JP2009203803A - Turbine housing - Google Patents

Turbine housing Download PDF

Info

Publication number
JP2009203803A
JP2009203803A JP2008043932A JP2008043932A JP2009203803A JP 2009203803 A JP2009203803 A JP 2009203803A JP 2008043932 A JP2008043932 A JP 2008043932A JP 2008043932 A JP2008043932 A JP 2008043932A JP 2009203803 A JP2009203803 A JP 2009203803A
Authority
JP
Japan
Prior art keywords
tubular member
gap
inlet
bypass passage
double structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008043932A
Other languages
Japanese (ja)
Other versions
JP4875009B2 (en
Inventor
Kazuhiro Tsuzuki
一弘 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Toyota Motor Corp
Original Assignee
Aisin Takaoka Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd, Toyota Motor Corp filed Critical Aisin Takaoka Co Ltd
Priority to JP2008043932A priority Critical patent/JP4875009B2/en
Publication of JP2009203803A publication Critical patent/JP2009203803A/en
Application granted granted Critical
Publication of JP4875009B2 publication Critical patent/JP4875009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine housing capable of increasing degree of freedom in design of a bypass passage by avoiding stress concentration generated in an inner pipe shape member of a double structure part. <P>SOLUTION: This turbine housing 3A is provided with a scroll part 6 communicating to an inlet part 4 and extending to a wheel storage part 5, an outlet part 7 for discharging gas passing through a wheel storage part 5, and a bypass passage part 8 connecting the inlet part 4 and the outlet part 7 so as to bypass the wheel storage part 5. Part from the inlet part 4 to the scroll part 6 is constructed as the double structure part 10 in which the inner pipe shape member 11 and an outer pipe shape member 12 are combined with a gap S formed therbetween, The double structure part 10 is constructed in such a manner that gas can be introduced by making the gap S communicate with the inlet part 4 and the bypass passage part 8 is constructed to communicate with the gap S of the double structure part 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ターボチャージャー等に組み込まれるタービンのタービンハウジングに関する。   The present invention relates to a turbine housing of a turbine incorporated in a turbocharger or the like.

タービンハウジングとして、タービンの入口から導入されたガスの放熱を防止するため、入口部からスクロール部に亘って二重構造部とし、その二重構造部の内側管状部材と外側管状部材との間に隙間を形成するようにし、かつその隙間を入口部において閉鎖したものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として、特許文献2〜5が存在する。   As a turbine housing, in order to prevent heat dissipation of gas introduced from the inlet of the turbine, a double structure portion is formed from the inlet portion to the scroll portion, and between the inner tubular member and the outer tubular member of the double structure portion. There is known a technique in which a gap is formed and the gap is closed at an inlet (Patent Document 1). In addition, Patent Documents 2 to 5 exist as prior art documents related to the present invention.

特開2001−303962号公報JP 2001-303962 A 特開2001−303963号公報JP 2001-303963 A 特開2002−349275号公報JP 2002-349275 A 特開2002−349276号公報JP 2002-349276 A 実開昭61−49032号公報Japanese Utility Model Publication No. 61-49032

特許文献1のタービンハウジングは、タービンホイールへの過剰なガスの導入を回避するため、タービンホイールを収容するホイール収容部を迂回するようにして入口部と出口部とを結ぶバイパス通路が設けられている。そのバイパス通路は二重構造部の内側管状部材に溶接等で接合されている。このため、内側管状部材との接合部で応力集中が起こり易い。そのような応力集中の弊害を緩和するためには、バイパス通路の通路面積を抑えて接合部を小さくせざるを得ない。その結果、バイパス通路の通路面積を十分に大きくできないという制約が発生している。   The turbine housing of Patent Document 1 is provided with a bypass passage that connects the inlet portion and the outlet portion so as to bypass the wheel housing portion that houses the turbine wheel in order to avoid introducing excessive gas into the turbine wheel. Yes. The bypass passage is joined to the inner tubular member of the double structure portion by welding or the like. For this reason, stress concentration tends to occur at the joint portion with the inner tubular member. In order to alleviate the adverse effects of such stress concentration, the joint area must be reduced by reducing the passage area of the bypass passage. As a result, there is a restriction that the passage area of the bypass passage cannot be made sufficiently large.

そこで、本発明は、二重構造部の内側管状部材に発生する応力集中を回避することにより、バイパス通路の設計自由度を拡大できるタービンハウジングを提供することを目的とする。   Therefore, an object of the present invention is to provide a turbine housing capable of expanding the degree of freedom of design of the bypass passage by avoiding stress concentration generated in the inner tubular member of the double structure portion.

本発明のタービンハウジングは、ガスを導入するための入口部と、タービンホイールを収容するホイール収容部と、前記入口部に通じかつ前記ホイール収容部まで延びる渦巻き状のスクロール部と、前記ホイール収容部を通過したガスを排出するための出口部と、前記ホイール収容部を迂回できるように前記入口部と前記出口部とを結ぶバイパス通路部と、を備え、前記入口部から前記スクロール部までが、内側管状部材と外側管状部材との間に隙間が形成された状態でこれらが組み合わされた二重構造部として構成されたタービンハウジングにおいて、前記二重構造部は前記隙間が前記入口部に通じることによりガスを導入可能に構成され、かつ前記バイパス通路部は前記二重構造部の前記隙間に通じるように構成されていることにより、上述した課題を解決する(請求項1)。   The turbine housing of the present invention includes an inlet portion for introducing gas, a wheel accommodating portion that accommodates a turbine wheel, a spiral scroll portion that communicates with the inlet portion and extends to the wheel accommodating portion, and the wheel accommodating portion. An outlet portion for discharging the gas that has passed through, and a bypass passage portion connecting the inlet portion and the outlet portion so as to be able to bypass the wheel housing portion, from the inlet portion to the scroll portion, In the turbine housing configured as a double structure portion in which a gap is formed between the inner tubular member and the outer tubular member, the double structure portion is configured such that the gap communicates with the inlet portion. By which gas can be introduced, and the bypass passage portion is configured to communicate with the gap of the double structure portion, To solve the problems mentioned (claim 1).

このタービンハウジングは、内側管状部材と外側管状部材との間に形成される隙間が入口部に通じているため、入口部に導入されたガスがその隙間に導かれる。そして、その隙間にバイパス通路部が通じているので、バイパス通路が開通すると隙間に導かれたガスはバイパス通路部を経由して出口部へ排出される。バイパス通路が閉鎖した場合には、二重構造部の内外圧力差が生じないので入口部に導かれたガスは内側管状部材を通りタービンホイールを経由して出口部へ排出される。このタービンハウジングはバイパス通路部を内側管状部材に接合しなくてもこのような機能を実現できるので、バイパス通路部と内側管状部材との接合箇所における応力集中を考慮せずにバイパス通路部を設計できるようになる。つまり、バイパス通路部の通路面積を決める際の制約が緩和されるので、バイパス通路部の設計自由度を拡大することができる。   In this turbine housing, since a gap formed between the inner tubular member and the outer tubular member communicates with the inlet portion, the gas introduced into the inlet portion is guided to the gap. Since the bypass passage portion communicates with the clearance, when the bypass passage is opened, the gas guided to the clearance is discharged to the outlet portion via the bypass passage portion. When the bypass passage is closed, there is no difference in pressure between the inside and outside of the double structure portion, so that the gas guided to the inlet portion passes through the inner tubular member and is discharged to the outlet portion via the turbine wheel. This turbine housing can realize such a function without joining the bypass passage portion to the inner tubular member, so the bypass passage portion is designed without considering the stress concentration at the joint portion between the bypass passage portion and the inner tubular member. become able to. That is, since the restriction in determining the passage area of the bypass passage portion is relaxed, the design freedom of the bypass passage portion can be expanded.

本発明のタービンハウジングの一態様においては、前記入口部の先端にはフランジ部が形成されており、前記二重構造部の前記外側管状部材が前記フランジ部に全周接合され、かつ前記内側管状部材が前記フランジ部から離間することにより前記隙間が前記入口部に通じていてもよい(請求項2)。この態様によれば、二重構造部の外側管状部材がフランジ部に全周接合され、かつ内側管状部材がフランジ部から離間しているので、フランジ部において環状に開口する隙間が形成される。内側管状部材がフランジ部に全周接合されていないので、内側管状部材とフランジ部との接合部における応力集中の発生を防止できる。   In one aspect of the turbine housing of the present invention, a flange portion is formed at a tip of the inlet portion, the outer tubular member of the double structure portion is joined to the flange portion on the entire circumference, and the inner tubular portion is formed. The gap may communicate with the inlet portion by separating the member from the flange portion (Claim 2). According to this aspect, since the outer tubular member of the double structure portion is joined to the flange portion all around and the inner tubular member is separated from the flange portion, a gap that opens in an annular shape is formed in the flange portion. Since the inner tubular member is not entirely joined to the flange portion, it is possible to prevent stress concentration from occurring at the joint portion between the inner tubular member and the flange portion.

本発明のタービンハウジングの一態様において、前記二重構造部の前記内側管状部材は、前記スクロール部が前記タービンホイールの回転軸線方向に並ぶ二つの領域に区分されるように二つの管状部材にて構成されており、前記バイパス通路部は、前記二つの管状部材のうちの前記出口部に近い側の管状部材と前記出口部とを結ぶ第1通路と、前記隙間と通じるように構成された第2通路とを有してもよい(請求項3)。この態様はいわゆるツインスクロール型のタービンハウジングとして構成され、内側管状部材としての二つの管状部材が外側管状部材の内側に並べられている。仮に、二つの管状部材のそれぞれに接続するバイパス通路部を形成する場合には、出口部から遠い側の管状部材と出口部とを結ぶ際に出口部に近い側の管状部材が邪魔になるのでバイパス通路部の取り回しが困難になる。その結果、バイパス通路部の経路が長くなる問題が生じる。この態様によれば、出口部に近い側の管状部材と出口部とを結ぶ第1通路と、内側管状部材と外側管状部材との間に形成される隙間に通じるように構成された第2通路とを有しているので、出口部から遠い側の管状部材と出口部との間の通路の取り回しを考慮せずに第2通路を構成することができる。これにより、バイパス通路部の経路が長くなることを容易に防止できる。また、第2通路の構成が二つの管状部材の配置や形状に影響を及ぼさないので、管状部材の配置や形状を自由に設計することが可能になる。   In one aspect of the turbine housing of the present invention, the inner tubular member of the double structure portion is composed of two tubular members so that the scroll portion is divided into two regions aligned in the rotation axis direction of the turbine wheel. The bypass passage portion is configured to communicate with the first passage connecting the tubular member closer to the outlet portion of the two tubular members and the outlet portion, and the gap. It may have two passages (Claim 3). This embodiment is configured as a so-called twin scroll type turbine housing, and two tubular members as inner tubular members are arranged inside the outer tubular member. If the bypass passage portion connected to each of the two tubular members is formed, the tubular member closer to the outlet portion becomes an obstacle when the tubular member far from the outlet portion is connected to the outlet portion. It becomes difficult to handle the bypass passage. As a result, there arises a problem that the path of the bypass passage portion becomes long. According to this aspect, the first passage connecting the tubular member on the side close to the outlet portion and the outlet portion, and the second passage configured to communicate with the gap formed between the inner tubular member and the outer tubular member. Therefore, the second passage can be configured without considering the routing of the passage between the tubular member far from the outlet portion and the outlet portion. Thereby, it can prevent easily that the path | route of a bypass channel | path part becomes long. Further, since the configuration of the second passage does not affect the arrangement and shape of the two tubular members, the arrangement and shape of the tubular members can be freely designed.

この態様においては、前記入口部の先端にはフランジ部が形成されており、前記二重構造部の前記外側管状部材が前記フランジ部に全周接合され、前記二つの管状部材のうちの前記出口部に近い側の管状部材が前記フランジ部又は前記外側管状部材の少なくとも一方に接合され、かつ前記二つの管状部材のうちの前記出口部に遠い側の管状部材が前記フランジ部から離間することにより前記隙間が前記入口部に通じていてもよい(請求項4)。この場合、出口部に近い側の管状部材と外側管状部材との間に形成される隙間が塞がれるためその隙間へのガス漏れを抑制できる。これにより、ツインスクロール型のタービンハウジングの利点が減じることを防止できる。   In this aspect, a flange portion is formed at the tip of the inlet portion, and the outer tubular member of the double structure portion is joined to the flange portion all around, and the outlet of the two tubular members is formed. A tubular member on the side closer to the portion is joined to at least one of the flange portion or the outer tubular member, and the tubular member on the side farther from the outlet portion of the two tubular members is separated from the flange portion. The gap may communicate with the inlet (claim 4). In this case, since the gap formed between the tubular member on the side close to the outlet and the outer tubular member is closed, gas leakage into the gap can be suppressed. Thereby, it can prevent that the advantage of a twin scroll type turbine housing reduces.

以上説明したように、本発明によれば、バイパス通路部を内側管状部材に接合する必要がないので、バイパス通路部と内側管状部材との接合箇所における応力集中を考慮せずにバイパス通路部を設計できるようになる。即ち、バイパス通路部の通路面積を決める際の制約が緩和されるので、バイパス通路部の設計自由度を拡大することができる。   As described above, according to the present invention, there is no need to join the bypass passage portion to the inner tubular member, so that the bypass passage portion can be formed without considering the stress concentration at the joint portion between the bypass passage portion and the inner tubular member. It becomes possible to design. That is, since the restriction in determining the passage area of the bypass passage portion is relaxed, the degree of freedom in designing the bypass passage portion can be expanded.

(第1の形態)
図1は本発明の第1の形態に係るタービンハウジングが組み込まれたタービンの要部を示した図、図2は図1の矢印IIの方向から見た状態を示した図、図3は図1のIII−III線に関する断面図である。タービン1Aは内燃機関のターボチャージャーに組み込まれ、排気のエネルギを利用して不図示の遠心コンプレッサを回転駆動するために用いられる。タービン1Aはタービンホイール2と、そのタービンホイール2を収容しかつ回転自在に支持するタービンハウジング(以下、ハウジングという。)3Aとを備えている。タービンホイール2には図示しない複数のタービンブレードが周方向に設けられている。
(First form)
1 is a view showing a main part of a turbine in which a turbine housing according to a first embodiment of the present invention is incorporated, FIG. 2 is a view showing a state seen from the direction of arrow II in FIG. 1, and FIG. It is sectional drawing regarding the III-III line of 1. FIG. The turbine 1A is incorporated in a turbocharger of an internal combustion engine, and is used to rotationally drive a centrifugal compressor (not shown) using exhaust energy. The turbine 1A includes a turbine wheel 2 and a turbine housing (hereinafter referred to as a housing) 3A that accommodates the turbine wheel 2 and rotatably supports the turbine wheel 2. The turbine wheel 2 is provided with a plurality of turbine blades (not shown) in the circumferential direction.

ハウジング3Aは排気等のガスを導入するための入口部4と、タービンホイール2を収容するホイール収容部5と、入口部4に通じかつホイール収容部5まで延びる渦巻き状のスクロール部6と、ホイール収容部5を通過したガスを排出するための出口部7と、ホイール収容部5を迂回できるように入口部4と出口部7とを結ぶバイパス通路部8と、バイパス通路部8を開閉する開閉弁9とを備えている。   The housing 3A includes an inlet portion 4 for introducing gas such as exhaust, a wheel housing portion 5 that houses the turbine wheel 2, a spiral scroll portion 6 that communicates with the inlet portion 4 and extends to the wheel housing portion 5, and a wheel. An outlet portion 7 for discharging the gas that has passed through the housing portion 5, a bypass passage portion 8 that connects the inlet portion 4 and the outlet portion 7 so that the wheel housing portion 5 can be bypassed, and opening and closing that opens and closes the bypass passage portion 8 And a valve 9.

ハウジング3Aの入口部4からスクロール部6まではいわゆる二重構造部10として構成されている。二重構造部10は所定形状を持つ内側管状部材11と外側管状部材12とを有しており、これらの部材11、12は隙間Sが形成された状態で組み合わされている。内側管状部材11及び外側管状部材12はそれぞれステンレス鋼にて構成されている。   From the entrance part 4 to the scroll part 6 of the housing 3A, a so-called double structure part 10 is formed. The double structure portion 10 includes an inner tubular member 11 and an outer tubular member 12 having a predetermined shape, and these members 11 and 12 are combined in a state where a gap S is formed. The inner tubular member 11 and the outer tubular member 12 are each made of stainless steel.

図2にも示すように、入口部4の先端には鋳鉄製のフランジ部15が形成されており、そのフランジ部15には外側管状部材12が溶接等の接合手段にて全周接合されている。一方、内側管状部材11はフランジ部15(外側管状部材12)から離間していて、隙間Sは入口部4に通じている。これにより、隙間Sはフランジ部15において環状に開口する。そのため、ハウジング3Aは内側管状部材11の内部のみならずその隙間Sにもガスを導入できる。図3に示すように、バイパス通路部8は隙間Sに通じるように構成されている。即ち、バイパス通路部8は外側管状部材12を貫いて隙間Sの側に開口している。なお、本形態では、外側管状部材12は出口部7まで延びていて、出口部7の先端に形成されたフランジ部16に溶接等の接合手段にて全周接合されている。   As shown in FIG. 2, a flange portion 15 made of cast iron is formed at the tip of the inlet portion 4, and the outer tubular member 12 is joined to the flange portion 15 by a welding means or the like around the circumference. Yes. On the other hand, the inner tubular member 11 is separated from the flange portion 15 (outer tubular member 12), and the gap S communicates with the inlet portion 4. As a result, the gap S is annularly opened in the flange portion 15. Therefore, the housing 3 </ b> A can introduce gas into the gap S as well as the inside of the inner tubular member 11. As shown in FIG. 3, the bypass passage portion 8 is configured to communicate with the gap S. In other words, the bypass passage 8 is opened to the gap S side through the outer tubular member 12. In this embodiment, the outer tubular member 12 extends to the outlet portion 7 and is entirely joined to a flange portion 16 formed at the tip of the outlet portion 7 by a joining means such as welding.

以上の構成により、開閉弁9が図3の実線の位置に保持されてバイパス通路部8が開通すると、隙間Sとバイパス通路部8とが通じるので、隙間Sに導かれたガスはバイパス通路部8を経由して出口部7へ排出される。一方、開閉弁9が図3の想像線の位置に保持されてバイパス通路部8が閉鎖されると、二重構造部10の内外圧力差が生じないため、入口部4に導かれたガスは内側管状部材11を通りタービンホイール2を経由して出口部7へ排出される。ハウジング3Aはバイパス通路部8を内側管状部材11に接合しなくてもこのような機能を実現できるので、バイパス通路部8と内側管状部材11との接合箇所における応力集中を考慮せずにバイパス通路部8を設計できるようになる。つまり、バイパス通路部8の通路面積を決める際の制約が緩和されるので、バイパス通路部8の設計自由度を拡大することができる。また、内側管状部材11がフランジ部15に全周接合されていないので、内側管状部材11とフランジ部15との接合部における応力集中の発生を防止できる。   With the above configuration, when the on-off valve 9 is held at the position of the solid line in FIG. 3 and the bypass passage portion 8 is opened, the gap S and the bypass passage portion 8 communicate with each other, so that the gas guided to the gap S is bypassed. It is discharged to the exit part 7 via 8. On the other hand, when the on-off valve 9 is held at the position of the imaginary line in FIG. 3 and the bypass passage portion 8 is closed, the pressure difference between the inside and outside of the double structure portion 10 does not occur. It passes through the inner tubular member 11 and is discharged to the outlet portion 7 via the turbine wheel 2. Since the housing 3A can realize such a function without joining the bypass passage portion 8 to the inner tubular member 11, the bypass passage can be performed without considering the stress concentration at the joint portion between the bypass passage portion 8 and the inner tubular member 11. The part 8 can be designed. That is, since the restriction at the time of determining the passage area of the bypass passage portion 8 is relaxed, the design freedom of the bypass passage portion 8 can be expanded. Further, since the inner tubular member 11 is not joined to the flange portion 15 all around, it is possible to prevent stress concentration from occurring at the joint portion between the inner tubular member 11 and the flange portion 15.

(第2の形態)
次に、本発明の第2の形態を図4〜図7を参照して説明する。図4は本発明の第2の形態に係るタービンハウジングが組み込まれたタービンの要部を示した図、図5は図4のV−V線に関する断面を拡大した図、図6は図4の矢印VIの方向から見た状態を示した図、図7は図4のVII−VII線に関する断面図である。なお、第1の形態と共通する構成については、これらの図に同一の参照符号を付すことにより説明を省略する。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 is a view showing a main part of a turbine in which a turbine housing according to the second embodiment of the present invention is incorporated, FIG. 5 is an enlarged view of a section taken along the line V-V in FIG. 4, and FIG. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. In addition, about the structure which is common in a 1st form, description is abbreviate | omitted by attaching | subjecting the same referential mark to these figures.

第2の形態に係るタービン1Bは第1の形態と同様にターボチャージャーに組み込まれて使用され、タービンハウジング(以下、ハウジングという。)3Bを備えている。図5から明らかなように、ハウジング3Bはいわゆるツインスクロール型のハウジングとして構成されている。ハウジング3Bは、ガスを導入するための入口部21と、タービンホイール2を収容するホイール収容部22と、入口部21に通じかつホイール収容部22まで延びる渦巻き状のスクロール部23と、ホイール収容部22を通過したガスを排出するための出口部24と、ホイール収容部22を迂回できるように入口部21と出口部24とを結ぶバイパス通路部25と、バイパス通路部25を開閉する開閉弁26とを備えている。   The turbine 1B according to the second embodiment is used by being incorporated in a turbocharger as in the first embodiment, and includes a turbine housing (hereinafter referred to as a housing) 3B. As is apparent from FIG. 5, the housing 3B is configured as a so-called twin scroll type housing. The housing 3B includes an inlet portion 21 for introducing gas, a wheel accommodating portion 22 that accommodates the turbine wheel 2, a spiral scroll portion 23 that communicates with the inlet portion 21 and extends to the wheel accommodating portion 22, and a wheel accommodating portion. An outlet portion 24 for discharging the gas that has passed through 22, a bypass passage portion 25 that connects the inlet portion 21 and the outlet portion 24 so as to bypass the wheel housing portion 22, and an on-off valve 26 that opens and closes the bypass passage portion 25. And.

第1の形態と同様に、ハウジング3Bは入口部21からスクロール部23までが二重構造部27として構成されている。その二重構造部27は所定形状を持ち、かつステンレス鋼にて構成された内側管状部材28と外側管状部材29とを有しており、これらの部材28、29は隙間Sが形成された状態で組み合わされている。内側管状部材28は二つの管状部材28A、28Bにて構成されている。図5に示すように、管状部材28A、28Bはスクロール部23をタービンホイール2の回転軸線方向に並ぶ二つの領域AR1、AR2に区分する。   As in the first embodiment, the housing 3B is configured as a double structure portion 27 from the inlet portion 21 to the scroll portion 23. The double structure portion 27 has a predetermined shape and has an inner tubular member 28 and an outer tubular member 29 made of stainless steel, and these members 28 and 29 are in a state in which a gap S is formed. Are combined. The inner tubular member 28 is composed of two tubular members 28A and 28B. As shown in FIG. 5, the tubular members 28 </ b> A and 28 </ b> B divide the scroll portion 23 into two regions AR <b> 1 and AR <b> 2 that are aligned in the rotation axis direction of the turbine wheel 2.

図7に示すように、バイパス通路部25は、出口部24に近い側の管状部材28Aと出口部24とを結ぶ第1通路25Aと、隙間Sと通じるように構成された第2通路25Bとを有している。第1通路25Aは、外側管状部材29と管状部材28Aとをそれぞれを貫いて管状部材28Aに開口している。図6及び図7に示すように、入口部21の先端には鋳鉄製のフランジ部30が形成されている。二重構造部27の外側管状部材29は溶接等の接合手段にてそのフランジ部30に全周接合されている。出口部24に近い側の管状部材28Aは外側管状部材29に溶接等の接合手段にて接合されている。他方の管状部材28Bはそのフランジ部30(外側管状部材29)からその一部が離間し、かつ残りの一部が外側管状部材29に溶接等の接合手段にて接合されている。これにより隙間Sは入口部21に通じることになる。図6に示すように、各管状部材28A、28Bは、それらの開口がタービンホイール2の回転軸線方向(図6の上下方向)に並ぶように構成されている。なお、図7に示すように、本形態の外側管状部材29は出口部24まで延びていて、出口部24の先端に形成された鋳鉄製のフランジ部31に溶接等の接合手段にて全周接合されている。   As shown in FIG. 7, the bypass passage portion 25 includes a first passage 25A that connects the tubular member 28A on the side close to the outlet portion 24 and the outlet portion 24, and a second passage 25B that is configured to communicate with the gap S. have. The first passage 25A passes through the outer tubular member 29 and the tubular member 28A and opens to the tubular member 28A. As shown in FIGS. 6 and 7, a flange portion 30 made of cast iron is formed at the tip of the inlet portion 21. The outer tubular member 29 of the double structure portion 27 is joined to the flange portion 30 all around by a joining means such as welding. The tubular member 28A on the side close to the outlet portion 24 is joined to the outer tubular member 29 by joining means such as welding. The other tubular member 28B is partly separated from the flange portion 30 (outer tubular member 29), and the remaining part is joined to the outer tubular member 29 by joining means such as welding. As a result, the gap S leads to the inlet portion 21. As shown in FIG. 6, the tubular members 28 </ b> A and 28 </ b> B are configured such that their openings are aligned in the rotation axis direction of the turbine wheel 2 (up and down direction in FIG. 6). As shown in FIG. 7, the outer tubular member 29 of the present embodiment extends to the outlet portion 24, and the entire circumference of the outer tubular member 29 is welded to a cast iron flange portion 31 formed at the tip of the outlet portion 24 by welding means or the like. It is joined.

以上の構成により、開閉弁26が図7の実線の位置に保持されてバイパス通路部25の第1通路25A及び第2通路25Bがそれぞれ開通すると、出口部24に近い側の管状部材28Aと第1通路25Aとが通じ、第1管状部材28Aに導かれたガスは第1通路25Aを経由して出口部24に排出され、かつ隙間Sに導かれたガスは第2通路25Bを経由して出口部24に排出される。一方、開閉弁26が図7の想像線の位置に保持されてバイパス通路部25の各通路25A、25Bが閉鎖されると、二重構造部27の内外圧力差が生じないため、入口部21に導かれたガスは各管状部材28A、28Bを通りタービンホイール2を経由して出口部24へ排出される。   With the above configuration, when the on-off valve 26 is held at the position of the solid line in FIG. 7 and the first passage 25A and the second passage 25B of the bypass passage portion 25 are opened, the tubular member 28A on the side close to the outlet portion 24 and the first passage The gas guided to the first tubular member 28A is discharged to the outlet 24 via the first passage 25A, and the gas guided to the gap S is connected to the first passage 25A via the second passage 25B. It is discharged to the outlet 24. On the other hand, when the opening / closing valve 26 is held at the position indicated by the imaginary line in FIG. The gas guided to the gas passes through the tubular members 28A and 28B and is discharged to the outlet 24 via the turbine wheel 2.

第2の形態によれば、第1の形態と同様に、バイパス通路部25の第2通路25Bと出口部24から遠い側の管状部材28Bとが接合されていないためバイパス通路部25の設計自由度を拡大することができる。また、バイパス通路部25が二つ通路25A、25Bを有し、これらのうちの第2通路25Bが隙間Sに通じているので、出口部24から遠い側の管状部材28Bと出口部24との間の通路の取り回しを考慮せずに第2通路25Bを構成することができる。更に、出口部24に近い側の管状部材28Aと外側管状部材29との間に形成される隙間Sがフランジ部30において塞がれるためその隙間Sへのガス漏れを抑制できる。これにより、ツインスクロール型のタービンハウジングの利点が減じることを防止できる。   According to the second embodiment, as in the first embodiment, the second passage 25B of the bypass passage portion 25 and the tubular member 28B on the side far from the outlet portion 24 are not joined, so the design of the bypass passage portion 25 is free. The degree can be expanded. Further, since the bypass passage portion 25 has two passages 25A and 25B, and the second passage 25B of these passages leads to the gap S, the tubular member 28B far from the outlet portion 24 and the outlet portion 24 The second passage 25B can be configured without considering the handling of the passage between them. Furthermore, since the gap S formed between the tubular member 28A on the side close to the outlet portion 24 and the outer tubular member 29 is blocked by the flange portion 30, gas leakage into the gap S can be suppressed. Thereby, it can prevent that the advantage of a twin scroll type turbine housing reduces.

(第3の形態)
次に、本発明の第3の形態を図8〜図11を参照して説明する。図8は本発明の第3の形態に係るタービンハウジングが組み込まれたタービンの要部を示した図、図9は図8のIX−IX線に関する断面を拡大した図、図10は図8の矢印Xの方向から見た状態を示した図、図11は図8のXI−XI線に関する断面図である。なお、第1の形態と共通する構成については、これらの図に同一の参照符号を付すことにより説明を省略する。
(Third form)
Next, a third embodiment of the present invention will be described with reference to FIGS. 8 is a view showing a main part of a turbine in which a turbine housing according to a third embodiment of the present invention is incorporated, FIG. 9 is an enlarged view of a section taken along line IX-IX in FIG. 8, and FIG. FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. In addition, about the structure which is common in a 1st form, description is abbreviate | omitted by attaching | subjecting the same referential mark to these figures.

第3の形態に係るタービン1Cは第1の形態と同様にターボチャージャーに組み込まれて使用され、タービンハウジング(以下、ハウジングという。)3Cを備えている。図9から明らかなように、ハウジング3Cは第2の形態と同様にいわゆるツインスクロール型のハウジングとして構成されている。ハウジング3Cは、ガスを導入するための入口部32と、タービンホイール2を収容するホイール収容部33と、入口部32に通じかつホイール収容部33まで延びる渦巻き状のスクロール部34と、ホイール収容部33を通過したガスを排出するための出口部35と、ホイール収容部33を迂回できるように入口部32と出口部35とを結ぶバイパス通路部36と、バイパス通路部36を開閉する開閉弁37とを備えている。   A turbine 1C according to the third embodiment is used by being incorporated in a turbocharger as in the first embodiment, and includes a turbine housing (hereinafter referred to as a housing) 3C. As is apparent from FIG. 9, the housing 3C is configured as a so-called twin scroll type housing as in the second embodiment. The housing 3C includes an inlet portion 32 for introducing gas, a wheel accommodating portion 33 that accommodates the turbine wheel 2, a spiral scroll portion 34 that communicates with the inlet portion 32 and extends to the wheel accommodating portion 33, and a wheel accommodating portion. An outlet portion 35 for discharging the gas that has passed through 33, a bypass passage portion 36 that connects the inlet portion 32 and the outlet portion 35 so as to bypass the wheel housing portion 33, and an on-off valve 37 that opens and closes the bypass passage portion 36. And.

第1及び第2の形態と同様に、ハウジング3Cは入口部32からスクロール部34までが二重構造部38として構成されている。その二重構造部38は所定形状を持ち、かつステンレス鋼にて構成された内側管状部材39と外側管状部材40とを有しており、これらの部材39、40は隙間Sが形成された状態で組み合わされている。内側管状部材39は二つの管状部材39A、39Bにて構成されている。図9に示すように、管状部材39A、39Bはスクロール部34をタービンホイール2の回転軸線方向に並ぶ二つの領域AR1、AR2に区分する。   Similar to the first and second embodiments, the housing 3 </ b> C is configured as a double structure portion 38 from the inlet portion 32 to the scroll portion 34. The double structure portion 38 has a predetermined shape and has an inner tubular member 39 and an outer tubular member 40 made of stainless steel, and these members 39, 40 are in a state in which a gap S is formed. Are combined. The inner tubular member 39 is composed of two tubular members 39A and 39B. As shown in FIG. 9, the tubular members 39 </ b> A and 39 </ b> B divide the scroll portion 34 into two regions AR <b> 1 and AR <b> 2 aligned in the rotation axis direction of the turbine wheel 2.

図11に示すように、バイパス通路部36は、出口部35に近い側の管状部材39Aと出口部35とを結ぶ第1通路36Aと、隙間Sと通じるように構成された第2通路36Bとを有している。第1通路36Aは外側管状部材40と出口部35に近い側の管状部材39Aとをそれぞれを貫いて管状部材39Aに開口している。入口部32の先端には鋳鉄製のフランジ部41が形成されている。図10及び図11示すように、二重構造部38の外側管状部材40は溶接等の接合手段にてそのフランジ部41に全周接合されている。出口部35に近い側の管状部材39Aは外側管状部材40に溶接等の接合手段にて接合されている。他方の管状部材39Bはそのフランジ部41(外側管状部材40)からその一部が離間し、かつ残りの一部が外側管状部材40に溶接等の接合手段にて接合されている。これにより隙間Sは入口部32に通じることになる。図10に示すように、各管状部材39A、39Bは、それらの開口がタービンホイール2の回転軸線方向に対して直交する方向(図10の左右方向)に並ぶように構成されている。つまり、図11に示すように、各管状部材39A、39Bは入口部32からスクロール部34に至るまでに略90°捻られた状態で外側管状部材40の内部に配置されている。なお、本形態の外側管状部材40は出口部35まで延びていて、出口部35の先端に形成された鋳鉄製のフランジ部42に溶接等の接合手段にて全周接合されている。   As shown in FIG. 11, the bypass passage portion 36 includes a first passage 36A that connects the tubular member 39A on the side close to the outlet portion 35 and the outlet portion 35, and a second passage 36B that is configured to communicate with the gap S. have. The first passage 36A passes through the outer tubular member 40 and the tubular member 39A on the side close to the outlet portion 35 and opens to the tubular member 39A. A cast iron flange portion 41 is formed at the tip of the inlet portion 32. As shown in FIGS. 10 and 11, the outer tubular member 40 of the double structure portion 38 is joined to the flange portion 41 by a joining means such as welding. The tubular member 39A on the side close to the outlet portion 35 is joined to the outer tubular member 40 by joining means such as welding. The other tubular member 39B is partly separated from the flange portion 41 (outer tubular member 40), and the remaining part is joined to the outer tubular member 40 by a joining means such as welding. As a result, the gap S leads to the inlet portion 32. As shown in FIG. 10, the tubular members 39 </ b> A and 39 </ b> B are configured such that their openings are aligned in a direction (left-right direction in FIG. 10) orthogonal to the rotation axis direction of the turbine wheel 2. That is, as shown in FIG. 11, the tubular members 39 </ b> A and 39 </ b> B are arranged inside the outer tubular member 40 in a state where the tubular members 39 </ b> A and 39 </ b> B are twisted by approximately 90 ° from the inlet portion 32 to the scroll portion 34. In addition, the outer tubular member 40 of this embodiment extends to the outlet portion 35, and is entirely joined to a cast iron flange portion 42 formed at the tip of the outlet portion 35 by a welding means such as welding.

以上の構成により、開閉弁37が図11の実線の位置に保持されてバイパス通路部36の第1通路36A及び第2通路36Bがそれぞれ開通すると、出口部35に近い側の管状部材39Aと第1通路36Aとが通じ、第1管状部材39Aに導かれたガスは第1通路36Aを経由して出口部35に排出され、かつ隙間Sに導かれたガスは第2通路36Bを経由して出口部35に排出される。一方、開閉弁37が図11の想像線の位置に保持されてバイパス通路部36の各通路36A、36Bが閉鎖されると、二重構造部38の内外圧力差が生じないため、入口部32に導かれたガスは各管状部材39A、39Bを通りタービンホイール2を経由して出口部35へ排出される。   With the above configuration, when the on-off valve 37 is held at the position of the solid line in FIG. 11 and the first passage 36A and the second passage 36B of the bypass passage portion 36 are opened, the tubular member 39A on the side near the outlet portion 35 and the first passage The gas guided to the first tubular member 39A is discharged to the outlet portion 35 via the first passage 36A, and the gas guided to the gap S is connected to the first passage 36A via the second passage 36B. It is discharged to the outlet part 35. On the other hand, when the on-off valve 37 is held at the position indicated by the imaginary line in FIG. 11 and the passages 36A and 36B of the bypass passage portion 36 are closed, the pressure difference between the inside and outside of the double structure portion 38 does not occur. The gas led to is passed through the tubular members 39A, 39B and is discharged to the outlet portion 35 via the turbine wheel 2.

第3の形態によれば、第2の形態と同等の効果を発揮できる。即ち、バイパス通路部36の第2通路36Bと出口部35から遠い側の管状部材39Bとが接合されていないためバイパス通路部36の設計自由度を拡大することができる。また、バイパス通路部36が二つ通路36A、36Bを有し、これらのうちの第2通路36Bが隙間Sに通じているので、出口部35から遠い側の管状部材39Bと出口部35との間の通路の取り回しを考慮せずに第2通路36Bを構成することができる。更に、出口部35に近い側の管状部材39Aと外側管状部材40との間に形成される隙間Sがフランジ部41において塞がれるためその隙間Sへのガス漏れを抑制できる。これにより、ツインスクロール型のタービンハウジングの利点が減じることを防止できる。   According to the 3rd form, the effect equivalent to a 2nd form can be exhibited. That is, since the second passage 36B of the bypass passage portion 36 and the tubular member 39B on the side far from the outlet portion 35 are not joined, the degree of freedom in designing the bypass passage portion 36 can be expanded. Further, since the bypass passage portion 36 has two passages 36A and 36B, and the second passage 36B of these passages leads to the gap S, the tubular member 39B far from the outlet portion 35 and the outlet portion 35 are connected to each other. The second passage 36B can be configured without considering the routing of the passage between them. Furthermore, since the gap S formed between the tubular member 39A near the outlet portion 35 and the outer tubular member 40 is blocked by the flange portion 41, gas leakage into the gap S can be suppressed. Thereby, it can prevent that the advantage of a twin scroll type turbine housing reduces.

本発明は以上の各形態に限定されず、本発明の要旨の範囲内で種々の形態にて実施できる。本発明に係るタービンハウジングは必ずしもターボチャージャーに組み込まれるタービンに適用されることを前提とするものではない。従って、本発明のタービンハウジングを何らかの用途に利用されるタービンに適用することもできる。   The present invention is not limited to the above embodiments, and can be implemented in various forms within the scope of the gist of the present invention. The turbine housing according to the present invention is not necessarily applied to a turbine incorporated in a turbocharger. Therefore, the turbine housing of the present invention can be applied to a turbine used for some applications.

本発明の第1の形態に係るタービンハウジングが組み込まれたタービンの要部を示した図。The figure which showed the principal part of the turbine in which the turbine housing which concerns on the 1st form of this invention was integrated. 図1の矢印IIの方向から見た状態を示した図。The figure which showed the state seen from the direction of arrow II of FIG. 図1のIII−III線に関する断面図。Sectional drawing regarding the III-III line of FIG. 本発明の第2の形態に係るタービンハウジングが組み込まれたタービンの要部を示した図。The figure which showed the principal part of the turbine in which the turbine housing which concerns on the 2nd form of this invention was integrated. 図4のV−V線に関する断面を拡大した図。The figure which expanded the cross section regarding the VV line | wire of FIG. 図4の矢印VIの方向から見た状態を示した図。The figure which showed the state seen from the direction of arrow VI of FIG. 図4のVII−VII線に関する断面図。Sectional drawing regarding the VII-VII line of FIG. 本発明の第3の形態に係るタービンハウジングが組み込まれたタービンの要部を示した図。The figure which showed the principal part of the turbine in which the turbine housing which concerns on the 3rd form of this invention was integrated. 図8のIX−IX線に関する断面を拡大した図。The figure which expanded the cross section regarding the IX-IX line of FIG. 図8の矢印Xの方向から見た状態を示した図。The figure which showed the state seen from the direction of the arrow X of FIG. 図8のXI−XI線に関する断面図。Sectional drawing regarding the XI-XI line of FIG.

符号の説明Explanation of symbols

2 タービンホイール
3A〜3C タービンハウジング
4 入口部
5 ホイール収容部
6 スクロール部
7 出口部
8 バイパス通路部
10 二重構造部
11 内側管状部材
12 外側管状部材
15 フランジ部
21 入口部
22 ホイール収容部
23 スクロール部
24 出口部
25 バイパス通路部
25A 第1通路
25B 第2通路
27 二重構造部
28 内側管状部材
28A、28B 管状部材
29 外側管状部材
30 フランジ部
32 入口部
33 ホイール収容部
34 スクロール部
35 出口部
36 バイパス通路部
36A 第1通路
36B 第2通路
38 二重構造部
39 内側管状部材
39A、39B 管状部材
40 外側管状部材
41 フランジ部
S 隙間
AR1、AR2 領域
2 Turbine wheel 3A-3C Turbine housing 4 Inlet part 5 Wheel accommodating part 6 Scroll part 7 Outlet part 8 Bypass passage part 10 Duplex structure part 11 Inner tubular member 12 Outer tubular member 15 Flange part 21 Inlet part 22 Wheel accommodating part 23 Scroll Portion 24 Exit portion 25 Bypass passage portion 25A First passage 25B Second passage 27 Dual structure portion 28 Inner tubular members 28A, 28B Tubular member 29 Outer tubular member 30 Flange portion 32 Inlet portion 33 Wheel accommodating portion 34 Scroll portion 35 Outlet portion 36 Bypass passage portion 36A First passage 36B Second passage 38 Dual structure portion 39 Inner tubular members 39A, 39B Tubular member 40 Outer tubular member 41 Flange portion S Clearance AR1, AR2 region

Claims (4)

ガスを導入するための入口部と、タービンホイールを収容するホイール収容部と、前記入口部に通じかつ前記ホイール収容部まで延びる渦巻き状のスクロール部と、前記ホイール収容部を通過したガスを排出するための出口部と、前記ホイール収容部を迂回できるように前記入口部と前記出口部とを結ぶバイパス通路部と、を備え、前記入口部から前記スクロール部までが、内側管状部材と外側管状部材との間に隙間が形成された状態でこれらが組み合わされた二重構造部として構成されたタービンハウジングにおいて、
前記二重構造部は前記隙間が前記入口部に通じることによりガスを導入可能に構成され、かつ前記バイパス通路部は前記二重構造部の前記隙間に通じるように構成されていることを特徴とするタービンハウジング。
An inlet portion for introducing gas, a wheel accommodating portion for accommodating a turbine wheel, a spiral scroll portion that communicates with the inlet portion and extends to the wheel accommodating portion, and discharges the gas that has passed through the wheel accommodating portion. And a bypass passage portion connecting the inlet portion and the outlet portion so as to be able to bypass the wheel housing portion, the inner tubular member and the outer tubular member extending from the inlet portion to the scroll portion. In a turbine housing configured as a double structure in which a gap is formed between
The double structure portion is configured such that gas can be introduced when the gap communicates with the inlet portion, and the bypass passage portion is configured to communicate with the gap of the double structure portion. Turbine housing.
前記入口部の先端にはフランジ部が形成されており、前記二重構造部の前記外側管状部材が前記フランジ部に全周接合され、かつ前記内側管状部材が前記フランジ部から離間することにより前記隙間が前記入口部に通じている請求項1に記載のタービンハウジング。   A flange portion is formed at a distal end of the inlet portion, the outer tubular member of the double structure portion is joined to the flange portion all around, and the inner tubular member is separated from the flange portion, thereby The turbine housing according to claim 1, wherein a gap communicates with the inlet portion. 前記二重構造部の前記内側管状部材は、前記スクロール部が前記タービンホイールの回転軸線方向に並ぶ二つの領域に区分されるように二つの管状部材にて構成されており、前記バイパス通路部は、前記二つの管状部材のうちの前記出口部に近い側の管状部材と前記出口部とを結ぶ第1通路と、前記隙間と通じるように構成された第2通路とを有している請求項1に記載のタービンハウジング。   The inner tubular member of the double structure portion is composed of two tubular members so that the scroll portion is divided into two regions aligned in the rotational axis direction of the turbine wheel, and the bypass passage portion is And a first passage connecting the tubular member closer to the outlet portion of the two tubular members and the outlet portion, and a second passage configured to communicate with the gap. The turbine housing according to claim 1. 前記入口部の先端にはフランジ部が形成されており、前記二重構造部の前記外側管状部材が前記フランジ部に全周接合され、前記二つの管状部材のうちの前記出口部に近い側の管状部材が前記フランジ部又は前記外側管状部材の少なくとも一方に接合され、かつ前記二つの管状部材のうちの前記出口部に遠い側の管状部材が前記フランジ部から離間することにより前記隙間が前記入口部に通じている請求項3に記載のタービンハウジング。   A flange portion is formed at the distal end of the inlet portion, and the outer tubular member of the double structure portion is joined to the flange portion on the entire circumference, and the side closer to the outlet portion of the two tubular members. When the tubular member is joined to at least one of the flange portion or the outer tubular member, and the tubular member on the side farther from the outlet portion of the two tubular members is separated from the flange portion, the gap becomes the inlet. The turbine housing according to claim 3, wherein the turbine housing communicates with the portion.
JP2008043932A 2008-02-26 2008-02-26 Turbine housing Expired - Fee Related JP4875009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043932A JP4875009B2 (en) 2008-02-26 2008-02-26 Turbine housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043932A JP4875009B2 (en) 2008-02-26 2008-02-26 Turbine housing

Publications (2)

Publication Number Publication Date
JP2009203803A true JP2009203803A (en) 2009-09-10
JP4875009B2 JP4875009B2 (en) 2012-02-15

Family

ID=41146337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043932A Expired - Fee Related JP4875009B2 (en) 2008-02-26 2008-02-26 Turbine housing

Country Status (1)

Country Link
JP (1) JP4875009B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127505A (en) * 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd Sheet metal turbine housing
US9255485B2 (en) 2011-02-02 2016-02-09 Mitsubishi Heavy Industries, Ltd. Turbine housing made of sheet metal
CN105940203A (en) * 2014-02-28 2016-09-14 三菱重工业株式会社 Sheet metal turbine housing
US11300041B2 (en) 2019-03-25 2022-04-12 Kabushiki Kaisha Toyota Jidoshokki Turbocharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245345A (en) * 1985-08-19 1987-02-27 シーメンス、アクチエンゲゼルシヤフト Selective bonding of metal catalyst carrier
JP2002054447A (en) * 2000-08-09 2002-02-20 Aisin Takaoka Ltd Turbine housing
JP2002349276A (en) * 2001-05-25 2002-12-04 Aisin Takaoka Ltd Turbine housing
JP2008069664A (en) * 2006-09-12 2008-03-27 Toyota Motor Corp Turbine housing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245345A (en) * 1985-08-19 1987-02-27 シーメンス、アクチエンゲゼルシヤフト Selective bonding of metal catalyst carrier
JP2002054447A (en) * 2000-08-09 2002-02-20 Aisin Takaoka Ltd Turbine housing
JP2002349276A (en) * 2001-05-25 2002-12-04 Aisin Takaoka Ltd Turbine housing
JP2008069664A (en) * 2006-09-12 2008-03-27 Toyota Motor Corp Turbine housing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127505A (en) * 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd Sheet metal turbine housing
US9255485B2 (en) 2011-02-02 2016-02-09 Mitsubishi Heavy Industries, Ltd. Turbine housing made of sheet metal
CN105940203A (en) * 2014-02-28 2016-09-14 三菱重工业株式会社 Sheet metal turbine housing
CN105940203B (en) * 2014-02-28 2019-08-06 三菱重工发动机和增压器株式会社 Metal plate turbine shroud
US10400617B2 (en) 2014-02-28 2019-09-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Sheet-metal turbine housing
US11300041B2 (en) 2019-03-25 2022-04-12 Kabushiki Kaisha Toyota Jidoshokki Turbocharger
DE102020107894B4 (en) 2019-03-25 2023-05-25 Kabushiki Kaisha Toyota Jidoshokki turbocharger

Also Published As

Publication number Publication date
JP4875009B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5255812B2 (en) Exhaust gas rear muffler
JP6039880B2 (en) Silencer
JP4875009B2 (en) Turbine housing
JP4545660B2 (en) Silencer structure
US20150218997A1 (en) Exhaust Heat Recovery Device
JP4905565B2 (en) Turbocharger and its wheel housing
CN106996314A (en) Cooling circuit for many wall blades
JP6228185B2 (en) Exhaust pipe
JP6574693B2 (en) Engine muffler
JP4779898B2 (en) Turbine housing
CN108625908A (en) Turbocharger
JP2004528140A5 (en)
WO2018151267A1 (en) Supercharger
JP2009024565A (en) Exhaust heat collecting device for internal combustion engine
WO2013133312A1 (en) Turbine housing and supercharger
JP2002054447A (en) Turbine housing
JP2007285169A (en) Cylinder head structure of internal combustion engine with turbocharger
JP2006161574A (en) Turbine housing for turbocharger
WO2016098395A1 (en) Valve device and exhaust heat recovery device
JP6735916B2 (en) Turbine housing
US6478536B2 (en) Exhaust turbine
JP2007162509A (en) Exhaust gas passage structure for internal combustion engine, exhaust manifold, cylinder head, and gasket for exhaust manifold
JP5648521B2 (en) Intake duct connection structure and air cleaner device
JP4635879B2 (en) Engine cylinder head structure
JP2008101479A (en) Exhaust valve structure, exhaust system heat exchanger, and exhaust system structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4875009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees