JP2009197570A - Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method - Google Patents

Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method Download PDF

Info

Publication number
JP2009197570A
JP2009197570A JP2008074572A JP2008074572A JP2009197570A JP 2009197570 A JP2009197570 A JP 2009197570A JP 2008074572 A JP2008074572 A JP 2008074572A JP 2008074572 A JP2008074572 A JP 2008074572A JP 2009197570 A JP2009197570 A JP 2009197570A
Authority
JP
Japan
Prior art keywords
brace
wooden
bent
shaft
directly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074572A
Other languages
Japanese (ja)
Inventor
Fushio Sakata
扶司雄 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008074572A priority Critical patent/JP2009197570A/en
Publication of JP2009197570A publication Critical patent/JP2009197570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve points that a wooden building collapses because connectors and constituent members come apart and that the wooden building is destroyed because a frame becomes a parallelogram. <P>SOLUTION: A joint function of a direct-connected bent reinforced brace and a wood part includes two functions which are a drawing function of a washer resisting so that a connection does not come apart, and a shearing function of plate steel resisting so that the frame does not become the parallelogram. Consequently, a nail, a screw, a bolt and a drawing hardware of the connector are not required. When a horizontal seismic force acts on an earthquake-resisting wall and a portal rigid frame of the direct-connected bent reinforced brace, the bent reinforced brace bears tensile stress, and only compressive stress is generated to the mutual contact surface of wood parts of the connection. The drawing hardware is thereby unnecessary. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、木造軸組み建物に使用する鉄筋ブレース  The present invention relates to a reinforcing bar brace used for a wooden frame building.

従来の耐震壁は、建築基準法施行令46条の木の筋交い、鉄筋ブレース、土塗壁およびS56建設省告示第1100号の面材、土塗壁、格子である。木軸との接合具は、釘.ビス.ボルトであり、接合方法および接合具数は、H12建設省告示第1460号にある。この接合具の力の伝達は、せん断抵抗である。また、他に大臣認定の耐震壁がある。  Conventional seismic walls are wooden braces, reinforcing braces, earthen walls, and S56 Construction Ministry Notification No. 1100 face materials, earthen walls, and lattices. The joint to the wooden shaft is a nail. Screw. It is a volt | bolt, and the joining method and the number of joining tools are in H12 Construction Ministry Notification No. 1460. This force transmission of the connector is a shear resistance. There is also a minister-approved earthquake-resistant wall.

ありませんでした。  There was not. 建築知識・エクスナレッジムック「改正」建築基準法に完全対応.地震に強い[木造住宅]パーフェクトとマニュアル.p−120.2003.文責(財)日本住宅・木材技術センター普及部、小野泰  Fully compliant with the Building Standards Act, “Amendment” of Building Knowledge / Exnerium Gym. [Wooden house] Perfect and manual resistant to earthquakes. p-120.2003. Taisho Ono, Japan Housing and Wood Technology Center Extension Department

従来の耐震壁の破壊形態は、ボルト接合では、木の繊維方向はせん断、繊維直角方向は割裂、釘ビス接合では抜けである。また、ホールダウン金物等の引寄せ金物と柱との接合具は、釘.ビス.ボルトであり、破壊形態は同様である。  The conventional failure mode of the shear wall is shearing in the fiber direction in bolt joint, splitting in the direction perpendicular to the fiber, and missing in nail screw joint. In addition, the fittings for attracting hardware such as hole-down hardware and pillars are nails. Screw. It is a bolt and the form of destruction is the same.

また、大地震時に、軸部の木柱、木横架材に大地震力が入力しない間に接合部が先に破壊する。軸部材単体の強度の実力は、大地震力に対抗できる。しかし、実力を発揮発現しない間に倒壊する。原因は、接合部にある。  In addition, during a large earthquake, the joint is first destroyed while no large seismic force is input to the wooden pillars and wooden horizontal members of the shaft. The strength of the shaft member alone can counteract large earthquake forces. However, it collapses without showing its ability. The cause is in the joint.

木造建物の崩壊の原因は、接合具と構成部材がばらばらになること。倒壊の原因は、軸部が平行四辺形になること。これらの点を解決することが課題である。  The cause of the collapse of wooden buildings is that the joints and components are separated. The cause of the collapse is that the shaft becomes a parallelogram. It is a problem to solve these points.

本発明の直結曲げ鉄筋ブレースと木部との接合機能は、仕口がばらばらにならないように抵抗する座金11の引寄せ機能および軸部が平行四辺形にならないように抵抗する平板鋼12のせん断機能の二つの機能を有している。よって、接合具の釘.ビス.ボルト、引寄せ金物が不用である。  The joining function of the directly connected bending rebar brace and the wood part of the present invention is the pulling function of the washer 11 that resists the joints from breaking apart and the shear of the flat steel 12 that resists the shaft part from becoming a parallelogram. It has two functions. Therefore, the nail of the connector. Screw. Bolts and attracting hardware are unnecessary.

また、直結曲げ鉄筋ブレースの応力の鉛直成分は座金11の面、水平成分は平板鋼12の面により、木部へ伝達する。よって、面を大きくすること、つまり、木部との接触面積を大きくすることにより、めりこみ剛性が高くなる。よって、面の面積を大小にすることで、軸部の水平剛性の変更ができて簡便である。  In addition, the vertical component of the stress of the directly-coupled bending rebar brace is transmitted to the xylem by the surface of the washer 11 and the horizontal component is transmitted by the surface of the flat steel plate 12. Therefore, by increasing the surface, that is, by increasing the contact area with the xylem, the indentation rigidity is increased. Therefore, the horizontal rigidity of the shaft portion can be changed by making the surface area large and small, which is convenient.

また、直結曲げ鉄筋ブレースの耐震壁および門型ラーメンに水平地震力が作用すると、直結曲げ鉄筋ブレースが引張り応力を負担し、仕口の木部同士の接触面には、圧縮応力だけが発生する。よって、引寄せ金物が不用である。  In addition, when a horizontal seismic force acts on the shear wall and portal ramen of a directly-bending reinforcing bar brace, the directly-bending reinforcing bar brace bears a tensile stress and only compressive stress is generated at the contact surface between the wood parts of the joint. . Therefore, the attracting hardware is unnecessary.

また、直結曲げ鉄筋ブレースの木部への力の伝達は、ブレース軸部の曲げ部の4Aまたは4Bの一点に作用し、偏芯していない。よって、水平荷重変形剛性が高い。  Further, the transmission of force to the wood part of the directly connected bending rebar brace acts on one point of the bent part 4A or 4B of the brace shaft part and is not eccentric. Therefore, the horizontal load deformation rigidity is high.

また、転倒モーメントによる木柱の引抜きは、木横架材7の曲げ耐力で抵抗するため、引寄せ金物が不用になる。また、一階部分の耐震壁は、直結曲げ鉄筋ブレースのターンバックルを基礎に斜めに埋めたアンカーボルトに直結することで解決する。  Further, the pulling-out of the wooden pillar due to the overturning moment resists the bending strength of the wooden horizontal member 7, so that the attracting metal is not necessary. In addition, the seismic wall on the first floor is solved by connecting directly to anchor bolts that are buried obliquely based on the turnbuckles of directly connected bending rebar braces.

上下階連層の耐力壁の場合には、直結曲げ鉄筋ブレース同士が連結し、上下階が連続体になることで、一次モードの上下階が同方向変形、二次モードの異方向変形、の傾きにおいても、層間変形角の計算と地震時の建物挙動の推定も簡便である。  In the case of the load-bearing wall of the upper and lower floors, the directly connected bending reinforcement braces are connected to each other, and the upper and lower floors become a continuous body. In terms of inclination, it is also easy to calculate the interlaminar deformation angle and estimate the building behavior during an earthquake.

また、安全限界計算において、直結曲げ鉄筋ブレースの破断が建物の破壊である。よって、建物破壊の推定、および、直結曲げ鉄筋ブレースの塑性範囲の伸び量から、安全限界層間変形角の推定が簡便である。  Moreover, in the safety limit calculation, the fracture of the directly connected bending rebar brace is the destruction of the building. Therefore, it is easy to estimate the safety limit interlayer deformation angle from the estimation of the building failure and the amount of elongation of the plastic range of the directly connected bending rebar brace.

また、座金11を木柱の断面サイズにした場合は、木柱の木口が木横架材へのめりこみ剛性と座金11めりこみ剛性が一致することで、各仕口の剛性は同じになり、荷重変形角計算が簡便である。  In addition, when the washer 11 has the cross-sectional size of the wooden pillar, the rigidity of the joint of the wooden pillar is equal to the rigidity of the fitting of the wooden washer, and the rigidity of each joint becomes the same. Deformation angle calculation is simple.

また、ターンバックルの締め付け量の加減で耐震壁の剛性の変更が簡便である。よって、建物全体の剛性の変更も同じく簡便である。締め付けによる各構成部材への入力量は、各構成部材の長期許容耐力以内とする。  In addition, it is easy to change the rigidity of the shear wall by adjusting the turnbuckle tightening amount. Therefore, changing the rigidity of the entire building is also easy. The amount of input to each component member by tightening is within the long-term allowable proof stress of each component member.

図9の直結曲げ鉄筋ブレース15A、15Bより15C、15Dの方にターンバックルでプレテンションを大きくかけて、木横架材の継ぎ手部分16の木口に圧縮負荷が発生する、よって、羽子板ボルト等の引寄せ金物がいらなくなる。なお、地震の水平力によって軸部の層間変形角が変化しても、木口の圧縮負荷量は変化しない。当然に木口に引張り応力は発生しない。  As shown in FIG. 9, the pretension is increased by turnbuckles in the direction of 15C and 15D from the directly connected bending brace braces 15A and 15B, and a compression load is generated at the joint portion 16 of the wooden horizontal member. You don't need any attracted hardware. Note that even if the interlayer deformation angle of the shaft changes due to the horizontal force of the earthquake, the compression load of the butt does not change. Naturally, no tensile stress is generated in the mouth.

既存建物の耐震補強でも、直結曲げ鉄筋ブレースを取り付ける木横架材の切削がドリルとノミでの加工で簡易あり、また、木柱の倒れの修正は、ターンバックルの締め付けで修正できて簡便である。  Even in the seismic reinforcement of existing buildings, it is easy to cut the wooden frame material to which the directly connected bending rebar braces are attached by drilling and chiseling, and correcting the falling of the wooden pole can be done by tightening the turnbuckle. is there.

また、直結曲げ鉄筋ブレースは、取り付け、取り外しが簡単であり、既存建物を解体移転する場合を考慮すれば、作業能率がよく、再使用ができてコストダウンである。  In addition, the directly connected bent steel brace is easy to install and remove, and considering the case where the existing building is demolished and transferred, the work efficiency is good, and it can be reused and the cost is reduced.

本発明の構成部材は、直結曲げ鉄筋ブレースの他に、平板鋼、座金、三角座金、ナットであり、部材数が少ないことで、部材コストの低減と作業効率の向上になる。The constituent members of the present invention are a flat steel, a washer, a triangular washer and a nut in addition to a directly-coupled bending rebar brace. Since the number of members is small, the member cost is reduced and the working efficiency is improved.

以下、本発明の実施の形態を説明する。  Embodiments of the present invention will be described below.

新築の場合は、地上で木横架材に取り付ける。  In the case of a new construction, attach it to a wooden horizontal member on the ground.

木横架材のせいを270mm、ブレースの傾きを1/3と仮定し、図1の曲げ鉄筋ブレースの取り付け方と木横架材の挿通空のサイズの計算法について、説明する。  Assuming that the length of the wooden horizontal member is 270 mm and the inclination of the brace is 1/3, how to install the bent reinforcing bar brace of FIG. 1 and the calculation method of the size of the insertion space of the wooden horizontal member will be described.

挿通空(7C)のサイズの計算
木横架材270mm×1/2×1/3×1/2+ブレースM16mm=38.5mm
38.5mm<ドリル孔30mm+平板鋼厚9mm=39mm・・・ok
Calculation of the size of the insertion space (7C) Wood horizontal member 270mm x 1/2 x 1/3 x 1/2 + brace M16mm = 38.5mm
38.5 mm <drill hole 30 mm + flat steel plate thickness 9 mm = 39 mm ... ok

木横架材7に径30mmのドリル孔を空け、平板鋼サイズ(厚9mm、幅30mm、深さ40mm)をノミで空け、次にブレースの軸部4をターンバックルから、はずして、座金11を5Aに入れる、  Drill a 30 mm diameter drill hole in the wooden cross member 7, flat plate size (thickness 9 mm, width 30 mm, depth 40 mm) with a chisel, then remove the brace shaft 4 from the turnbuckle, and a washer 11 Into 5A,

次にブレース軸部の5Aを木横架材の下端部(7B)のドリル孔から挿通して、平板鋼12を設置する。ブレース軸部が曲がっていることで、平板鋼と緩衝して入らない場合は、ブレース軸部を90度回転させ、および、下方向にずらして、平板鋼を設置する。  Next, 5A of the brace shaft portion is inserted through the drill hole in the lower end portion (7B) of the wooden horizontal member, and the flat steel plate 12 is installed. If the brace shaft part is bent and does not buffer and enter into the flat steel plate, the brace shaft part is rotated 90 degrees and shifted downward to install the flat steel plate.

次に.5Aに座金11を、三角座金13を、そして、右回しねじナット14で緊結する。  next. The washer 11 is attached to 5A, the triangular washer 13 is fastened, and the screw nut 14 is turned clockwise.

軸組みの組み立て時にターンバックル3とブレース軸部1を取り付けることで、木の仮筋交いは、省くことができる。  By attaching the turnbuckle 3 and the brace shaft portion 1 when assembling the shaft assembly, it is possible to omit the temporary bracing of the wood.

図2,3の直結曲げ鉄筋ブレースの取り付け方法、ブレース軸部の4の曲がっている方向に力がかかるので、曲がっている部分の内角側に平板鋼を設置する。よって、その部分と係合する木横架材の部分を加工する。  Since the force is applied in the bending direction of 4 of the brace shaft portion and the method of attaching the directly connected bending reinforcing bar braces of FIGS. 2 and 3, flat steel is installed on the inner corner side of the bent portion. Therefore, the portion of the wooden horizontal member that engages with the portion is processed.

木横架材の加工部分の差異は、曲がっている部分の数と方向である。  The difference in the processed part of the wooden horizontal member is the number and direction of the bent parts.

構造計算例・木横架材べいまつ sfc150kgf/cm、sfm50kgf/cm
平板鋼面30mm×40mmの水平入力短期許容耐力
3cm×4cm×150kgf/cm=1800kgf
座金面100mm角の鉛直入力短期許容耐力
10cm×10cm×50kgf/cm=5000kgf
水平力に換算5000kgf×1/3=1666kgf
min(1800kgf、1666kgf)=1666kgf
1666kgf×1/200kgf≒8・・・壁倍率8相当
Example of structural calculation ・ Beige wood sfc150kgf / cm 2 , sfm50kgf / cm 2
Flat steel surface 30mm × 40mm horizontal input short-term allowable strength
3 cm × 4 cm × 150 kgf / cm 2 = 1800 kgf
Vertical input short-term allowable strength of 100 mm square washer surface 10 cm × 10 cm × 50 kgf / cm 2 = 5000 kgf
Converted to horizontal force 5000kgf × 1/3 = 1666kgf
min (1800 kgf, 1666 kgf) = 1666 kgf
1666kgf × 1 / 200kgf ≒ 8 ・ ・ ・ Equivalent to a wall magnification of 8

上下方向に連結する直結曲げ鉄筋ブレースの軸部を同方向に2箇所曲げた正面図Front view of the shaft part of a directly-coupled bending rebar brace connected in the vertical direction bent in two directions in the same direction 横方向に連結する直結曲げ鉄筋ブレースの軸部を異方向に2箇所曲げた正面図Front view of the shaft part of a directly connected bending rebar brace connected in the horizontal direction bent in two different directions 上下、横方向に連結しない直結曲げ鉄筋ブレースの軸部を1箇所曲げた正面図Front view of a straight bending bend rebar brace that is not connected in the vertical and horizontal directions. 図1〜3の側面図、Side view of FIGS. 図1の直結曲げ鉄筋ブレースを挿通するために加工した木横架材を上から見た図The top view of the wooden crosspiece processed to insert the directly-connected bending rebar brace of Fig. 1 図5の縦断図Vertical section of FIG. 図1の直結曲げ鉄筋ブレースと平板鋼と座金を図6に取り付けた図Fig. 6 shows the direct-bending rebar brace, flat steel plate, and washer of Fig. 1 attached to Fig. 6. 図7に座金と三角座金を取り付け、ナットで堅結した図Fig. 7 shows a washer and a triangular washer attached and tightly attached with a nut. 図1〜3の直結曲げ鉄筋ブレースを取り付けた建物の軸組み全体図、Overall view of the building frame with the directly connected bending braces of Figs.

符号の説明Explanation of symbols

1. 直結曲げ鉄筋ブレースの軸部
2. 直結曲げ鉄筋ブレースの羽子板部
3. ターンバックル
4. 木横架材に挿通する直結曲げ鉄筋ブレースの軸部
4A.木横架材に挿通する直結曲げ鉄筋ブレースの軸部が木横架材の上端部に 係合する部分
4B.木横架材に挿通する直結曲げ鉄筋ブレースの軸部が木横架材の下端部に 係合する部分
5A.直結曲げ鉄筋ブレースの右回しねじ部
5B.直結曲げ鉄筋ブレースの左回しねじ部
6. 高力ボルト孔
7. 木横架材
7A.木横架材の上端部
7B.木横架材の下端部
7C.木横架材の挿通空
8A.木柱の右側面
8B.木柱の左側面
9. 木横架材に直結曲げ鉄筋ブレースの軸部(4)を挿通するためのドリル 孔
10. 木横架材に平板鋼(12)を設置するための空
11. 座金
12. 平板鋼
13. 三角座金
14. 右回しねじナット
15A.直結曲げ鉄筋ブレース
15B.直結曲げ鉄筋ブレース
15C.直結曲げ鉄筋ブレース
15D.直結曲げ鉄筋ブレース
16. 木横架材の継ぎ手
17. アンカーボルト
18. コンクリート基礎
1. Shaft part of directly connected bending rebar brace
2. Directly bent rebar brace battledore
3. Turnbuckle
4). Shaft part of a directly connected bending reinforcing steel brace inserted through a wooden horizontal member
4A. The part where the shaft part of the directly connected bending rebar brace inserted into the wooden horizontal member engages with the upper end of the wooden horizontal member
4B. The part where the shaft part of the directly connected bending rebar brace inserted into the wooden horizontal member engages with the lower end of the wooden horizontal member
5A. Right turn screw part of directly connected bending rebar brace
5B. Left turn screw part of directly connected bending rebar brace
6). High strength bolt hole
7). Wooden horizontal material
7A. Top end of wooden horizontal member
7B. Lower end of horizontal wooden member
7C. Insertion of wooden timber
8A. Right side of wooden pole
8B. Left side of wooden pole
9. 9. Drill hole for inserting the shaft part (4) of a directly connected bending rebar brace into a wooden horizontal member. 10. Empty space for installing flat steel (12) on wooden horizontal members Washer 12. Flat steel 13. Triangular washer 14. Right turn screw nut 15A. Directly connected bending steel brace 15B. Directly connected bending steel brace 15C. Directly connected bending steel brace 15D. Directly connected bending rebar brace 16. 16. Joints for wooden horizontal members Anchor bolt 18. Concrete foundation

Claims (7)

羽子板(2)とターンバックル(3)を有する鉄筋ブレースの軸部(4)を木横架材(7)に挿通させ、木横架材の上端部(7A)下端部(7B)に軸部(4)の係合する部分(4A、4B)の二箇所を曲げた、直結曲げ鉄筋ブレース  The shaft part (4) of the reinforcing bar brace having the battledore (2) and the turnbuckle (3) is inserted into the wooden horizontal member (7), and the upper part (7A) and the lower end part (7B) of the wooden horizontal member are axial parts. Directly connected bent steel brace that is bent at two locations (4A, 4B) in (4). 羽子板(2)とターンバックル(3)を有する鉄筋ブレースの軸部(4)を木横架材(7)に挿通させ、木横架材の下端部(7B)に軸部(4)の係合する部分(4B)の一箇所を曲げた、直結曲げ鉄筋ブレース  The shaft part (4) of the reinforcing bar brace having the battledore (2) and the turnbuckle (3) is inserted into the wooden horizontal member (7), and the shaft part (4) is engaged with the lower end part (7B) of the wooden horizontal member. Directly-bonded rebar brace with one part bent (4B) 請求項1、2の直結曲げ鉄筋ブレースの軸部(4)の曲げた部分(4A、4B)に軸部(4)が木横架材へのめりこみ防止用の平板鋼または、筒状鋼を有する直結曲げ鉄筋ブレース  A flat plate steel or a cylindrical steel is used to prevent the shaft portion (4) from being sunk into the wooden horizontal member in the bent portion (4A, 4B) of the shaft portion (4) of the directly-bending rebar brace of claims 1 and 2. Directly connected bending rebar brace 羽子板(2)とターンバックル(3)を有する鉄筋ブレースの軸部(4)を木柱に挿通させ、木柱の右側面(8A)左側面(8B)に軸部(4)の係合する部分(4A、4B)の二箇所を曲げた、直結曲げ鉄筋ブレース  The shaft portion (4) of the reinforcing bar brace having the battledore (2) and the turnbuckle (3) is inserted into the wooden pole, and the shaft portion (4) is engaged with the right side surface (8A) and the left side surface (8B) of the wooden column. Directly connected bent steel brace with two bent parts (4A, 4B) 羽子板(2)とターンバックル(3)を有する鉄筋ブレースの軸部(4)を木柱に挿通させ、木柱の左側面(8B)に軸部(4)の係合する部分(4B)の一箇所を曲げた、直結曲げ鉄筋ブレース  The shaft part (4) of the reinforcing bar brace having the battledore (2) and the turnbuckle (3) is inserted into the wooden pole, and the left side surface (8B) of the wooden pole is engaged with the part (4B) where the shaft part (4) is engaged. Directly-bending rebar brace with one point bent 請求項4,5の直結曲げ鉄筋ブレースの軸部(4)の曲げた部分(4A、4B)に軸部(4)が木柱へのめりこみ防止用の平板鋼または、筒状鋼を有する直結曲げ鉄筋ブレース  Direct connection where the shaft portion (4) has a flat steel plate or a tubular steel for preventing the shaft portion (4A) from being dented into the wooden pole to the bent portion (4A, 4B) of the shaft portion (4) of the directly connected bent rebar brace according to claims 4 and 5. Bending rebar brace 請求項1,2,3,4、5、6の直結曲げ鉄筋ブレース同士を上下方向または横方向に直結することで、軸組みが連続体になる施工法  A construction method in which the shaft assembly becomes a continuous body by directly connecting the directly-bending rebar braces of claims 1, 2, 3, 4, 5, and 6 vertically or laterally.
JP2008074572A 2008-02-23 2008-02-23 Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method Pending JP2009197570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074572A JP2009197570A (en) 2008-02-23 2008-02-23 Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074572A JP2009197570A (en) 2008-02-23 2008-02-23 Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method

Publications (1)

Publication Number Publication Date
JP2009197570A true JP2009197570A (en) 2009-09-03

Family

ID=41141369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074572A Pending JP2009197570A (en) 2008-02-23 2008-02-23 Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method

Country Status (1)

Country Link
JP (1) JP2009197570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105868477A (en) * 2016-03-31 2016-08-17 同济大学建筑设计研究院(集团)有限公司 Structure seismic sensitivity optimization method based on story drift angle constraint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105868477A (en) * 2016-03-31 2016-08-17 同济大学建筑设计研究院(集团)有限公司 Structure seismic sensitivity optimization method based on story drift angle constraint
CN105868477B (en) * 2016-03-31 2019-05-31 同济大学建筑设计研究院(集团)有限公司 Earthquake-resistant structure sensibility optimization method based on story drift constraint

Similar Documents

Publication Publication Date Title
JP5213248B2 (en) Seismic reinforcement structure for existing buildings
JP5440945B2 (en) Joining structure and method of shaft member and RC member
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP4942475B2 (en) Reinforcement method and structure of existing columns
JP2007303070A (en) Wall reinforcing structure
KR100660522B1 (en) Reinforcement structure of CFT column and beam setting flat bar in steel pipe
JP5465303B2 (en) Reinforced structure
KR20190101513A (en) Seismic retrofit structure of RC frame and construction method thereof
JP2010047951A (en) Aseismic opened frame for horizontal structural surface
JP6713779B2 (en) Beam-column joint structure and beam-column joining method
JP4355680B2 (en) Seismic reinforcement device
JP5002569B2 (en) Gate-type frame structure of a wooden building
KR101397886B1 (en) Method for reinforcing seismic capability of existing moment frames buildings of reinforced concrete by section enlargement
JP2009197570A (en) Direct-connected bent reinforced brace dispensing with connector of earthquake-resisting wall and portal rigid frame of wooden framework building, and construction method
JP4143482B2 (en) Seismic reinforcement structure
JP2011042975A (en) After-construction anchor and structure and method for aseismatic reinforcement using the same
JP2010053556A (en) Reinforcing structure of steel column-beam joint portion
JP4654674B2 (en) How to install seismic reinforcement brackets for wooden buildings
JP6638906B2 (en) Beam-column connection structure and beam-column connection method
JP2006299609A (en) Reinforcing structure of through-column
KR100660524B1 (en) Reinforcement structure of CFT column and beam setting flat bar in steel pipe
JP2016205112A (en) Seismic strengthening structure using synthetic fiber rope
JP6545513B2 (en) Precast concrete members
JP2006037704A (en) Bearing wall structure for steel house
JP2005220688A (en) Wall-type reinforced concrete structure and constructing method of of the same