JP2009198452A - Device for measuring deformation with use of plural images - Google Patents

Device for measuring deformation with use of plural images Download PDF

Info

Publication number
JP2009198452A
JP2009198452A JP2008043206A JP2008043206A JP2009198452A JP 2009198452 A JP2009198452 A JP 2009198452A JP 2008043206 A JP2008043206 A JP 2008043206A JP 2008043206 A JP2008043206 A JP 2008043206A JP 2009198452 A JP2009198452 A JP 2009198452A
Authority
JP
Japan
Prior art keywords
pixel
image
displacement
measurement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008043206A
Other languages
Japanese (ja)
Inventor
Masakazu Shibahara
正和 柴原
Koji Masaoka
孝治 正岡
Koji Yamaguchi
晃司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University PUC filed Critical Osaka University NUC
Priority to JP2008043206A priority Critical patent/JP2009198452A/en
Publication of JP2009198452A publication Critical patent/JP2009198452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement measuring device that, even when an object to be measured is greatly deformed, can surely measuring the deformation. <P>SOLUTION: The displacement measuring device includes: a section for calculating a displacement in pixel between adjacent images by which section, for each pair of images among at least three images taken, that pixel in a post-deformation image which is associated with a target pixel b<SB>i</SB>(x, y) contained in that region of a pre-deformation image which is to be measured is determined as a reference pixel a<SB>j</SB>(x+m<SB>x</SB>, y+m<SB>y</SB>) and the amount of displacement in units of pixel (m<SB>x</SB>, m<SB>y</SB>) is computed for each pixel contained in the measured region; a section for calculating a displacement in subpixel between adjacent images by which section the amount of displacement in reference pixel in the order of subpixels (Δx<SB>k</SB>, Δy<SB>k</SB>) is calculated in accordance with image information on the reference pixel a<SB>j</SB>(x+m<SB>x</SB>, y+m<SB>y</SB>) and a pixel adjacent thereto; and a section for calculating the cumulative amount of displacement by which section the amount of displacement in reference pixel in units of pixels and the amount of displacement in the order of subpixels, which amounts have been calculated for each pair of images, are cumulatively added and the amount of displacement from the start of measurement to the end of measurement is calculated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、時間経過とともに変形する被測定物の変形量を測定する変形計測装置に関する。本発明は例えば応力測定における変形計測に適用できる。   The present invention relates to a deformation measuring apparatus that measures the amount of deformation of an object to be measured that is deformed over time. The present invention can be applied to deformation measurement in stress measurement, for example.

被測定物の応力測定では、従来、ひずみゲージを測定部位に貼り付けて、ひずみや変位の測定が行われていた。ひずみゲージによる測定では、信頼性の高い測定データを得ることができるが、貼り付けた場所での局所的な測定データしか得られず、被測定物の全体的な変形状態を把握することができなかった。   Conventionally, in measuring the stress of an object to be measured, strain and displacement are measured by attaching a strain gauge to a measurement site. With strain gage measurement, highly reliable measurement data can be obtained, but only local measurement data at the location where it is attached can be obtained, and the overall deformation state of the object to be measured can be grasped. There wasn't.

そこで、ひずみゲージを貼り付けた特定の位置だけでなく、被測定物に設定した測定領域全体にわたって全視野的に変位量を測定する方法として、カメラ装置で撮影した撮影画像を解析して変位量を算出する方法が開示されている。すなわち、被測定物の変形前後の2つの画像を撮影し、被測定物に発生した変形を撮影画像同士の相関関係から求めるようにすることが開示されている(特許文献1参照)。   Therefore, as a method of measuring displacement over the entire measurement area set on the object to be measured, not only at the specific position where the strain gauge is attached, the amount of displacement is analyzed by analyzing the captured image taken with the camera device. A method of calculating is disclosed. That is, it is disclosed that two images before and after the deformation of the object to be measured are photographed, and the deformation that has occurred in the object to be measured is obtained from the correlation between the photographed images (see Patent Document 1).

また、カメラ装置で撮影した画像を用いて画像同士の相関量から変位量を求める場合、ピクセル単位(1画素分の大きさ)で測定精度が定まることになるが、さらに測定精度を高めるために、撮影画像同士の画素情報(例えば輝度情報)の相関関係について最小二乗曲面を求めることにより、1画素分以下のいわゆるサブピクセルオーダーの変位量を計測する方法が開示されている(特許文献2参照)。
特開平7−181075号公報 特開2006−343160号公報
In addition, when the amount of displacement is obtained from the correlation amount between images using an image captured by the camera device, the measurement accuracy is determined in pixel units (size of one pixel), but in order to further increase the measurement accuracy A method for measuring a so-called sub-pixel order displacement amount of one pixel or less by calculating a least-squares surface for the correlation between pixel information (for example, luminance information) between captured images is disclosed (see Patent Document 2). ).
JP-A-7-181075 JP 2006-343160 A

特許文献1や特許文献2に記載されるように、変形前の撮影画像と変形後の撮影画像との画像比較を行って変位量を算出する方法によれば、画像に写し出された測定領域全体について、各部位ごとに、変位量を測定することができる。
しかしながら、被測定物の変形、ひずみが大きい場合、あるいは大きな回転移動が伴う場合には、変形前後の撮影画像間で比較することが困難な場合があった。すなわち、撮影画像同士の画素情報(例えば輝度情報)の相関が小さくなり、変形前の撮影画像に写る画素と変形後の画像に写る画素とを、正確に対応付けることが困難になっていた。
As described in Patent Document 1 and Patent Document 2, according to the method of calculating the amount of displacement by comparing the captured image before the deformation with the captured image after the deformation, the entire measurement region projected on the image The displacement amount can be measured for each part.
However, when the deformation or distortion of the object to be measured is large or accompanied by a large rotational movement, it may be difficult to compare the captured images before and after the deformation. That is, the correlation between pixel information (for example, luminance information) between captured images is reduced, and it is difficult to accurately associate the pixels that appear in the pre-deformation captured image with the pixels that appear in the post-deformation image.

そこで、本発明は、被測定物の変形、ひずみが大きい場合、あるいは大きな回転移動が伴う場合であっても、測定領域全体について、確実に変位量を測定することができる変位計測装置を提供することを目的とする。   Therefore, the present invention provides a displacement measuring device that can reliably measure the amount of displacement in the entire measurement region even when the deformation or distortion of the object to be measured is large or when there is a large rotational movement. For the purpose.

上記課題を解決するためになされた本発明は、変形前と変形後の撮影画像の他に、中間時点の変形状態を少なくとも1枚撮影し、時系列的に並ぶ2枚ずつの画像で状態変化を分割してそれぞれの変位量を測定し、最後に変位量を累積加算することにより求めるようにする。
すなわち、本発明の変形計測装置は、撮影画像蓄積部と、連続画像間ピクセル変位算出部と、連続画像間サブピクセル変位算出部と、累積変位量算出部とにより構成され、まず、撮影画像蓄積部が、測定対象領域について測定開始時点、1以上の中間時点、測定終了時点を含む少なくとも3枚の撮影画像を蓄積する。このとき中間時点の撮影画像の枚数は、変形が大きいほど多くするようにして、時系列的に並ぶ2枚の撮影画像間での変位量が大きくならないようにする。
連続画像間ピクセル変位算出部は、撮影画像蓄積部に蓄積された撮影画像から時系列的に連続する撮影画像を2枚ずつ順次抽出し、画像の対とする。それぞれの画像の対において、先に撮影した画像を変形前画像とし、後に撮影した画像を変形後画像とし、変形前画像の測定対象領域に含まれる着目画素b(x,y)に対し、変形後画像内において着目画素b(x,y)に対応付けられる画素を、着目画素b(x,y)周辺の画像情報(例えば輝度情報)の相関量に基づいて探索することにより照合画素a(x+m,y+m)として決定する。さらに着目画素b(x,y)と照合画素a(x+m,y+m)とのピクセル単位での変位量(m,m)を求める演算を行う。さらに着目画素を次々と移動して変形前画像の測定領域内の各画素についての変形後画像内の照合画素を決定するとともにピクセル単位の変位量を算出する。このように画像の対ごとに、変形前画像の測定領域内の各画素(全画素)に対する変形後画像内の照合画素を決定するとともに、ピクセル単位の変位量を算出する。
連続画像間サブピクセル変位算出部は、変形後画像内の照合画素a(x+m,y+m)、および、前記照合画素a(x+m,y+m)に隣接する画素の画像情報(例えば輝度情報)の相関量に基づいて、ピクセル単位以下のサブピクセルオーダーでの着目画素b(x,y)の変位量(Δx,Δy)を求める。すなわち、連続画像間ピクセル変位算出部によって、ピクセル単位で着目画素b(x,y)に対応付けられる照合画素a(x+m,y+m)が決定されているが、さらに計測精度を高めるため、照合画素a(x+m,y+m)に隣接する画素の画像情報の相関量も含めて演算を行うようにして、ピクセル単位以下のサブピクセルオーダーでの着目画素b(x,y)の変位量(Δx,Δy)を求める。このとき隣接画素の画像情報の相関量の取り込み方法としては、例えば最小二乗近似、最急降下法等をとることができる。
累積変位量算出部は、画像の対ごとに算出されたピクセル単位の変位量とサブピクセルオーダーの変位量とを累積加算し、測定開始時点から測定終了時点までの変位量を、測定対象領域内の各画素について算出する。
In order to solve the above problems, the present invention is to capture at least one deformation state at an intermediate point in time in addition to the pre-deformation and post-deformation photographed images, and change the state with two images arranged in time series. Are obtained by measuring the amount of displacement and finally accumulating the amount of displacement.
That is, the deformation measurement apparatus of the present invention includes a captured image accumulation unit, a continuous image inter-pixel displacement calculation unit, a continuous inter-image sub-pixel displacement calculation unit, and a cumulative displacement amount calculation unit. The unit accumulates at least three captured images including a measurement start point, one or more intermediate points, and a measurement end point for the measurement target region. At this time, the number of photographed images at the intermediate point is increased as the deformation becomes larger so that the amount of displacement between the two photographed images arranged in time series is not increased.
The inter-continuous image pixel displacement calculation unit sequentially extracts two chronologically continuous captured images from the captured images stored in the captured image storage unit to form a pair of images. In each pair of images, the first captured image is the pre-deformation image, the later captured image is the post-deformation image, and for the pixel of interest b i (x, y) included in the measurement target region of the pre-deformation image, Collation by searching for a pixel associated with the target pixel b i (x, y) in the transformed image based on a correlation amount of image information (for example, luminance information) around the target pixel b i (x, y). pixel a j (x + m x, y + m y) is determined as. Further performs the target pixel b i (x, y) and the collation pixel a j (x + m x, y + m y) displacement in pixels of the (m x, m y) the calculation for obtaining the. Further, the pixel of interest is moved one after another to determine a collation pixel in the post-deformation image for each pixel in the measurement area of the pre-deformation image and calculate a displacement amount in pixel units. In this manner, for each pair of images, a matching pixel in the post-deformation image for each pixel (all pixels) in the measurement region of the pre-deformation image is determined, and a displacement amount in units of pixels is calculated.
Subpixel displacement calculation unit between successive images, the matching pixel a j in the deformed image (x + m x, y + m y), and, wherein matching pixel a j (x + m x, y + m y) image information of a pixel adjacent to (e.g. Based on the correlation amount of (luminance information), the displacement amount (Δx k , Δy k ) of the pixel of interest b i (x, y) in the sub-pixel order equal to or less than the pixel unit is obtained . That is, the inter-continuous image pixel displacement calculation unit determines the matching pixel a j (x + m x , y + m y ) associated with the target pixel b i (x, y) in units of pixels, but further increases the measurement accuracy. Therefore, the calculation is performed including the correlation amount of the image information of the pixels adjacent to the matching pixel a j (x + m x , y + m y ), and the target pixel b i (x, y) in the sub-pixel order below the pixel unit. ) Is obtained (Δx k , Δy k ). At this time, for example, the least square approximation, the steepest descent method, or the like can be used as a method for capturing the correlation amount of the image information of adjacent pixels.
The cumulative displacement amount calculation unit cumulatively adds the displacement amount in pixels calculated for each pair of images and the displacement amount in the sub-pixel order, and calculates the displacement amount from the measurement start point to the measurement end point in the measurement target region. For each pixel.

本発明によれば、変位やひずみが大きな場合や回転移動が加わる場合であっても、中間時点での撮影画像を用いて変位量を分割して測定し、最終的に各変位量を累積加算することにより、確実に変位量を計測することができる。
また、本発明では、隣接する画像間で、着目画素に対応する照合画素の位置を求める際に、ピクセル単位での演算だけを行ってサブピクセルオーダーでの変位量演算を含まないようにして演算時間が膨大にならないようにし、変位量を求める際には、隣接する画像の対ごとに算出されたサブピクセルオーダーでの変位量を算出して、ピクセル単位での変位量とともに累積加算するようにしたので、計測精度を高めるとともに演算時間を抑えるようにすることができ、精度と演算時間とのバランスのとれた測定を行うことができる。
According to the present invention, even when displacement or strain is large or rotational movement is applied, the displacement amount is divided and measured using the captured image at the intermediate time point, and finally each displacement amount is cumulatively added. By doing so, the displacement amount can be reliably measured.
Further, in the present invention, when obtaining the position of the matching pixel corresponding to the target pixel between adjacent images, the calculation is performed by performing only the calculation for each pixel and not including the displacement amount calculation in the sub-pixel order. When calculating the amount of displacement so that time is not enormous, calculate the amount of displacement in the sub-pixel order calculated for each pair of adjacent images, and accumulatively add together with the amount of displacement in pixels. Therefore, it is possible to increase the measurement accuracy and suppress the calculation time, and it is possible to perform measurement with a balance between the accuracy and the calculation time.

以下、本発明の一実施形態について、被測定物が引張試験機に取り付けた試験片である場合を例にして、図面を用いて説明する。なお被測定物は特に限定されず、変形前画像と変形後画像との比較が行えるものであれば適用できる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example the case where the object to be measured is a test piece attached to a tensile tester. The object to be measured is not particularly limited, and any object can be applied as long as the image before deformation and the image after deformation can be compared.

(装置構成)
図1は本発明の一実施形態である変位計測装置の構成を示す図である。被測定物である試験片Sの上下端が、引張試験機の可動チャック1および固定チャック2に取り付けてある。可動チャック1を作動することにより試験片Sに荷重が負荷され、負荷荷重に応じて試験片Sが変形するようにしてある。また、試験片Sの横にはカメラ装置3(CCDカメラ)が配置してあり、試験片Sに設定した測定領域K(幅D、長さL)を写すことができるようにしてある。
カメラ装置3は、負荷荷重が加えられる前の画像(測定開始画像)と負荷荷重が加えられた後の画像(中間画像、測定終了画像)を撮影し、これら画像を制御部10に送信するようにしてある。なお、カメラ装置に撮影間の時間間隔を調整する撮影間隔調整機構を設けておけば、より簡単に画像間の時間間隔を調整することができる。
(Device configuration)
FIG. 1 is a diagram showing a configuration of a displacement measuring apparatus according to an embodiment of the present invention. The upper and lower ends of the test piece S that is the object to be measured are attached to the movable chuck 1 and the fixed chuck 2 of the tensile tester. By operating the movable chuck 1, a load is applied to the test piece S, and the test piece S is deformed in accordance with the load. In addition, a camera device 3 (CCD camera) is arranged beside the test piece S so that the measurement region K (width D, length L) set on the test piece S can be copied.
The camera device 3 captures an image before the load is applied (measurement start image) and an image after the load is applied (intermediate image, measurement end image), and transmits these images to the control unit 10. It is. If the camera apparatus is provided with a shooting interval adjustment mechanism that adjusts the time interval between shootings, the time interval between images can be adjusted more easily.

制御部10は、CPU、メモリを備えたコンピュータ装置で構成され、さらに表示装置10a(例えば液晶パネル)、入力装置10b(例えばキーボード、マウス)が付設され、表示装置10aに撮影画像を表示し、入力装置10bを介して制御に必要なさまざまな入力を行うことができるようにしてある。例えば本発明に関連する入力操作の一つとして、測定領域Kの設定を行うことができるようにしてある。制御部10は、さらに、データ入出力装置10c(例えばCDドライブ装置、DVDドライブ装置)が付設されることもあり、その場合は、デジタルカメラなどの外部カメラ装置で撮影した画像データを、データ入出力装置10cを介して入出力できるようにしてある。   The control unit 10 is configured by a computer device including a CPU and a memory, and further includes a display device 10a (for example, a liquid crystal panel) and an input device 10b (for example, a keyboard and a mouse), and displays a captured image on the display device 10a. Various inputs necessary for control can be performed via the input device 10b. For example, the measurement region K can be set as one of the input operations related to the present invention. The control unit 10 may be further provided with a data input / output device 10c (for example, a CD drive device or a DVD drive device). In this case, image data captured by an external camera device such as a digital camera is input as data. Input / output can be performed via the output device 10c.

制御部10で行われる演算処理を説明するため、制御部10を機能ブロックごとに分けて説明すると、撮影画像蓄積部11と、連続画像間ピクセル変位算出部12と、連続画像間サブピクセル変位算出部13と、累積変位量算出部14とにより構成される。   In order to describe the arithmetic processing performed by the control unit 10, the control unit 10 will be described separately for each functional block. The captured image storage unit 11, the inter-continuous image pixel displacement calculation unit 12, and the inter-continuous image sub-pixel displacement calculation. The unit 13 and the cumulative displacement amount calculation unit 14 are configured.

撮影画像蓄積部11は、測定対象領域を含む領域について、測定開始時点、中間時点、測定終了時点を含む3枚以上の撮影画像を蓄積する処理を行う。撮影画像はカメラ装置3から取得してもよいし、外部カメラ装置で取得した画像を、データ入出力装置10cを介して取得してもよい。蓄積する撮影画像の枚数は、中間時点の撮影画像の枚数により変化することになる。測定開始時点から測定終了時点までの間に必要な撮影画像の枚数は、被測定物全体の輝度分布等にも依存するが、変形、ひずみの大きさに応じて、あるいは回転移動が伴う場合は回転の大きさに応じて、時系列的に並ぶ画像間での変位量があまり大きくならないように適宜の数の画像が蓄積される。   The captured image storage unit 11 performs a process of storing three or more captured images including a measurement start point, an intermediate point, and a measurement end point for a region including the measurement target region. The captured image may be acquired from the camera device 3, or an image acquired by the external camera device may be acquired via the data input / output device 10c. The number of captured images to be accumulated varies depending on the number of captured images at the intermediate time point. The number of captured images required from the start of measurement to the end of measurement depends on the brightness distribution of the entire object to be measured, but it depends on the magnitude of deformation, distortion, or when rotational movement is involved. An appropriate number of images are accumulated so that the amount of displacement between images arranged in time series is not so large according to the magnitude of rotation.

連続画像間ピクセル変位算出部12は、撮影画像蓄積部11に蓄積された撮影画像から時系列的に連続する撮影画像を2枚ずつ順次抽出し、画像の対とする。例えば、図2は3枚の撮影画像G1(測定開始画像),G2(中間画像),G3(測定終了画像)の場合であるが、G1−G2対、G2−G3対が抽出されることになる。さらにG4,G5と増えるに場合は、G3−G4対、G4−G5対が加わる。   The inter-continuous image pixel displacement calculation unit 12 sequentially extracts two chronologically consecutive captured images from the captured images stored in the captured image storage unit 11 to form a pair of images. For example, FIG. 2 shows the case of three photographed images G1 (measurement start image), G2 (intermediate image), and G3 (measurement end image), but G1-G2 pairs and G2-G3 pairs are extracted. Become. When G4 and G5 are further increased, a G3-G4 pair and a G4-G5 pair are added.

そして、連続画像間ピクセル変位算出部12は、それぞれの画像の対において、先に撮影した画像を変形前画像(図2で「前」と記す)とし、後に撮影した画像を変形後画像(図2で「後」と記す)とし、変形前画像の測定対象領域に含まれる着目画素b(x,y)に対し、変形後画像内において着目画素b(x,y)に対応付けられる画素を、着目画素b(x,y)周辺の画像情報(例えば輝度情報)の相関量に基づいて探索することにより照合画素a(x+m,y+m)として決定する。
具体的には、G1−G2対においては、画像G1上の着目画素b(x,y)に対応する画像G2上の1つの画素(すなわち着目画素のG2上での移動先と考えられる画素)を、着目画素b(x,y)周辺の輝度情報に基づいて探索し、照合画素a(x+mx1,y+my1)として決定する。なお、輝度情報の相関量に基づいて照合画素を探索する具体的方法については後述する。
G2上の照合画素a(x+mx1,y+my1)が定まると、着目画素b(x,y)と、照合画素a(x+mx1,y+my1)との間のピクセル単位での変位量(mx1,my1)が求まる。1つの着目画素についての処理を終えると、1画素分シフトさせて新たな着目画素に対し、同様の演算を繰り返す。そして測定領域全体にわたって同様の処理を繰り返す。
Then, the inter-continuous image pixel displacement calculation unit 12 sets the first captured image as the pre-deformation image (denoted as “front” in FIG. 2) in each pair of images, and the subsequent image as the post-deformation image (see FIG. 2). and 2 referred to as "after" in), with respect to the target pixel b i included in the measurement target region before deformation image (x, y), is associated with the target pixel b i (x, y) in the deformed image A pixel is determined as a matching pixel a j (x + m x , y + m y ) by searching based on the correlation amount of image information (for example, luminance information) around the pixel of interest b i (x, y).
Specifically, in the G1-G2 pair, it is considered that one pixel on the image G2 corresponding to the target pixel b 1 (x 1 , y 1 ) on the image G1 (that is, the target pixel moves on the G2). Is determined based on the luminance information around the pixel of interest b 1 (x, y) and determined as a matching pixel a 1 (x 1 + m x1 , y 1 + m y1 ). A specific method for searching for a matching pixel based on the correlation amount of luminance information will be described later.
When the matching pixel a 1 (x 1 + m x1 , y 1 + m y1 ) on G2 is determined, the target pixel b 1 (x 1 , y 1 ) and the matching pixel a 1 (x 1 + m x1 , y 1 + m y1 ) A displacement amount (m x1 , m y1 ) in units of pixels between and is obtained. When the process for one pixel of interest is completed, the same calculation is repeated for a new pixel of interest after shifting by one pixel. The same process is repeated over the entire measurement area.

続いて、連続画像間ピクセル変位算出部12は、G2−G3対で同様の探索を行うため、これまでの演算で決定されたG2上の照合画素a(x+m1x,y+m1y)を、G2上の着目画素b(x,y)として設定し、次のG2−G3対の演算においては、画像G2を変更前画像として扱う。すなわち、以下の置換を行う。
=x+m1x (1)
=y+m1y (2)
そして、同様の探索演算を行うことにより、変更後画像となる画像G3上の照合画素a(x+m2x,y+m2y)を決定する。
G3上の照合画素a(x+mx2,y+my2)が定まると、着目画素b(x,y)と、照合画素a(x+mx2,y+my2)との間のピクセル単位での変位量(m2x,m2y)が求まる。そして測定領域全体にわたって同様の処理を繰り返す。
以下、さらに他の画像対が存在する場合には、同様の探索演算および変位量の算出を繰り返す。
Subsequently, since the inter-continuous image pixel displacement calculation unit 12 performs the same search with the G2-G3 pair, the matching pixel a 1 (x 1 + m 1x , y 1 + m 1y on G2 determined by the previous calculation is determined. ) Is set as the pixel of interest b 2 (x 2 , y 2 ) on G2, and the image G2 is treated as a pre-change image in the next G2-G3 pair calculation. That is, the following substitution is performed.
x 2 = x 1 + m 1x (1)
y 2 = y 1 + m 1y (2)
Then, by performing the same search operation to determine a matching pixel a 2 on the image G3 to be changed after the image (x 2 + m 2x, y 2 + m 2y).
When the matching pixel a 2 (x 2 + m x2 , y 2 + m y2 ) on G3 is determined, the pixel of interest b 2 (x 2 , y 2 ) and the matching pixel a 2 (x 2 + m x2 , y 2 + m y2 ) The displacement amount (m 2x , m 2y ) in units of pixels is obtained. The same process is repeated over the entire measurement area.
Thereafter, when there are still other image pairs, the same search operation and displacement amount calculation are repeated.

以上の演算を繰り返すことにより、画像G1(測定開始画像)上の測定領域の各画素に対応するG2(中間画像)上の画素、さらにG2上の測定領域の各画素に対応するG3(測定終了画像)の画素を決定し、測定開始画像上の画素から測定終了画像上の画素までの対応付けができるようにする。   By repeating the above calculation, a pixel on G2 (intermediate image) corresponding to each pixel in the measurement region on the image G1 (measurement start image), and further a G3 (measurement end) corresponding to each pixel in the measurement region on G2 Image) pixels are determined, and correspondence from pixels on the measurement start image to pixels on the measurement end image is made possible.

ここで、連続画像間ピクセル変位算出部12が、輝度情報の相関量に基づいて照合画素を探索する具体的方法について説明する。
図3は変形前画像と変形後画像との画素同士の対応関係を求める画像照合を説明する図である。
変形前画像には、図3(a)に示すように、変形後画像との対応を付けようとする着目画素を設定する。以後、この変形前画像における着目画素を、計測着目画素b(x,y)という。そして計測着目画素b(x,y)を中心とするdx×dyの微小領域を設定する。以後、この微小領域を基準画像領域部B(b)という。基準画像領域部B(b)は、計測着目画素b(x,y)に対応する変形後画像の画素を探索する際に、画像照合を行う領域である。この領域内に含まれる画素数を大きくとると画像照合の精度が高まる反面、演算時間が長くかかるようになる。具体的には、dx、dyとして20〜100画素程度を設定する。
Here, a specific method by which the inter-continuous image pixel displacement calculation unit 12 searches for the matching pixel based on the correlation amount of the luminance information will be described.
FIG. 3 is a diagram for explaining image matching for obtaining a correspondence relationship between pixels of the pre-deformation image and the post-deformation image.
As shown in FIG. 3A, the target pixel to be associated with the post-deformation image is set in the pre-deformation image. Hereinafter, the pixel of interest in the pre-deformation image, measuring the target pixel b i (x, y) that. Then, a small area of dx × dy with the measurement target pixel b i (x, y) as the center is set. Hereinafter, this minute area is referred to as a reference image area portion B (b i ). The reference image area B (b i ) is an area where image matching is performed when searching for a pixel of the post-deformation image corresponding to the measurement target pixel b i (x, y). If the number of pixels included in this region is increased, the accuracy of image collation increases, but the calculation time takes longer. Specifically, about 20 to 100 pixels are set as dx and dy.

一方、変形後画像には、図3(b)に示すように、上記計測着目画素b(x,y)との対応関係を求めようとして着目する着目画素を設定する。以後、この変形後画像における着目画素を、探索着目画素a(x+Δx,y+Δy)という。そして探索着目画素a(x+Δx,y+Δy)を中心とするdx×dy(上記基準画像領域部B(b)と同サイズ)の微小領域を設定する。以後、この微小領域を比較画像領域部A(a)という。比較画像領域部A(a)は、基準画像領域部B(b)との画像照合が行われる領域である。中心となる探索着目画素a(x+Δx,y+Δy)は、演算の際に1画素分ずつシフトすることで、比較画像領域部A(a)の位置が次々と移動するようになる。 On the other hand, as shown in FIG. 3B, the target pixel of interest is set in the post-deformation image in order to obtain a correspondence relationship with the measurement target pixel b i (x, y). Hereinafter, the target pixel in the post-deformation image is referred to as a search target pixel a j (x + Δx, y + Δy). Then, a small area of dx × dy (same size as the reference image area B (b i )) with the search target pixel a j (x + Δx, y + Δy) as the center is set. Hereinafter, this small area is referred to as a comparative image area portion A (a j ). The comparison image area part A (a j ) is an area where image comparison with the reference image area part B (b i ) is performed. The search target pixel a j (x + Δx, y + Δy) serving as the center is shifted by one pixel at the time of calculation, so that the position of the comparison image region portion A (a j ) moves one after another.

そして、比較画像領域部A(a)の位置を次々とシフトさせたときの各比較画像領域部A(a)の画像情報と、基準画像領域部B(b)の画像情報とに基づいて、互いの相関関係を求める。ここでは相関関係を求めるための画像情報として輝度情報を用いる。なお、カラー画像であればRGB情報等の色情報をとることもできる。 Then, the image information of each comparison image region portion A (a j ) when the position of the comparison image region portion A (a j ) is successively shifted and the image information of the reference image region portion B (b i ) Based on this, the correlation between each other is obtained. Here, luminance information is used as image information for obtaining the correlation. For color images, color information such as RGB information can be taken.

画像照合のために用いる輝度情報の相関値Rとして、基準画像領域部B(b)に含まれる各画素の輝度値と、比較画像領域部A(a)において対応する各画素の輝度値との残差二乗和、または、下記式(3)で表される輝度値の残差ノルムRij(b,a)(輝度値の残差二乗和の平方根)を用いる。
ij(b,a)=||A(a)−B(b)|| ・・・(3)
As the correlation value R of the luminance information used for image matching, the luminance value of each pixel included in the reference image region portion B (b i ) and the luminance value of each pixel corresponding to the comparison image region portion A (a j ) Or the luminance value residual norm R ij (b i , a j ) (the square root of the luminance value residual square sum) represented by the following equation (3).
R ij (b i , a j ) = || A (a j ) −B (b i ) || (3)

そして、残差ノルムRij(b,a)が最小となるときの比較画像領域部A(a)が最も相関性の高い領域となるので、これを求め、そのときの探索着目画素a(x+m,y+m)を照合画素位置として求める。ここでm、mは、残差ノルムが最小となる画素のΔx、Δyであり、これが変位前の位置から変位後の位置までの変位量(変位解)となる。 Then, since the comparison image area A (a j ) when the residual norm R ij (b i , a j ) becomes the minimum is the area having the highest correlation, this is obtained, and the search target pixel at that time a j (x + m x, y + m y) obtained as a matching pixel position. Here m x, m y is the pixel of the [Delta] x, [Delta] y the residual norm is minimized, which is the displacement to the position after displacement from the position before displacement (displacement solution).

なお、上記例では、画素同士の画像情報の相関量として、残差ノルムRij(b,a)を好ましい例として用いたが、微小領域内の画素同士の比較を行う際に、類似度を数値化できる相関量であればこれ以外でもよい。例えば、着目画素に近いほど重みを付けるようにして微小領域内の画素の輝度値の重み付き平均値を相関量としてもよい。 In the above example, the residual norm R ij (b i , a j ) is used as a preferred example as the correlation amount of image information between pixels. However, when comparing pixels in a minute region, the similarities are used. Other correlations may be used as long as the degree of correlation can be quantified. For example, a weighted average value of luminance values of pixels in a minute area may be set as a correlation amount so as to be closer to the target pixel.

このようにして、連続画像間ピクセル変位算出部12によって求められた変位量m、mは、ピクセル単位での変位量である。測定精度を上げるには、サブピクセルオーダー(ピクセル単位以下)での変位量の測定が要求されるので、続いて、連続画像間サブピクセル変位算出部13により、精度を高めるための演算処理を行う。 In this way, displacement m x, m y obtained by continuous image between pixels displacement calculation unit 12, a displacement amount in pixels. In order to increase the measurement accuracy, it is required to measure the amount of displacement in the sub-pixel order (pixel unit or less). Subsequently, the inter-image sub-pixel displacement calculation unit 13 performs arithmetic processing for increasing the accuracy. .

図4は、ピクセル単位で求めた変位量(変位解)を元にして、サブピクセルオーダーでの変位量を求める演算処理を説明する図である。なお、この図はx方向のみを示すが、y方向についても同様である。
変位量としてピクセル単位での計測値よりも正しい値は、照合画素a(x+m,y+m)を中心とした1ピクセルの変動幅内に存在する。そこで連続画像間ピクセル変位算出部12により求められた、輝度値の残差ノルムRij(b,a)が最小となる照合画素a(x+m,y+m)の位置座標を基準として、変形後画像内の照合画素a(x+m,y+m)、および、x、y方向の±1画素ずつを加えた隣接する合計9点(3画素×3画素)の画素情報の相関量を求める。具体的にはこれら9点の輝度相関値から、下記式(4)により示される最小二乗曲面g(x、y)を作成する。
g(x、y)= ax+bx+cy+dy+exy+f ・・・(4)
ここでa〜fは最小二乗法により得られる係数である。
FIG. 4 is a diagram for explaining calculation processing for obtaining the displacement amount in the sub-pixel order based on the displacement amount (displacement solution) obtained in pixel units. Although this figure shows only the x direction, the same applies to the y direction.
Correct value than the measurement value in pixels as the displacement amount, matching pixel a j (x + m x, y + m y) present in the central and the fluctuation width of one pixel of. Therefore, based on the position coordinates of the matching pixel a j (x + m x , y + m y ) that is obtained by the inter-image pixel displacement calculation unit 12 and has the minimum luminance value residual norm R ij (b i , a j ). , matching pixel a j in the deformed image (x + m x, y + m y), and, x, the correlation of pixel information of ± 1 pixel by the adjacent total 9 points plus the y direction (3 pixels × 3 pixels) Ask for. Specifically, a least square surface g (x, y) represented by the following equation (4) is created from the luminance correlation values of these nine points.
g (x, y) = ax 2 + bx + cy 2 + dy + exy + f (4)
Here, a to f are coefficients obtained by the method of least squares.

例えば、x座標の一次元方向については図4に示すように、変形後画像内の照合画素a(x+m)、および、照合画素a(x+m)に隣接する画素a(x+m−1)、画素a(x+m+1)の画像情報の相関量に基づいて最小二乗曲面を作成し、最小二乗曲面から求めた極値に基づいて、サブピクセルオーダーでの着目画素b(x)の変位量(Δx)を求める。二次元座標系においては、変形後画像内の照合画素a(x+m,y+m)、および、照合画素a(x+m±1,y+m±1)の合計9個の隣接する画素の画像情報の相関量に基づいて最小二乗曲面を作成し、最小二乗曲面から求めた極値に基づいて、サブピクセルオーダーでの着目画素b(x,y)の変位量(Δx,Δy)を求める。 For example, as shown in Figure 4 for a one-dimensional direction of the x-coordinate, matching pixel a j (x + m x) in the deformed image and the pixel a j (x + m x adjacent to the matching pixels a j (x + m x) -1), a least square surface is created based on the correlation amount of the image information of the pixel a j (x + m x +1), and the pixel of interest b i (sub pixel order) is calculated based on the extreme value obtained from the least square surface. The displacement amount (Δx k ) of x) is obtained. In the two-dimensional coordinate system, matching pixel a j in the deformed image (x + m x, y + m y), and, matching pixel a j (x + m x ± 1, y + m y ± 1) Total nine adjacent pixels A least-square surface is created based on the correlation amount of the image information, and the displacement amount (Δx k , Δy k ) of the pixel of interest b i (x, y) in the sub-pixel order based on the extreme value obtained from the least-square surface. )

この式に基づいて最小二乗近似を実行することにより、最小二乗曲面g(x、y)の各係数が決定され、曲面式が得られる。
そして、得られた曲面式が極値をとるときの座標の変化(Δx,Δy)を求めることにより、サブピクセルオーダーで変位量Δx,Δy(変位解)が算出されることになる。
以後、測定領域内の各画素、および各画像対に対し、同様の処理を繰り返す。
図2の例に対応して説明すると、G1−G2対における照合画素a(x+m1x,y+m1y)に対応して、極値の座標(x+m1x+Δx1k,y+m1y+Δy1k)が求まり、変位量Δx1k,Δy1k(変位解)が決定される。同様に、G2−G3対における照合画素a(x+mx2,y+my2)に対応して、極値の座標(x+mx2+Δx2k,y+my2+Δy2k)が求まり、変位量Δx2k,Δy2k(変位解)が決定される。
By executing the least square approximation based on this equation, each coefficient of the least square curved surface g (x, y) is determined, and a curved surface equation is obtained.
Then, by obtaining the change in coordinates (Δx k , Δy k ) when the obtained curved surface formula takes an extreme value, the displacement amounts Δx k , Δy k (displacement solution) are calculated in the subpixel order. Become.
Thereafter, the same processing is repeated for each pixel and each image pair in the measurement region.
Describing corresponding to the example of FIG. 2, the coordinates (x 1 + m 1x + Δx 1k , y 1 ) of the extreme value corresponding to the matching pixel a 1 (x 1 + m 1x , y 1 + m 1y ) in the G1-G2 pair. + M 1y + Δy 1k ) is obtained, and displacement amounts Δx 1k and Δy 1k (displacement solutions) are determined. Similarly, corresponding to matching pixel a 2 (x 2 + m x2 , y 2 + m y2) in G2-G3 pair, the coordinates of the extreme value (x 2 + m x2 + Δx 2k, y 2 + m y2 + Δy 2k) is Motomari, Displacement amounts Δx 2k and Δy 2k (displacement solutions) are determined.

なお、上述例では極値を求める上で、最小二乗曲面近似を用いたが、これに代えて、最急降下法など他の近似法を用いてもよい。   In the above-described example, the least square surface approximation is used for obtaining the extreme value, but other approximation methods such as the steepest descent method may be used instead.

次に累積変位量算出部14について説明する。累積変位量算出部14は、測定対象領域内の各画素について、画像の対ごとに算出されたピクセル単位の変位量とサブピクセルオーダーの変位量とを累積加算し、測定開始時点から測定終了時点までの変位量を算出する。
図2の具体例で説明すると、G1(測定開始画像)からG2(中間画像)を経てG3(測定終了画像)までのピクセル単位の変位量およびサブピクセルオーダーの変位量の総和(X、Y)を求める。すなわち、
X=mx1+mx2+mx3+Δx1k+Δx2k+Δx3k
Y=mx1+mx2+mx3+Δx1k+Δx2k+Δx3k
となる。
このように、中間画像を介在させて変位量を累積加算することにより、測定開始画像から測定終了画像までに大きな変位が生じている場合でも、画素間の対応が付くようになり、変位量の総和を計測することができる。
Next, the cumulative displacement calculation unit 14 will be described. The cumulative displacement amount calculation unit 14 cumulatively adds the displacement amount in pixel units calculated for each image pair and the displacement amount in the sub-pixel order for each pixel in the measurement target region, and from the measurement start time to the measurement end time. The amount of displacement up to is calculated.
In the specific example of FIG. 2, the sum (X, Y) of the displacement amount in pixel units and the displacement amount in the sub-pixel order from G1 (measurement start image) to G3 (intermediate image) to G3 (measurement end image). Ask for. That is,
X = m x1 + m x2 + m x3 + Δx 1k + Δx 2k + Δx 3k
Y = m x1 + m x2 + m x3 + Δx 1k + Δx 2k + Δx 3k
It becomes.
In this way, by accumulating the displacement amount with the intermediate image interposed, even when a large displacement occurs from the measurement start image to the measurement end image, a correspondence between the pixels can be obtained, and the displacement amount The sum can be measured.

(測定動作)
つぎに、上記変位計測装置による試験片の変形を測定する際の測定動作の手順について説明する。図5は、本発明の測定動作の手順を示すフローチャートである。
(Measurement operation)
Next, the procedure of the measurement operation when measuring the deformation of the test piece by the displacement measuring device will be described. FIG. 5 is a flowchart showing the procedure of the measurement operation of the present invention.

計測装置を起動し、測定開始画像、中間画像、測定終了画像まで、時系列的に撮影を行い、撮影画像をメモリに蓄積する(S101)。この間、引張試験機の可動チャック1を作動して負荷荷重を連続的に増大していき、試験片に大きな変形が加わるようにする。撮影する中間画像の枚数は、変形の大きさに応じて適宜の枚数にする。   The measurement apparatus is activated, the measurement start image, the intermediate image, and the measurement end image are captured in time series, and the captured images are stored in the memory (S101). During this time, the movable chuck 1 of the tensile tester is operated to continuously increase the load so that a large deformation is applied to the test piece. The number of intermediate images to be taken is set to an appropriate number according to the size of the deformation.

続いて、連続画像間ピクセル変位算出部12により、時系列的に若い方から画像対を抽出し、変形前画像の測定対象領域に含まれる着目画素b(x,y)に対し、変形後画像内において着目画素b(x,y)に対応付けられる画素を、着目画素b(x,y)周辺の画像情報(例えば輝度情報)の相関量に基づいて探索することにより照合画素a(x+m,y+m)として決定し、ピクセル単位の変位量(m,m)を算出する(S102)。 Subsequently, the continuous image inter-pixel displacement calculation unit 12 extracts image pairs from the younger in time series, and applies the post-deformation to the target pixel b i (x, y) included in the measurement target region of the pre-deformation image. target pixel b i (x, y) in the image pixels associated with the, target pixel b i (x, y) matching pixel a by searching based on a correlation of the image information around (e.g., luminance information) j (x + m x , y + m y ) is determined, and the displacement amount (m x , m y ) in pixel units is calculated (S102).

続いて、連続画像間サブピクセル変位算出部13により、照合画素a(x+m,y+m)、および、照合画素a(x+m,y+m)に隣接する画素の輝度情報の相関量に基づいて最小二乗近似を行い、サブピクセルオーダーでの着目画素b(x,y)の変位量(Δx,Δy)を求めて精度を高める演算処理を行う(S103)。 Subsequently, the continuous image between the sub-pixel displacement calculation unit 13, the matching pixel a j (x + m x, y + m y) , and, matching pixel a j (x + m x, y + m y) the correlation of the luminance information of pixels adjacent to the Based on this, a least-square approximation is performed, and a displacement (Δx k , Δy k ) of the pixel of interest b i (x, y) in the sub-pixel order is obtained to perform a calculation process to increase the accuracy (S103).

計測中の画像対において測定領域全体の画素について、対応する照合画素を決定したかを判定する(S104)。未決定の画素がある場合は1画素分シフトさせて(S105)、S102に戻り、同様の処理を繰り返す。測定領域のすべての画素について対応する照合画素を決定したときはS106に進む。   It is determined whether the corresponding matching pixel has been determined for the pixels in the entire measurement region in the image pair being measured (S104). If there is an undetermined pixel, it is shifted by one pixel (S105), the process returns to S102, and the same processing is repeated. When the corresponding matching pixels are determined for all the pixels in the measurement region, the process proceeds to S106.

計測中の画像対について測定領域全体の画素の照合画素を決定し終えた場合は、測定開始画像から測定終了画像までのすべての画像対に対して、計測を終えたかを判定する(S106)。画像対すべてについての計測を終えていない場合は画像対を1つ移動して(S107)、S102以降の処理を繰り返す。すべての画像対について終了した場合はS108に進む。   When the collation pixel of the pixels in the entire measurement region has been determined for the image pair being measured, it is determined whether measurement has been completed for all image pairs from the measurement start image to the measurement end image (S106). If measurement for all image pairs has not been completed, the image pair is moved by one (S107), and the processing from S102 onward is repeated. If all image pairs have been completed, the process proceeds to S108.

続いて、累積変位量算出部14により、時系列的に並ぶ測定開始画像、中間画像、測定終了画像の測定対象領域内の各画素について、測定開始時点から測定終了時点までの対応関係を求めるととともに、画像対ごとに算出されたピクセル単位の変位量とサブピクセルオーダーの変位量とを累積加算し、測定開始時点から測定終了時点までの全変位量を算出する(S108)。   Subsequently, when the cumulative displacement amount calculation unit 14 obtains a correspondence relationship from the measurement start point to the measurement end point for each pixel in the measurement target region of the measurement start image, the intermediate image, and the measurement end image arranged in time series. At the same time, the displacement amount in units of pixels calculated for each image pair and the displacement amount in the sub-pixel order are cumulatively added to calculate the total displacement amount from the measurement start point to the measurement end point (S108).

以上の処理手順により、変位量の大きさに関わらず、測定開始時点から測定終了時点までの全変位量を求めることができる。   With the above processing procedure, the total displacement amount from the measurement start time point to the measurement end time point can be obtained regardless of the magnitude of the displacement amount.

本発明の実施例として、引張試験機に取り付けた試験片の変形を例に説明したが、既述のように、本発明は変形前後の画像比較ができるものであれば、他の計測においても適用することができる。   As an example of the present invention, the deformation of the test piece attached to the tensile tester has been described as an example, but as described above, the present invention can be used in other measurements as long as the image can be compared before and after the deformation. Can be applied.

本発明は、時間経過とともに変形する被測定物の変位量を測定する変位測定装置に利用することができる。   The present invention can be used in a displacement measuring device that measures the amount of displacement of an object to be measured that is deformed over time.

本発明の一実施形態である変位計測装置の構成を示すブロック図。The block diagram which shows the structure of the displacement measuring device which is one Embodiment of this invention. 測定開始画像から測定終了画像まで画像対ごとに行う演算処理を説明する図。The figure explaining the arithmetic processing performed for every image pair from a measurement start image to a measurement end image. 変形前画像と変形後画像との画素同士の対応関係を説明する図。The figure explaining the correspondence of the pixels of the image before a deformation | transformation, and the image after a deformation | transformation. ピクセル単位で求めた変位量(変位解)を元にして、サブピクセルオーダーでの変位量を求める演算処理を説明する図。The figure explaining the arithmetic processing which calculates | requires the displacement amount in a sub pixel order based on the displacement amount (displacement solution) calculated | required per pixel. 本発明の一実施形態である変位計測装置により変位量を計測する際のフローチャート。The flowchart at the time of measuring the amount of displacement with the displacement measuring device which is one embodiment of the present invention.

符号の説明Explanation of symbols

1: 可動チャック
2: 固定チャック
3: カメラ装置(CCDカメラ)
10: 制御部
10a: 表示装置
10b: 入力装置
10c: データ入出力装置
11: 撮影画像蓄積部
12: 連続画像間ピクセル変位算出部
13: 連続画像間サブピクセル変位算出部
14: 累積変位量算出部
1: Movable chuck 2: Fixed chuck 3: Camera device (CCD camera)
10: Control unit 10a: Display device 10b: Input device 10c: Data input / output device 11: Captured image storage unit 12: Continuous image pixel displacement calculation unit 13: Continuous image subpixel displacement calculation unit 14: Cumulative displacement amount calculation unit

Claims (3)

変形する被測定物の測定対象領域について測定開始時点から測定終了時点までの変位量を計測する変位計測装置であって、
測定対象領域について測定開始時点、1以上の中間時点、測定終了時点を含む少なくとも3枚の撮影画像を蓄積する撮影画像蓄積部と、
蓄積された撮影画像から時系列的に連続する撮影画像を2枚ずつ順次抽出し、それぞれの画像の対において、先に撮影した画像を変形前画像とし、後に撮影した画像を変形後画像とし、変形前画像の測定対象領域に含まれる着目画素b(x,y)に対し、変形後画像内において前記着目画素b(x,y)に対応付けられる画素を、着目画素b(x,y)周辺の画像情報の相関量に基づいて探索することにより照合画素a(x+m,y+m)として決定し、着目画素b(x,y)と照合画素a(x+m,y+m)とのピクセル単位での変位量(m,m)を求める演算を行い、さらに着目画素を次々と移動して変形前画像の測定領域内の各画素についての変形後画像内の照合画素を決定するとともにピクセル単位の変位量を算出する連続画像間ピクセル変位算出部と、
前記変形後画像内の照合画素a(x+m,y+m)、および、前記照合画素a(x+m,y+m)に隣接する画素の画像情報の相関量に基づいて、ピクセル単位以下のサブピクセルオーダーでの着目画素b(x,y)の変位量(Δx,Δy)を求める連続画像間サブピクセル変位算出部と、
測定対象領域内の各画素について、画像の対ごとに算出されたピクセル単位の変位量とサブピクセルオーダーの変位量とを累積加算し、測定開始時点から測定終了時点までの変位量を算出する累積変位量算出部とを備えたことを特徴とする変位計測装置。
A displacement measuring device that measures a displacement amount from a measurement start time point to a measurement end time point for a measurement target region of a deformed object to be measured,
A captured image storage unit that stores at least three captured images including a measurement start time, one or more intermediate time points, and a measurement end time for the measurement target region;
Two consecutive captured images in time series are sequentially extracted from the stored captured images, and in each pair of images, the first captured image is the pre-deformation image, the later captured image is the post-deformation image, undeformed target pixel included in the measurement target region of the image b i (x, y) with respect to, the deformed image in the target pixel b i (x, y) in the pixel associated with the, target pixel b i (x , matching pixel a j (x + m x by searching based on a correlation of the image information y) near, y + m y) is determined as, the target pixel b i (x, y) and the collation pixel a j (x + m x, y + m y ) is calculated to obtain the displacement amount (m x , m y ) in pixel units, and the pixel of interest is moved one after another, and each pixel in the measurement area of the pre-deformation image Determine the matching pixel and A continuous image between pixels displacement calculation unit for calculating a displacement amount of the cell unit,
Matching pixel a j in said deformed image (x + m x, y + m y), and, wherein matching pixel a j (x + m x, y + m y) based on the correlation amount of the image information of the pixels adjacent to, the following pixels A sub-pixel displacement calculation unit between successive images for obtaining a displacement amount (Δx k , Δy k ) of the pixel of interest b i (x, y) in the sub-pixel order;
Cumulative addition of the displacement amount in pixel units calculated for each pair of images and the displacement amount in the sub-pixel order for each pixel in the measurement target region, and calculating the displacement amount from the measurement start point to the measurement end point A displacement measuring device comprising a displacement amount calculating unit.
前記連続画像間ピクセル変位算出部は、変形前画像に測定対象領域内の着目画素b(x,y)および着目画素b(x,y)周辺の微小領域に含まれる画素からなる基準画像領域部B(b)を設定し、変形後画像に探索画素a(x+Δx,y+Δy)および探索画素a(x+Δx,y+Δy)周辺の微小領域に含まれる画素からなる比較画像領域部A(a)を設定し、基準画像領域部B(b)と比較画像領域部A(a)とにおける画素同士の画像情報の相関量を、基準画像領域部B(b)に対する比較画像領域部A(a)の位置を1画素ずつずらしながら算出することにより、算出された相関量に基づいていずれかの探索画素a(x+Δx,y+Δy)を、照合画素a(x+m,y+m)として決定する請求項1に記載の変位計測装置。 The continuous image between pixels displacement calculation unit, the target pixel b i (x, y) in the measurement target region before deformation image and the target pixel b i (x, y) reference image composed of pixels included in the small region around An area B (b i ) is set, and the comparison image area A (consisting of pixels included in a small pixel around the search pixel a j (x + Δx, y + Δy) and the search pixel a j (x + Δx, y + Δy) is set in the transformed image. set a j), the reference image area part B (b i) and the comparative image area part a (a j) and the correlation amount of the image information between pixels in the comparison image with respect to the reference image area part B (b i) By calculating the position of the area portion A (a j ) while shifting one pixel at a time, one of the search pixels a j (x + Δx, y + Δy) is converted into the matching pixel a j (x + m x , y + m y ) The displacement measuring device according to claim 1 to be determined. 前記連続画像間サブピクセル変位算出部は、変形後画像内の照合画素a(x+m,y+m)、および、前記照合画素a(x+m,y+m)に隣接する画素の画像情報の相関量に基づいて最小二乗曲面を作成し、最小二乗曲面から求めた極値に基づいて、サブピクセルオーダーでの着目画素b(x,y)の変位量(Δx,Δy)を求める請求項1に記載の変位計測装置。 The continuous image between the sub-pixel displacement calculation unit, matching pixel a j in the deformed image (x + m x, y + m y), and, wherein matching pixel a j (x + m x, y + m y) of the image information of the pixels adjacent to the A least square surface is created based on the correlation amount, and a displacement amount (Δx k , Δy k ) of the pixel of interest b i (x, y) in the subpixel order is obtained based on the extreme value obtained from the least square surface. The displacement measuring apparatus according to claim 1.
JP2008043206A 2008-02-25 2008-02-25 Device for measuring deformation with use of plural images Pending JP2009198452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043206A JP2009198452A (en) 2008-02-25 2008-02-25 Device for measuring deformation with use of plural images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043206A JP2009198452A (en) 2008-02-25 2008-02-25 Device for measuring deformation with use of plural images

Publications (1)

Publication Number Publication Date
JP2009198452A true JP2009198452A (en) 2009-09-03

Family

ID=41142076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043206A Pending JP2009198452A (en) 2008-02-25 2008-02-25 Device for measuring deformation with use of plural images

Country Status (1)

Country Link
JP (1) JP2009198452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083605A (en) * 2011-10-12 2013-05-09 Kurosaki Harima Corp Displacement measuring apparatus, displacement measuring method, and program
JP2014157038A (en) * 2013-02-14 2014-08-28 Toyota Motor Corp Apparatus and program for automatically measuring fatigue crack of object to be measured
JPWO2021111533A1 (en) * 2019-12-04 2021-06-10
JP2021121786A (en) * 2020-01-31 2021-08-26 株式会社島津製作所 Displacement distribution measuring device, displacement distribution measuring method, and control program of displacement distribution measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083605A (en) * 2011-10-12 2013-05-09 Kurosaki Harima Corp Displacement measuring apparatus, displacement measuring method, and program
JP2014157038A (en) * 2013-02-14 2014-08-28 Toyota Motor Corp Apparatus and program for automatically measuring fatigue crack of object to be measured
JPWO2021111533A1 (en) * 2019-12-04 2021-06-10
WO2021111533A1 (en) * 2019-12-04 2021-06-10 日本電気株式会社 Abnormality determination device, abnormality determination method, and program storage medium
JP7248149B2 (en) 2019-12-04 2023-03-29 日本電気株式会社 Abnormality determination device, abnormality determination method, and computer program
US12050183B2 (en) 2019-12-04 2024-07-30 Nec Corporation Abnormality determination device, abnormality determination method, and program storage medium
JP2021121786A (en) * 2020-01-31 2021-08-26 株式会社島津製作所 Displacement distribution measuring device, displacement distribution measuring method, and control program of displacement distribution measuring device
JP7338495B2 (en) 2020-01-31 2023-09-05 株式会社島津製作所 Displacement distribution measuring device, displacement distribution measuring method, and control program for displacement distribution measuring device

Similar Documents

Publication Publication Date Title
EP3291174A1 (en) Diagnosis assisting device, image processing method in diagnosis assisting device, and computer program
US9436981B2 (en) Dictionary creation device, image processing device, image processing system, dictionary creation method, image processing method, and program
US20060153472A1 (en) Blurring correction method and imaging device
JP2009170970A5 (en)
JP5911296B2 (en) Image processing apparatus, imaging apparatus, microscope system, image processing method, and image processing program
JP2001324305A (en) Image correspondent position detector and range finder equipped with the same
JP2011165043A (en) Image processing device
JP7370922B2 (en) Learning method, program and image processing device
JP2009198452A (en) Device for measuring deformation with use of plural images
JPWO2007074605A1 (en) Image processing method, image processing program, image processing apparatus, and imaging apparatus
JP2017220176A (en) Determination device, determination method and determination program
JP6614954B2 (en) Crack width measuring device
JP2008217526A (en) Image processor, image processing program, and image processing method
JP7204586B2 (en) LEARNING METHOD, PROGRAM AND IMAGE PROCESSING DEVICE
JP6634842B2 (en) Information processing apparatus, information processing method and program
JP5863034B2 (en) Information terminal equipment
US11544872B2 (en) Camera calibration method using human joint points
JP2012003469A (en) Image processing program, image processing device and imaging apparatus
US9014464B2 (en) Measurement device, measurement method, and computer program product
JP5545139B2 (en) Material testing machine and displacement measuring method in material testing machine
JP2010278931A (en) Image processing apparatus
WO2021229745A1 (en) Fractured surface analysis device, trained model generation device, fractured surface analysis method, fractured surface analysis program, and trained model
JP5347530B2 (en) Image processing program, image processing apparatus, and imaging apparatus
JP5167614B2 (en) Distance image generating apparatus, distance image generating method and program
JPH1153549A (en) Device and method for processing image and transmission medium