitrogen pipe or the turbine section downstream pipe and used for industrial purposes. Further, since the fluid supply unit does not aim at circulation of the working fluid, the pipe line is simplified.

図4の概略図は、第4実施形態の原動機システム1Dを示す。当該原動機システム1Dでは、請求項8の発明に規定されるように、タービン部11に導入された動作流体を用いて駆動する副タービン部が流体供給部40に設けられる。第4実施形態の原動機システム1Dにおいて、前出の第1ないし第3実施形態の原動機システム1A,1B,1Cと共通する箇所は同一符号とし、関連する説明を省略する。なお、当該第4実施形態における第2タービン部が副タービン部に相当する。第4実施形態の原動機システム1Dにおける動作流体の経路は、次の説明のとおりとなる。   The schematic diagram of FIG. 4 shows a prime mover system 1D of the fourth embodiment. In the prime mover system 1 </ b> D, as defined in the invention of claim 8, the fluid supply unit 40 is provided with a sub-turbine unit that is driven using the working fluid introduced into the turbine unit 11. In the prime mover system 1D of the fourth embodiment, portions common to the prime mover systems 1A, 1B, and 1C of the first to third embodiments described above are denoted by the same reference numerals, and related descriptions are omitted. In addition, the 2nd turbine part in the said 4th Embodiment corresponds to a subturbine part. The path of the working fluid in the prime mover system 1D of the fourth embodiment is as described below.

図4から把握されるように、液体窒素供給配管59、液体窒素圧送ポンプ93を経由して、燃焼部20内の第1超臨界形成部25の通過により超臨界状態となった動作流体(窒素)は、流体供給部45の第1タービン部上流配管46を通じて第1タービン部11に導入される。第1タービン部11の駆動に伴い臨界点以下の温度に低下した動作流体(窒素)は、第1タービン部11から排出され、第1タービン部下流配管47を通じて第2超臨界形成部26に戻される。第2超臨界形成部26に戻された動作流体(窒素)は加熱されて再び超臨界状態に昇温され、動作流体のエンタルピーは増加する。動作流体(窒素)は第2タービン部上流配管48を通じて副タービンとなる第2タービン部12に導入される。第2タービン部12の駆動に伴い臨界点以下の温度、圧力に低下した動作流体は、第2タービン部12から排出され、第2タービン部下流配管49を通じて大気中に排気される。   As can be understood from FIG. 4, the working fluid (nitrogen) that has become supercritical by passing through the first supercritical forming section 25 in the combustion section 20 via the liquid nitrogen supply pipe 59 and the liquid nitrogen pumping pump 93. ) Is introduced into the first turbine section 11 through the first turbine section upstream pipe 46 of the fluid supply section 45. The working fluid (nitrogen) that has dropped to a temperature below the critical point as the first turbine unit 11 is driven is discharged from the first turbine unit 11 and returned to the second supercritical forming unit 26 through the first turbine unit downstream pipe 47. It is. The working fluid (nitrogen) returned to the second supercritical forming unit 26 is heated and heated again to the supercritical state, and the enthalpy of the working fluid increases. The working fluid (nitrogen) is introduced into the second turbine section 12 serving as a sub turbine through the second turbine section upstream pipe 48. The working fluid that has dropped to a temperature and pressure below the critical point as the second turbine section 12 is driven is discharged from the second turbine section 12 and exhausted to the atmosphere through the second turbine section downstream piping 49.

第4実施形態の原動機システム1Dは、単一の流体供給部40に設置できるタービン部の数を増やすことができることから、前出の第3実施形態の原動機システム1Cと比較して、一の原動機システムから獲得できる駆動エネルギーは増加する。第4実施形態においても、タービン部の設置数は図示の2台に限られることはなく、必要数まで増設することができる。当該実施形態の場合も、第2超臨界形成部を加熱昇温部に代えることにより、第1タービン部から排出される動作流体を加熱、昇温してエンタルピーが高い(多い)状態にして、第2タービン部へ導入することもできる。エンタルピーが超臨界状態よりも低い状態の動作流体(窒素)であっても、加熱、昇温によりエンタルピーは高くなり、有効にタービン部の駆動に用いることができる。前述のとおり、タービン部の構造は最適に設計される。   Since the prime mover system 1D of the fourth embodiment can increase the number of turbine parts that can be installed in a single fluid supply part 40, it is one prime mover compared to the prime mover system 1C of the third embodiment. The drive energy that can be obtained from the system increases. Also in the fourth embodiment, the number of installed turbine units is not limited to the two illustrated, and can be increased to the required number. In the case of the embodiment as well, by replacing the second supercritical forming part with a heating temperature raising part, the working fluid discharged from the first turbine part is heated and heated to a high (large) enthalpy state. It can also be introduced into the second turbine section. Even if the enthalpy is a working fluid (nitrogen) in a state lower than the supercritical state, the enthalpy is increased by heating and heating, and can be used effectively for driving the turbine section. As described above, the structure of the turbine section is optimally designed.

図1ないし4にて開示し詳述した第1ないし第4実施形態の原動機システム1A,1B,1C,1Dの用途は、タービン部10(第1タービン部11,第2タービン部12)に接続する装置等により目的に応じて広がる。例えば、港湾の浚渫機、河川や干拓地の揚水機、油田の掘削機をはじめとする重機類の駆動源として用いることができる。あるいは、各種のコンプレッサ、ポンプ等の駆動源に用いることができる。さらには、この原動機システムを船舶に搭載しタービン部にプロペラ等を接続して、船舶の推進力を得る目的とすることもできる。   The applications of the prime mover systems 1A, 1B, 1C, and 1D disclosed in detail in FIGS. 1 to 4 are connected to the turbine section 10 (the first turbine section 11 and the second turbine section 12). Depending on the purpose of the device, etc. For example, it can be used as a drive source for heavy machinery such as dredgers in harbors, water pumps in rivers and reclaimed land, and oilfield excavators. Or it can use for drive sources, such as various compressors and pumps. Furthermore, the motor system can be mounted on a ship and a propeller or the like can be connected to the turbine section to obtain the propulsion power of the ship.

特に、請求項6、請求項9の発明に規定するように、タービン部10(第1タービン部11,第2タービン部12)に発電機100を接続する場合、原動機システムは火力発電所となる。規模の拡大により燃料の燃焼効率、超臨界状態の動作流体によるタービン部の駆動等、各所におけるエネルギー利用効率が高まることから、既存の火力発電所の代替して期待できる。また、原動機システムの規模により、原動機システムを自家発電装置に利用することもできる。   In particular, when the generator 100 is connected to the turbine unit 10 (the first turbine unit 11 and the second turbine unit 12) as defined in the inventions of claims 6 and 9, the prime mover system is a thermal power plant. . The expansion of the scale will increase the efficiency of energy use in various places, such as the combustion efficiency of the fuel and the driving of the turbine section by the supercritical fluid, so it can be expected to replace the existing thermal power plant. Further, depending on the scale of the prime mover system, the prime mover system can be used as a private power generator.

第1実施形態の原動機システムを示す概略図である。It is the schematic which shows the motor | power_engine system of 1st Embodiment. 第2実施形態の原動機システムを示す概略図である。It is the schematic which shows the motor | power_engine system of 2nd Embodiment. 第3実施形態の原動機システムを示す概略図である。It is the schematic which shows the motor | power_engine system of 3rd Embodiment. 第4実施形態の原動機システムを示す概略図である。It is the schematic which shows the motor | power_engine system of 4th Embodiment.

符号の説明Explanation of symbols

1A,1B,1C,1D 原動機システム
10 タービン部
11 第1タービン部
12 第2タービン部(副タービン部)
20 燃焼部
21 超臨界形成部
25 第1超臨界形成部
26 第2超臨界形成部
30,35 流体循環部
31 タービン部上流配管
32 タービン部下流配管
40,45 流体供給部
41 タービン部上流配管
42 タービン部下流配管
50 液体酸素供給部
51 深冷空気分離装置
53 酸素気化部
56 窒素気化部
58 凝縮器配管
59 液体窒素供給配管
60 熱交換分離部
70 燃料貯蔵部
71 燃料配管
80 排気ガス流路
82 排気ガス冷却部
91 凝縮器
92 循環ポンプ
93 液体窒素圧送ポンプ
100 発電機
1A, 1B, 1C, 1D prime mover system 10 turbine part 11 first turbine part 12 second turbine part (sub-turbine part)
DESCRIPTION OF SYMBOLS 20 Combustion part 21 Supercritical formation part 25 1st supercritical formation part 26 2nd supercritical formation part 30,35 Fluid circulation part 31 Turbine part upstream piping 32 Turbine part downstream piping 40,45 Fluid supply part 41 Turbine part upstream piping 42 Turbine section downstream pipe 50 Liquid oxygen supply section 51 Cryogenic air separation device 53 Oxygen vaporization section 56 Nitrogen vaporization section 58 Condenser pipe 59 Liquid nitrogen supply pipe 60 Heat exchange separation section 70 Fuel storage section 71 Fuel pipe 80 Exhaust gas flow path 82 Exhaust gas cooling unit 91 Condenser 92 Circulation pump 93 Liquid nitrogen pressure pump 100 Generator

Claims (9)

超臨界状態の動作流体をタービン部に導入して回転駆動力を得る原動機システムであって、
燃料を燃焼する燃焼部と、
燃料の燃焼熱により前記動作流体を超臨界状態にする超臨界形成部と、
前記超臨界形成部と前記タービン部を接続して前記動作流体をタービン部に導入すると共に前記動作流体を再び前記超臨界形成部に戻すことにより前記臨界形成部と前記タービン部との間で前記動作流体を循環させる流体循環部と、
前記動作流体を冷却する凝縮器と、
前記燃焼部へ燃焼用の酸素を供給する液体酸素供給部と、
前記液体酸素供給部から前記燃焼部へ供給される酸素の冷熱を用いて前記燃焼部から排出される排気ガスを冷却し、前記排気ガス中の水と二酸化炭素を分離する熱交換分離部とを
備えたことを特徴とする原動機システム。
A prime mover system that obtains rotational driving force by introducing a supercritical working fluid into a turbine section,
A combustion section for burning fuel;
A supercritical forming part that brings the working fluid into a supercritical state by the combustion heat of the fuel;
The supercritical forming part and the turbine part are connected to introduce the working fluid into the turbine part, and the working fluid is returned to the supercritical forming part again, so that the supercritical forming part and the turbine part are connected with each other. A fluid circulation part for circulating the working fluid;
A condenser for cooling the working fluid;
A liquid oxygen supply unit for supplying combustion oxygen to the combustion unit;
A heat exchange separation unit that cools exhaust gas discharged from the combustion unit using cold oxygen supplied from the liquid oxygen supply unit to the combustion unit and separates water and carbon dioxide in the exhaust gas; A prime mover system characterized by comprising.
前記液体酸素供給部が深冷空気分離装置を備え、前記深冷空気分離装置により分離された酸素が前記燃焼部へ供給される請求項1に記載の原動機システム。   The prime mover system according to claim 1, wherein the liquid oxygen supply unit includes a chilled air separation device, and oxygen separated by the chilled air separation device is supplied to the combustion unit. 前記深冷空気分離装置により分離された液体窒素が、前記凝縮器に導入される請求項2に記載の原動機システム。   The prime mover system according to claim 2, wherein the liquid nitrogen separated by the cryogenic air separation device is introduced into the condenser. 前記動作流体が、二酸化炭素、窒素または希ガスのいずれかである請求項1に記載の原動機システム。   The prime mover system according to claim 1, wherein the working fluid is carbon dioxide, nitrogen, or a rare gas. 前記タービン部に導入された前記動作流体を用いて駆動する副タービン部が、前記流体循環部に設けられている請求項1に記載の原動機システム。   The prime mover system according to claim 1, wherein a sub turbine portion that is driven by using the working fluid introduced into the turbine portion is provided in the fluid circulation portion. 前記タービン部に発電機が接続されている請求項1に記載の原動機システム。   The prime mover system according to claim 1, wherein a generator is connected to the turbine section. 超臨界状態の動作流体をタービン部に導入して回転駆動力を得る原動機システムであって、
燃料を燃焼する燃焼部と、
前記燃焼部に供給する酸素及び前記動作流体となる窒素を生産する深冷空気分離装置と、
燃料の燃焼熱により前記動作流体となる窒素を超臨界状態にする超臨界形成部と、
前記超臨界形成部と前記タービン部を接続して前記動作流体の窒素をタービン部へ供給する流体供給部と、
前記深冷空気分離装置により分離された酸素または窒素のいずれか一方もしくは両方の冷熱を用いて前記燃焼部から排出される排気ガスを冷却し、前記排気ガス中の水と二酸化炭素を分離する熱交換分離部とを
備えたことを特徴とする原動機システム。
A prime mover system that obtains rotational driving force by introducing a supercritical working fluid into a turbine section,
A combustion section for burning fuel;
A chilled air separation device for producing oxygen to be supplied to the combustion section and nitrogen as the working fluid;
A supercritical forming portion that brings the working fluid nitrogen into a supercritical state by the combustion heat of the fuel;
A fluid supply unit that connects the supercritical forming unit and the turbine unit to supply nitrogen of the working fluid to the turbine unit;
Heat that separates water and carbon dioxide in the exhaust gas by cooling the exhaust gas discharged from the combustion section using the cold heat of either or both of oxygen and nitrogen separated by the cryogenic air separation device A prime mover system comprising an exchange separation unit.
前記タービン部に導入された前記動作流体を用いて駆動する副タービン部が、前記タービン部の下流側に設けられている請求項7に記載の原動機システム。   The prime mover system according to claim 7, wherein a sub turbine portion that is driven by using the working fluid introduced into the turbine portion is provided on a downstream side of the turbine portion. 前記タービン部に発電機が接続されている請求項7に記載の原動機システム。   The prime mover system according to claim 7, wherein a generator is connected to the turbine section.
JP2008046207A 2008-02-27 2008-02-27 Prime mover system Pending JP2009203860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046207A JP2009203860A (en) 2008-02-27 2008-02-27 Prime mover system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046207A JP2009203860A (en) 2008-02-27 2008-02-27 Prime mover system

Publications (1)

Publication Number Publication Date
JP2009203860A true JP2009203860A (en) 2009-09-10

Family

ID=41146384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046207A Pending JP2009203860A (en) 2008-02-27 2008-02-27 Prime mover system

Country Status (1)

Country Link
JP (1) JP2009203860A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003305A (en) * 2010-10-19 2011-04-06 清华大学 Liquid-oxygen carbon-fixation and zero-emission internal combustion engine
JP2012013255A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Method of operating gas separation recovery equipment in steel plant
JP2014020329A (en) * 2012-07-20 2014-02-03 Toshiba Corp Co2 turbine, method of manufacturing co2 turbine, and power generation system
JP2014020319A (en) * 2012-07-20 2014-02-03 Toshiba Corp Seal device for turbine and thermal power generation system
CN104353346A (en) * 2014-11-25 2015-02-18 青海同鑫化工有限公司 Ammonia-process flue gas desulfurization and organic Rankine cycle coupled power generation method
KR20150037132A (en) * 2013-09-30 2015-04-08 한국전력공사 Humidificated gas turbine and pure oxygen combustion system having the same
KR20160036683A (en) * 2014-09-25 2016-04-05 현대중공업 주식회사 Integrated gasification combined cycle system
CN111727342A (en) * 2018-02-16 2020-09-29 西门子股份公司 Regasification of liquefied natural gas
KR102185002B1 (en) * 2019-07-11 2020-12-01 한국과학기술원 Liquid nitrogen power generation system applied to supercritical carbon dioxide power generatioin system with oxy fuel combustion
IT202000023140A1 (en) * 2020-10-01 2022-04-01 Saipem Spa POWER GENERATION PROCESS USING A LIQUID FUEL, AIR AND/OR OXYGEN WITH ZERO CO2 EMISSIONS
WO2022144748A3 (en) * 2020-12-29 2022-09-01 Saipem S.P.A. System for storing and producing energy to stabilize the power network
CN117128062A (en) * 2023-07-14 2023-11-28 中国核动力研究设计院 Water-free cooling power generation system and control method thereof
WO2024032992A1 (en) 2022-08-09 2024-02-15 Air Liquide France Industrie System for supplying co2 gas to a facility that requires co2 or a mixture comprising co2, such as an abattoir or a greenhouse for cultivating plants

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013255A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Method of operating gas separation recovery equipment in steel plant
CN102003305A (en) * 2010-10-19 2011-04-06 清华大学 Liquid-oxygen carbon-fixation and zero-emission internal combustion engine
JP2014020329A (en) * 2012-07-20 2014-02-03 Toshiba Corp Co2 turbine, method of manufacturing co2 turbine, and power generation system
JP2014020319A (en) * 2012-07-20 2014-02-03 Toshiba Corp Seal device for turbine and thermal power generation system
US9777587B2 (en) 2012-07-20 2017-10-03 Kabushiki Kaisha Toshiba Seal apparatus of turbine and thermal power system
KR20150037132A (en) * 2013-09-30 2015-04-08 한국전력공사 Humidificated gas turbine and pure oxygen combustion system having the same
KR102084798B1 (en) * 2013-09-30 2020-03-04 한국전력공사 Humidificated gas turbine and pure oxygen combustion system having the same
KR20160036683A (en) * 2014-09-25 2016-04-05 현대중공업 주식회사 Integrated gasification combined cycle system
KR101644236B1 (en) 2014-09-25 2016-08-11 현대중공업 주식회사 Integrated gasification combined cycle system
CN104353346A (en) * 2014-11-25 2015-02-18 青海同鑫化工有限公司 Ammonia-process flue gas desulfurization and organic Rankine cycle coupled power generation method
KR102405754B1 (en) * 2018-02-16 2022-06-08 지멘스 에너지 글로벌 게엠베하 운트 코. 카게 LNG regasification
JP7080324B2 (en) 2018-02-16 2022-06-03 シーメンス・エナジー・グローバル・ゲーエムベーハー・ウント・コ・カーゲー LNG revaporization
CN111727342A (en) * 2018-02-16 2020-09-29 西门子股份公司 Regasification of liquefied natural gas
JP2021509940A (en) * 2018-02-16 2021-04-08 シーメンス アクティエンゲゼルシャフト LNG revaporization
US11274795B2 (en) 2018-02-16 2022-03-15 Siemens Energy Global GmbH & Co. KG LNG regasification
KR20200120940A (en) * 2018-02-16 2020-10-22 지멘스 악티엔게젤샤프트 LNG regasification
KR102185002B1 (en) * 2019-07-11 2020-12-01 한국과학기술원 Liquid nitrogen power generation system applied to supercritical carbon dioxide power generatioin system with oxy fuel combustion
WO2022070125A1 (en) * 2020-10-01 2022-04-07 Saipem S.P.A. Power generation process utilizing liquid fuel, air, and/or oxygen with zero co2 emissions
IT202000023140A1 (en) * 2020-10-01 2022-04-01 Saipem Spa POWER GENERATION PROCESS USING A LIQUID FUEL, AIR AND/OR OXYGEN WITH ZERO CO2 EMISSIONS
WO2022144748A3 (en) * 2020-12-29 2022-09-01 Saipem S.P.A. System for storing and producing energy to stabilize the power network
WO2024032992A1 (en) 2022-08-09 2024-02-15 Air Liquide France Industrie System for supplying co2 gas to a facility that requires co2 or a mixture comprising co2, such as an abattoir or a greenhouse for cultivating plants
FR3138810A1 (en) * 2022-08-09 2024-02-16 Air Liquide France Industrie Gaseous CO2 supply system for an installation requiring CO2 or a mixture containing CO2, such as a slaughterhouse or a plant growing greenhouse
CN117128062A (en) * 2023-07-14 2023-11-28 中国核动力研究设计院 Water-free cooling power generation system and control method thereof
CN117128062B (en) * 2023-07-14 2024-03-26 中国核动力研究设计院 Water-free cooling power generation system and control method thereof

Similar Documents

Publication Publication Date Title
JP2009203860A (en) Prime mover system
US7827794B1 (en) Ultra low emissions fast starting power plant
KR102196751B1 (en) System for Liquid Air Energy Storage using Liquefied Gas Fuel
KR20090035734A (en) Method and apparatus for effective and low-emission operation of power stations, as well as for energy storage and energy conversion
WO2012064363A2 (en) Ultra low emissions fast starting power plant
JP2014122563A (en) Floating body type power plant
Bronicki History of Organic Rankine Cycle systems
CN103547786A (en) Composite power generation system
US11761354B2 (en) Mechanical/electrical power generation system
JP6214252B2 (en) Boiler system
KR20220002513A (en) floating equipment
JP7096118B2 (en) Heat exchange equipment, power generation equipment and heat exchange method
KR101614605B1 (en) Supercritical Carbon Dioxide Power Generation System and Ship having the same
JP2007333336A (en) Energy supply system, energy supply method, and method for remodeling energy supply system
KR102488032B1 (en) Organic Rankine Cycles in Cryogenic Applications or Cooling Fluids
JP6214253B2 (en) Boiler system
KR20160073349A (en) Supercritical Carbon Dioxide Power Generation System and Ship having the same
JP2020513513A (en) A prime mover heat pump for low temperature use and cooling fluids
KR20160017740A (en) Supercritical Carbon Dioxide Power Generation System and Ship having the same
Sayma Gas turbines for marine applications
KR20160017731A (en) Supercritical Carbon Dioxide Power Generation System
KR20160017741A (en) Supercritical Carbon Dioxide Power Generation System and Ship having the same
RU2166102C2 (en) Combined-cycle cogeneration process and combined- cycle plant implementing it
KR20210157515A (en) Floating Storage Power Plant
KR20160073354A (en) Supercritical Carbon Dioxide Power Generation System and Ship having the same