JP2009202353A - Manufacturing method of rubber roller and rubber roller - Google Patents

Manufacturing method of rubber roller and rubber roller Download PDF

Info

Publication number
JP2009202353A
JP2009202353A JP2008044404A JP2008044404A JP2009202353A JP 2009202353 A JP2009202353 A JP 2009202353A JP 2008044404 A JP2008044404 A JP 2008044404A JP 2008044404 A JP2008044404 A JP 2008044404A JP 2009202353 A JP2009202353 A JP 2009202353A
Authority
JP
Japan
Prior art keywords
foaming
rubber
vulcanization
rubber composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008044404A
Other languages
Japanese (ja)
Inventor
Takeshi Ogawa
健 小川
Kenji Ishii
健二 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2008044404A priority Critical patent/JP2009202353A/en
Publication of JP2009202353A publication Critical patent/JP2009202353A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to manufacture the elastic layer of the foamed rubber having an expansion ratio of ≥3 times by the changes of the manufacturing conditions in the method of manufacturing a rubber roller having an elastic layer of a foamed rubber. <P>SOLUTION: A manufacturing method of a rubber roller having an elastic layer of a foamed rubber that is manufactured by vulcanizing/foaming a rubber composition containing a foaming agent in a closed vessel introducing therein a pressurized steam and has an expansion ratio ((the rubber density before the vulcanization/foaming)/(that after the vulcanization/foaming)) of ≥3 times is provided which satisfies the following conditions. The conditions are: (1) a carbonamide foaming agent is contained by 15-25 parts by mass based on 100 parts by mass of the rubber component of the rubber composition; and (2) the method comprises the step of heating/keeping the rubber composition in the closed vessel at the temperature T1 for 1-25 minutes, wherein the T1 is a temperature where both the absolute value of the difference between the time of the 50% vulcanization progress of the rubber composition and the time of the 50% foaming progress and the absolute value of the difference of the times of each 90% satisfy ≤3 minutes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子写真方式を利用した複写機やプリンター、ファクシミリ等の電子写真方式の画像形成装置に使用されるゴムローラの製造方法に関する。特に、電子写真感光体に接触して用いられる帯電ローラ、転写ローラ等のゴムローラの製造方法に関するものである。   The present invention relates to a method of manufacturing a rubber roller used in an electrophotographic image forming apparatus such as a copying machine, a printer, or a facsimile using an electrophotographic system. In particular, the present invention relates to a method of manufacturing a rubber roller such as a charging roller or a transfer roller used in contact with an electrophotographic photosensitive member.

電子写真に用いる帯電ローラ、転写ローラ等のゴムローラは、装置の高速化、良画質化に応えるために、感光体との当接により一様なニップ幅を保つことが要求されている。そのため、芯金の外周上の弾性体に発泡ゴム弾性層を用いたゴムローラが使用されている。近年では、製品機種毎に感光体へのニップ幅を適正化するため、ゴムローラの硬度が細かく設定される。つまり、ゴムローラの硬度は、機種毎のピンポイントの硬度設定に対応する必要性があり、当然、硬度バラツキも極力小さいものが要求されている。   Rubber rollers such as a charging roller and a transfer roller used in electrophotography are required to maintain a uniform nip width by contact with a photosensitive member in order to respond to higher speed and higher image quality of the apparatus. Therefore, a rubber roller using a foamed rubber elastic layer is used as an elastic body on the outer periphery of the core metal. In recent years, in order to optimize the nip width to the photoreceptor for each product model, the hardness of the rubber roller is set finely. In other words, the hardness of the rubber roller needs to correspond to the pinpoint hardness setting for each model, and naturally, the hardness variation is required to be as small as possible.

一般に、発泡ゴム弾性層を有しているゴムローラを所望の硬度に調整するには、発泡ゴム弾性層の発泡倍率を調整して対応することが広く行われている。発泡倍率とは、(加硫発泡前のゴム密度)/(加硫発泡後のゴム密度)の値である。発泡倍率の調整方法としては、ゴム組成物の配合を調整して対応する方法がある。例えば、発泡剤の種類、添加量、粒子径等を調整して対応する方法、発泡助剤の添加量を調整し発泡剤の分解速度や発泡量を調整して対応する方法、加硫剤の種類、添加量による加硫速度を調整して対応する方法、カーボンブラックやフィラー類の添加量を調整して対応する方法、主ゴム成分の種類や分子量を調整して対応する方法等が挙げられる。しかしながら、所望の発泡倍率にするためは、毎回、ゴム組成物の配合を変更しなければならない。このため、機種毎のピンポイントの硬度設定に対応するには、配合処方を検討する工数が多く発生するばかりか、配合処方によっては硬度バラツキが発生する場合がある。   Generally, in order to adjust a rubber roller having a foamed rubber elastic layer to a desired hardness, it is widely performed by adjusting the expansion ratio of the foamed rubber elastic layer. The expansion ratio is a value of (rubber density before vulcanization foaming) / (rubber density after vulcanization foaming). As a method for adjusting the expansion ratio, there is a method for adjusting the compounding of the rubber composition. For example, a method for adjusting the type, addition amount, particle diameter, etc. of the foaming agent, a method for adjusting the addition amount of the foaming aid and adjusting the decomposition rate and the foaming amount of the foaming agent, Examples include a method for adjusting the vulcanization speed depending on the type and amount added, a method for adjusting the amount added of carbon black and fillers, a method for adjusting the type and molecular weight of the main rubber component, and the like. . However, in order to obtain a desired expansion ratio, the composition of the rubber composition must be changed every time. For this reason, in order to cope with the pinpoint hardness setting for each model, not only a lot of man-hours are required for studying the formulation, but also hardness variations may occur depending on the formulation.

ゴム組成物の配合を調整しないで、製造面から発泡倍率を調整する方法は、配合処方を検討する工数を大幅に削減できるため、発泡倍率の制御が可能となれば機種毎のピンポイントな硬度にも対応が容易になる。製造面の変更による対応とは、例えば、加硫発泡する工程を変更することや加硫発泡の温度、時間を調整して対応する方法等が挙げられる。しかしながら、上記の方法では高発泡ゴム弾性層を得ることは困難であるばかりか、硬度のバラツキを小さくすることと併せて両立することは困難である。ここで言う高発泡とは、発泡倍率が3倍以上であることを示すこととし、以下同様とする。   The method of adjusting the expansion ratio from the manufacturing side without adjusting the composition of the rubber composition can greatly reduce the man-hours for studying the formulation, so if the expansion ratio can be controlled, pinpoint hardness for each model It becomes easy to cope with. Examples of the response by changing the production surface include a method of changing the process of vulcanization and foaming, adjusting the temperature and time of vulcanization and foaming, and the like. However, not only is it difficult to obtain a highly foamed rubber elastic layer by the above method, but it is also difficult to achieve compatibility with the reduction in hardness variation. Here, high foaming means that the expansion ratio is 3 times or more, and so on.

一般的に加硫発泡前のゴム密度は、ゴム−密度測定(JIS K 6268、ISO 2781)で測定した場合、0.90〜1.50g/cm3の範疇にあることが多い。したがって、発泡倍率が3倍以上とは、加硫発泡前のゴム密度が0.90g/cm3ときは、加硫発泡後のゴム密度が0.30g/cm3以下のことである。また、加硫発泡前のゴム密度が1.50g/cm3のときは、加硫発泡後のゴム密度が0.50g/cm3以下を示すことと同じである。 Generally, the rubber density before vulcanization foaming is often in the range of 0.90 to 1.50 g / cm 3 when measured by rubber-density measurement (JIS K 6268, ISO 2781). Accordingly, the expansion ratio of 3 times or more means that when the rubber density before vulcanization foaming is 0.90 g / cm 3 , the rubber density after vulcanization foaming is 0.30 g / cm 3 or less. Further, when the rubber density before vulcanization foaming of 1.50 g / cm 3, the rubber density after vulcanization foaming is the same as that showing a 0.50 g / cm 3 or less.

特許文献1では、発泡倍率が3倍以上の高発泡ゴム弾性層を以下の方法で得ることを提案している。少なくとも発泡剤、加硫剤、加硫促進剤を添加したゴム組成物を加硫発泡させて製造する発泡組成物からなる発泡ゴムロールであって、前記ゴム組成物を、発泡進行度が50%の時刻(t1)における加硫進行度が5%以下となる条件で加硫発泡させる。かつ、発泡進行度が80%の時刻(t2)と加硫進行度が80%の時刻(t3)との差である(t3−t2)が2.5分以下となる条件で加硫発泡させる。これにより、発泡倍率4.1倍から5.0倍の高発泡ゴム弾性層が得られることを示している。   Patent Document 1 proposes to obtain a highly foamed rubber elastic layer having an expansion ratio of 3 times or more by the following method. A foamed rubber roll comprising a foamed composition produced by vulcanizing and foaming a rubber composition to which at least a foaming agent, a vulcanizing agent, and a vulcanization accelerator are added, wherein the rubber composition has a foaming progress of 50%. Vulcanization and foaming are performed under the condition that the degree of progress of vulcanization at time (t1) is 5% or less. Further, vulcanization foaming is performed under the condition that (t3−t2), which is the difference between the time (t2) when the foaming progress is 80% and the time (t3) when the vulcanization progress is 80%, is 2.5 minutes or less. . This indicates that a highly foamed rubber elastic layer having a foaming ratio of 4.1 times to 5.0 times can be obtained.

特許文献2では加硫発泡させた円筒状ゴム組成物を導電性芯金上に有する導電性ローラの製造方法において、前記円筒状ゴム組成物を加硫発泡する加硫発泡工程は前記円筒状ゴム組成物を内包する保熱兼保持手段により加硫発泡温度まで昇温する工程を有する。前記昇温工程は、(i)少なくとも第一の昇温工程と、(ii)(i)の昇温工程より昇温速度の低い低速昇温工程と、をこの順で有し、前記加硫発泡温度に到達させる。これにより、加硫発泡した円筒状ゴム組成物の形状バラツキを少なくし、優れた内径精度を有し、さらに硬度のムラの少ない導電性ゴムローラを製造する方法が述べられている。   In Patent Document 2, in a method for producing a conductive roller having a vulcanized and foamed cylindrical rubber composition on a conductive core, the vulcanization and foaming step of vulcanizing and foaming the cylindrical rubber composition is performed by the cylindrical rubber. It has the process of heating up to vulcanization foaming temperature by the heat retention and holding means which encloses a composition. The temperature raising step has (i) at least a first temperature raising step and (ii) a low temperature raising step having a lower temperature raising rate than the temperature raising step of (i) in this order, and the vulcanization Let the foaming temperature reach. Thus, a method for producing a conductive rubber roller that reduces the variation in the shape of the vulcanized and foamed cylindrical rubber composition, has an excellent inner diameter accuracy, and has less hardness unevenness is described.

特開2007−90820号公報([0052]、[0053])JP 2007-90820 A ([0052], [0053]) 特開2006−21379号公報([要約]、[0050]から[0057])JP 2006-21379 A ([Summary], [0050] to [0057])

特許文献1では、発泡が半分進行している状態では、加硫はほとんど進行していない。また、発泡と加硫が共に80%進行している状態では、発砲と加硫の速度が比較的近いこと(発泡と加硫の速度が同期していること)で高発泡ゴム弾性層が得られることを示している。しかしながら、発泡進行度が50%で、かつ加硫進行度が5%以下の時刻(t1)におけるゴム組成部は、架橋による発泡ガス抜けを抑制することがほとんどできないため、発泡ガスが抜けるガス抜けが発生する場合がある。発泡ガスが抜けると、個々の発泡セルがつながるため、発泡セルの大きさ(以下、発泡セル径と示す場合がある)が大きくなり、発泡セル径が大きいと硬度バラツキを生じる場合があるため、好ましくない。なお、特許文献1においては、硬度測定の結果が示されていないため、硬度バラツキについては不明である。   In Patent Document 1, vulcanization hardly progresses in a state where the foaming has progressed halfway. In the state where both foaming and vulcanization are progressing 80%, a high foamed rubber elastic layer is obtained because the speed of firing and vulcanization is relatively close (the speed of foaming and vulcanization is synchronized). It is shown that. However, the rubber composition part at the time (t1) at which the degree of foaming progress is 50% and the degree of vulcanization progress is 5% or less can hardly suppress the foaming gas escape due to cross-linking. May occur. When the foaming gas escapes, the individual foamed cells are connected, so the size of the foamed cells (hereinafter sometimes referred to as the foamed cell diameter) increases, and if the foamed cell diameter is large, hardness variation may occur. It is not preferable. In addition, in patent document 1, since the result of a hardness measurement is not shown, it is unknown about hardness variation.

また、特許文献2では、加硫発泡時の昇温を調整することで、硬度バラツキを抑えることは可能である。しかし、発泡倍率が3倍以上の高発泡ゴム弾性層を製造した場合に、硬度バラツキを満足できるかは確認しておらず、電子写真用途で要求される均一な硬度を有する高発泡ゴム弾性層の製造方法が望まれる。   Moreover, in patent document 2, it is possible to suppress hardness variation by adjusting the temperature rise at the time of vulcanization foaming. However, when producing a highly foamed rubber elastic layer having a foaming ratio of 3 times or more, it has not been confirmed whether hardness variation can be satisfied, and a highly foamed rubber elastic layer having a uniform hardness required for electrophotographic applications. The manufacturing method is desired.

即ち、本発明の目的は、発泡ゴム弾性層を有するゴムローラの製造方法において、所望する発泡倍率の前記発泡ゴム弾性層の製造を、3倍以上の発泡倍率においても、ゴム組成物の配合を調整することなく、製造条件の変更により可能とすることである。また、これにより前記発泡ゴム弾性層を有する前記ゴムローラの硬度を自在に調整することを可能とし、かつ、硬度バラツキの小さいゴムローラの製造方法を提供することである。   That is, the object of the present invention is to prepare a rubber roller having a foamed rubber elastic layer, and to adjust the composition of the rubber composition for the production of the foamed rubber elastic layer having a desired foaming ratio even at a foaming ratio of 3 times or more. Without changing the manufacturing conditions, this is possible. It is another object of the present invention to provide a method for manufacturing a rubber roller which can freely adjust the hardness of the rubber roller having the foamed rubber elastic layer and has a small hardness variation.

発泡剤を含むゴム組成物を、加圧水蒸気を導入した密閉容器内で加硫発泡して製造する、(加硫発泡前のゴム密度)/(加硫発泡後のゴム密度)で示される発泡倍率が3倍以上の発泡ゴム弾性層を有するゴムローラの製造方法において、以下の(1)及び(2)の条件を満たすことを特徴とするゴムローラの製造方法。
(1)ゴム組成物のゴム成分を100質量部としたとき、カルボンアミド系発泡剤を15質量部以上、25質量部以下含有すること。
(2)前記ゴム組成物の加硫進行度が50%の時刻(tc50)と発泡進行度が50%の時刻(tp50)の差(tc50−tp50)の絶対値、及び、前記ゴム組成物の加硫進行度が90%の時刻(tc90)と発泡進行度が90%の時刻(tp90)の差(tc90−tp90)の絶対値が、共に3分以下を満足する温度をT1とするとき、前記ゴム組成物を前記温度T1で1分以上、25分以下密閉容器内で加熱保持する加熱保持工程を含むこと。
Foaming ratio indicated by (Rubber density before vulcanization foaming) / (Rubber density after vulcanization foaming) produced by vulcanizing and foaming a rubber composition containing a foaming agent in a closed container into which pressurized steam is introduced. In the method of manufacturing a rubber roller having a foamed rubber elastic layer of 3 times or more, the following method (1) and (2) are satisfied:
(1) When the rubber component of the rubber composition is 100 parts by mass, the carbonamide foaming agent is contained in an amount of 15 parts by mass or more and 25 parts by mass or less.
(2) The absolute value of the difference (tc50−tp50) between the time (tp50) when the vulcanization progress of the rubber composition is 50% and the time (tp50) when the foaming progress is 50%, and the rubber composition When the absolute value of the difference (tc90-tp90) between the time when the vulcanization progress is 90% (tc90) and the time when the foaming progress is 90% (tp90) is 3 minutes or less is T1, A heating and holding step of heating and holding the rubber composition in the sealed container at the temperature T1 for 1 minute or more and 25 minutes or less.

本発明によれば、発泡ゴム弾性層を有するゴムローラの製造方法において、所望する発泡倍率の前記発泡ゴム弾性層の製造を、3倍以上の発泡倍率においても、ゴム組成物の配合を調整することなく、製造条件の変更により行うことができる。また、前記発泡ゴム弾性層を有する前記ゴムローラの硬度を自在に調整することを可能とし、かつ、硬度バラツキが小さいゴムローラを得ることができる。   According to the present invention, in the method for producing a rubber roller having a foamed rubber elastic layer, the production of the foamed rubber elastic layer having a desired foaming ratio can be adjusted even when the foaming ratio is 3 times or more. However, it can be performed by changing the manufacturing conditions. Further, it is possible to freely adjust the hardness of the rubber roller having the foamed rubber elastic layer, and to obtain a rubber roller having a small hardness variation.

本発明者らは鋭意検討した結果、前記ゴム組成物の加硫と発泡が半分程度進行した状態から、加硫と発泡がほぼ終了するまでの加硫速度と発泡速度が比較的近い速度で進行する状態を満足する温度をT1とする。このとき、前記ゴム組成物を前記温度T1で加熱保持すると、前記加熱保持時間の長さに比例して発泡倍率が高くなることを見出した。   As a result of intensive studies, the present inventors have found that the vulcanization speed and foaming speed from the state where the vulcanization and foaming of the rubber composition have progressed about half progressed until the vulcanization and foaming are almost completed proceed at a relatively close speed. Let T1 be the temperature that satisfies this condition. At this time, it was found that when the rubber composition was heated and held at the temperature T1, the expansion ratio increased in proportion to the length of the heating and holding time.

加硫速度と発泡速度が比較的近い速度とは、言い換えれば、加硫速度と発泡速度が同期していることでもあり、加硫が先行してゴムが硬くなり発泡し難くなる現象や、発泡が先行して発泡ガスが抜け、発泡倍率が低下する現象を効率良く回避できる。したがって、加硫速度と発泡速度が比較的近い速度となる温度で前記ゴム組成物を加熱保持すれば、発泡倍率の高い条件でも、所望の発泡倍率で硬度バラツキの小さい発泡ゴム弾性層を得ることができる。例えば、前記温度で加熱保持する時間を長くすれば、その長さに比例して発泡がより進行するため、発泡倍率が高くなり、前記加熱保持時間を短くすれば、発泡が進行せず発泡倍率が低くなる。その際、前記ゴム組成物の加硫と発泡が半分程度進行した状態から加硫と発泡がほぼ終了するまでの加硫速度と発泡速度が同期していることが必要である。   The speed at which the vulcanization speed and the foaming speed are relatively close is, in other words, that the vulcanization speed and the foaming speed are synchronized. Can efficiently avoid the phenomenon that the foaming gas escapes and the foaming ratio decreases. Therefore, if the rubber composition is heated and held at a temperature at which the vulcanization speed and the foaming speed are relatively close to each other, a foamed rubber elastic layer having a desired foaming ratio and a small hardness variation can be obtained even under conditions with a high foaming ratio. Can do. For example, if the heating and holding time at the temperature is increased, the foaming progresses in proportion to the length, so that the foaming ratio increases. If the heating and holding time is shortened, the foaming does not proceed and the foaming ratio is increased. Becomes lower. At that time, it is necessary that the vulcanization speed and the foaming speed until the vulcanization and foaming are almost completed after the vulcanization and foaming of the rubber composition have progressed about half are synchronized.

より具体的には、前記ゴム組成物の加硫進行度が50%の時刻(tc50)と発泡進行度が50%の時刻(tp50)の差(tc50−tp50)の絶対値、及び、前記ゴム組成物の加硫進行度が90%の時刻(tc90)と発泡進行度が90%の時刻(tp90)の差(tc90−tp90)の絶対値が、共に3分以下を満足する加硫発泡温度をT1とするとき、前記温度T1で前記ゴム組成物を密閉容器内で加熱保持する加熱保持工程を行う。これにより、加熱保持時間に比例して所望の発泡倍率に変化させることができ、3倍以上の発泡倍率においても硬度バラツキの小さい発泡ゴム弾性層を得ることができる。   More specifically, the absolute value of the difference (tc50-tp50) between the time (tp50) when the vulcanization progress of the rubber composition is 50% and the time (tp50) when the foaming progress is 50%, and the rubber Vulcanization foaming temperature at which the absolute value of the difference (tc90-tp90) between the time (tc90) when the vulcanization progress of the composition is 90% and the time (tp90) when the foaming progress is 90% satisfies 3 minutes or less. Is set to T1, a heating and holding step of heating and holding the rubber composition in a sealed container at the temperature T1 is performed. Thereby, it can be changed to a desired foaming ratio in proportion to the heating and holding time, and a foamed rubber elastic layer having a small hardness variation can be obtained even at a foaming ratio of 3 times or more.

前記ゴム組成物の加硫進行度が50%の時刻(tc50)、また90%の時刻(tc90)とは、後述する加硫速度測定により、ゴム組成物の加硫がそれぞれ50%、90%進行したときの加硫時間を示す。また、前記ゴム組成物の発泡進行度が50%の時刻(tp50)、また90%の時刻(tp90)とは、後述する発泡速度測定により、ゴム組成物の発泡がそれぞれ50%、90%進行したときの発泡時間を示す。   The time (tc50) at which the degree of vulcanization of the rubber composition is 50% and the time (tc90) at 90% are 50% and 90% of vulcanization of the rubber composition, respectively, by measuring the vulcanization rate described later. Indicates the vulcanization time as it progresses. Further, the time when the degree of foaming of the rubber composition is 50% (tp50) and the time of 90% (tp90) indicate that the foaming of the rubber composition proceeds by 50% and 90%, respectively, by measuring the foaming rate described later. The foaming time is shown.

前記ゴム組成物の加硫進行度と発泡進行度が50%の時刻の差(tc50−tp50)の絶対値が3分以下でないと、加硫速度と発泡速度の同期が充分でなく、前記加熱保持時間と発泡倍率が比例しない。このため、所望の発泡倍率で硬度バラツキの小さい発泡倍率が3倍以上の発泡ゴム弾性層を得ることができず、好ましくない。   If the absolute value of the time difference (tc50-tp50) between the vulcanization progress and the foam progress of the rubber composition is not more than 3 minutes, the vulcanization speed and the foaming speed are not sufficiently synchronized, and the heating Holding time and expansion ratio are not proportional. For this reason, a foamed rubber elastic layer having a desired foaming ratio and a foaming ratio with a small hardness variation of 3 times or more cannot be obtained, which is not preferable.

前記ゴム組成物の加硫進行度と発泡進行度が50%の時刻の差(tc50−tp50)で判断するのは、50%未満では発泡、加硫共に十分進行していないため、この段階では加硫速度と発泡速度が同期する必要はない。しかし50%以上になるとその影響が大きくなるためである。   The difference between the time when the vulcanization progress and the foam progress of the rubber composition are 50% (tc50-tp50) is judged at less than 50% because both foaming and vulcanization are not sufficiently advanced. The vulcanization rate and the foaming rate do not need to be synchronized. However, this is because the effect becomes large when it is 50% or more.

また、前記ゴム組成物の加硫進行度と発泡進行度が90%の時刻の差(tc90−tp90)の絶対値が3分以下でないと加硫発泡終了付近において加硫速度と発泡速度の同期が充分でなく、前記同様加熱保持時間と発泡倍率が比例しないため、好ましくない。   Further, if the absolute value of the time difference (tc90-tp90) between the vulcanization progressing degree and the foaming progressing degree of the rubber composition is 90% or less, the vulcanization speed and the foaming speed are synchronized near the end of the vulcanization foaming. Is not sufficient, and the heating and holding time and the expansion ratio are not proportional, as described above, which is not preferable.

また、加硫進行度と発泡進行度が90%の時刻の差(tc90−tp90)で判断するのは、加硫も発泡もほぼ終了している状態まで加硫速度と発泡速度が同期していないと、加熱保持時間の発泡倍率への関与が小さくなり好ましくない。また、加硫進行度と発泡進行度が90%まで同期していないと、硬度バラツキが大きくなり好ましくない。なお、本来は加硫進行度と発泡進行度は、加硫発泡が終了まで同期していることが好ましいが、発泡倍率と硬度バラツキのバランスを上手く取るためには、加硫進行度と発泡進行度が90%まで同期していればよい。   The difference between the time when the vulcanization progress and the foaming progress are 90% (tc90-tp90) is determined because the vulcanization speed and the foaming speed are synchronized until the vulcanization and foaming are almost completed. Otherwise, the contribution of the heating and holding time to the expansion ratio is reduced, which is not preferable. Further, if the progress of vulcanization and the progress of foaming are not synchronized up to 90%, the hardness variation is undesirably increased. Originally, it is preferable that the degree of vulcanization and the degree of foaming are synchronized until the vulcanization and foaming is completed, but in order to balance the foaming ratio and hardness variation, the degree of vulcanization and the degree of foaming The degree should be synchronized to 90%.

前記加熱保持工程において、温度T1で加熱保持する加熱保持時間は、1分以上、25分以下とする。前記加熱保持時間が1分未満であると、加熱保持時間が短すぎるため発泡倍率の調整が困難となり好ましくない。また、前記加熱保持時間が25分を超えると、発泡剤の分解反応がほぼ終了するため、加熱保持を継続しても発泡倍率に変化がなくなるためである。温度T1で加熱保持する加熱保持時間は、好ましくは、5.0分以上、10.0分以下である。   In the heating and holding step, the heating and holding time for heating and holding at the temperature T1 is set to 1 minute or more and 25 minutes or less. If the heating and holding time is less than 1 minute, the heating and holding time is too short, and it becomes difficult to adjust the expansion ratio. Moreover, when the heating and holding time exceeds 25 minutes, the decomposition reaction of the foaming agent is almost completed, so that the expansion ratio is not changed even if the heating and holding is continued. The heating and holding time for heating and holding at the temperature T1 is preferably 5.0 minutes or more and 10.0 minutes or less.

本発明における加硫速度測定及び発泡速度測定には、発泡圧測定機能付き加硫試験機「MDR−200P」(商品名、アルファーテクノロジーズ社製)を用いる。前記測定は、JIS K6300−2(未加硫ゴム 物理特性 振動式加硫試験機による加硫特性の求め方)に準じ、各温度別に60分間測定したものである。なお、測定機に関しては、JIS K6300−2に準じる測定機であればとくに限定されない。   For the vulcanization rate measurement and the foaming rate measurement in the present invention, a vulcanization tester “MDR-200P” (trade name, manufactured by Alpha Technologies) with a foaming pressure measuring function is used. The said measurement is based on JIS K6300-2 (Unvulcanized rubber Physical property How to obtain vulcanization property by vibration type vulcanization tester) and measured for 60 minutes at each temperature. The measuring instrument is not particularly limited as long as it is a measuring instrument conforming to JIS K6300-2.

加硫速度を示す加硫進行率50%の時刻(tc50)とは、JIS−K6300−2に準じ、前記発泡圧測定機能付き加硫試験機を用い、所定温度で60分間測定する。このとき、加硫最大圧力(加硫最大トルク)MHと加硫最小圧力(加硫最小トルク)MLの差であるMEを100とした時、ME値が50%の時の加硫時間を示すものである。同様に、加硫進行率90%の時刻(tc90)とは、ME値が90%の時の加硫時間を示すものである。   The time (tc50) of the vulcanization progress rate 50% indicating the vulcanization rate is measured for 60 minutes at a predetermined temperature using the vulcanization tester with a foam pressure measurement function according to JIS-K6300-2. At this time, when ME which is the difference between the maximum vulcanization pressure (maximum vulcanization torque) MH and the minimum vulcanization pressure (minimum vulcanization torque) ML is 100, the vulcanization time when the ME value is 50% is shown. Is. Similarly, the time of 90% vulcanization progress (tc90) indicates the vulcanization time when the ME value is 90%.

加硫速度と同様に、発泡速度を示す発泡進行率50%の時刻(tp50)とは、JIS−K6300−2に準じ、前記発泡圧測定機能付き加硫試験機を用い、所定温度で60分間測定する。このとき、発泡最大圧力(発泡最大トルク)PHと発泡最小圧力(発泡最小トルク)PLの差であるPEを100とした時、PE値が50%の時の発泡時間を示すものである。同様に、発泡進行率90%の時刻(tp90)とは、PE値が90%の時の発泡時間を示すものである。   Similarly to the vulcanization rate, the time (tp50) at which the foaming progress rate indicating the foaming rate is 50% (tp50) is 60 minutes at a predetermined temperature using the vulcanization tester with the foaming pressure measuring function according to JIS-K6300-2. taking measurement. At this time, when PE which is the difference between the foaming maximum pressure (foaming maximum torque) PH and the foaming minimum pressure (foaming minimum torque) PL is 100, the foaming time when the PE value is 50% is shown. Similarly, the time (tp90) when the foaming progress rate is 90% indicates the foaming time when the PE value is 90%.

発泡ゴム弾性層を加硫発泡する方法は、無加圧下で加硫発泡する方法と加圧下で加硫発泡する方法に分けられる。無加圧下で加硫発泡する方法は、例えば、熱風槽、マイクロ波を用いたUHF(マイクロ波連続加硫装置)等が挙げられる。しかしながら、無加圧下の加硫発泡方法は、発泡セルの膨張が抑制されないため、発泡セル径にバラツキが生じる傾向にある。発泡セル径が不均一であると硬度バラツキの要因になり好ましくない。   The method of vulcanizing and foaming the foamed rubber elastic layer is classified into a method of vulcanizing and foaming under no pressure and a method of vulcanizing and foaming under pressure. Examples of the method of vulcanizing and foaming under no pressure include a hot air tank, UHF (microwave continuous vulcanizer) using a microwave, and the like. However, in the vulcanization foaming method under no pressure, since the expansion of the foamed cell is not suppressed, the foamed cell diameter tends to vary. If the foamed cell diameter is not uniform, it causes a variation in hardness, which is not preferable.

一方、加圧下で加硫発泡する方法は、適度な加圧により発泡セルの膨張を抑制できるため、発泡セル径は均一になり、また硬度バラツキも小さくなり好ましく用いられる。   On the other hand, the method of vulcanizing and foaming under pressure can be preferably used because the expansion of the foamed cells can be suppressed by appropriate pressure, and the foamed cell diameter becomes uniform and the hardness variation is reduced.

加圧下の加硫方法は、金型を用いるもの、加圧水蒸気を導入した密閉容器を用いるものが一般的である。しかしながら、金型を用いると多量生産の場合は、多量の金型が必要となり、運用コスト面で不利になること、また連続生産性に劣る欠点があり好ましくない。   As a vulcanization method under pressure, a method using a mold and a method using a sealed container into which pressurized steam is introduced are generally used. However, when a mold is used, a large amount of mold is required in the case of mass production, which is disadvantageous in terms of operation cost and has a disadvantage of being inferior in continuous productivity.

本発明は、加圧水蒸気を導入した密閉容器内で加硫発泡を行う。加圧水蒸気を導入した密閉容器内で加硫発泡を行う方法は、密閉容器の大きさにより生産量を調整できるだけでなく、水蒸気を用いる効果として、加硫発泡時の分解で生成される各種の不純物を水分により効率良く除去できる。特に、本発明に使用するゴム組成物はカルボンアミド系発泡剤を含有する。カルボンアミド系発泡剤は発泡時にアンモニアを発生し、前記アンモニアが少しでも残留すると画像不良を発生する可能性があるため、加圧水蒸気を導入した密閉容器内で加硫発泡を行う。導入する加圧水蒸気の圧力の好ましい範囲としては、加硫発泡が進行し、アンモニアが十分除去できる範囲であれば特に限定されないが、0.3MPa以上、0.8MPa以下であることが好ましい。   In the present invention, vulcanization foaming is performed in a closed container into which pressurized steam is introduced. The method of performing vulcanization and foaming in a closed vessel into which pressurized steam is introduced not only adjusts the production volume depending on the size of the closed vessel, but also includes various impurities produced by decomposition during vulcanization and foaming as an effect of using steam. Can be efficiently removed by moisture. In particular, the rubber composition used in the present invention contains a carbonamide foaming agent. Carboxamide-based foaming agents generate ammonia during foaming, and if any amount of ammonia remains, image defects may occur. Therefore, vulcanization foaming is performed in a sealed container into which pressurized steam is introduced. A preferable range of the pressure of the pressurized steam to be introduced is not particularly limited as long as vulcanization and foaming proceeds and ammonia can be sufficiently removed, but it is preferably 0.3 MPa or more and 0.8 MPa or less.

前記密閉容器としては、耐圧、耐熱性の観点から加硫缶が好ましい。また、密閉容器内に導入する加圧水蒸気の圧力は、加硫発泡が進行し、アンモニアが十分除去できる範囲であれば特に限定されないが、0.2MPa以上、0.80MPa以下であることが好ましい。   As the closed container, a vulcanized can is preferable from the viewpoint of pressure resistance and heat resistance. The pressure of the pressurized steam introduced into the sealed container is not particularly limited as long as vulcanization and foaming proceeds and ammonia can be sufficiently removed, but it is preferably 0.2 MPa or more and 0.80 MPa or less.

本発明に使用するゴム組成物は、前記ゴム組成物中のゴム成分を100質量部としたとき、カルボンアミド系発泡剤を15質量部以上、25質量部以下含有し、前記(tc50−tp50)の絶対値及び(tc90−tp90)の絶対値が、共に3分以下を満足することができれば、特に限定されるものではない。   The rubber composition used in the present invention contains 15 parts by mass or more and 25 parts by mass or less of a carbonamide-based foaming agent when the rubber component in the rubber composition is 100 parts by mass, and (tc50-tp50) As long as both the absolute value of and the absolute value of (tc90-tp90) can satisfy 3 minutes or less, they are not particularly limited.

例えば、前記ゴム成分としては、エチレン−プロピレン−ジエン共重合ゴム(EPDM)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、スチレン−ブタジエン共重合ゴム(SBR)、エピクロルヒドリン系ゴム(CO、ECO、GECO)等が使用できる。これらは、1種又は2種以上を併用して用いてもよい。   For example, the rubber component includes ethylene-propylene-diene copolymer rubber (EPDM), butadiene rubber (BR), acrylonitrile butadiene rubber (NBR), styrene-butadiene copolymer rubber (SBR), epichlorohydrin rubber (CO, ECO). , GECO) and the like. These may be used alone or in combination of two or more.

本発明においてカルボンアミド系発泡剤を発泡剤として用いる理由は、カルボンアミド系発泡剤の粒子径や添加量で加硫速度と発泡速度の調整を容易に行えるためである。カルボンアミド系発泡剤以外の発泡剤を用いた場合、前記(tc50−tp50)の絶対値及び(tc90−tp90)の絶対値が、共に3分以下の条件を満足させることが困難になり好ましくない。   The reason why the carbonamide foaming agent is used as the foaming agent in the present invention is that the vulcanization speed and the foaming speed can be easily adjusted by the particle diameter and the addition amount of the carbonamide foaming agent. When a foaming agent other than the carbonamide-based foaming agent is used, it is difficult to satisfy the condition that the absolute value of (tc50-tp50) and the absolute value of (tc90-tp90) are both 3 minutes or less. .

前記カルボンアミド系発泡剤としては、例えば、アゾジカルボンアミド(以下ADCAと示す場合がある)、ヒドラゾジカルボンアミド(HDCA)等が挙げられる。その中でも、ADCAは、安価で発生ガス量も多く、容易に高発泡化することができるため好ましい。   Examples of the carbonamide-based blowing agent include azodicarbonamide (hereinafter sometimes referred to as ADCA), hydrazodicarbonamide (HDCA), and the like. Among them, ADCA is preferable because it is inexpensive, has a large amount of generated gas, and can easily be highly foamed.

前記ゴム組成物中のゴム成分を100質量部としたとき、前記カルボンアミド系発泡剤の含有量が15質量部未満であると、温度T1で前記ゴム組成物を加熱保持するとき、加熱保持時間と発泡倍率が比例しない。このため、所望の発泡倍率で硬度バラツキの小さい発泡倍率が3倍以上の発泡ゴム弾性層を得ることができず、好ましくない。   When the rubber component in the rubber composition is 100 parts by mass, when the content of the carbonamide foaming agent is less than 15 parts by mass, when the rubber composition is heated and held at a temperature T1, the heating and holding time is And the expansion ratio is not proportional. For this reason, a foamed rubber elastic layer having a desired foaming ratio and a foaming ratio with a small hardness variation of 3 times or more cannot be obtained, which is not preferable.

また、前記カルボンアミド系発泡剤の含有量が25質量部を超えると、温度T1で前記ゴム組成物を加熱保持するとき、一定の前記加熱保持時間を超えると急激に発泡が促進し、発泡倍率が不安定になる傾向があり好ましくない。好ましくは、前記ゴム組成物中のゴム成分を100質量部としたとき、カルボンアミド系発泡剤を17質量部以上、23質量部以下含有することである。   Further, when the content of the carbonamide-based foaming agent exceeds 25 parts by mass, when the rubber composition is heated and held at the temperature T1, foaming is rapidly promoted when the predetermined heating and holding time is exceeded, and the expansion ratio Tends to be unstable, which is not preferable. Preferably, when the rubber component in the rubber composition is 100 parts by mass, the carbonamide foaming agent is contained in an amount of 17 parts by mass to 23 parts by mass.

また、カルボンアミド系発泡剤は分解温度が200℃以上と高いため、発泡助剤として尿素を併用して分解温度を低下させて使用することが好ましい。   Further, since the decomposition temperature of the carbonamide-based foaming agent is as high as 200 ° C. or higher, it is preferable to use urea as a foaming auxiliary agent with the decomposition temperature lowered.

尿素の添加量は、ゴム組成物中のゴム成分を100質量部としたとき、0.3質量部以上、2質量部以下が好ましい。前記範囲では、カルボンアミド系発泡剤の分解温度を十分低下させることができ、また尿素の分解により発生するアンモニアによる不具合が生じることがないため好ましい。より好ましくは、0.5質量部以上、1.8質量部以下である。   The amount of urea added is preferably 0.3 parts by mass or more and 2 parts by mass or less when the rubber component in the rubber composition is 100 parts by mass. Within the above range, the decomposition temperature of the carbonamide-based blowing agent can be sufficiently lowered, and there is no problem due to ammonia generated by the decomposition of urea, which is preferable. More preferably, they are 0.5 mass part or more and 1.8 mass parts or less.

前記ゴム組成物は、ケッチェンブラック等の導電性カーボンブラック、SAF、ISAF、HAF、MAF、FEF、GPF、SRF、FT、MT等の種類に分類される各種ゴム用カーボンブラック、クレー類、炭酸マグネシウム、シリカ、珪酸マグネシウム、タルク等の各種フィラー類、亜鉛華、ステアリン酸等の加硫促進助剤、スコーチ防止剤、粘着付与剤、加硫剤、その他ゴム用添加剤を含んでもよい。   The rubber composition includes conductive carbon black such as ketjen black, various carbon blacks for rubber classified into SAF, ISAF, HAF, MAF, FEF, GPF, SRF, FT, MT, etc., clays, carbonic acid Various fillers such as magnesium, silica, magnesium silicate and talc, vulcanization accelerators such as zinc white and stearic acid, scorch inhibitors, tackifiers, vulcanizers, and other rubber additives may be included.

本発明の特徴は、前記ゴム組成物を前記温度T1で1分以上、25分以下密閉容器内で加熱保持するとき、加熱保持時間により発泡倍率を調整できることである。   A feature of the present invention is that when the rubber composition is heated and held in the sealed container at the temperature T1 for 1 minute or more and 25 minutes or less, the expansion ratio can be adjusted by the heating and holding time.

前記加熱保持の温度は、前記温度T1である必要があるが、発泡剤が十分に分解し、かつ適度な速度で前記ゴム組成物を発泡させることが可能な温度範囲であることが好ましく、具体的には、130℃以上、150℃以下が好ましい。前記温度範囲では、前記(tc50−tp50)の絶対値及び(tc90−tp90)の絶対値が、共に3分以下の条件を満足することができる。より好ましくは、135℃以上、150℃以下である。   The heating and holding temperature needs to be the temperature T1, but is preferably in a temperature range in which the foaming agent is sufficiently decomposed and the rubber composition can be foamed at an appropriate rate. Specifically, it is preferably 130 ° C. or higher and 150 ° C. or lower. In the temperature range, the absolute value of (tc50-tp50) and the absolute value of (tc90-tp90) can both satisfy the condition of 3 minutes or less. More preferably, it is 135 degreeC or more and 150 degrees C or less.

前記ゴム組成物を前記温度T1で1分以上、25分以下密閉容器内で加熱保持する加熱保持工程を最初の工程として経た後は、前記温度T1より高い温度でさらに加硫発泡する高温加硫発泡工程を行うことが好ましい。前記温度T1より高い温度とは、前記温度T1より高い温度であれば特には限定されないが、発泡剤が急激に分解する温度で一気に発泡剤の分解を促進させて発泡反応を終結させることが好ましい。その理由は、発泡剤を一気に分解させ発泡反応を終結させることで、発泡セル径が小さく、かつ、均一になるためである。前記高温加硫発泡工程の好ましい温度は、155℃以上、170℃以下である。155℃以上であれば、発泡剤の分解が急激に進行するのに十分な温度であり、また、170℃以下であれば、耐熱性の低いゴム成分を用いた場合にも、ゴムの劣化が生じないため好ましい。   After passing through the heating and holding step of heating and holding the rubber composition in the sealed container at the temperature T1 for 1 minute or more and 25 minutes or less as the first step, the rubber composition is further vulcanized and foamed at a temperature higher than the temperature T1. It is preferable to perform a foaming process. The temperature higher than the temperature T1 is not particularly limited as long as the temperature is higher than the temperature T1, but it is preferable that the foaming agent is rapidly decomposed at a temperature at which the foaming agent is rapidly decomposed to terminate the foaming reaction. . The reason is that the foaming cell diameter becomes small and uniform by decomposing the foaming agent at once and terminating the foaming reaction. A preferable temperature of the high temperature vulcanization foaming step is 155 ° C. or more and 170 ° C. or less. If it is 155 ° C. or higher, the temperature is sufficient for the decomposition of the foaming agent to proceed rapidly, and if it is 170 ° C. or lower, even when a rubber component having low heat resistance is used, the rubber deteriorates. This is preferable because it does not occur.

本発明におけるゴムローラの製造方法は、本発明の要件を満たしていれば特に限定されず、公知の方法から適宜選択することができる。例えば、以下のようにして作製することができる。まず、表面に接着剤を塗布した芯金を用意する。一方、前記ゴム組成物を押出機でチューブ状に押し出し、本発明における条件にて加硫発泡を行う。これにより中心部に孔を有するチューブを作製する。その後、前記表面に接着剤を塗布した芯金上に前記チューブを被覆し、加熱によりチューブと芯金を接着する。不要なチューブ端部をカットして除き、研磨することにより所定の直径の発泡ゴム弾性層を有するゴムローラを得ることができる。   The method for producing a rubber roller in the present invention is not particularly limited as long as the requirements of the present invention are satisfied, and can be appropriately selected from known methods. For example, it can be produced as follows. First, a metal core with an adhesive applied to the surface is prepared. On the other hand, the rubber composition is extruded into a tube shape with an extruder and vulcanized and foamed under the conditions of the present invention. As a result, a tube having a hole in the center is produced. Thereafter, the tube is covered on a metal core having an adhesive applied to the surface, and the tube and the metal core are bonded by heating. A rubber roller having a foamed rubber elastic layer having a predetermined diameter can be obtained by cutting and removing unnecessary tube ends and polishing.

また、本発明におけるゴムローラは、表面特性を変化させるため、必要に応じて発泡ゴム弾性層上に1層又は複数層からなる表面層を有してもよい。   Further, the rubber roller in the present invention may have a surface layer composed of one layer or a plurality of layers on the foamed rubber elastic layer as necessary in order to change the surface characteristics.

本発明のゴムローラは、電子写真方式を利用した複写機やプリンター、ファクシミリ等の電子写真方式の画像形成装置に使用されるゴムローラに用いることができる。特に、電子写真装置における、帯電ローラ、現像ローラ、転写ローラ及び現像剤規制ローラ等に使用することができる。   The rubber roller of the present invention can be used for a rubber roller used in an electrophotographic image forming apparatus such as a copying machine, a printer, or a facsimile using an electrophotographic system. In particular, it can be used for a charging roller, a developing roller, a transfer roller, a developer regulating roller, and the like in an electrophotographic apparatus.

以下に、本発明を実施例によりさらに詳細に説明するが、これらの実施例によりなんら限定されるものではない。なお、各実施例で得られたゴムローラの特性は、以下の方法に従って測定した。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The properties of the rubber roller obtained in each example were measured according to the following method.

〔加硫速度、発泡速度〕
加硫速度、発泡速度共に発泡圧測定機能付き加硫試験機「MDR−200P」(商品名、アルファーテクノロジーズ製)を用い、JIS K6300−2(未加硫ゴム 物理特性 振動式加硫試験機による加硫特性の求め方)に準じ140℃、60分間測定した。
[Vulcanization speed, foaming speed]
Using a vulcanization tester “MDR-200P” (trade name, manufactured by Alpha Technologies) with a foam pressure measurement function for both vulcanization speed and foaming speed, using JIS K6300-2 (unvulcanized rubber, physical properties, vibration vulcanization tester) Measurement was performed at 140 ° C. for 60 minutes according to the method for obtaining vulcanization characteristics.

〔発泡ゴム弾性層の密度〕
JIS K 6268(ゴム−密度測定)、ISO 2781に準じて、発泡ゴム弾性層の密度を測定した。
[Density of foam rubber elastic layer]
The density of the foamed rubber elastic layer was measured according to JIS K 6268 (rubber-density measurement) and ISO 2781.

〔発泡倍率〕
(加硫発泡前のゴム密度)/(加硫発泡後のゴム密度)で算出した値を発泡倍率とした。各ゴム密度の測定は前記JIS K 6268(ゴム−密度測定)、ISO 2781に準じて行った。
[Foaming ratio]
The value calculated by (rubber density before vulcanization foaming) / (rubber density after vulcanization foaming) was taken as the expansion ratio. Each rubber density was measured according to JIS K 6268 (rubber-density measurement) and ISO 2781.

〔硬度〕
ゴムローラの硬度は、JIS S 6050に準じたスポンジ用スプリング式硬度計(商品名:「アスカーC型硬度計」、高分子計器(株)製、測定荷重500g)を用いて測定した。測定は、発泡ゴム弾性層の端部から長手方向に60mm間隔で3箇所行い、その平均値を算出する。前記測定をゴムローラ5本に対して行い、5本の平均値をゴムローラの硬度とした。
〔hardness〕
The hardness of the rubber roller was measured using a spring type hardness tester for sponge according to JIS S 6050 (trade name: “ASKER C-type hardness meter”, manufactured by Kobunshi Keiki Co., Ltd., measurement load 500 g). The measurement is performed at three locations at 60 mm intervals in the longitudinal direction from the end of the foamed rubber elastic layer, and the average value is calculated. The above measurement was performed on five rubber rollers, and the average value of the five was defined as the hardness of the rubber roller.

〔硬度バラツキ〕
硬度バラツキは、JIS S 6050に準じたスポンジ用スプリング式硬度計(商品名:「アスカーC型硬度計」、高分子計器(株)製、測定荷重500g)を用いて測定した。1本のゴムローラの硬度を発泡ゴム弾性層の端部から長手方向に40mm間隔で5箇所測定し、その全測定値の(最大値−最小値)を硬度バラツキとした。
[Hardness variation]
The hardness variation was measured using a spring type hardness tester for sponges according to JIS S 6050 (trade name: “Asker C-type hardness meter”, manufactured by Kobunshi Keiki Co., Ltd., measurement load 500 g). The hardness of one rubber roller was measured at an interval of 40 mm in the longitudinal direction from the end of the foamed rubber elastic layer, and the total measured value (maximum value−minimum value) was regarded as hardness variation.

〔実施例1〕
[A練り用原材料]
・エチレン−プロピレン−非共役ジエン共重合ゴム(EPDM) 100質量部
(商品名:「EPT4070」、三井化学(株)製)
・酸化亜鉛 5質量部
(商品名:「亜鉛華2種」、白水テック(株)製)
・ステアリン酸 1質量部
(商品名:「ルナックS−20」、花王(株)製)
・FT級カーボンブラック 10質量部
(商品名:「旭#15」、旭カーボン(株)社製)
・導電性カーボンブラック 10質量部
(商品名:「ケッチェンブラック600JD」、ケッチェンブラックインターナショナル(株)社製)
・パラフィンオイル 60質量部
(商品名:「ダイアナプロセスオイルPW−380」、出光興産(株)製)。
[Example 1]
[A raw material for kneading]
-100 parts by mass of ethylene-propylene-nonconjugated diene copolymer rubber (EPDM) (trade name: “EPT4070”, manufactured by Mitsui Chemicals, Inc.)
・ Zinc oxide 5 parts by mass (trade name: “Zinc Hana 2”, manufactured by Hakusui Tec Co., Ltd.)
-1 part by mass of stearic acid (trade name: “Lunac S-20”, manufactured by Kao Corporation)
FT grade carbon black 10 parts by mass (trade name: “Asahi # 15”, manufactured by Asahi Carbon Co., Ltd.)
・ 10 parts by mass of conductive carbon black (trade name: “Ketjen Black 600JD”, manufactured by Ketjen Black International Co., Ltd.)
Paraffin oil 60 parts by mass (trade name: “Diana Process Oil PW-380”, manufactured by Idemitsu Kosan Co., Ltd.).

[B練り用原材料]
・モルホリノジチオ化合物(MDB) 2質量部
(商品名:「ノクセラーMDB」、大内振興化学工業(株)製)
・2−メルカプトベンゾチアゾール(MBT) 2質量部
(商品名:「ノクセラーM」、大内振興化学工業(株)製)
・ジペンタメチレンチウラムテトラスルフィド(DPTT) 2質量部
(商品名:「ノクセラーTRA」、大内振興化学工業(株)製)
・硫黄 2質量部
・アゾジカルボンアミド(ADCA) 15質量部
(商品名:「ビニホールAC#R」、永和化成工業(株)製)
・尿素 1質量部
(商品名:「セルペースト101」、永和化成工業(株)製)。
[B materials for kneading]
-Morpholinodithio compound (MDB) 2 parts by mass (trade name: “Noxeller MDB”, manufactured by Ouchi Shinko Chemical Co., Ltd.)
2 parts by mass of 2-mercaptobenzothiazole (MBT) (trade name: “Noxeller M”, manufactured by Ouchi Shinko Chemical Co., Ltd.)
Dipentamethylene thiuram tetrasulfide (DPTT) 2 parts by mass (trade name: “Noxeller TRA”, manufactured by Ouchi Shinko Chemical Co., Ltd.)
・ Sulfur 2 parts by mass ・ Azodicarbonamide (ADCA) 15 parts by mass (trade name: “Vinole AC # R”, manufactured by Eiwa Chemical Industry Co., Ltd.)
Urea 1 part by mass (trade name: “Cell Paste 101”, manufactured by Eiwa Kasei Kogyo Co., Ltd.).

前記A練り用原材料を閉型ゴム用混練り機のニーダー(7L)を用いて、温度130℃になるまで混練し、A練りゴムを得た。前記A練りゴムを60℃まで冷却後、A練りゴムに前記B練り用原材料をオープンロールにて10分間ロールで練り込み、ゴム組成物を作製した。   The raw material for kneading A was kneaded using a kneader (7 L) of a closed rubber kneader until the temperature reached 130 ° C. to obtain an A kneaded rubber. After the A kneaded rubber was cooled to 60 ° C., the raw material for kneading B was kneaded with the A kneaded rubber with an open roll for 10 minutes to prepare a rubber composition.

前記ゴム組成物を直径60mmの押出し機を用いて中空のチューブ形状に押出し、未加硫ゴムチューブを作製した。前記未加硫ゴムチューブを、加圧水蒸気(0.40MPa)を導入した加硫缶に投入し、140℃、5分間加熱保持した後、連続して160℃、30分間加硫発泡させてチューブ状の発泡ゴム弾性層を作製した。   The rubber composition was extruded into a hollow tube shape using an extruder having a diameter of 60 mm to produce an unvulcanized rubber tube. The unvulcanized rubber tube is put into a vulcanizing can into which pressurized steam (0.40 MPa) is introduced, heated and maintained at 140 ° C. for 5 minutes, and then continuously vulcanized and foamed at 160 ° C. for 30 minutes to form a tube. A foamed rubber elastic layer was prepared.

前記発泡ゴム弾性層に、ホットメルト接着剤(商品名:「スリーボンド3315E」、スリーボンド(株)製)を塗布した直径6mm、長さ250mmのSUS製芯金を圧入した。その後、160℃、30分電気炉に投入して前記発泡ゴム弾性層と前記芯金を接着させて未研削のゴムローラを作製した。そして、前記発泡ゴム弾性層の長さが240mmになるように両端部分をカットした。この未研削のゴムローラを、研磨砥石「GC80」(商品名、ツガミ(株)製)を取り付けた研削機にセットし、研削条件として回転速度2000rpm、送り速度10mm/分で発泡ゴム弾性層の外径がφ10mmになるように研削した。これにより、前記発泡ゴム弾性層を有するゴムローラを作製した。結果を表1に示す。   A SUS cored bar having a diameter of 6 mm and a length of 250 mm coated with a hot melt adhesive (trade name: “ThreeBond 3315E”, manufactured by ThreeBond Co., Ltd.) was press-fitted into the foamed rubber elastic layer. Then, it was put into an electric furnace at 160 ° C. for 30 minutes, and the foamed rubber elastic layer and the core metal were adhered to produce an unground rubber roller. Then, both end portions were cut so that the length of the foamed rubber elastic layer was 240 mm. This unground rubber roller is set in a grinding machine equipped with a grinding wheel “GC80” (trade name, manufactured by Tsugami Co., Ltd.) and the outer surface of the foam rubber elastic layer is rotated at a rotational speed of 2000 rpm and a feed speed of 10 mm / min. Grinding was performed so that the diameter was 10 mm. Thus, a rubber roller having the foamed rubber elastic layer was produced. The results are shown in Table 1.

〔実施例2〕
実施例1に対し、ゴム組成物のアゾジカルボンアミドの添加量を20質量部に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
[Example 2]
A rubber roller was produced in the same manner as in Example 1 except that the amount of azodicarbonamide added to the rubber composition was changed to 20 parts by mass with respect to Example 1. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例3〕
実施例1に対し、ゴム組成物のアゾジカルボンアミドの添加量を25質量部に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 3
A rubber roller was produced in the same manner as in Example 1 except that the amount of azodicarbonamide added to the rubber composition was changed to 25 parts by mass with respect to Example 1. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例4〕
実施例2に対し、加硫缶における140℃での加熱保持時間を1分に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 4
A rubber roller was produced in the same manner as in Example 1 except that the heating and holding time at 140 ° C. in the vulcanizing can was changed to 1 minute. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例5〕
実施例2に対し、加硫缶における140℃での加熱保持時間を7分に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 5
A rubber roller was produced in the same manner as in Example 1 except that the heating and holding time at 140 ° C. in the vulcanizing can was changed to 7 minutes. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例6〕
実施例2に対し、加硫缶における140℃での加熱保持時間を10分に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 6
A rubber roller was produced in the same manner as in Example 1 except that the heating and holding time at 140 ° C. in the vulcanizing can was changed to 10 minutes. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例7〕
実施例2に対し、加硫缶における140℃での加熱保持時間を20分に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 7
A rubber roller was produced in the same manner as in Example 1 except that the heating and holding time at 140 ° C. in the vulcanizing can was changed to 20 minutes. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例8〕
実施例2に対し、ゴム組成物のEPDMをアクリロニトリルブタジエンゴム(NBR)(商品名:「Nipol DN401LL」、日本ゼオン(株)製)に変更した。さらに、導電性カーボンブラックの添加量を5質量部に変更し、パラフィンオイルを添加しなかったこと以外は、実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 8
For Example 2, the EPDM of the rubber composition was changed to acrylonitrile butadiene rubber (NBR) (trade name: “Nipol DN401LL”, manufactured by Nippon Zeon Co., Ltd.). Further, a rubber roller was produced in the same manner as in Example 1 except that the amount of conductive carbon black added was changed to 5 parts by mass and no paraffin oil was added. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例9〕
実施例2に対し、加硫缶における140℃での加熱保持時間を25分に変更した以外は実施例2と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 9
A rubber roller was produced in the same manner as in Example 2, except that the heating and holding time at 140 ° C. in the vulcanizing can was changed to 25 minutes. The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例10〕
実施例2に対し、加硫速度、発泡速度の測定温度を135℃に変更し、かつ、加硫缶における加熱保持温度を135℃に変更した以外は実施例2と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 10
A rubber roller was produced in the same manner as in Example 2 except that the measurement temperature of the vulcanization rate and the foaming rate was changed to 135 ° C. and the heating and holding temperature in the vulcanization can was changed to 135 ° C. . The production conditions and evaluation results of the rubber roller are shown in Table 1.

〔実施例11〕
実施例2に対し、加硫速度、発泡速度の測定温度を150℃に変更し、かつ、加硫缶における加熱保持温度を150℃に変更した以外は実施例2と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表1に示す。
Example 11
A rubber roller was produced in the same manner as in Example 2, except that the measurement temperature of the vulcanization speed and the foaming speed was changed to 150 ° C. and the heating and holding temperature in the vulcanization can was changed to 150 ° C. . The production conditions and evaluation results of the rubber roller are shown in Table 1.

実施例1から11に関しては、発泡倍率が3倍以上の高発泡ゴム弾性層が得られ、かつ、高発泡にも関わらず得られたゴムローラの硬度バラツキは小さかった。そして、実施例2、実施例4から7及び実施例9に関しては、140℃での加熱保持時間の変更のみで発泡倍率を制御でき、処方変更することなく所望の硬度のゴムローラを得ることが可能であった。   Regarding Examples 1 to 11, a highly foamed rubber elastic layer having a foaming ratio of 3 times or more was obtained, and the hardness variation of the rubber roller obtained despite high foaming was small. For Example 2, Examples 4 to 7 and Example 9, the foaming ratio can be controlled only by changing the heating and holding time at 140 ° C., and a rubber roller having a desired hardness can be obtained without changing the formulation. Met.

〔比較例1〕
実施例1に対し、ゴム組成物のアゾジカルボンアミドの添加量を13質量部に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表2に示す。しかし、アゾジカルボンアミドの添加量が少ないため、発泡倍率が3倍以上の高発泡ゴム弾性層を得ることはできなかった。
[Comparative Example 1]
A rubber roller was produced in the same manner as in Example 1 except that the amount of azodicarbonamide added to the rubber composition was changed to 13 parts by mass with respect to Example 1. Table 2 shows the production conditions and evaluation results of the rubber roller. However, since the amount of azodicarbonamide added is small, it was not possible to obtain a highly foamed rubber elastic layer having a foaming ratio of 3 times or more.

〔比較例2〕
実施例1に対し、ゴム組成物のアゾジカルボンアミドの添加量を13質量部に変更し、140℃での加熱保持時間を20分に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表2に示す。しかし、アゾジカルボンアミドの添加量が少ないため、140℃での加熱保持時間を長くしても発泡ゴム弾性層の発泡倍率に変動は無く、発泡倍率が3倍以上の高発泡ゴム弾性層を得ることはできなかった。
[Comparative Example 2]
A rubber roller was produced in the same manner as in Example 1, except that the amount of azodicarbonamide added to the rubber composition was changed to 13 parts by mass and the heating and holding time at 140 ° C. was changed to 20 minutes. . Table 2 shows the production conditions and evaluation results of the rubber roller. However, since the amount of azodicarbonamide added is small, there is no change in the foaming ratio of the foamed rubber elastic layer even if the heating and holding time at 140 ° C. is increased, and a highly foamed rubber elastic layer having a foaming ratio of 3 times or more is obtained. I couldn't.

〔比較例3〕
実施例1に対し、ゴム組成物のアゾジカルボンアミドの添加量を28質量部に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表2に示す。しかし、アゾジカルボンアミドの添加量が多いため、発泡剤の分解が急激に生じることにより発泡セル径がばらつき、硬度バラツキのあるゴムローラしか得ることができなかった。
[Comparative Example 3]
A rubber roller was produced in the same manner as in Example 1 except that the amount of azodicarbonamide added to the rubber composition was changed to 28 parts by mass with respect to Example 1. Table 2 shows the production conditions and evaluation results of the rubber roller. However, since the amount of azodicarbonamide added is large, decomposition of the foaming agent abruptly causes variation in the foam cell diameter, and only a rubber roller having hardness variations could be obtained.

〔比較例4〕
実施例2に対し、ゴム組成物の尿素の添加量を5質量部に変更した以外は実施例1と同様にしてゴムローラを作製した。ゴムローラの製造条件及び評価結果を表2に示す。しかし、140℃において、(tc50−tp50)の絶対値及び(tc90−tp90)の絶対値が共に3分以下の条件を満足できず、その結果として、発泡倍率が3倍以上の高発泡ゴム弾性層を得られなかった。また、(tc50−tp50)の絶対値が3.9分と大きいため、発泡ガス抜けによる発泡セル径のバラツキが原因と考えられる硬度バラツキのあるゴムローラが得られた。
[Comparative Example 4]
A rubber roller was produced in the same manner as in Example 1 except that the amount of urea added to the rubber composition was changed to 5 parts by mass with respect to Example 2. Table 2 shows the production conditions and evaluation results of the rubber roller. However, at 140 ° C., both the absolute value of (tc50-tp50) and the absolute value of (tc90-tp90) cannot satisfy the condition of 3 minutes or less, and as a result, the high foamed rubber elasticity with a foaming ratio of 3 times or more is obtained. Could not get a layer. In addition, since the absolute value of (tc50−tp50) was as large as 3.9 minutes, a rubber roller with hardness variation that was considered to be caused by variation in the foamed cell diameter due to foaming gas loss was obtained.

〔比較例5〕
実施例2に対し、ゴム組成物のDPTTを添加しない以外は実施例1と同様にして発泡ゴムローラを作製した。ゴムローラの製造条件及び評価結果を表2に示す。しかし、(tc90−tp90)の絶対値が3分以下の条件を満足できず、その結果として、発泡倍率が3倍以上の高発泡ゴム弾性層を有するゴムローラを得ることはできなかった。
[Comparative Example 5]
A foamed rubber roller was produced in the same manner as in Example 1 except that DPTT as a rubber composition was not added to Example 2. Table 2 shows the production conditions and evaluation results of the rubber roller. However, the absolute value of (tc90-tp90) could not satisfy the condition of 3 minutes or less, and as a result, a rubber roller having a highly foamed rubber elastic layer having a foaming ratio of 3 times or more could not be obtained.

Figure 2009202353
Figure 2009202353

Figure 2009202353
Figure 2009202353

Claims (5)

発泡剤を含むゴム組成物を、加圧水蒸気を導入した密閉容器内で加硫発泡して製造する、(加硫発泡前のゴム密度)/(加硫発泡後のゴム密度)で示される発泡倍率が3倍以上の発泡ゴム弾性層を有するゴムローラの製造方法において、
以下の(1)及び(2)の条件を満たすことを特徴とするゴムローラの製造方法。
(1)前記ゴム組成物のゴム成分を100質量部としたとき、カルボンアミド系発泡剤を15質量部以上、25質量部以下含有すること。
(2)前記ゴム組成物の加硫進行度が50%の時刻(tc50)と発泡進行度が50%の時刻(tp50)との差(tc50−tp50)の絶対値、及び、前記ゴム組成物の加硫進行度が90%の時刻(tc90)と発泡進行度が90%の時刻(tp90)との差(tc90−tp90)の絶対値が、共に3分以下を満足する温度をT1とするとき、前記ゴム組成物を前記温度T1で1分以上、25分以下密閉容器内で加熱保持する加熱保持工程を含むこと。
Foaming ratio indicated by (Rubber density before vulcanization foaming) / (Rubber density after vulcanization foaming) produced by vulcanizing and foaming a rubber composition containing a foaming agent in a closed container into which pressurized steam is introduced. In the method for producing a rubber roller having a foamed rubber elastic layer of 3 times or more,
A rubber roller manufacturing method characterized by satisfying the following conditions (1) and (2):
(1) When the rubber component of the rubber composition is 100 parts by mass, it contains 15 to 25 parts by mass of a carbonamide foaming agent.
(2) The absolute value of the difference (tc50−tp50) between the time (tp50) when the vulcanization progress of the rubber composition is 50% and the time (tp50) when the foaming progress is 50%, and the rubber composition The temperature at which the absolute value of the difference (tc90-tp90) between the time (tc90) when the vulcanization progress of 90% is 90% and the time (tp90) when the foaming progress is 90% is less than 3 minutes is defined as T1. A heating and holding step of heating and holding the rubber composition in the sealed container at the temperature T1 for 1 minute or more and 25 minutes or less.
前記加熱保持工程の温度T1が、130℃以上、150℃以下であることを特徴とする請求項1に記載のゴムローラの製造方法。   2. The method for producing a rubber roller according to claim 1, wherein a temperature T <b> 1 in the heating and holding step is 130 ° C. or higher and 150 ° C. or lower. 前記ゴム組成物が尿素を含むことを特徴とする請求項1又は2に記載のゴムローラの製造方法。   The method for producing a rubber roller according to claim 1, wherein the rubber composition contains urea. チューブ状の前記ゴム組成物に対して前記加熱保持工程を行い、その後、前記温度T1より高い温度で加硫発泡する高温加硫発泡工程を行い、芯金上に前記加硫発泡後のチューブ状のゴム組成物を被覆し、接着することを特徴とする請求項1から3のいずれか1項に記載のゴムローラの製造方法。   The tube-shaped rubber composition is subjected to the heating and holding step, and then subjected to a high-temperature vulcanization and foaming step in which vulcanization and foaming is performed at a temperature higher than the temperature T1, and the tube shape after the vulcanization and foaming on the core The method for producing a rubber roller according to any one of claims 1 to 3, wherein the rubber composition is coated and adhered. 請求項1から4のいずれか1項に記載のゴムローラの製造方法により製造されたゴムローラ。   The rubber roller manufactured by the manufacturing method of the rubber roller of any one of Claim 1 to 4.
JP2008044404A 2008-02-26 2008-02-26 Manufacturing method of rubber roller and rubber roller Withdrawn JP2009202353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044404A JP2009202353A (en) 2008-02-26 2008-02-26 Manufacturing method of rubber roller and rubber roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044404A JP2009202353A (en) 2008-02-26 2008-02-26 Manufacturing method of rubber roller and rubber roller

Publications (1)

Publication Number Publication Date
JP2009202353A true JP2009202353A (en) 2009-09-10

Family

ID=41145124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044404A Withdrawn JP2009202353A (en) 2008-02-26 2008-02-26 Manufacturing method of rubber roller and rubber roller

Country Status (1)

Country Link
JP (1) JP2009202353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013157443A1 (en) * 2012-04-18 2015-12-21 株式会社ブリヂストン Composition for rubber foam and rubber foam using the same
WO2017068893A1 (en) * 2015-10-19 2017-04-27 株式会社エラストミックス Rubber composition, and crosslinked rubber product and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013157443A1 (en) * 2012-04-18 2015-12-21 株式会社ブリヂストン Composition for rubber foam and rubber foam using the same
WO2017068893A1 (en) * 2015-10-19 2017-04-27 株式会社エラストミックス Rubber composition, and crosslinked rubber product and method for producing same
CN107922665A (en) * 2015-10-19 2018-04-17 埃拉斯托米克斯株式会社 Rubber composition and cross-linked rubber article and its manufacture method

Similar Documents

Publication Publication Date Title
JP2008152202A (en) Conductive rubber roller and method of manufacturing the same
JP6288839B2 (en) Toner supply roller and image forming apparatus
JP5837870B2 (en) Method for manufacturing cylindrical foam rubber, and method for manufacturing conductive roller
JP2009202353A (en) Manufacturing method of rubber roller and rubber roller
JP2008216462A (en) Conductive rubber roller and transfer roller
JP6279384B2 (en) Toner supply roller and image forming apparatus
JP6006756B2 (en) Conductive rubber roller composition and conductive rubber roller
JP2014162103A (en) Method for manufacturing electroconductive roller, electroconductive roller, and image forming device
WO2015151568A1 (en) Toner supply roller and image formation device
JP4727829B2 (en) Semiconductive rubber roller and semiconductive foamable rubber composition for semiconductive rubber roller
JP2001227532A (en) Rubber composition for conductive roller and conductive roller
JP2006293061A (en) Conductive roller and charging roller
JP4455905B2 (en) Foam rubber roller
JP4988249B2 (en) Foam rubber roller and foam rubber roller manufacturing method
JP2005281579A (en) Foamed rubber roller
JP2015197463A (en) Toner supply roller and image forming apparatus
JP2010083101A (en) Method for manufacturing conductive rubber roller, conductive rubber roller, and transfer roller
JP6357299B2 (en) Manufacturing method of conductive foam rubber roller and manufacturing method of image forming apparatus
JP5699117B2 (en) Method for producing cylindrical foam rubber
JP5925610B2 (en) Manufacturing method of foamed rubber member and manufacturing method of transfer roller
JP2004340291A (en) Expanded rubber roller
JP2006058450A (en) Foam conductive rubber roller
JP2001192491A (en) Ethylene-propylene rubber foam and imaging device
JP2003055491A (en) Electroconductive ethylene/propylene rubber foam and image-forming device
JP6091249B2 (en) Manufacturing method of conductive roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111118