JP2009203253A - Method for converting kitchen garbage into solid fuel - Google Patents

Method for converting kitchen garbage into solid fuel Download PDF

Info

Publication number
JP2009203253A
JP2009203253A JP2008043853A JP2008043853A JP2009203253A JP 2009203253 A JP2009203253 A JP 2009203253A JP 2008043853 A JP2008043853 A JP 2008043853A JP 2008043853 A JP2008043853 A JP 2008043853A JP 2009203253 A JP2009203253 A JP 2009203253A
Authority
JP
Japan
Prior art keywords
tateyama
ferm
garbage
bacillus
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008043853A
Other languages
Japanese (ja)
Inventor
Nobuko Suzuki
伸子 鈴木
Hidemoto Nagata
英基 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUKI FARM KK
Original Assignee
SUZUKI FARM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZUKI FARM KK filed Critical SUZUKI FARM KK
Priority to JP2008043853A priority Critical patent/JP2009203253A/en
Publication of JP2009203253A publication Critical patent/JP2009203253A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To convert kitchen garbage into an inexpensive and excellent solid fuel having high safety. <P>SOLUTION: In a method for converting garbage into the solid fuel, a moisture adjustment material is mixed into the garbage and an effective microbe group comprising 55% aerobic bacteria group and 45% anaerobic bacteria group is further added, the resultant mixture is primarily fermented while applying ventilation and bubbling to form a primary raw material, and a charcoal powder is mixed into the primary raw material and secondary fermentation is performed by further adding an effective microbe group composed of alkaline Bacillus TATEYAMA TURUGI FERM BP-10691, alkaline Bacillus TATEYAMA YAKUSHI FERM BP-10692, halophilic Bacillus TATEYAMA JOUDO FERM BP-10693, anaerobic Atopostipes TATEYAMA JOJO FERM BP-10690 and anaerobic and halophilic Clostridium TATEYAMA RYUUOU FERM BP10694 to form a carbon source bed, and the carbon source bed is solidified. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生ゴミを固形燃料にする方法に関するものである。   The present invention relates to a method for converting garbage into a solid fuel.

本発明における「生ゴミ」とは、食品加工場、一般家庭、レストラン、学校、事業所、病院等の飲食物を取り扱う施設から廃棄される不要な飯、野菜、魚介類、麺類、肉類、茶殻、おから、米ぬか、卵殻、コーヒー粕、ビール粕、ジュース粕等の飲食物の残渣等の廃棄物をいうものとする。   In the present invention, “garbage” means unnecessary rice, vegetables, seafood, noodles, meat, tea shells that are discarded from food processing facilities such as food processing plants, general households, restaurants, schools, offices, and hospitals. , Waste such as okara, rice bran, eggshell, coffee lees, beer lees, juice lees etc.

生ゴミは、有機物質であって、たんぱく質、脂肪、繊維等が多く含まれている。そのため、生ゴミに水分と温度とが加わると、直ちに腐敗し、有毒ガス、アンモニア、硫化水素、メチルカプタ等が発生し、生活圏の環境が悪化する。   Garbage is an organic substance that is rich in protein, fat, fiber, and the like. Therefore, when moisture and temperature are added to the garbage, it immediately rots and generates toxic gas, ammonia, hydrogen sulfide, methylcapta, etc., and the environment in the living area deteriorates.

本発明者は、特許第3710424号公報において、重金属、ダイオキシン類及び農薬を分解する方法を提供している。   The present inventor provides a method for decomposing heavy metals, dioxins and agricultural chemicals in Japanese Patent No. 3710424.

この重金属、ダイオキシン類及び農薬を分解する方法は、配合株数の割合が好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を有機廃棄物に混入して40〜200℃の温度にて一次発酵させ、更にこれに配合株数の割合が好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を混入し、これを被処理物と共に100〜200℃の温度にて二次発酵させることにより、該被処理物に含まれる重金属、ダイオキシン類又は農薬を分解させるようにしたことを特徴とするものである。
特許第3710424号公報
This method of decomposing heavy metals, dioxins and pesticides is performed by mixing an effective waste group consisting of 55% aerobic bacteria and 45% anaerobic bacteria in organic waste with a ratio of the number of mixed strains of 40 to 200 ° C. Primary fermentation is carried out at a temperature, and further, an effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group is mixed therein, and this is mixed with the object to be treated at a temperature of 100 to 200 ° C. It is characterized by decomposing heavy metals, dioxins or pesticides contained in the material to be treated by secondary fermentation at.
Japanese Patent No. 3710424

生ゴミは、油分、脂肪分、塩分等を多く含んでおり、これらのものを減少分解することが困難であるため、有機肥料ないし飼料としてリサイクルされる生ゴミは一部に留まり、大部分の生ゴミは最終処分場で埋立処分され若しくは焼却処分場で生のまま焼却処分されている。   Since raw garbage contains a lot of oil, fat, salt, etc., and it is difficult to reduce and decompose these, most of the garbage that is recycled as organic fertilizer or feed is limited. Garbage is either landfilled at the final disposal site or incinerated as it is at the incineration site.

しかるに、生ゴミを埋立処分すると、生ゴミは悪臭を発し、環境を害することになる。また、生ゴミを焼却処分すると、燃焼工程で人体に有害なダイオキシンが発生する。   However, when the garbage is disposed of in landfills, the garbage produces a bad odor and harms the environment. In addition, when garbage is incinerated, dioxins harmful to the human body are generated during the combustion process.

本発明は、生ゴミを固形燃料にする方法を提供することにより、上述の如き問題を一挙に解決しようとしてなされたものである。   The present invention has been made in order to solve the above-described problems all at once by providing a method for converting garbage into a solid fuel.

本発明は、前述の重金属、ダイオキシン類及び農薬を分解する方法に更に検討を加えることにより、生ゴミを固形燃料にする方法に想到した。   The present invention has come up with a method for converting garbage into a solid fuel by further studying the above-described method for decomposing heavy metals, dioxins and agricultural chemicals.

すなわち、本発明は、下記の生ゴミを固形燃料にする方法を提供するものである。   That is, the present invention provides a method for converting the following garbage into a solid fuel.

(1)生ゴミに水分調整材を混入すると共に好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を加え、送風と攪拌とを行いつつ一次発酵させて一次原料を作り、
該一次原料に炭の粉末を混入すると共に好アルカリ性のバチルス属(Bacillus sp.)タテヤマ剣FERM BP-10691と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師FERM BP−10692と、好塩性のバチルス属(Bacillus
sp.)タテヤマ浄土FERM BP-10693と、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝FERM BP-10690と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王FERM BP-10694とよりなる有効微生物群を加え、二次発酵させて炭素源炭床を作り、
該炭素源炭床を固形化してなることを特徴とする、生ゴミを固形燃料にする方法(請求項1)。
(1) Mixing moisture adjusting material in garbage and adding effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group, and making primary fermentation by primary fermentation while blowing and stirring ,
Charcoal powder is mixed into the primary raw material and an alkalophilic Bacillus sp. Tateyama sword FERM BP-10691, an alkalophilic Bacillus sp. Tateyama pharmacist FERM BP-10692, and halophilicity The genus Bacillus
sp.) Tateyama Pure Land FERM BP-10893, anaerobic bacteria Atopostipes sp. Tateyama Lady FERM BP-10690, anaerobic and halophilic Clostridium sp. Add an effective microorganism group consisting of Tateyama Ryuo FERM BP-10694, and make a secondary source fermentation to make a carbon source coal bed,
A method of converting garbage into solid fuel, wherein the carbon source coal bed is solidified (Claim 1).

(2)前記一次原料は、生ゴミ63重量部に水分調整材35重量部を混入すると共に有効微生物群2重量部を加え、60〜80℃の発酵槽内温度にて48時間一次発酵させてなる(請求項2)。 (2) The primary raw material is obtained by mixing 35 parts by weight of a moisture adjusting material with 63 parts by weight of garbage and adding 2 parts by weight of an effective microorganism group, followed by primary fermentation at a temperature in a fermenter of 60-80 ° C. for 48 hours. (Claim 2).

(3)前記二次発酵は48時間行われる(請求項3)。 (3) The secondary fermentation is performed for 48 hours (Claim 3).

生ゴミに好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を加えて一次発酵させることにより、生ゴミ中の危険物質を減少させることができる。   By adding an effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group to the raw garbage and performing primary fermentation, dangerous substances in the raw garbage can be reduced.

このように、危険物質を減少させた一次原料に、炭の粉末を混入すると共に好アルカリ性のバチルス属(Bacillus sp.)タテヤマ剣FERM BP-10691と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師FERM BP−10692と、好塩性のバチルス属(Bacillus
sp.)タテヤマ浄土FERM BP-10693と、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝FERM BP-10690と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王FERM BP-10694とよりなる有効微生物群を加え、二次発酵させることにより、危険物質を更に減少させることができる。
In this way, the primary raw material with reduced hazardous substances is mixed with charcoal powder and the alkalophilic Bacillus sp. Tateyama sword FERM BP-10691 and the alkalophilic Bacillus sp. Tateyama Pharmacist FERM BP-10682 and halophilic Bacillus
sp.) Tateyama Pure Land FERM BP-10893, anaerobic bacteria Atopostipes sp. Tateyama Lady FERM BP-10690, anaerobic and halophilic Clostridium sp. By adding an effective microorganism group consisting of Tateyama Ryuo FERM BP-10694 and performing secondary fermentation, dangerous substances can be further reduced.

また、上記二次発酵において、上記有効微生物群により、水素イオン指数が変化し、酸性の強いpH3〜4のものも、アルカリ性の強いpH10以上のものも、中性のpH7前後に変化する。 Further, in the secondary fermentation, the hydrogen ion index changes depending on the effective microorganism group, and those having a strong acidity of pH 3 to 4 and those having a strong alkalinity of pH 10 or more change to around neutral pH 7.

したがって、上記二次発酵により得られた炭素源炭床を固形化してなる固形燃料は、極めて安全性が高く、二酸化炭素の排出量が少ない優れた燃料である。 Therefore, the solid fuel obtained by solidifying the carbon source coal bed obtained by the secondary fermentation is an excellent fuel with extremely high safety and low carbon dioxide emission.

加えて、該固形燃料は、従来埋立処分ないし焼却処分されていた生ゴミを原料とするものであるため、安価に提供することができる。 In addition, the solid fuel can be provided at low cost because it is made from raw garbage that has been disposed of in landfill or incineration.

また、固形燃料を燃焼させた後に残る灰は、無害であり、農業等に有効に利用することができる。 Further, the ash remaining after burning the solid fuel is harmless and can be used effectively for agriculture and the like.

以上の如く、本発明によれば、埋立処分、焼却処分のいずれを行っても環境を害することになる生ゴミを安全性が高く、安価で優れた固形燃料に変換することができる。換言すれば、本発明は、生ゴミを安全性の高い、安価な優れた燃料に変換することにより、環境を保護しつつ、エネルギー源を低コストで確保するという極めて優れた効果を発揮するものである。 As described above, according to the present invention, it is possible to convert raw garbage, which is harmful to the environment regardless of whether it is landfilled or incinerated, into a solid fuel that is highly safe, inexpensive, and excellent. In other words, the present invention exhibits an extremely excellent effect of securing an energy source at a low cost while protecting the environment by converting raw garbage into a safe and inexpensive excellent fuel. It is.

本発明においては、まず、生ゴミに水分調整材を混入すると共に好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を加え、送風と攪拌とを行いつつ一次発酵させて一次原料を作る。   In the present invention, first, a moisture adjusting material is mixed in the garbage and an effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group is added, and primary fermentation is performed while blowing and stirring. Make primary ingredients.

水分調整材としては、例えば、米ヌカ、麦フスマ等を用いる。   As the moisture adjusting material, for example, rice bran, wheat bran or the like is used.

一次原料を作る際に用いられる有効微生物群は、配合株数の割合が好気性菌群55%と嫌気性菌群45%とよりなるものである。   The effective microorganism group used when making the primary raw material is such that the ratio of the number of the combined strains consists of 55% aerobic bacteria group and 45% anaerobic bacteria group.

一次原料を作る際に用いられる有効微生物群には次のものが含まれる。
酵母菌、セルロース分解菌、窒素固定菌、乳酸菌、糸状菌(芳香族化合物分解菌)、マンガン還元菌(クロカビ属群−原生担子菌類)、マンガン酸化菌(有機栄養菌)、アンモニア酸化菌(亜硝酸菌)、放線菌(キチン分解菌)、硝酸菌(硝化生成細菌)、硫黄細菌(硫化水素を水素供与体として利用する細菌群)、メタン酸化菌、セルロース放線菌、セルロース糸状菌、納豆菌、リグニン分解菌、鉄酸化菌、鉄還元菌、硫酸還元菌、酢酸菌、バチルス属(Bacillus sp.)、スポロサルシナ属(Sporosarcina sp.)、ペニバチルス属(Paenibacillus sp.)、オーシャノバチルス属(Oceanobacillus sp.)。
The effective microorganism group used in making the primary raw material includes the following.
Yeast, cellulose-degrading bacteria, nitrogen-fixing bacteria, lactic acid bacteria, filamentous fungi (aromatic compound-degrading bacteria), manganese-reducing bacteria (Agrobacterium-protozoan basidiomycetes), manganese-oxidizing bacteria (organic vegetative fungi), ammonia-oxidizing bacteria (sublimation) Nitrate bacteria), actinomycetes (chitin-degrading bacteria), nitrate bacteria (nitrifying bacteria), sulfur bacteria (bacteria group using hydrogen sulfide as a hydrogen donor), methane oxidizing bacteria, cellulose actinomycetes, cellulose filamentous fungi, natto bacteria , Lignin-degrading bacteria, iron-oxidizing bacteria, iron-reducing bacteria, sulfate-reducing bacteria, acetic acid bacteria, Bacillus sp., Sporosarcina sp., Paenibacillus sp., Oceanobacillus (Oceanobacillus) sp.).

前記一次原料は、好ましくは、生ゴミ63重量部に水分調整材35重量部を混入すると共に有効微生物群2重量部を加え、60〜80℃の発酵槽内温度にて48時間一次発酵させてなる。発酵槽内には60〜150℃の温風を送風する。   Preferably, the primary raw material is mixed with 35 parts by weight of moisture adjusting material in 63 parts by weight of raw garbage and added with 2 parts by weight of effective microorganism group, and is subjected to primary fermentation at a temperature in a fermenter of 60-80 ° C. for 48 hours. Become. Hot air of 60 to 150 ° C. is blown into the fermenter.

前記一次原料に炭の粉末を混入すると共に好アルカリ性のバチルス属(Bacillus
sp.)タテヤマ剣FERM BP-10691と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師FERM BP−10692と、好塩性のバチルス属(Bacillus
sp.)タテヤマ浄土FERM BP-10693と、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝FERM BP-10690と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王FERM BP-10694とよりなる有効微生物群を加え、二次発酵させて炭素源炭床を作る。
Charcoal powder is mixed into the primary raw material and an alkalophilic Bacillus genus (Bacillus)
sp.) Tateyama sword FERM BP-10691, alkalophilic Bacillus sp. Tateyama pharmacist FERM BP-10682, and halophilic Bacillus genus (Bacillus
sp.) Tateyama Pure Land FERM BP-10893, anaerobic bacteria Atopostipes sp. Tateyama Lady FERM BP-10690, anaerobic and halophilic Clostridium sp. An effective microorganism group consisting of Tateyama Ryuo FERM BP-10694 is added and subjected to secondary fermentation to make a carbon source coal bed.

前記炭素源炭床は、好ましくは、一次原料85重量部に竹炭又は木炭の粉末10重量部を混入すると共に前記有効微生物群5重量部を加え、48時間二次発酵させる。 The carbon source coal bed is preferably subjected to secondary fermentation for 48 hours by mixing 10 parts by weight of bamboo charcoal or charcoal powder with 85 parts by weight of the primary raw material and adding 5 parts by weight of the effective microorganism group.

前記炭素源炭床を固形化することにより、固形燃料を作る。 Solid fuel is made by solidifying the carbon source coal bed.

なお、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝(FERM BP-10690)と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ剣(FERM BP-10691)と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師(FERM BP−10692)と、好塩性のバチルス属(Bacillus sp.)タテヤマ浄土(FERM BP-10693)と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王(FERM BP-10694)は、それぞれ独立行政法人産業技術総合研究所特許生物寄託センターに寄託されている。 The anaerobic bacteria Atopostipes sp. Tateyama (FERM BP-10690), the alkalophilic Bacillus sp. Tateyama sword (FERM BP-10691), the alkalophilic Bacillus The genus (Bacillus sp.) Tateyama pharmacist (FERM BP-10692), the halophilic Bacillus sp. Clostridium sp.) Tateyama Ryuo (FERM BP-10694) is deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary.

好アルカリ性のバチルス属(Bacillus
sp.)タテヤマ剣と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師と、好塩性のバチルス属(Bacillus sp.)タテヤマ浄土と、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王とについて、同定を実施した。以下、同定方法及び微生物試験結果を示す。
Alkaliphilic Bacillus (Bacillus)
sp.) Tateyama sword, alkalophilic Bacillus sp. Tateyama pharmacist, halophilic Bacillus sp. Tateyama Jodo, and anaerobic Atopostipes sp. Tateyama An identification was made of a woman and an anaerobic and halophilic Clostridium sp. Hereinafter, an identification method and a microbial test result are shown.

細菌第一段階試験として、光学顕微鏡U-LH1,000(オリンパス,日本)により、細胞形態、グラム染色性、胞子の有無及び鞭毛による運動性の有無を観察した。NUTRIENT AGAR (OXOID, HAMPSHIRE, ENGLAND)(以下「NT」という。)又はGAM寒天培地(ニッスイ, 東京)(以下「GAM」という。)でのコロニー形態を観察した。カタラーゼ反応、オキシダーゼ反応、グルコースからの酸/ガス産生及びブドウ糖の酸化/発酵(O/F)について試験を行った。
菌学的性状試験結果を表1に示す。
As a bacterial first stage test, cell morphology, Gram staining, presence of spores and motility by flagella were observed with an optical microscope U-LH1,000 (Olympus, Japan). Colony morphology was observed on NUTRIENT AGAR (OXOID, HAMPSHIRE, ENGLAND) (hereinafter referred to as “NT”) or GAM agar medium (Nissui, Tokyo) (hereinafter referred to as “GAM”). Tests were made for catalase reaction, oxidase reaction, acid / gas production from glucose and glucose oxidation / fermentation (O / F).
Table 1 shows the results of the bacteriological property test.

Figure 2009203253
Figure 2009203253

次に16S rDNA塩基配列の遺伝子解析を実施した。ゲノムDNAの抽出には、INSTAGENE MATRIX(BIO RAD, CA, USA)を使用した。抽出したゲノムDNAを鋳型として、PCRにより全塩基配列約1,500〜1,600塩基対の領域を増幅した。その後、増幅された16S rDNAをシーケンスし、塩基配列を得た。PCR産物の精製、サイクルシークエンスにはBIGDYE TERMINATOR V3.1 CYCLE SEQUENCING KIT(APPLIED BIOSYSTEMS, CA, U.S.A.)を使用した。サーマルサイクラーにはPRIMESTAR HS DNA POLYMERASE(タカラバイオ, 滋賀)、DNAシーケンサーにはABI PRISM 3100 GENETIC ANALYZER SYSTEM(APPLIED BIOSYSTEMS,
CA, U.S.A.)を使用した。なおプライマーは、文献「放線菌の同定と分類, p88-117, 日本学会事務センター, 2001.」に従った。
Next, gene analysis of 16S rDNA base sequence was performed. INSTAGENE MATRIX (BIO RAD, CA, USA) was used for extraction of genomic DNA. Using the extracted genomic DNA as a template, a region having a total base sequence of about 1,500 to 1,600 base pairs was amplified by PCR. Thereafter, the amplified 16S rDNA was sequenced to obtain a base sequence. For purification and cycle sequencing of PCR products, BIGDYE TERMINATOR V3.1 CYCLE SEQUENCING KIT (APPLIED BIOSYSTEMS, CA, USA) was used. PRIMESTAR HS DNA POLYMERASE (Takara Bio, Shiga) for thermal cyclers and ABI PRISM 3100 GENETIC ANALYZER SYSTEM (APPLIED BIOSYSTEMS, for DNA sequencers)
CA, USA). The primers were according to the document “Identification and Classification of Actinomycetes, p88-117, Japan Society for Business Administration, 2001”.

16S rDNAの塩基配列の解析結果を、バチルス属(Bacillus sp.)タテヤマ剣については表2に、バチルス属(Bacillus sp.)タテヤマ薬師については表3に、バチルス属(Bacillus
sp.)タテヤマ浄土については表4に、アトポスティペス属(Atopostipes sp.)タテヤマ女汝については表5に、クロストリディウム属(Clostridium
sp.)タテヤマ竜王については表6に、それぞれ示す。
The analysis results of the base sequence of 16S rDNA are shown in Table 2 for Bacillus sp. Tateyama sword, in Table 3 for Bacillus sp.
sp.) Table 4 for Tateyama Pure Land, Table 5 for Atopostipes sp. Tateyama, and Clostridium
sp.) Tateyama Ryuo is shown in Table 6, respectively.

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

上記塩基配列をアポロンDB細菌基準株データベース(テクノスルガ, 静岡) を用いて相同性検索を行い、得られた16S rDNAの塩基配列から検体と近縁と考えられる種の相同性検索を行い、上位5株を決定した。
相同性検索結果を、バチルス属(Bacillus sp.)タテヤマ剣については表7に、バチルス属(Bacillus
sp.)タテヤマ薬師については表8に、バチルス属(Bacillus sp.)タテヤマ浄土については表9に、アトポスティペス属(Atopostipes sp.)タテヤマ女汝については表10に、クロストリディウム属(Clostridium sp.)タテヤマ竜王については表11に、それぞれ示す。
The above base sequence is searched for homology using the Apollon DB bacterial reference strain database (Techno Suruga, Shizuoka). From the obtained 16S rDNA base sequence, a homology search for species considered to be closely related to the sample is performed. Five strains were determined.
The results of the homology search are shown in Table 7 for Bacillus sp.
sp.) for Tateyama Yakushi, Table 9 for Bacillus sp. Tateyama Jodo, Table 10 for Atopostipes sp. Tateyama Maiden, Table 10 for Clostridium spp. Clostridium sp.) Tateyama Ryuo is shown in Table 11, respectively.

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

Figure 2009203253
Figure 2009203253

これまで得られた情報をもとにCLUSTAL
WとMEGA VER3.1を用いて、16S rDNA塩基配列とこれに近縁と考えられる菌群の16S rDNA塩基配列とを用いて分子系統樹を構築した。分子系統樹の推定には近隣結合法を用い、樹型の妥当性を示すブートストラップは1000回発生させた。
なお、CLUSTAL Wは文献「Nucleic Acids Research, 1994, 22:4673-4680.」、MEGAは文献「Briefings
in Bioinformatics, 2004, 5, 150-163.」に従った。
分子系統解析結果を、バチルス属(Bacillus sp.)タテヤマ剣とバチルス属(Bacillus sp.)タテヤマ薬師とについては図1に、バチルス属(Bacillus
sp.)タテヤマ浄土については図2に、アトポスティペス属(Atopostipes sp.)タテヤマ女汝については図3に、クロストリディウム属(Clostridium
sp.)については図4に、それぞれ示す。
CLUSTAL based on information obtained so far
Using W and MEGA VER3.1, a molecular phylogenetic tree was constructed using a 16S rDNA base sequence and a 16S rDNA base sequence of a bacterial group considered to be closely related thereto. The neighbor linking method was used to estimate the molecular phylogenetic tree, and a bootstrap showing the validity of the tree type was generated 1000 times.
In addition, CLUSTAL W is a document “Nucleic Acids Research, 1994, 22: 4673-4680.” MEGA is a document “Briefings”
in Bioinformatics, 2004, 5, 150-163. ".
The results of molecular phylogenetic analysis are shown in FIG. 1 for the Bacillus sp. Tateyama sword and the Bacillus sp. Tateyama pharmacist.
sp.) The Tateyama Pure Land is shown in Figure 2, and the Atopostipes sp. Tateyama Lady is shown in Figure 3, Clostridium.
sp.) is shown in FIG.

韓国食品残渣物を含む生ゴミ63重量部に下記の水分調整材35重量部を混入すると共に、好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群2重量部を加え、発酵機(商標「NB−SS発酵機Rex型」)を用いて送風と攪拌とを行いつつ、60〜80℃の発酵槽内温度にて48時間一次発酵させて一次原料を作り、
該一次原料85重量部に木炭の粉末10重量部を混入すると共に好アルカリ性のバチルス属(Bacillus sp.)タテヤマ剣FERM BP-10691と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師FERM BP−10692と、好塩性のバチルス属(Bacillus
sp.)タテヤマ浄土FERM BP-10693と、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝FERM BP-10690と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王FERM BP-10694とよりなる有効微生物群5重量部を加え、上記発酵機を用いて48時間二次発酵させて炭素源炭床粉末を作った。炭素源炭床粉末の含水率は40重量%、仕上げ温度は70℃であった。
この炭素源炭床粉末の含水率を25重量%となし、ペレット製造装置(バイオマスペレット製造装置)により固形化し、円柱状ペレットの形状をなす固形燃料を作った。
上記水分調整材は、含水率80%の生オカラと、米ヌカとを、該生オカラと米ヌカとの全体の含水率が50%になるように、合計1000重量部発酵槽内に投入し、該発酵槽内に好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群1重量部を投入し、該発酵槽内の温度を60〜80℃に加温すると共に該発酵槽内に空気を送入しつつ24時間攪拌発酵させてなるものである。
While mixing 35 parts by weight of the following moisture adjusting material with 63 parts by weight of garbage containing Korean food residue, add 2 parts by weight of effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group, While performing air blowing and stirring using a fermenter (trademark “NB-SS fermenter Rex type”), primary fermentation is performed for 48 hours at a temperature in a fermenter of 60 to 80 ° C.
10 parts by weight of charcoal powder is mixed into 85 parts by weight of the primary raw material, and an alkalophilic Bacillus sp. Tateyama sword FERM BP-10691 and an alkalophilic Bacillus sp. Tateyama pharmacist FERM BP- 10692 and the halophilic Bacillus
sp.) Tateyama Pure Land FERM BP-10893, anaerobic bacteria Atopostipes sp. Tateyama Lady FERM BP-10690, anaerobic and halophilic Clostridium sp. 5 parts by weight of an effective microorganism group consisting of Tateyama Ryuo FERM BP-10694 was added, and secondary fermentation was performed for 48 hours using the fermenter to prepare a carbon source coal bed powder. The water content of the carbon source coal bed powder was 40% by weight, and the finishing temperature was 70 ° C.
The carbon source coal bed powder had a water content of 25% by weight and was solidified by a pellet production apparatus (biomass pellet production apparatus) to produce a solid fuel in the form of a cylindrical pellet.
The moisture adjusting material is charged with raw okara with a moisture content of 80% and rice bran into a total 1000 parts by weight fermenter so that the total moisture content of the raw okara and rice bran is 50%. 1 part by weight of an effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group is put into the fermenter, and the temperature in the fermenter is heated to 60-80 ° C. and the fermentation is performed. The mixture is stirred and fermented for 24 hours while feeding air into the tank.

この実施例において得られた固形燃料は、燃焼時に十分な熱量を出す安全な燃料であった。この固形燃料を燃焼させた後に残った灰は、無害であり、畑に散布された。   The solid fuel obtained in this example was a safe fuel that produces a sufficient amount of heat during combustion. The ash left after burning this solid fuel was harmless and was sprayed on the field.

上記実施例において得られた固形燃料について行われた分析の結果を表12に示す。   Table 12 shows the results of the analysis performed on the solid fuel obtained in the above examples.

Figure 2009203253
Figure 2009203253

バチルス属(Bacillus sp.)タテヤマ剣とバチルス属(Bacillus sp.)タテヤマ薬師の分子系統樹である。It is a molecular phylogenetic tree of Bacillus sp. Tateyama sword and Bacillus sp. Tateyama pharmacist. バチルス属(Bacillus sp.)タテヤマ浄土の分子系統樹である。It is a molecular phylogenetic tree of Bacillus sp. アトポスティペス属(Atopostipes sp.)タテヤマ女汝の分子系統樹である。This is a molecular phylogenetic tree of a woman from the genus Atopostipes sp. アトポスティペス属(Atopostipes sp.)タテヤマ女汝の分子系統樹である。This is a molecular phylogenetic tree of a woman from the genus Atopostipes sp.

Claims (3)

生ゴミに水分調整材を混入すると共に好気性菌群55%と嫌気性菌群45%とよりなる有効微生物群を加え、送風と攪拌とを行いつつ一次発酵させて一次原料を作り、
該一次原料に炭の粉末を混入すると共に好アルカリ性のバチルス属(Bacillus sp.)タテヤマ剣FERM BP-10691と、好アルカリ性のバチルス属(Bacillus sp.)タテヤマ薬師FERM BP−10692と、好塩性のバチルス属(Bacillus
sp.)タテヤマ浄土FERM BP-10693と、嫌気性菌のアトポスティペス属(Atopostipes sp.)タテヤマ女汝FERM BP-10690と、嫌気性かつ好塩性のクロストリディウム属(Clostridium sp.)タテヤマ竜王FERM BP-10694とよりなる有効微生物群を加え、二次発酵させて炭素源炭床を作り、
該炭素源炭床を固形化してなることを特徴とする、生ゴミを固形燃料にする方法。
Mixing moisture adjusting material with garbage and adding effective microorganism group consisting of 55% aerobic bacteria group and 45% anaerobic bacteria group, and making primary fermentation by primary fermentation while blowing and stirring,
Charcoal powder is mixed into the primary raw material and an alkalophilic Bacillus sp. Tateyama sword FERM BP-10691, an alkalophilic Bacillus sp. Tateyama pharmacist FERM BP-10692, and halophilicity The genus Bacillus
sp.) Tateyama Pure Land FERM BP-10893, anaerobic bacteria Atopostipes sp. Tateyama Lady FERM BP-10690, anaerobic and halophilic Clostridium sp. Add an effective microorganism group consisting of Tateyama Ryuo FERM BP-10694, and make a secondary source fermentation to make a carbon source coal bed,
A method for converting garbage into solid fuel, comprising solidifying the carbon source coal bed.
前記一次原料は、生ゴミ63重量部に水分調整材35重量部を混入すると共に有効微生物群2重量部を加え、60〜80℃の発酵槽内温度にて48時間一次発酵させてなることを特徴とする請求項1に記載の生ゴミを固形燃料にする方法。   The primary raw material is obtained by mixing 35 parts by weight of a moisture adjusting material with 63 parts by weight of garbage and adding 2 parts by weight of an effective microorganism group, followed by primary fermentation at a temperature in a fermenter of 60 to 80 ° C. for 48 hours. The method for converting the garbage according to claim 1 into a solid fuel. 前記二次発酵は48時間行われることを特徴とする請求項1又は2に記載の生ゴミを固形燃料にする方法。   The method according to claim 1 or 2, wherein the secondary fermentation is performed for 48 hours.
JP2008043853A 2008-02-26 2008-02-26 Method for converting kitchen garbage into solid fuel Pending JP2009203253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043853A JP2009203253A (en) 2008-02-26 2008-02-26 Method for converting kitchen garbage into solid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043853A JP2009203253A (en) 2008-02-26 2008-02-26 Method for converting kitchen garbage into solid fuel

Publications (1)

Publication Number Publication Date
JP2009203253A true JP2009203253A (en) 2009-09-10

Family

ID=41145844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043853A Pending JP2009203253A (en) 2008-02-26 2008-02-26 Method for converting kitchen garbage into solid fuel

Country Status (1)

Country Link
JP (1) JP2009203253A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059075A3 (en) * 2010-05-02 2013-04-25 Willibald Hergeth Device and method for producing fuel from biomass
CN105060461A (en) * 2015-07-23 2015-11-18 昆明理工大学 High-concentration organic wastewater biological evaporation treatment method
KR102024475B1 (en) * 2018-09-11 2019-09-30 차양수 Fermentation and destruction apparatus for feed waste
KR102029615B1 (en) * 2019-02-12 2019-10-21 차양수 Food waste fermentation annihilator for Household
CN111438159A (en) * 2020-03-11 2020-07-24 上海交通大学 Kitchen waste treatment system and treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059075A3 (en) * 2010-05-02 2013-04-25 Willibald Hergeth Device and method for producing fuel from biomass
CN105060461A (en) * 2015-07-23 2015-11-18 昆明理工大学 High-concentration organic wastewater biological evaporation treatment method
KR102024475B1 (en) * 2018-09-11 2019-09-30 차양수 Fermentation and destruction apparatus for feed waste
KR102029615B1 (en) * 2019-02-12 2019-10-21 차양수 Food waste fermentation annihilator for Household
CN111438159A (en) * 2020-03-11 2020-07-24 上海交通大学 Kitchen waste treatment system and treatment method

Similar Documents

Publication Publication Date Title
Xie et al. A novel method for contributing to composting start-up at low temperature by inoculating cold-adapted microbial consortium
JP2009221355A (en) Method for making solid fuel from feces of domestic animal
Zhao et al. Development of a novel compound microbial agent for degradation of kitchen waste
Favaro et al. Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste
Yang et al. Characterization on the aerobic denitrification process of Bacillus strains
KR101161670B1 (en) Mixed strain for treating food waste and method for treating food waste using the same
Unuofin et al. Recovery of laccase-producing gammaproteobacteria from wastewater
Rosa et al. Performance and molecular evaluation of an anaerobic system with suspended biomass for treating wastewater with high fat content after enzymatic hydrolysis
CN108949838A (en) The method and composition of biological methane production
CN112608875B (en) Perishable organic solid waste biological drying strain and application thereof
CN111647536B (en) High-temperature-resistant capsaicin degrading bacteria, application and kitchen waste treatment method
JP2008230919A (en) Method of manufacturing fertilizer, soil improvement agent or sewage treatment regulator
KR20170021002A (en) Microbial agent for decomposition of food waste
Kushkevych et al. Acetogenic microorganisms in operating biogas plants depending on substrate combinations
Wu et al. Impact of bamboo sphere amendment on composting performance and microbial community succession in food waste composting
Guo et al. Characterization of bacterial consortium and its application in an ectopic fermentation system
JP2009203253A (en) Method for converting kitchen garbage into solid fuel
Simmons et al. Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high‐solids conditions
Arvanitoyannis et al. Olive oil waste management: treatment methods and potential uses of treated waste
KR100805036B1 (en) Novel Bacillus cereus ENB-02 strain having foodwaste decompositing capability and microbial agent
Wu et al. Insight into the microbial mechanisms for the improvement of composting efficiency driven by Aneurinibacillus sp. LD3
Varma et al. Influence of carbide sludge on microbial diversity and degradation of lignocellulose during in-vessel composting of agricultural waste
KR20070093941A (en) Bacillus clausii strain for fats degradation and microbial agent for foodwaste treatment using it
Bhimani et al. Cultivation methods, characterization, and biocatalytic potential of organic solid waste degrading bacteria isolated from sugarcane rhizospheric soil and compost
JP2011031180A (en) Method of making heavy metal, dioxin, nitrate and agricultural chemical harmless