JP2009196960A - Hydrogen storage material - Google Patents

Hydrogen storage material Download PDF

Info

Publication number
JP2009196960A
JP2009196960A JP2008042909A JP2008042909A JP2009196960A JP 2009196960 A JP2009196960 A JP 2009196960A JP 2008042909 A JP2008042909 A JP 2008042909A JP 2008042909 A JP2008042909 A JP 2008042909A JP 2009196960 A JP2009196960 A JP 2009196960A
Authority
JP
Japan
Prior art keywords
alh
nitrogen
storage material
hydrogen storage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008042909A
Other languages
Japanese (ja)
Other versions
JP5549901B2 (en
Inventor
Tomoki Tsumura
朋樹 津村
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Oita University
Original Assignee
Honda Motor Co Ltd
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Oita University filed Critical Honda Motor Co Ltd
Priority to JP2008042909A priority Critical patent/JP5549901B2/en
Publication of JP2009196960A publication Critical patent/JP2009196960A/en
Application granted granted Critical
Publication of JP5549901B2 publication Critical patent/JP5549901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material releasing hydrogen at a low temperature. <P>SOLUTION: The hydrogen storage material is composed of a nitrogen-containing compound-AlH<SB>3</SB>bonded material formed by bonding Al which is a constituent element of AlH<SB>3</SB>to N which is a constituent element of the nitrogen-containing compound by a coordinate bond. Preferable examples of the nitrogen-containing compound are organic compounds including polymers such as melamine and polyvinyl pyrrolidone. The nitrogen-containing compound-AlH<SB>3</SB>bonded material starts the release of hydrogen before raising the temperature to about 100°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素ガスを貯蔵又は放出することが可能な水素貯蔵材に関する。   The present invention relates to a hydrogen storage material capable of storing or releasing hydrogen gas.

燃料電池車は、水素と、空気中の酸素とを電気化学的に反応させて発電する燃料電池を搭載しており、燃料電池の発電によって得られた電力によってモータを駆動させることで走行する。従って、燃料電池車には、水素を貯留したガス貯蔵用容器も併せて搭載される。   A fuel cell vehicle is equipped with a fuel cell that generates electricity by electrochemically reacting hydrogen and oxygen in the air, and travels by driving a motor with electric power obtained by the power generation of the fuel cell. Therefore, a gas storage container storing hydrogen is also mounted on the fuel cell vehicle.

このことから諒解されるように、ガス貯蔵用容器の水素収容量が大きいほど燃料電池車を長距離にわたって走行させることができる。しかしながら、過度に大きなガス貯蔵用容器を搭載することは、燃料電池車の重量を大きくすることになり、結局、燃料電池の負荷が大きくなるという不具合を招く。   As can be understood from this, the fuel cell vehicle can be run for a longer distance as the hydrogen storage capacity of the gas storage container increases. However, mounting an excessively large gas storage container increases the weight of the fuel cell vehicle, resulting in a problem that the load on the fuel cell increases.

この観点から、ガス貯蔵用容器の体積を小さく維持しながら水素収容量を向上させる様々な試みがなされており、その1つとして、水素貯蔵材を使用することが提案されている。   From this point of view, various attempts have been made to improve the hydrogen storage capacity while keeping the volume of the gas storage container small, and as one of them, the use of a hydrogen storage material has been proposed.

この種の水素貯蔵材として、結晶性のAlH3が着目されている。結晶性のAlH3は、下記の反応式(A)に従って水素を貯蔵することが可能であり、その貯蔵可能量は、理論上、自身の重量の約10重量%に及ぶとされているからである。
Al+3/2H2→AlH3 …(A)
As this type of hydrogen storage material, crystalline AlH 3 has attracted attention. Crystalline AlH 3 is capable of storing hydrogen according to the following reaction formula (A), and its storable amount is theoretically about 10% by weight of its own weight. is there.
Al + 3 / 2H 2 → AlH 3 (A)

その一方で、AlH3は、下記の反応式(B)に従って水素を放出する。なお、反応式(A)、(B)は任意の貯蔵/放出サイトでの反応であり、AlH3のすべてが酸化・還元されることを意味するものではない。
AlH3→Al+3/2H2 …(B)
On the other hand, AlH 3 releases hydrogen according to the following reaction formula (B). The reaction formulas (A) and (B) are reactions at an arbitrary storage / release site, and do not mean that all of AlH 3 is oxidized / reduced.
AlH 3 → Al + 3 / 2H 2 (B)

なお、水素の放出に関しては、特許文献1において、約130℃で水素の放出を開始し、200℃に到達するまでに全量の放出を終了することが報告されている(図1及び図3参照)。   Regarding the release of hydrogen, it is reported in Patent Document 1 that the release of hydrogen starts at about 130 ° C., and the release of the entire amount is completed before reaching 200 ° C. (see FIGS. 1 and 3). ).

特開2004−18980号公報JP 2004-18980 A

上記から諒解されるように、結晶性のAlH3を水素貯蔵材として用いる場合、ガス貯蔵用容器を130〜200℃に昇温する必要がある。このためには、勿論、ガス貯蔵用容器に多量の熱を供給しなければならない。 As can be understood from the above, when crystalline AlH 3 is used as a hydrogen storage material, it is necessary to raise the temperature of the gas storage container to 130 to 200 ° C. For this purpose, of course, a large amount of heat must be supplied to the gas storage container.

しかしながら、ガス貯蔵用容器に供給する熱を低減することが可能となれば、その分の熱を、他に熱を必要とする箇所に供給することができるようになる。すなわち、燃料電池システム、ひいては燃料電池車全体のシステムの効率が向上する。この観点から、一層低温で水素を放出し得る水素貯蔵材が希求されている。   However, if it becomes possible to reduce the heat supplied to the gas storage container, that much heat can be supplied to other locations that require heat. That is, the efficiency of the fuel cell system, and hence the overall fuel cell vehicle system, is improved. From this viewpoint, a hydrogen storage material capable of releasing hydrogen at a lower temperature is desired.

本発明は上記した問題を解決するためになされたもので、AlH3の水素放出開始温度(約130℃)よりも低温で水素を放出することが可能であり、このために燃料電池システムの効率を向上し得る水素貯蔵材を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and can release hydrogen at a temperature lower than the hydrogen release start temperature (about 130 ° C.) of AlH 3. For this reason, the efficiency of the fuel cell system can be reduced. It aims at providing the hydrogen storage material which can improve this.

前記の目的を達成するために、本発明は、AlH3と窒素含有化合物とを含む水素貯蔵材であって、
AlH3の構成元素であるAlと、窒素含有化合物の構成元素であるNとが配位結合をなす化合物からなることを特徴とする。
To achieve the above object, the present invention provides a hydrogen storage material comprising AlH 3 and a nitrogen-containing compound,
It is characterized by comprising a compound in which Al, which is a constituent element of AlH 3 , and N, which is a constituent element of a nitrogen-containing compound, form a coordinate bond.

なお、本発明における「配位結合」は、AlH3がルイス酸、窒素含有化合物がルイス塩基として作用し、窒素含有化合物中の窒素原子が有する孤立電子対をAlH3中のAlが共有して形成される結合を指称する。すなわち、本発明に係る水素貯蔵材は、配位結合を介して生成する、いわゆる付加化合物である。 In the present invention, “coordination bond” means that AlH 3 acts as a Lewis acid, a nitrogen-containing compound acts as a Lewis base, and the lone pair of electrons of the nitrogen atom in the nitrogen-containing compound is shared by Al in AlH 3. Refers to the bond formed. That is, the hydrogen storage material according to the present invention is a so-called addition compound that is generated through coordination bonds.

このように、AlH3中のAlを窒素含有化合物中のNと配位結合させた付加化合物(水素貯蔵材)では、水素放出開始温度が100℃以下となる。この理由は、AlがNと配位結合することに伴い、Al−H結合の結合エネルギが低くなり、Hが解離し易くなるためであると推察される。 Thus, in the addition compound (hydrogen storage material) in which Al in AlH 3 is coordinated with N in the nitrogen-containing compound, the hydrogen release start temperature is 100 ° C. or lower. The reason for this is presumed to be that the binding energy of the Al—H bond is lowered with the coordination bond of Al to N, and H is easily dissociated.

勿論、この場合、水素貯蔵材を収容したガス貯蔵用容器に供給すべき熱を低減することができる。従って、熱を他のシステムに振り分けることが可能となるので、燃料電池システム全体の効率が向上する。例えば、該燃料電池システムが燃料電池車に搭載されている場合、熱を燃料電池車の他のシステムに振り分けることも可能であるから、燃料電池車のシステム全体の効率を向上させることができる。   Of course, in this case, the heat to be supplied to the gas storage container containing the hydrogen storage material can be reduced. Accordingly, since heat can be distributed to other systems, the efficiency of the entire fuel cell system is improved. For example, when the fuel cell system is mounted on a fuel cell vehicle, it is possible to distribute heat to other systems of the fuel cell vehicle, so that the overall efficiency of the fuel cell vehicle system can be improved.

窒素含有化合物の好適な例としては、アミノ基が官能基として結合した窒素含有複素環化合物を挙げることができる。この場合、AlH3は、アミノ基中のNと結合し得るのみならず、窒素含有複素環化合物中のNとも結合し得る。従って、水素貯蔵材の一分子中に存在するAlH3の量を多くすることができ、結局、水素の貯蔵・放出量を増加させることができる。 Preferable examples of the nitrogen-containing compound include nitrogen-containing heterocyclic compounds in which an amino group is bonded as a functional group. In this case, AlH 3 can bind not only to N in the amino group but also to N in the nitrogen-containing heterocyclic compound. Therefore, the amount of AlH 3 present in one molecule of the hydrogen storage material can be increased, and eventually the amount of hydrogen stored and released can be increased.

なお、アミノ基が官能基として結合した窒素含有化合物としては、複素環に多数のアミノ基が結合し、複素環内に多量のNを有するものが好適である。その一具体例としては、3個のアミノ基が1個の複素環に結合し、その複素環内に3個のNを有するメラミンを挙げることができる。   As the nitrogen-containing compound in which an amino group is bonded as a functional group, a compound in which a large number of amino groups are bonded to the heterocyclic ring and a large amount of N is contained in the heterocyclic ring is preferable. As a specific example thereof, there can be mentioned melamine in which three amino groups are bonded to one heterocyclic ring and three Ns are contained in the heterocyclic ring.

窒素含有化合物は、高分子であってもよい。高分子は融点・沸点が比較的高いので、水素貯蔵材から水素を放出させる際に温度を比較的高くしたとしても溶融することがない。従って、水素供給システムに設けられるフィルタや配管中で水素貯蔵材が再凝固することもないので、フィルタや配管が目詰まりを起こすことを回避することができる。   The nitrogen-containing compound may be a polymer. Since the polymer has a relatively high melting point / boiling point, it does not melt even if the temperature is relatively high when releasing hydrogen from the hydrogen storage material. Therefore, since the hydrogen storage material does not re-solidify in the filter and piping provided in the hydrogen supply system, it is possible to avoid clogging of the filter and piping.

この場合、高分子は、所定の形状に予め加工された成形体であることが好ましい。このような高分子(成形体)に対しても、AlH3を結合させることが可能である。従って、所望の形状に予め成形された高分子にAlH3を結合させれば、用途に応じた所望の形状の水素貯蔵材を得ることができる。 In this case, the polymer is preferably a molded body that has been processed into a predetermined shape in advance. AlH 3 can also be bonded to such a polymer (molded body). Therefore, if AlH 3 is bonded to a polymer that has been molded in a desired shape, a hydrogen storage material having a desired shape according to the application can be obtained.

本発明によれば、AlH3の構成元素であるAlを、窒素含有化合物の構成元素であるNとに配位結合させて化合物(水素貯蔵材)とし、Al−H結合中のHが解離し易くなるようにしている。これにより、比較的低温であっても水素を放出可能な水素貯蔵材を得ることができる。 According to the present invention, Al as a constituent element of AlH 3 is coordinated to N as a constituent element of a nitrogen-containing compound to form a compound (hydrogen storage material), and H in the Al—H bond is dissociated. To make it easier. Thereby, a hydrogen storage material capable of releasing hydrogen even at a relatively low temperature can be obtained.

従って、このような水素貯蔵材を収容したガス貯蔵用容器に対して供給する熱を低減することができるので、その分の熱を他のシステムに振り分けることが可能となる。このため、燃料電池システム全体や、例えば、該燃料電池システムを搭載した燃料電池車のシステム全体の効率を向上させることができる。   Accordingly, since the heat supplied to the gas storage container containing such a hydrogen storage material can be reduced, it is possible to distribute that heat to other systems. For this reason, the efficiency of the whole fuel cell system, for example, the whole system of the fuel cell vehicle equipped with the fuel cell system can be improved.

以下、本発明に係る水素貯蔵材につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the hydrogen storage material according to the present invention will be described and described in detail with reference to the accompanying drawings.

本実施の形態に係る水素貯蔵材は、AlH3と窒素含有化合物との化合物であり、具体的には、AlH3の構成元素であるAlと、窒素含有化合物の構成元素であるNとが配位結合をなしたものである。 The hydrogen storage material according to the present embodiment is a compound of AlH 3 and a nitrogen-containing compound. Specifically, Al that is a constituent element of AlH 3 and N that is a constituent element of the nitrogen-containing compound are arranged. It is a united bond.

ここで、窒素含有化合物は、AlH3中のAlと配位結合を形成することが可能なものであればよく、特に限定されるものではないが、アンモニア、1級アルキルアミン、2級アルキルアミン、3級アルキルアミン、芳香族アミン、窒素含有複素環化合物、アミノ基置換窒素含有複素環化合物等、非共有電子対を有する窒素原子を構成元素とする有機化合物を例示することができる。 Here, the nitrogen-containing compound is not particularly limited as long as it can form a coordination bond with Al in AlH 3 , but is not limited to ammonia, primary alkylamine, secondary alkylamine. Examples thereof include organic compounds having a nitrogen atom having an unshared electron pair as a constituent element, such as a tertiary alkylamine, an aromatic amine, a nitrogen-containing heterocyclic compound, and an amino group-substituted nitrogen-containing heterocyclic compound.

とりわけ、アミノ基置換窒素含有複素環化合物、すなわち、アミノ基が窒素含有複素環に結合した化合物が好ましい。この場合、アミノ(−NH2)基中のNにAlH3が結合するのみでなく、複素環中のNにもAlH3が結合するので、一分子中に存在するAlH3の個数が増加し、貯蔵・放出し得る水素の量も増加するからである。なお、−NH2基にAlH3が結合すると、−NH2AlH3基となる。 In particular, an amino group-substituted nitrogen-containing heterocyclic compound, that is, a compound in which an amino group is bonded to a nitrogen-containing heterocyclic ring is preferable. In this case, not only AlH 3 is bonded to N in the amino (—NH 2 ) group, but also AlH 3 is bonded to N in the heterocyclic ring, so that the number of AlH 3 present in one molecule increases. This is because the amount of hydrogen that can be stored and released also increases. Note that the AlH 3 binds to the -NH 2 group, an -NH 2 AlH 3 group.

窒素含有複素環化合物にアミノ基が結合した化合物の好適な具体例としては、メラミンを挙げることができる。メラミンは、複素環中に3個のNが存在し、且つ3個のアミノ基を有する。すなわち、AlH3が配位結合可能なNが6個存在するので、メラミンとAlH3とが結合して形成されたメラミン−AlH3結合体は、多量の水素を貯蔵・放出することが可能となる。 Specific examples of the compound in which an amino group is bonded to the nitrogen-containing heterocyclic compound include melamine. Melamine has three Ns in the heterocyclic ring and has three amino groups. That is, since the AlH 3 coordination bondable N are present six, melamine -AlH 3 conjugate melamine with AlH 3 is formed by bonding, and can be stored and released a large amount of hydrogen Become.

このメラミン中の6個のNと6個のAlH3とが結合して形成されたメラミン−AlH3結合体の構造式を下記の構造式(1)に示す。

Figure 2009196960
The structural formula of the melamine-AlH 3 conjugate formed by bonding 6 N and 6 AlH 3 in this melamine is shown in the following structural formula (1).
Figure 2009196960

なお、下記に構造式(2)として示すように、メラミン中の3個のアミノ基と3個のAlH3とが結合して形成されたメラミン−AlH3結合体であってもよいことは勿論である。

Figure 2009196960
Of course, it may be a melamine-AlH 3 conjugate formed by bonding three amino groups in melamine and three AlH 3 , as shown as structural formula (2) below. It is.
Figure 2009196960

窒素含有化合物は、高分子であってもよい。高分子は融点・沸点が高いので、水素貯蔵材から水素を放出させる際に温度を比較的高くしたとしても溶融することがない。当然に、水素供給システムに設けられるフィルタや配管中で水素貯蔵材が再凝固することもない。これにより、フィルタや配管が目詰まりを起こすことを回避することができる。   The nitrogen-containing compound may be a polymer. Since the polymer has a high melting point / boiling point, it does not melt even if the temperature is relatively high when releasing hydrogen from the hydrogen storage material. Naturally, the hydrogen storage material does not re-solidify in a filter or piping provided in the hydrogen supply system. Thereby, it can avoid that a filter and piping raise | generate clogging.

このことは、窒素含有化合物として高分子を用いた場合、水素を効率よく放出させるために温度を比較的高くすることが可能であり、しかも、その際、フィルタや配管が目詰まりを起こす懸念が払拭されることを意味する。   This means that when a polymer is used as the nitrogen-containing compound, the temperature can be made relatively high in order to efficiently release hydrogen, and there is a concern that the filter and piping may be clogged. It means being wiped out.

窒素を構成元素として含有する高分子の例としては、尿素樹脂、ポリアミド樹脂、ポリイミド樹脂、メラミン樹脂、ポリアクリロニトリル、ポリエチレンイミン、ポリビニルピロリドン、ビニルピリジン−ジビニルベンゼン共重合体、アミノ基を含有するイオン交換樹脂、ヘキサメチレンテトラミン等で硬化された樹脂を挙げることができる。   Examples of polymers that contain nitrogen as a constituent element include urea resins, polyamide resins, polyimide resins, melamine resins, polyacrylonitrile, polyethyleneimine, polyvinylpyrrolidone, vinylpyridine-divinylbenzene copolymers, and ions containing amino groups. Examples thereof include resins cured with exchange resins, hexamethylenetetramine, and the like.

高分子が固体である場合、該高分子がビーズ状、繊維状、粒子状、各種形状のペレット、発泡体、多孔質体のいずれであってもよい。すなわち、高分子は、如何なる形状の固体であっても、AlH3と配位結合を形成することが可能である。従って、例えば高分子を所望の形状に予め成形した上でAlH3と結合させて水素貯蔵材とすれば、水素貯蔵材を、用途に応じた所望の形状として得ることができる。従って、例えば、高分子を基材とする水素貯蔵材をガス貯蔵用容器に収容する場合等に有利である。 When the polymer is solid, the polymer may be any of beads, fibers, particles, various shapes of pellets, foams, and porous bodies. That is, the polymer can form a coordinate bond with AlH 3 regardless of the shape of the solid. Therefore, for example, if a polymer is preformed in a desired shape and then combined with AlH 3 to form a hydrogen storage material, the hydrogen storage material can be obtained in a desired shape according to the application. Therefore, for example, it is advantageous when a hydrogen storage material based on a polymer is accommodated in a gas storage container.

以上のように構成される水素貯蔵材は、AlH3に比して水素放出開始温度が低く、概ね100℃以下である。この理由は、以下のように推察される。 The hydrogen storage material configured as described above has a lower hydrogen release start temperature than AlH 3 and is generally 100 ° C. or lower. The reason is presumed as follows.

AlH3は、Alと3個のHの各々とが共有結合を形成した化合物である。従って、水素貯蔵材中におけるAlH3は、この共有結合に加え、窒素含有化合物中のNと配位結合している。このため、水素貯蔵材におけるAl−H結合の結合エネルギは、AlH3におけるAl−H結合の結合エネルギに比して低い。 AlH 3 is a compound in which Al and each of the three Hs form a covalent bond. Therefore, AlH 3 in the hydrogen storage material is coordinated with N in the nitrogen-containing compound in addition to this covalent bond. For this reason, the binding energy of the Al—H bond in the hydrogen storage material is lower than the binding energy of the Al—H bond in AlH 3 .

換言すれば、水素貯蔵材中でAl−H結合をなすHは、AlH3中でAl−H結合をなすHに比して低エネルギで解離する。このことは、水素貯蔵材中のAl−H結合からHを解離する反応、すなわち、上記反応式(A)に示される反応を惹起させるために必要となる熱が少量でよいことを意味する。 In other words, H that forms Al—H bonds in the hydrogen storage material dissociates at a lower energy than H that forms Al—H bonds in AlH 3 . This means that a small amount of heat is required to cause the reaction for dissociating H from the Al—H bond in the hydrogen storage material, that is, the reaction shown in the above reaction formula (A).

要するに、AlH3がNと配位結合を形成することによってAl−H結合の結合エネルギが低下し、その結果、低温度で上記反応式(A)に示される反応が惹起されるようになるために、本実施の形態に係る水素貯蔵材がAlH3に比して低温で水素を放出することが可能となったと考えられる。 In short, when AlH 3 forms a coordination bond with N, the bond energy of the Al—H bond decreases, and as a result, the reaction shown in the above reaction formula (A) is initiated at a low temperature. In addition, it is considered that the hydrogen storage material according to the present embodiment can release hydrogen at a lower temperature than AlH 3 .

このため、本実施の形態に係る水素貯蔵材に対しては、水素を放出させるために多量の熱を供給する必要がない。従って、例えば、この水素貯蔵材をガス貯蔵用容器に収容して燃料電池車に搭載した場合、他のシステムに熱を振り分けることが可能となる。これにより、燃料電池システム、ひいては燃料電池車全体のシステムの効率が向上する。   For this reason, it is not necessary to supply a large amount of heat to the hydrogen storage material according to the present embodiment in order to release hydrogen. Therefore, for example, when this hydrogen storage material is accommodated in a gas storage container and mounted on a fuel cell vehicle, heat can be distributed to other systems. As a result, the efficiency of the fuel cell system, and thus the overall fuel cell vehicle system, is improved.

なお、AlH3は、以下のようにして得ることができる。 AlH 3 can be obtained as follows.

はじめに、0.1〜2mol/lのLiAlH4のジエチルエーテル溶液と、0.1〜2mol/lのAlCl3のジエチルエーテル溶液とを調製し、両溶液を混合した後、温度が20〜30℃の間となるように5〜60分間保持する。これにより、AlH3が液中に溶解し、且つLiClが沈殿した溶液が得られる。 First, a 0.1-2 mol / l LiAlH 4 diethyl ether solution and a 0.1-2 mol / l AlCl 3 diethyl ether solution were prepared, and after mixing both solutions, the temperature was 20-30 ° C. Hold for 5-60 minutes. Thereby, a solution in which AlH 3 is dissolved in the liquid and LiCl is precipitated is obtained.

次に、濾過などによってLiClを分離した後、濾液に窒素含有化合物を溶解ないし分散させる。窒素含有化合物の添加量は、ジエチルエーテル中のAlH3のモル数と、窒素含有化合物中の窒素原子の個数とに基づいて適宜決定すればよい。 Next, after separating LiCl by filtration or the like, a nitrogen-containing compound is dissolved or dispersed in the filtrate. The addition amount of the nitrogen-containing compound may be appropriately determined based on the number of moles of AlH 3 in diethyl ether and the number of nitrogen atoms in the nitrogen-containing compound.

この溶液を撹拌しながら、20〜70℃の間となるように20〜60分間保持する。この間、AlH3と窒素含有化合物との結合が進行し、最終的に、窒素含有化合物−AlH3結合体が反応生成物として得られる。 This solution is kept for 20 to 60 minutes with stirring to be between 20 and 70 ° C. During this time, the bond between AlH 3 and the nitrogen-containing compound proceeds, and finally a nitrogen-containing compound-AlH 3 conjugate is obtained as a reaction product.

反応生成物(窒素含有化合物−AlH3結合体)が沈殿物として得られる場合、濾過などによって濾液を分離した後、反応生成物を20〜70℃、減圧下で乾燥すればよい。一方、反応生成物が沈殿物ではない場合、20〜70℃、減圧下で溶媒を除去して反応生成物を固体として得、その後、該反応生成物を20〜70℃、減圧下で乾燥すればよい。 When the reaction product (nitrogen-containing compound-AlH 3 conjugate) is obtained as a precipitate, the filtrate is separated by filtration or the like, and then the reaction product is dried at 20 to 70 ° C. under reduced pressure. On the other hand, if the reaction product is not a precipitate, the solvent is removed at 20 to 70 ° C. under reduced pressure to obtain the reaction product as a solid, and then the reaction product is dried at 20 to 70 ° C. under reduced pressure. That's fine.

以上のように、本実施の形態によれば、窒素含有化合物−AlH3結合体を極めて簡便に得ることが可能である。 As described above, according to the present embodiment, a nitrogen-containing compound-AlH 3 conjugate can be obtained very simply.

2.27gのLiAlH4を60mlのジエチルエーテルに溶解して、1mol/lの第1溶液とした。その一方で、2.67gのAlCl3を20mlのジエチルエーテルに溶解して、1mol/lの第2溶液とした。これら第1溶液及び第2溶液を混合した後、室温(25℃)にて、混合溶液からガスの発生が認められなくなるまで撹拌した。撹拌時間は、およそ10分間であった。撹拌後の混合溶液には、LiClが沈殿していた。このLiClを濾過によって分離し、濾液(AlH3が溶解したジエチルエーテル溶液)を得た。 2.27 g of LiAlH 4 was dissolved in 60 ml of diethyl ether to form a 1 mol / l first solution. Meanwhile, 2.67 g of AlCl 3 was dissolved in 20 ml of diethyl ether to obtain a 1 mol / l second solution. After mixing these 1st solution and 2nd solution, it stirred at room temperature (25 degreeC) until generation | occurrence | production of gas was not recognized from a mixed solution. The stirring time was approximately 10 minutes. LiCl was precipitated in the mixed solution after stirring. The LiCl was separated by filtration to obtain a filtrate (a diethyl ether solution in which AlH 3 was dissolved).

次に、この濾液中にメラミン1.26gを添加して分散させた後、20℃にて30分間撹拌した。撹拌後の溶液には、反応生成物が沈殿していることが認められた。   Next, 1.26 g of melamine was added and dispersed in the filtrate, and then stirred at 20 ° C. for 30 minutes. It was recognized that the reaction product was precipitated in the solution after stirring.

この反応生成物を濾過によって分離し、室温で60分間、減圧下で乾燥したところ、白色粉末が得られた。   The reaction product was separated by filtration and dried under reduced pressure at room temperature for 60 minutes to obtain a white powder.

この白色粉末と、該白色粉末に対してアルゴン中にて1000℃で熱処理を施したものとをそれぞれ試料とし、X線回折測定を行った。図1に、白色粉末、及び1000℃で熱処理を施した白色粉末のX線回折パターンを併せて示す。図1中、下方が白色粉末についてのパターンであり、上方が1000℃で熱処理を施した白色粉末についてのパターンである。   X-ray diffraction measurement was performed using this white powder and a sample obtained by heat-treating the white powder at 1000 ° C. in argon. FIG. 1 also shows the X-ray diffraction patterns of the white powder and the white powder heat-treated at 1000 ° C. In FIG. 1, the lower part is a pattern for white powder, and the upper part is a pattern for white powder that has been heat-treated at 1000 ° C.

この図1から、熱処理が施されていない白色粉末は、X線回折測定においてブロードなピークのみが出現する非晶質体であることが分かる。   From FIG. 1, it can be seen that the white powder that has not been heat-treated is an amorphous body in which only a broad peak appears in the X-ray diffraction measurement.

一方、1000℃において熱処理を施した白色粉末のパターンには、Al−N結合が形成されていることを示すピークが3箇所出現している。このことから、メラミン−AlH3結合体が形成されているといえる。 On the other hand, in the pattern of the white powder that has been heat-treated at 1000 ° C., three peaks appearing that Al—N bonds are formed. From this, it can be said that a melamine-AlH 3 conjugate is formed.

また、上記の2試料及び出発原料につきフーリエ変換赤外線吸収測定をそれぞれ行った。図2に、1000℃で熱処理を施した白色粉末、熱処理を施していない白色粉末、出発原料であるメラミンの各吸収スペクトルを下方からこの順序で併せて示す。   In addition, Fourier transform infrared absorption measurement was performed for each of the above two samples and starting materials. FIG. 2 shows the absorption spectra of the white powder that has been heat-treated at 1000 ° C., the white powder that has not been heat-treated, and the melamine that is the starting material in this order from below.

この図2から、熱処理を施していない白色粉末、及び1000℃で熱処理された白色粉末は、出発原料であるメラミンに対し、明らかに相違する各吸収スペクトルを示すことが明らかである。この結果からも、メラミン−AlH3結合体が形成されていることが支持される。 From FIG. 2, it is clear that the white powder that has not been heat-treated and the white powder that has been heat-treated at 1000 ° C. show absorption spectra that are clearly different from the starting material melamine. This result also supports the formation of a melamine-AlH 3 conjugate.

次に、反応生成物である白色粉末を10mg秤量し、昇温速度を5℃/分とする熱重量分析を行った。該熱重量分析における温度上昇に伴う試料の重量変化から、水素放出量を算出した。温度に対する水素放出量の変化を図3に示す。なお、メラミン単体を試料として熱重量分析を行った場合、300℃以下では重量減少が認められない。従って、図3に示される重量変化は、白色粉末に含まれるAlH3からのHの解離によるものである。 Next, 10 mg of white powder as a reaction product was weighed, and thermogravimetric analysis was performed at a heating rate of 5 ° C./min. The hydrogen release amount was calculated from the change in the weight of the sample accompanying the temperature increase in the thermogravimetric analysis. FIG. 3 shows the change of the hydrogen release amount with respect to the temperature. When thermogravimetric analysis is performed using melamine alone as a sample, no weight reduction is observed at 300 ° C. or lower. Therefore, the weight change shown in FIG. 3 is due to the dissociation of H from AlH 3 contained in the white powder.

メラミン−AlH3結合体の構造式が上記の構造式(1)の通りである場合、理論的な水素貯蔵・放出量は7.9重量%であるが、図3から、100℃に到達するまでに水素の略全量が放出されたことが分かる。上記したように、特許文献1によれば、AlH3における水素放出開始温度は約130℃であるから、本実施例のようにAlH3を窒素含有化合物に配位結合させることによって水素放出開始温度が十分に低下することが明らかである。 When the structural formula of the melamine-AlH 3 conjugate is the above structural formula (1), the theoretical hydrogen storage / release amount is 7.9 wt%, but it reaches 100 ° C. from FIG. It can be seen that almost all of the hydrogen has been released. As described above, according to Patent Document 1, since the hydrogen release start temperature in AlH 3 is about 130 ° C., the hydrogen release start temperature is obtained by coordinate bonding of AlH 3 to a nitrogen-containing compound as in this example. Is clearly reduced.

上記と同様の操作によって得た濾液(AlH3が溶解したジエチルエーテル溶液)に対し、4.45gのポリビニルピロリドンを分散した。その後、20℃にて30分間撹拌した。撹拌後の溶液には、反応生成物が沈殿していることが認められた。 4.45 g of polyvinyl pyrrolidone was dispersed in the filtrate (diethyl ether solution in which AlH 3 was dissolved) obtained by the same operation as described above. Then, it stirred at 20 degreeC for 30 minutes. It was recognized that the reaction product was precipitated in the solution after stirring.

この反応生成物を濾過によって分離し、60℃で60分間、減圧下で乾燥したところ、白色粉末が得られた。   The reaction product was separated by filtration and dried under reduced pressure at 60 ° C. for 60 minutes to obtain a white powder.

この白色粉末、及び該白色粉末に対してアルゴン中にて1000℃で熱処理を施したものの各々についても上記実施例に準拠して、X線回折測定を行った。図4に、白色粉末、及び1000℃で熱処理を施した白色粉末のX線回折パターンを下方からこの順序で併せて示す。   X-ray diffraction measurement was performed on each of the white powder and the white powder which was heat-treated at 1000 ° C. in argon in accordance with the above example. FIG. 4 shows the X-ray diffraction patterns of the white powder and the white powder heat-treated at 1000 ° C. in this order from the bottom.

この図4から諒解されるように、熱処理が施されていない白色粉末は、X線回折測定においてブロードなピークのみが出現する非晶質体である。   As can be seen from FIG. 4, the white powder that has not been heat-treated is an amorphous body in which only a broad peak appears in the X-ray diffraction measurement.

これに対し、1000℃において熱処理を施した白色粉末のパターンには、Al−N結合が形成されていることを示すピークが3箇所出現している。従って、この場合においても、AlH3中のAlとポリビニルピロリドン中のNとが結合することによってポリビニルピロリドン−AlH3結合体が生成したことが認められる。 On the other hand, in the pattern of the white powder that has been heat-treated at 1000 ° C., three peaks appearing that Al—N bonds are formed. Therefore, in this case as well, it can be seen that a polyvinyl pyrrolidone-AlH 3 conjugate was formed by bonding of Al in AlH 3 and N in polyvinyl pyrrolidone.

また、上記の2試料、及び出発原料であるポリビニルピロリドンにつきフーリエ変換赤外線吸収測定をそれぞれ行った。図5に、1000℃で熱処理を施した白色粉末、熱処理を施していない白色粉末、出発原料であるポリビニルピロリドンの各吸収スペクトルを下方からこの順序で併せて示す。   Further, Fourier transform infrared absorption measurement was performed for the above two samples and the starting material polyvinyl pyrrolidone. FIG. 5 shows the absorption spectra of the white powder that has been heat-treated at 1000 ° C., the white powder that has not been heat-treated, and the polyvinyl pyrrolidone that is the starting material in this order from below.

この図5から、熱処理を施していない白色粉末、及び1000℃で熱処理された白色粉末は、出発原料であるポリビニルピロリドンに対し、明らかに相違する各吸収スペクトルを示すことが明らかである。この結果からも、ポリビニルピロリドン−AlH3結合体が形成されていることが支持される。 From FIG. 5, it is clear that the white powder not subjected to heat treatment and the white powder heat treated at 1000 ° C. show absorption spectra that are clearly different from the starting material polyvinylpyrrolidone. This result also supports the formation of a polyvinylpyrrolidone-AlH 3 conjugate.

なお、ポリビニルピロリドン−AlH3結合体の推定される構造式は、下記の構造式(3)の通りである。

Figure 2009196960
The estimated structural formula of the polyvinylpyrrolidone-AlH 3 conjugate is as shown in the following structural formula (3).
Figure 2009196960

次に、反応生成物である白色粉末を10mg秤量し、上記実施例と同様に、昇温速度を5℃/分とする熱重量分析を行うとともに、該熱重量分析における温度上昇に伴う試料の重量変化から水素放出量を算出した。温度に対する水素放出量の変化を図6に示す。ここで、ポリビニルピロリドン単体を試料として熱重量分析を行った場合、400℃以下では重量減少が認められない。従って、図6に示される重量変化は、白色粉末に含まれるAlH3からのHの解離によるものである。 Next, 10 mg of the white powder as a reaction product was weighed, and in the same manner as in the above example, thermogravimetric analysis was performed at a heating rate of 5 ° C./min. The hydrogen release amount was calculated from the change in weight. FIG. 6 shows the change of the hydrogen release amount with respect to the temperature. Here, when thermogravimetric analysis is performed using polyvinyl pyrrolidone alone as a sample, no weight reduction is observed at 400 ° C. or lower. Therefore, the weight change shown in FIG. 6 is due to the dissociation of H from AlH 3 contained in the white powder.

ポリビニルピロリドン−AlH3結合体の構造式が上記の構造式(3)の通りである場合、理論的な水素貯蔵・放出量は2.1重量%であるが、図6から、100℃に到達するまでに水素の略全量が放出されたことが分かる。この結果からも、AlH3を窒素含有化合物に配位結合させることによって水素放出開始温度が十分に低下するといえる。 When the structural formula of the polyvinylpyrrolidone-AlH 3 conjugate is as shown in the above structural formula (3), the theoretical hydrogen storage / release amount is 2.1% by weight, but it reaches 100 ° C. from FIG. It can be seen that almost all of the hydrogen has been released. Also from this result, it can be said that the hydrogen release start temperature is sufficiently lowered by coordination bonding of AlH 3 to the nitrogen-containing compound.

メラミンとAlH3を出発原料として得られた白色粉末と、1000℃で熱処理が施された該白色粉末とのX線回折パターンである。2 is an X-ray diffraction pattern of a white powder obtained using melamine and AlH 3 as starting materials and the white powder heat-treated at 1000 ° C. FIG. メラミンと、メラミンとAlH3を出発原料として得られた白色粉末と、1000℃で熱処理が施された該白色粉末とのフーリエ変換赤外線吸収スペクトルである。4 is a Fourier transform infrared absorption spectrum of melamine, a white powder obtained using melamine and AlH 3 as a starting material, and the white powder heat-treated at 1000 ° C. FIG. メラミンとAlH3を出発原料として得られた白色粉末につき、熱重量分析に基づく温度に対する水素放出量の変化を表すグラフである。Melamine and AlH 3 per white powder obtained as the starting material is a graph showing a change in the hydrogen emission for temperature based on thermogravimetric analysis. ポリビニルピロリドンとAlH3を出発原料として得られた白色粉末と、1000℃で熱処理が施された該白色粉末とのX線回折パターンである。2 is an X-ray diffraction pattern of a white powder obtained using polyvinylpyrrolidone and AlH 3 as starting materials and the white powder heat-treated at 1000 ° C. FIG. ポリビニルピロリドンと、ポリビニルピロリドンとAlH3を出発原料として得られた白色粉末と、1000℃で熱処理が施された該白色粉末とのフーリエ変換赤外線吸収スペクトルである。It is a Fourier transform infrared absorption spectrum of polyvinyl pyrrolidone, white powder obtained using polyvinyl pyrrolidone and AlH 3 as starting materials, and the white powder heat-treated at 1000 ° C. ポリビニルピロリドンとAlH3を出発原料として得られた白色粉末につき、熱重量分析に基づく温度に対する水素放出量の変化を表すグラフである。Polyvinylpyrrolidone and AlH 3 per white powder obtained as the starting material is a graph showing a change in the hydrogen emission for temperature based on thermogravimetric analysis.

Claims (5)

AlH3と窒素含有化合物とを含む水素貯蔵材であって、
AlH3の構成元素であるAlと、窒素含有化合物の構成元素であるNとが配位結合をなす化合物からなることを特徴とする水素貯蔵材。
A hydrogen storage material containing AlH 3 and a nitrogen-containing compound,
A hydrogen storage material characterized by comprising a compound in which Al, which is a constituent element of AlH 3 , and N, which is a constituent element of a nitrogen-containing compound, form a coordinate bond.
請求項1記載の水素貯蔵材において、前記窒素含有化合物が、アミノ基が官能基として結合した窒素含有複素環化合物であることを特徴とする水素貯蔵材。   2. The hydrogen storage material according to claim 1, wherein the nitrogen-containing compound is a nitrogen-containing heterocyclic compound in which an amino group is bonded as a functional group. 請求項2記載の水素貯蔵材において、アミノ基が官能基として結合した前記窒素含有複素環化合物がメラミンであることを特徴とする水素貯蔵材。   3. The hydrogen storage material according to claim 2, wherein the nitrogen-containing heterocyclic compound having an amino group bonded as a functional group is melamine. 請求項1記載の水素貯蔵材において、前記窒素含有化合物が高分子であることを特徴とする水素貯蔵材。   The hydrogen storage material according to claim 1, wherein the nitrogen-containing compound is a polymer. 請求項4記載の水素貯蔵材において、前記高分子が所定の形状に予め加工された成形体であることを特徴とする水素貯蔵材。   5. The hydrogen storage material according to claim 4, wherein the polymer is a molded body processed in advance into a predetermined shape.
JP2008042909A 2008-02-25 2008-02-25 Hydrogen storage material Expired - Fee Related JP5549901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042909A JP5549901B2 (en) 2008-02-25 2008-02-25 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042909A JP5549901B2 (en) 2008-02-25 2008-02-25 Hydrogen storage material

Publications (2)

Publication Number Publication Date
JP2009196960A true JP2009196960A (en) 2009-09-03
JP5549901B2 JP5549901B2 (en) 2014-07-16

Family

ID=41140888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042909A Expired - Fee Related JP5549901B2 (en) 2008-02-25 2008-02-25 Hydrogen storage material

Country Status (1)

Country Link
JP (1) JP5549901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116101974A (en) * 2023-03-07 2023-05-12 大连大学 Aluminum hydride hydrogen storage material doped with polymer and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525218A (en) * 2002-02-01 2005-08-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for taking up, storing or releasing gas with a new skeletal material
WO2006110740A2 (en) * 2005-04-07 2006-10-19 The Regents Of The University Of Michigan High gas adsorption in a microporous metal-organic framework with open-metal sites
WO2007023119A1 (en) * 2005-08-22 2007-03-01 Basf Aktiengesellschaft Mesoporous metal-organic framework
JP2007307473A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Hydrogen storage material and its manufacturing method
JP2008018420A (en) * 2006-06-13 2008-01-31 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525218A (en) * 2002-02-01 2005-08-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for taking up, storing or releasing gas with a new skeletal material
WO2006110740A2 (en) * 2005-04-07 2006-10-19 The Regents Of The University Of Michigan High gas adsorption in a microporous metal-organic framework with open-metal sites
WO2007023119A1 (en) * 2005-08-22 2007-03-01 Basf Aktiengesellschaft Mesoporous metal-organic framework
JP2007307473A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Hydrogen storage material and its manufacturing method
JP2008018420A (en) * 2006-06-13 2008-01-31 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116101974A (en) * 2023-03-07 2023-05-12 大连大学 Aluminum hydride hydrogen storage material doped with polymer and preparation method thereof

Also Published As

Publication number Publication date
JP5549901B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Yu et al. Point‐defect engineering: leveraging imperfections in graphitic carbon nitride (g‐C3N4) photocatalysts toward artificial photosynthesis
Rossin et al. Metal–organic frameworks as heterogeneous catalysts in hydrogen production from lightweight inorganic hydrides
Kim et al. Inorganic nanoparticles in porous coordination polymers
KR101912251B1 (en) Catalyst for dehydrogenation reaction of formic acid and method for preparing the same
US10301727B2 (en) Covalent organic frameworks as porous supports for non-noble metal based water splitting electrocatalysts
US7220290B2 (en) System for hydrogen generation
Wang et al. Synthesis of highly active Pt–CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane
Zhang et al. Megamerger of MOFs and gC 3 N 4 for energy and environment applications: upgrading the framework stability and performance
KR100921212B1 (en) Organometallic complexes as hydrogen storage materials and a method of preparing the same
Sun et al. Rational encapsulation of atomically precise nanoclusters into metal–organic frameworks by electrostatic attraction for CO 2 conversion
TWI411576B (en) A non-thermofusible granular phenol resin and a method for producing the same, and a thermosetting resin composition, a filler for semiconductor and a bonding agent for a semiconductor (2)
Dontsova et al. 1, 2, 4-Triazole-based approach to noble-metal-free visible-light driven water splitting over carbon nitrides
Zhu et al. Accelerating Membrane‐based CO2 Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling
KR101781412B1 (en) Catalysts for ammonia dehydrogenation, methods of producing the same, and methods of producing hydrogen gas from ammonia using the same
JP2009291706A5 (en)
JP2011225431A (en) Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
US20090274613A1 (en) Hydrogen Production Using Ammonia Borane
JP5044815B2 (en) Method for producing metal complex
CN107754830B (en) Amorphous alloy catalyst, preparation method thereof and application thereof in hydrogen production by hydrazine decomposition
Qiu et al. Hydrolytic dehydrogenation of NH 3 BH 3 catalyzed by ruthenium nanoparticles supported on magnesium–aluminum layered double-hydroxides
Sadhasivam et al. Copper nanoparticles supported on highly nitrogen-rich covalent organic polymers as heterogeneous catalysts for the ipso-hydroxylation of phenyl boronic acid to phenol
Hauser et al. A mesoporous aluminosilicate nanoparticle-supported Nickel–boron composite for the catalytic reduction of nitroarenes
JP5549901B2 (en) Hydrogen storage material
Tong et al. Highly Dispersed Ru–Co Nanoparticles Interfaced With Nitrogen‐Doped Carbon Polyhedron for High Efficiency Reversible Li–O2 Battery
WO2014136823A1 (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5549901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees