JP2009203094A - Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same - Google Patents

Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same Download PDF

Info

Publication number
JP2009203094A
JP2009203094A JP2008044699A JP2008044699A JP2009203094A JP 2009203094 A JP2009203094 A JP 2009203094A JP 2008044699 A JP2008044699 A JP 2008044699A JP 2008044699 A JP2008044699 A JP 2008044699A JP 2009203094 A JP2009203094 A JP 2009203094A
Authority
JP
Japan
Prior art keywords
glass tube
quartz glass
synthetic quartz
transmittance
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008044699A
Other languages
Japanese (ja)
Inventor
Toshiaki Inaba
俊明 稲葉
Kenichiro Deguchi
憲一郎 出口
雄一 ▲高▼橋
Yuichi Takahashi
Otohiko Yamashita
音彦 山下
Kotaro Kawamoto
康太郎 河本
Kohei Hosokawa
公平 細川
Yoshikazu Ueda
義和 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Kohan Co Ltd
Original Assignee
Chiyoda Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Kohan Co Ltd filed Critical Chiyoda Kohan Co Ltd
Priority to JP2008044699A priority Critical patent/JP2009203094A/en
Publication of JP2009203094A publication Critical patent/JP2009203094A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the decrease in ultraviolet transmission at wavelength of ≤200 nm in a silica glass tube made of a synthetic quartz material ingot. <P>SOLUTION: The silica glass tube is formed by heating and processing the synthetic quartz material ingot at a temperature ranging from its softening point to 2,150°C, preferably at 1,800-2,150°C, more preferably at 1,900-2,150°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、合成石英素材を原料とする紫外線高透過性の石英ガラス管に係り、特にその製造技術に関する。   The present invention relates to a quartz glass tube having a high ultraviolet transmittance made of a synthetic quartz material as a raw material, and more particularly to its manufacturing technology.

従来、波長200nm以下の紫外線を利用する技術としては、水中のTOC(Total Organic Carbon)を紫外線により酸化分解して超純水を製造する方法や、被処理水中にオゾンを添加して紫外線を照射することによりダイオキシン類などの難分解性有機物を分解する促進酸化処理方法、酸素に紫外線を照射してオゾンを発生させ、さらにオゾンを紫外線により分解するときに発生する活性酸素が物質の表面の有機物に作用し、これを気化して洗浄することを利用して液晶用ガラスの表面を洗浄する方法などが知られている。   Conventionally, as a technique using ultraviolet light having a wavelength of 200 nm or less, TOC (Total Organic Carbon) in water is oxidized and decomposed with ultraviolet light to produce ultrapure water, or ozone is added to water to be treated and irradiated with ultraviolet light. Accelerated oxidation treatment method that decomposes difficult-to-decompose organic substances such as dioxins, oxygen is irradiated with ultraviolet rays to generate ozone, and active oxygen generated when ozone is decomposed with ultraviolet rays is the organic matter on the surface of the substance There is known a method of cleaning the surface of glass for liquid crystal by utilizing the action of vaporizing and cleaning this.

このような用途に用いられる紫外線ランプは、水銀及び希ガスを封入した発光管の両端部に放電電極を設けて形成される(例えば、特許文献1)。   An ultraviolet lamp used for such an application is formed by providing discharge electrodes at both ends of an arc tube enclosing mercury and a rare gas (for example, Patent Document 1).

ところで、紫外線ランプに用いられる発光管としては、紫外線吸収の原因となる金属不純物が少ない合成石英ガラス管が用いられる。合成石英ガラス管は、MCVD法、VAD法、OCVD法等の製造方法により合成石英素材のインゴットを形成して得られる(例えば、特許文献2)。   By the way, as the arc tube used for the ultraviolet lamp, a synthetic quartz glass tube with few metal impurities causing ultraviolet absorption is used. A synthetic quartz glass tube is obtained by forming an ingot of a synthetic quartz material by a manufacturing method such as an MCVD method, a VAD method, or an OCVD method (for example, Patent Document 2).

また、合成石英ガラス管の製造方法としては、合成石英素材のインゴットを所定の温度に加熱して安定溶融させたものを管状に引き抜く方法が知られている。(例えば、非特許文献1)。   As a method for producing a synthetic quartz glass tube, there is known a method in which a synthetic quartz material ingot heated to a predetermined temperature and stably melted is drawn into a tubular shape. (For example, Non-Patent Document 1).

特開平4−303448号公報JP-A-4-303448 特開2000−247649号公報JP 2000-247649 A ガラスハンドブック、(株)朝倉書店、昭和54年6月20日発行、P.441〜443Glass Handbook, Asakura Shoten Co., Ltd., issued on June 20, 1979, p. 441-443

しかしながら、非特許文献1に記載の技術においては、インゴットを所定の温度に加熱するための坩堝などの容器や、加熱して溶融された合成石英ガラスが流れる流路などにおいて、それらを構成する組成物(例えば、坩堝などの容器においてはカルシアを主成分とするセラミック)が合成石英ガラスに不純物として混入することが考えられる。   However, in the technique described in Non-Patent Document 1, in a container such as a crucible for heating an ingot to a predetermined temperature, a flow path through which synthetic quartz glass melted by heating flows, a composition constituting them It is conceivable that an object (for example, a ceramic mainly composed of calcia in a container such as a crucible) is mixed as impurities in the synthetic quartz glass.

合成石英ガラスに不純物が混入すると、紫外線の波長によってはガラス管の透過率が低下するおそれがある。   When impurities are mixed in synthetic quartz glass, the transmittance of the glass tube may be lowered depending on the wavelength of ultraviolet rays.

本発明は、合成石英素材インゴットを原料とする石英ガラス管の200nm以下の波長の紫外線透過率の低下を抑制することを課題とする。   This invention makes it a subject to suppress the fall of the ultraviolet-ray transmittance of the wavelength of 200 nm or less of the quartz glass tube which uses a synthetic quartz raw material ingot as a raw material.

課題を解決するため、本発明者らは、合成石英素材インゴットを加熱して溶融させて成形した合成石英ガラス管について、200nm以下の波長の紫外線透過率について実験を試みた。表1に示すように、加熱温度が高くなるにつれ透過率が低下することを知見した。すなわち、坩堝などの容器の組成物が不純物として合成石英ガラスに混入し、溶融温度が高いほど混入率が増加するものと推察できる。したがって、合成石英ガラス管を成形するにあたり、紫外線透過率を考慮すると、できるだけ低い温度で行うことが望ましいことが判明した。しかし、低い温度では溶融合成石英ガラスの流動性が低下し、加工性が低下する。   In order to solve the problem, the present inventors tried an experiment on ultraviolet transmittance of a wavelength of 200 nm or less with respect to a synthetic quartz glass tube formed by heating and melting a synthetic quartz material ingot. As shown in Table 1, it was found that the transmittance decreases as the heating temperature increases. That is, it can be presumed that the composition of a container such as a crucible is mixed as impurities into the synthetic quartz glass, and the mixing rate increases as the melting temperature increases. Accordingly, it has been found that it is desirable to perform the synthetic quartz glass tube at the lowest possible temperature in consideration of the ultraviolet transmittance. However, at a low temperature, the fluidity of the fused synthetic quartz glass decreases and the workability decreases.

そこで、本発明の石英ガラス管は、合成石英素材を原料とした石英ガラスの加工性、実用上要求される透過率を考慮して、波長200nmの透過率が80〜90%、好ましくは80〜89%、より好ましくは80〜88%とすることを特徴とする。   Therefore, the quartz glass tube of the present invention has a transmittance at a wavelength of 200 nm of 80 to 90%, preferably 80 to 90%, considering the workability of quartz glass made from a synthetic quartz material and the transmittance required for practical use. It is characterized by 89%, more preferably 80-88%.

また、本発明の合成石英ガラス管(高透過性石英ガラス管と称する)を製造する方法としては、合成石英素材のインゴットを軟化温度以上〜2150℃以下で加熱溶融し、加工して石英ガラス管を成形する。このとき、加工性を考慮すると、好ましくは1800〜2150℃、より好ましくは1900〜2150℃で加熱することが望ましい。   Further, as a method for producing the synthetic quartz glass tube of the present invention (referred to as a highly permeable quartz glass tube), an ingot of a synthetic quartz material is heated and melted at a softening temperature or higher to 2150 ° C. or lower and processed to produce a quartz glass tube. Is molded. At this time, in consideration of workability, it is preferable to heat at 1800 to 2150 ° C, more preferably 1900 to 2150 ° C.

この場合、加熱溶融温度が1800℃より低くなると、溶融した石英(石英融液)の流動性が低下し、加工性が悪くなるため、安定した管成形加工が困難となり、成形加工歩留りも、従来の方法(加熱溶融温度:2200〜2400℃)の場合の70%以下となり、甚だ実用性に欠ける。加熱溶融温度が 1800℃以上になると、流動性が向上すると共に加工性も良くなり、成形加工歩留りが向上してくる。加熱溶融温度を1900℃以上にすると、更に加工性が良くなり、加工歩留りが従来の方法(加熱溶融温度:2200〜2400℃)の場合の85%以上となる。ただし、加熱溶融温度が2150℃をこえると、成形加工歩留りは良くなるが、図1に明らかなように、波長200nmにおける透過率が80%を下回り、紫外線ランプを製作した場合、所望の紫外放射出力を得ることができなくなる。   In this case, if the heating and melting temperature is lower than 1800 ° C., the fluidity of the fused quartz (quartz melt) is lowered and the workability is deteriorated, so that stable tube forming processing becomes difficult, and the forming yield is also conventionally increased. 70% or less in the case of the above method (heating and melting temperature: 2200 to 2400 ° C.), which is extremely impractical. When the heating and melting temperature is 1800 ° C. or higher, the fluidity is improved and the workability is improved, and the molding process yield is improved. When the heating and melting temperature is 1900 ° C. or higher, the workability is further improved, and the processing yield is 85% or more of the conventional method (heating and melting temperature: 2200 to 2400 ° C.). However, when the heating and melting temperature exceeds 2150 ° C., the molding process yield is improved, but as shown in FIG. 1, the transmittance at a wavelength of 200 nm is less than 80%. No output can be obtained.

本発明によれば、合成石英素材を原料とする石英ガラス管の200nm以下の波長の紫外線透過率の低下を抑制することができる。   According to the present invention, it is possible to suppress a decrease in ultraviolet transmittance at a wavelength of 200 nm or less of a quartz glass tube made of a synthetic quartz material.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

まず、本発明の一実施形態の合成石英ガラス管の製造方法について説明する。ハロゲン化珪素(例えばSiCl)及び水素、酸素、窒素を原料としてVAD法(Vapor Phase Axial Deposition Method:気相軸付け法)により合成石英素材のインゴットを製作する。次に、カルシアを主成分とするセラミック材料との坩堝を用い、合成石英素材のインゴットを所定の温度になるまで加熱溶融し、加工して管状に成形する。このときの合成石英素材の加熱溶融温度は、石英素材の加工性、実用上要求される紫外線透過率を考慮して決定する。 First, the manufacturing method of the synthetic quartz glass tube of one Embodiment of this invention is demonstrated. An ingot made of a synthetic quartz material is manufactured by a VAD method (Vapor Phase Axial Deposition Method) using silicon halide (for example, SiCl 4 ) and hydrogen, oxygen, and nitrogen as raw materials. Next, using a crucible with a ceramic material containing calcia as a main component, an ingot of a synthetic quartz material is heated and melted to a predetermined temperature, processed and formed into a tubular shape. The heating and melting temperature of the synthetic quartz material at this time is determined in consideration of the workability of the quartz material and the practically required ultraviolet transmittance.

次に、本実施形態の特徴部である合成石英素材のインゴットの加熱溶融温度と波長200nmの紫外線の透過率との関係について説明する。まず、上記製造方法を用いて、加熱溶融温度1600℃〜2600℃までの範囲において11通りの加熱溶融温度でそれぞれ外径14mm、肉厚0.5mmの合成石英素材を原料とする石英ガラス管を作成し、長さ50mmになるように切断した。次に、作成したそれぞれの石英ガラス管の波長200nmの透過率を分光光度計(測定波長域:200nm〜2000nm)により測定した(表1)。また、表1のデータを用いて、図1に合成石英素材を原料とする石英ガラス管の加熱溶融温度と波長200nmの透過率との関係を示す。なお、通常、促進酸化処理方法などで主に使用される波長は185nmであるため、185nmの波長で測定することが望ましいが、透過率の評価に用いた市販の分光光度計は可測最短波長が200nmであるため、波長185nmの測定はできない。しかしながら、波長185nmと200nmの透過率はほぼ同等であるから、本実施形態においては波長200nmで評価した。   Next, the relationship between the heating and melting temperature of the synthetic quartz material ingot and the transmittance of ultraviolet light having a wavelength of 200 nm, which is a feature of the present embodiment, will be described. First, using the above manufacturing method, a quartz glass tube made of a synthetic quartz material having an outer diameter of 14 mm and a wall thickness of 0.5 mm at 11 heating and melting temperatures in the range of 1600 to 2600 ° C. is used. It created and cut | disconnected so that it might become length 50mm. Next, the transmittance of each prepared quartz glass tube at a wavelength of 200 nm was measured with a spectrophotometer (measurement wavelength range: 200 nm to 2000 nm) (Table 1). Further, using the data in Table 1, FIG. 1 shows the relationship between the heating and melting temperature of a quartz glass tube made of a synthetic quartz material and the transmittance at a wavelength of 200 nm. Note that, since the wavelength mainly used in the accelerated oxidation method is usually 185 nm, it is desirable to measure at a wavelength of 185 nm. However, the commercially available spectrophotometer used for the evaluation of transmittance is the shortest measurable wavelength. Is 200 nm, the wavelength 185 nm cannot be measured. However, since the transmittances at wavelengths of 185 nm and 200 nm are almost the same, in this embodiment, evaluation was performed at a wavelength of 200 nm.

Figure 2009203094
Figure 2009203094

図1及び表1に示すように、合成石英素材の加熱溶融温度が高いほど波長200nmの透過率が低下することがわかった。また、加熱溶融温度が2000℃のときに透過率は86%となり、それ以上加熱温度が高くなると、透過率が急速に低下していることがわかった。すなわち、坩堝の組成物が不純物として合成石英ガラスに混入したと推察できる。したがって、合成石英素材インゴットよりガラス管を成形するにあたり、紫外線透過率を考慮すると、できるだけ低い温度で行うことが望ましいことがわかった。   As shown in FIG. 1 and Table 1, it was found that the transmittance at a wavelength of 200 nm decreases as the heating and melting temperature of the synthetic quartz material increases. Further, it was found that the transmittance was 86% when the heating and melting temperature was 2000 ° C., and the transmittance rapidly decreased when the heating temperature was further increased. That is, it can be inferred that the composition of the crucible was mixed in the synthetic quartz glass as an impurity. Accordingly, it was found that it is desirable to perform the glass tube from the synthetic quartz material ingot at a temperature as low as possible in consideration of the ultraviolet transmittance.

通常、実際の紫外線ランプとして用いる際の石英ガラス管の波長200nm透過率は80%以上であることが要求される。したがって、図1より加熱温度の上限値は2150℃以下が好ましいことがわかる。このとき、石英ガラスの加工性、実用上要求される透過率を考慮すると2150℃程度が好適であるから、加熱溶融温度は好ましくは1800〜2150℃(透過率80〜89%)、より好ましくは1900〜2150℃(透過率80〜88%)とする。   Usually, the transmittance of the quartz glass tube at the wavelength of 200 nm when used as an actual ultraviolet lamp is required to be 80% or more. Therefore, FIG. 1 shows that the upper limit of the heating temperature is preferably 2150 ° C. or less. At this time, considering the workability of quartz glass and the transmittance required for practical use, about 2150 ° C. is suitable. Therefore, the heating and melting temperature is preferably 1800 to 2150 ° C. (transmittance 80 to 89%), more preferably. It shall be 1900-2150 degreeC (transmittance 80-88%).

このように、合成石英素材のインゴットを加熱溶融して管状に成形する際に、加熱溶融温度を制御することにより出来上がりの石英ガラス管に不純物が混入するのを抑制することができる。その結果、出来上がりの石英ガラス管の波長200nm以下の透過率の低下を抑制することができる。また、従来は合成石英素材インゴットの加熱溶融温度を坩堝の耐熱温度(カルシアを主成分とするセラミック材料の場合2630℃)に基づいて2200〜2400℃で加熱溶融していたことから、坩堝などの材料が出来上がりの石英ガラスに混入し、200nm以下の波長の透過率が著しく低下していたが、本実施形態によれば、そのような問題は生じることがなく、短波長紫外域(280nm以下の紫外域、UV−C域)、特に波長200nm以下の透過率の高い高透過性石英ガラス管(高透過性石英管)を製作することができる。また、この高透過性石英管を使用して低圧水銀ランプを製作することにより、水銀の共鳴放射である185nmの出力の高い紫外線ランプを製作することができる。   In this manner, when the synthetic quartz material ingot is heated and melted and formed into a tubular shape, it is possible to prevent impurities from being mixed into the finished quartz glass tube by controlling the heating and melting temperature. As a result, it is possible to suppress a decrease in transmittance of the finished quartz glass tube with a wavelength of 200 nm or less. Further, conventionally, since the heat melting temperature of the synthetic quartz material ingot was heated and melted at 2200-2400 ° C. based on the heat resistance temperature of the crucible (2630 ° C. in the case of a ceramic material mainly composed of calcia), The material was mixed in the finished quartz glass, and the transmittance at a wavelength of 200 nm or less was remarkably lowered. However, according to the present embodiment, such a problem does not occur, and the short wavelength ultraviolet region (280 nm or less) It is possible to manufacture a highly transmissive quartz glass tube (highly transmissive quartz tube) having a high transmittance with a wavelength of 200 nm or less. Also, by producing a low-pressure mercury lamp using this highly transmissive quartz tube, an ultraviolet lamp having a high output of 185 nm, which is the resonance emission of mercury, can be produced.

また、高透過性石英ガラス管は低圧水銀ランプの発光管として装着することができる。なお、本実施形態の高透過性石英ガラス管は、低圧水銀ランプに限らず、例えば無極放電ランプ(特開平10−134779号公報)など石英ガラス管を使用するランプに適宜用いることができる。   Further, the highly permeable quartz glass tube can be mounted as a light-emitting tube of a low-pressure mercury lamp. Note that the highly transmissive quartz glass tube of the present embodiment is not limited to a low-pressure mercury lamp, and can be appropriately used for a lamp using a quartz glass tube such as a nonpolar discharge lamp (Japanese Patent Laid-Open No. 10-13479).

本実施形態の合成石英素材のインゴットはVAD法により作成されたものを用いているが、高純度石英素材である合成石英素材を製造する方法であればこれに限らず、例えば、MCVD法、VAD法、OCVD法などを用いることができる。   The synthetic quartz material ingot of the present embodiment uses a material prepared by the VAD method, but is not limited to this as long as it is a method for producing a synthetic quartz material that is a high-purity quartz material. For example, the MCVD method, VAD, etc. Method, OCVD method, or the like can be used.

また、合成石英素材を管状に成形する方法としては、引き抜きや押出しによる公知の石英ガラス管の成形方法を用いることができる。   Moreover, as a method for forming the synthetic quartz material into a tubular shape, a known method for forming a quartz glass tube by drawing or extruding can be used.

また、高透過性石英ガラス管は、紫外線ランプに限らず、例えば、紫外線照射装置(特開2007−155546号公報)の紫外線ランプを収納するランプ保護管や照度計を収納する照度計保護管に適用することができる。   Further, the high-transmittance quartz glass tube is not limited to the ultraviolet lamp, but for example, a lamp protective tube for storing an ultraviolet lamp of an ultraviolet irradiation device (Japanese Patent Laid-Open No. 2007-155546) or an illuminometer protective tube for storing an illuminometer. Can be applied.

本発明による合成石英素材インゴットの加熱溶融温度と波長200nmの透過率との関係を示す図である。It is a figure which shows the relationship between the heat melting temperature of the synthetic quartz raw material ingot by this invention, and the transmittance | permeability with a wavelength of 200 nm.

Claims (3)

波長200nmの透過率が80〜90%、好ましくは80〜89%、より好ましくは80〜88%である石英ガラス管。   A quartz glass tube having a transmittance at a wavelength of 200 nm of 80 to 90%, preferably 80 to 89%, more preferably 80 to 88%. 請求項1に記載の石英ガラス管を用いてなる紫外線ランプ。   An ultraviolet lamp using the quartz glass tube according to claim 1. 合成石英素材のインゴットを軟化温度以上〜2150℃以下、好ましくは1800〜2150℃、より好ましくは1900〜2150℃で加熱することにより加工して成形する石英ガラス管の製造方法。   A method for producing a quartz glass tube, in which a synthetic quartz material ingot is processed and molded by heating at a softening temperature to 2150 ° C., preferably 1800 to 2150 ° C., more preferably 1900 to 2150 ° C.
JP2008044699A 2008-02-26 2008-02-26 Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same Pending JP2009203094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044699A JP2009203094A (en) 2008-02-26 2008-02-26 Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044699A JP2009203094A (en) 2008-02-26 2008-02-26 Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same

Publications (1)

Publication Number Publication Date
JP2009203094A true JP2009203094A (en) 2009-09-10

Family

ID=41145726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044699A Pending JP2009203094A (en) 2008-02-26 2008-02-26 Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same

Country Status (1)

Country Link
JP (1) JP2009203094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192940A (en) * 2010-03-17 2011-09-29 Casio Computer Co Ltd Method of mounting component on flexible printed board, and sheet to be transferred

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192940A (en) * 2010-03-17 2011-09-29 Casio Computer Co Ltd Method of mounting component on flexible printed board, and sheet to be transferred

Similar Documents

Publication Publication Date Title
TWI399347B (en) Quartz glass jig for processing semiconductor wafers and method for producing the jig
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JP5671520B2 (en) Optical filter material made of gallium-doped quartz glass, filter component, and method of irradiation using UV radiation source
JP2008044838A (en) Method and system for producing glass, in which chemical reduction of glass components is avoided
JP2004203736A (en) Method of manufacturing high purity fused silica
US20090163344A1 (en) Component of Quartz Glass for Use in Semiconductor Manufacture and Method for Producing the Same
JP2006188412A (en) Process for treating synthetic silica powder and synthetic silica powder treated by the same
JP2008044843A (en) Synthetic quartz glass-made preform
JP2011184210A (en) Synthetic silica glass and method for producing the same
JP2008063157A (en) Quartz glass member for semiconductor manufacture
JP5995923B2 (en) Optical fiber preform and optical fiber manufacturing method
JPH0280343A (en) Ultraviolet light resistant synthetic quartz glass and production thereof
JP2009203094A (en) Silica glass tube having high ultraviolet transmission, manufacturing method thereof and ultraviolet lamp using the same
TW201226340A (en) Method and apparatus for manufacturing vitreous silica crucible
JPH0891867A (en) Ultraviolet ray transmitting synthetic quartz glass and its production
JP6954309B2 (en) Optical fiber base material manufacturing method, optical fiber base material, and optical fiber
JP2010163295A (en) Fluorine-resistant glass for ultraviolet radiation, glass tube for lamp and excimer lamp
JPH10312751A (en) Manufacture of discharge lamp made of ceramic
JP2007302554A (en) Manufacturing method of synthetic quartz glass having predetermined hydroxy group content
JP2020090418A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber using the same
JP2006290708A (en) Optical fiber preform and its manufacturing method
CN110612274B (en) Ultraviolet-resistant quartz glass and manufacturing method thereof
JP2006008452A (en) Manufacturing method for highly pure quartz glass
JPS60239339A (en) Preparation of parent material for optical fiber
JP2005306650A (en) Synthetic quartz tube