JP2009193701A - Lithium battery, positive electrode for lithium battery, and its manufacturing method - Google Patents

Lithium battery, positive electrode for lithium battery, and its manufacturing method Download PDF

Info

Publication number
JP2009193701A
JP2009193701A JP2008030434A JP2008030434A JP2009193701A JP 2009193701 A JP2009193701 A JP 2009193701A JP 2008030434 A JP2008030434 A JP 2008030434A JP 2008030434 A JP2008030434 A JP 2008030434A JP 2009193701 A JP2009193701 A JP 2009193701A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
thin film
lithium battery
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008030434A
Other languages
Japanese (ja)
Other versions
JP5396717B2 (en
Inventor
To Tei
涛 鄭
Taku Kamimura
卓 上村
Kentaro Yoshida
健太郎 吉田
Ryoko Kanda
良子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008030434A priority Critical patent/JP5396717B2/en
Publication of JP2009193701A publication Critical patent/JP2009193701A/en
Application granted granted Critical
Publication of JP5396717B2 publication Critical patent/JP5396717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a lithium battery which is fabricated without using a large-scale device and is superior in adhesion with a current collection material, and is excellent in utilization rate, a lithium battery using the positive electrode for the lithium battery, and a method of manufacturing the positive electrode for the lithium battery. <P>SOLUTION: The method to form a thin film of lithium complex oxide on a metal substrate 1 includes a process in which the metal substrate is heated to a temperature in the range 250°C-500°C and a thin film containing lithium is vapor-deposited and an annealing process in which the metal substrate having the thin film vapor-deposited is heated to a temperature in the range 475°C-700°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム電池、リチウム電池用正極およびその製造方法に関し、より具体的には、集電基材との密着性が良好で、利用率の高いリチウム電池用正極、そのリチウム電池用正極を備えたリチウム電池、およびリチウム電池用正極の製造方法に関するものである。   The present invention relates to a lithium battery, a positive electrode for a lithium battery, and a method for producing the same, and more specifically, a positive electrode for a lithium battery having good adhesion to the current collector and a high utilization rate, and a positive electrode for the lithium battery. The present invention relates to a lithium battery provided and a method for producing a positive electrode for a lithium battery.

リチウム電池では、正極に含リチウム金属酸化物(リチウム複合酸化物)を、また負極に金属リチウムを用いたものが一般に知られている。携行電子機器やカード等への用途が見込まれるため、電池特性の向上やリチウムイオンの移動度の確保のために、正極膜についての研究が盛んに行われている。たとえば正極膜を集電基材上に密着性良好に形成するために、リチウムを含む正極膜の蒸着と、集電基材へのイオンビーム照射とを併用して、集電基材上にリチウム複合酸化物を形成する方法が提案されている(特許文献1)。
特開平8−236105号公報
In general, lithium batteries using a lithium-containing metal oxide (lithium composite oxide) for the positive electrode and metal lithium for the negative electrode are known. Since applications to portable electronic devices and cards are expected, research on positive electrode films has been actively conducted in order to improve battery characteristics and secure lithium ion mobility. For example, in order to form the positive electrode film on the current collecting base material with good adhesion, the deposition of the positive electrode film containing lithium and the ion beam irradiation to the current collecting base material are used in combination to form lithium on the current collecting base material. A method of forming a complex oxide has been proposed (Patent Document 1).
JP-A-8-236105

上記の正極薄膜の形成方法によれば、集電基材と正極薄膜との密着性は良好なものが得られるかもしれないが、つぎのような問題が生じる。
(1)真空蒸着とイオンビーム照射とを併用するため、製造設備のコストが高くなる。
(2)蒸着した正極薄膜が、イオンビーム照射の影響によって帯電し、正極薄膜の性能が劣化するおそれがある。すなわち、帯電のために、正極薄膜の破壊が生じたり、または正極薄膜内部で電気的中性を保つ必要のない酸化還元反応が起こり、正極薄膜の特性が劣化する。
(3)集電基材と正極薄膜との界面に、厚く混合層が形成され、正極薄膜の電気抵抗が高くなり、正極薄膜の利用率が低下する。具体的には、集電基材を構成する材料の原子が正極薄膜へと、数μmのレベルで拡散し、その結果、界面部分の正極薄膜の結晶性が劣化し、電気抵抗が増大する。また、界面部分に形成される混合層が数μmレベルの厚みになるため、正極薄膜の有効膜厚が減少し、正極薄膜の利用率が低くなる。
According to the above method for forming a positive electrode thin film, good adhesion between the current collecting base material and the positive electrode thin film may be obtained, but the following problems arise.
(1) Since vacuum deposition and ion beam irradiation are used in combination, the cost of manufacturing equipment increases.
(2) The deposited positive electrode thin film is charged by the influence of ion beam irradiation, and the performance of the positive electrode thin film may be deteriorated. That is, the positive electrode thin film is destroyed due to charging, or an oxidation-reduction reaction that does not require electrical neutrality inside the positive electrode thin film occurs, and the characteristics of the positive electrode thin film deteriorate.
(3) A thick mixed layer is formed at the interface between the current collecting substrate and the positive electrode thin film, the electric resistance of the positive electrode thin film is increased, and the utilization rate of the positive electrode thin film is decreased. Specifically, atoms of the material constituting the current collecting base material diffuse to the positive electrode thin film at a level of several μm. As a result, the crystallinity of the positive electrode thin film at the interface portion deteriorates and the electric resistance increases. Further, since the mixed layer formed at the interface portion has a thickness of several μm level, the effective film thickness of the positive electrode thin film is reduced, and the utilization factor of the positive electrode thin film is lowered.

本発明は、大掛かりな装置を用いることなく作製が可能であり、集電基材との密着性に優れ、かつ利用率が高いリチウム電池用正極、そのリチウム電池用正極を用いたリチウム電池および上記リチウム電池用正極の製造方法を提供することを目的とする。   The present invention can be produced without using a large-scale apparatus, has excellent adhesion to the current collecting base material and has a high utilization rate, a lithium battery positive electrode using the lithium battery positive electrode, and the above-mentioned It aims at providing the manufacturing method of the positive electrode for lithium batteries.

本発明のリチウム電池用正極の製造方法は、蒸着によって金属基材にリチウム複合酸化物の薄膜を作製する方法である。この方法は、金属基材を250℃〜500℃の範囲の温度に加熱して、リチウムを含む薄膜を蒸着する工程と、薄膜が蒸着された金属基材を475℃〜700℃の範囲の温度に加熱するアニール工程とを備えることを特徴とする。   The manufacturing method of the positive electrode for lithium batteries of this invention is a method of producing the thin film of lithium complex oxide on a metal base material by vapor deposition. In this method, the metal substrate is heated to a temperature in the range of 250 ° C. to 500 ° C. to deposit a thin film containing lithium, and the metal substrate on which the thin film is deposited has a temperature in the range of 475 ° C. to 700 ° C. And an annealing step for heating.

上記の方法によれば、薄膜蒸着の工程では、金属基材は250℃以上に加熱されているので、金属基材から薄膜への拡散が十分に生じ、薄膜の金属基材への十分大きい密着力を得ることができる。250℃未満の加熱では、上記の密着力は小さく、また薄膜(正極)の結晶化が進行しないため、欠陥密度が高いものや、大きな欠損(クラックなど)を内在する薄膜が形成される。また薄膜蒸着の工程で金属基材を、500℃を超える温度に加熱すると、金属基材と薄膜との熱膨張の相違が大きくなり、内部応力によって薄膜が金属基材から剥離しやすくなる。また、成膜後のアニール工程で、475℃〜700℃に加熱することによって、酸素の調製をしながら良好な結晶性をえて、金属基材から過度な拡散が薄膜へと生じないようにできる。アニール温度が475℃未満では酸素の導入が不十分であり、また原子配列は高密度の欠陥を含んだままであり良好な結晶性を得ることができず、また700℃を超えると混合層が増大する。この結果、利用率の高い正極を得て、またクラックや剥離が防止されるのでリチウム電池の内部抵抗を低くすることができる。   According to the above method, since the metal substrate is heated to 250 ° C. or higher in the thin film deposition step, sufficient diffusion from the metal substrate to the thin film occurs, and the thin film is sufficiently adhered to the metal substrate. You can gain power. When the heating is less than 250 ° C., the above adhesion is small, and the crystallization of the thin film (positive electrode) does not proceed, so that a thin film having a high defect density or a large defect (such as a crack) is formed. Further, when the metal substrate is heated to a temperature exceeding 500 ° C. in the thin film deposition process, the difference in thermal expansion between the metal substrate and the thin film becomes large, and the thin film is easily peeled off from the metal substrate due to internal stress. Further, by heating to 475 ° C. to 700 ° C. in the annealing step after film formation, it is possible to obtain good crystallinity while preparing oxygen and prevent excessive diffusion from the metal substrate to the thin film. . When the annealing temperature is less than 475 ° C., oxygen is not sufficiently introduced, the atomic arrangement still contains high-density defects, and good crystallinity cannot be obtained, and when it exceeds 700 ° C., the mixed layer increases. To do. As a result, a positive electrode having a high utilization rate is obtained, and cracks and peeling are prevented, so that the internal resistance of the lithium battery can be lowered.

アニール工程の後、金属基材から薄膜へと、該金属基材の構成元素が拡散して形成される混合層の厚みを0.5μm以下とするのがよい。これによって、正極の金属基材への密着性を高めながら、利用率の大きな低下を防止することができる。電気抵抗も低下させることができる。混合層の厚みを確実に0.5μm以下にするのはアニール工程の温度は、475℃以上600℃以下の範囲にするのがよく、さらには475℃以上555℃以下にするのがより好ましい。 After the annealing step, the thickness of the mixed layer formed by diffusing constituent elements of the metal substrate from the metal substrate to the thin film is preferably 0.5 μm or less. As a result, it is possible to prevent a significant decrease in the utilization rate while improving the adhesion of the positive electrode to the metal substrate. Electrical resistance can also be reduced. In order to ensure that the thickness of the mixed layer is 0.5 μm or less, the temperature of the annealing process is preferably in the range of 475 ° C. to 600 ° C., more preferably 475 ° C. to 555 ° C.

上記のリチウムを含む薄膜の蒸着では、リチウムならびに、Co、NiおよびMnの一種以上を含む薄膜を蒸着することができる。これによって、大電流の放電など電池特性に優れたリチウム電池用正極を得ることができる。   In the vapor deposition of a thin film containing lithium, a thin film containing lithium and one or more of Co, Ni, and Mn can be deposited. Thereby, a positive electrode for a lithium battery excellent in battery characteristics such as discharge of a large current can be obtained.

本発明のリチウム電池用正極は、Cr,FeおよびNiの一種以上を含む金属基材に形成され、リチウム電池に用いられる正極である。この正極は、Co,NiおよびMnの一種以上およびリチウムを含むリチウム複合酸化物であり、0.2μm〜50μmの範囲内の厚みを有し、金属基材からの原子の拡散で形成された混合層の厚みが0.5μm以下であることを特徴とする。   The positive electrode for a lithium battery of the present invention is a positive electrode that is formed on a metal substrate containing one or more of Cr, Fe, and Ni and is used for a lithium battery. This positive electrode is a lithium composite oxide containing one or more of Co, Ni and Mn and lithium, has a thickness in the range of 0.2 μm to 50 μm, and is formed by diffusion of atoms from a metal substrate The thickness of the layer is 0.5 μm or less.

上記の構成によれば、集電基材との密着性に優れ、また利用率の高いリチウム電池用正極を得ることができる。 According to said structure, the positive electrode for lithium batteries which is excellent in adhesiveness with a current collection base material, and has a high utilization factor can be obtained.

上記の金属基材と正極との間に剥離防止層を含まず、該金属基材と正極との間に剥離が無いようにできる。薄膜正極においては、金属基材と正極膜との間に、密着性を高めることができるためスパッタ蒸着層を剥離防止のために介在させるなどの対策を講じて剥離を防止する。しかし、わざわざスパッタ蒸着層を介在させるというこの剥離防止対策は、現状多用されているものの、工程が複雑になり、製造コストも増大する。上記の方法にしたがって製造することで、混合層を薄くでき、剥離を根絶できるので集電性能が高い正極を得ることができる。   A peeling prevention layer is not included between the metal base and the positive electrode, and no peeling can be provided between the metal base and the positive electrode. In a thin film positive electrode, since adhesion can be improved between a metal base material and a positive electrode film, measures such as interposing a sputtered vapor deposition layer for preventing peeling are taken to prevent peeling. However, although this anti-peeling measure that bothers sputter deposition layers is widely used at present, the process becomes complicated and the manufacturing cost increases. By manufacturing according to said method, since a mixed layer can be made thin and peeling can be eradicated, a positive electrode with high current collection performance can be obtained.

上記の正極の10箇所以上での断面観察においてクラックがないようにすることができる。これによって、耐久性に優れ、信頼性の高いリチウム用正極を得ることができる。10箇所以上の断面位置は平面的に見て、等間隔で分ける位置などの断面とするのがよいが、等間隔でなくてもよい。10箇所以上の断面とするのは、実質的にクラックがないことを、実務において担保するための観察数であればよく、たとえば20箇所などでもよい。   It is possible to prevent cracks in cross-sectional observation at 10 or more positions of the positive electrode. Thereby, a positive electrode for lithium having excellent durability and high reliability can be obtained. The cross-sectional positions of 10 or more are preferably cross-sections such as positions separated at equal intervals when seen in a plan view, but may not be equal intervals. The number of cross-sections at 10 or more may be the number of observations for ensuring in practice that there are substantially no cracks, for example, 20 or the like.

本発明のリチウム電池は、上記のいずれか1つのリチウム電池用正極の製造方法で作製された正極、または上記のいずれか1つのリチウム電池用正極を備えることを特徴とする。これによって、電池容量が大きく、内部抵抗が低い、信頼性の高いリチウム電池を得ることができる。   The lithium battery of the present invention is characterized by including a positive electrode produced by any one of the above-described methods for producing a positive electrode for a lithium battery, or any one of the above-described positive electrodes for a lithium battery. Thus, a highly reliable lithium battery having a large battery capacity and low internal resistance can be obtained.

本発明によれば、大掛かりな装置を用いることなく作製が可能であり、集電基材との密着性に優れ、かつ利用率が高いリチウム電池用正極、そのリチウム電池用正極を用いたリチウム電池および上記リチウム電池用正極の製造方法を得ることができる。   According to the present invention, a positive electrode for a lithium battery that can be manufactured without using a large-scale apparatus, has excellent adhesion to a current collecting base material, and has a high utilization rate, and a lithium battery using the positive electrode for a lithium battery And the manufacturing method of the said positive electrode for lithium batteries can be obtained.

図1は、本発明の実施の形態におけるリチウム電池用正極3を示す断面図である。本実施の形態における正極3は、金属基材(以後、「基材」と略記する)1の表面に蒸着に形成されており、リチウムおよびCo、Ni、Mnの1種以上を含むリチウム複合酸化物の薄膜である。すなわちLiMO2またはLiM24(MはCo,Ni,Mnおよびその混合物)などの薄膜である。この正極3には、金属基材1から1種以上の原子が、製造途中の熱履歴によって拡散している。また、正極3からも基材1側に向かって拡散によって、正極3の構成原子が侵入している。これら相互に拡散して相手側に拡散して入る原子の比率は小さいので、基材1と正極3の界面は容易に判別することができる。基材1は、Cr,Ni,Fe,Mnなどを含む各種のステンレススティールの金属箔でもよいし、セラミックスなどの耐熱材料をCr,Ni,Fe,Mnなどを含む金属層でコーティングしたものであってもよく、要は正極3と接する厚み範囲に導電性があればよい。 FIG. 1 is a cross-sectional view showing a positive electrode 3 for a lithium battery according to an embodiment of the present invention. The positive electrode 3 in the present embodiment is formed by vapor deposition on the surface of a metal substrate (hereinafter abbreviated as “substrate”) 1, and is a lithium composite oxide containing lithium and one or more of Co, Ni, and Mn. It is a thin film. That is, it is a thin film such as LiMO 2 or LiM 2 O 4 (M is Co, Ni, Mn and a mixture thereof). In the positive electrode 3, one or more kinds of atoms from the metal substrate 1 are diffused due to a thermal history during the production. Moreover, the constituent atoms of the positive electrode 3 have also penetrated from the positive electrode 3 by diffusion toward the base material 1 side. Since the ratio of these atoms diffusing to each other and entering the other side is small, the interface between the substrate 1 and the positive electrode 3 can be easily discriminated. The base material 1 may be a metal foil of various stainless steels containing Cr, Ni, Fe, Mn, etc., or a heat-resistant material such as ceramics coated with a metal layer containing Cr, Ni, Fe, Mn, etc. In short, it is only necessary that the thickness range in contact with the positive electrode 3 is conductive.

正極3に基材1から拡散流入して形成される混合層3aは、本発明の場合、厚みdは0.5μm以下に制限される。混合層3aの厚みdが厚くなると、混合層3aでは正極3の機能が十分果たせないため、正極3の利用率が低下する。すなわち正極3は所定のスペースを占めるに足る材料を投入されているのに、それに見合った機能を果たすことができず、たとえば電池容量が低下し、電気抵抗が増大する。この観点から、混合層3aの正極3における限界位置は、基材1からの原子の比率が正極3において5重量%となる位置と定義する。基材を構成する原子が複数種ある場合には、それら複数種の原子の合計重量%が2.5重量%になる位置とする。また、Niのように、正極3と基材1とで共通する可能性がある場合には、混合層3aにおけるNi重量%と正極の正式組成(界面から十分遠い位置の正極の組成)におけるNi重量%との差のみを問題として、混合層3a内のNiがどこから来たものかは問わない。Mnについても、基材1と正極3の両方に含まれる元素であり、上記のNiと同様のことがいえる。正極3内から基材1へ拡散流出した分を、基材1内から正極3側へ拡散流入した分で補っているとみることができ、利用率の低下につながらないからである。   In the present invention, the thickness d of the mixed layer 3a formed by diffusing and flowing into the positive electrode 3 from the substrate 1 is limited to 0.5 μm or less. When the thickness d of the mixed layer 3a is increased, the function of the positive electrode 3 cannot be sufficiently achieved in the mixed layer 3a, so that the utilization rate of the positive electrode 3 decreases. That is, although the positive electrode 3 is filled with a material sufficient to occupy a predetermined space, the positive electrode 3 cannot perform a function commensurate with it. For example, the battery capacity is reduced and the electric resistance is increased. From this viewpoint, the limit position of the mixed layer 3a in the positive electrode 3 is defined as a position where the ratio of atoms from the substrate 1 is 5% by weight in the positive electrode 3. When there are a plurality of types of atoms constituting the substrate, the total weight percent of the plurality of types of atoms is 2.5% by weight. Further, when there is a possibility that the positive electrode 3 and the base material 1 are common like Ni, Ni in the mixed layer 3a and Ni in the formal composition of the positive electrode (the composition of the positive electrode far enough from the interface) Regardless of the difference from the weight percent, it does not matter where Ni in the mixed layer 3a comes from. Mn is also an element contained in both the substrate 1 and the positive electrode 3, and the same can be said for Ni described above. This is because it can be considered that the amount of diffusion and outflow from the inside of the positive electrode 3 to the base material 1 is supplemented by the amount of diffusion and inflow from the inside of the base material 1 to the positive electrode 3 side, which does not lead to a decrease in the utilization rate.

また、図1において、正極3と基材1との間には剥離防止層をなんら挿入しなくても、その正極3と基材1との間に剥離は生じていない。剥離は、断面を光学顕微鏡で観察することによって検知できる。また、剥離が少しでも生じると、電気抵抗が増大して集電性能が大きく劣化するので、たとえばテスターを使って、基材1と正極3との間の電気抵抗を測定することによっても、剥離の有無を簡便に検知することができる。   Further, in FIG. 1, no peeling occurs between the positive electrode 3 and the substrate 1 even if no peeling prevention layer is inserted between the positive electrode 3 and the substrate 1. Peeling can be detected by observing the cross section with an optical microscope. Further, if any peeling occurs, the electrical resistance increases and the current collecting performance is greatly deteriorated. For example, by using a tester to measure the electrical resistance between the substrate 1 and the positive electrode 3, the peeling is performed. The presence or absence of can be easily detected.

図3は、室温で蒸着した場合の正極3の断面を示す図である。クラックCが結晶粒界を起点に発生している様子が認められる。このように、蒸着温度が高すぎる場合、正極3に発生するクラックCは、結晶粒界を起点にする。クラックCは蒸着温度が、図3に示すように、250℃〜500℃の範囲より低い場合にも発生する場合が多い。蒸着温度が500℃より高い場合、上述のように、基材からのNiなどの拡散流入が促進され、混合層が拡大して正極の利用率が大幅に低下する。蒸着温度が500℃より高い場合、さらに基材1の熱膨張が大きく生じ、室温に冷却時に基材1と正極3との界面に大きな応力が発生し、正極3が基材1から剥離することが多くなる。蒸着温度を250℃〜500℃の範囲内にすることで、クラックCがなく、剥離防止層がなくても剥離がなく、かつ混合層を抑制した正極3を得ることができる。   FIG. 3 is a view showing a cross section of the positive electrode 3 when vapor deposition is performed at room temperature. It can be seen that the crack C is generated starting from the crystal grain boundary. As described above, when the deposition temperature is too high, the crack C generated in the positive electrode 3 starts from the crystal grain boundary. Cracks C often occur even when the deposition temperature is lower than the range of 250 ° C. to 500 ° C. as shown in FIG. When the deposition temperature is higher than 500 ° C., as described above, diffusion inflow of Ni or the like from the base material is promoted, the mixed layer is enlarged, and the utilization factor of the positive electrode is greatly reduced. When the deposition temperature is higher than 500 ° C., thermal expansion of the base material 1 further occurs, and a large stress is generated at the interface between the base material 1 and the positive electrode 3 when cooled to room temperature, and the positive electrode 3 is peeled off from the base material 1. Will increase. By setting the vapor deposition temperature within the range of 250 ° C. to 500 ° C., there can be obtained the positive electrode 3 that has no crack C, no peeling even if there is no peeling prevention layer, and suppresses the mixed layer.

次に、本発明の正極3の製造方法について説明する。図4を参照して、基材1に薄膜を蒸着する際に、基材1を蒸着温度250℃以下500℃以下の範囲内の任意の温度に加熱する。そして、リチウムを含む蒸着源量を蒸着源として、基材1上に薄膜を形成する。図5は、蒸着の際に用いる蒸着装置を示す模式図である。図5において、蒸着は、真空チャンバ30内で行われ、リチウム、コバルト等の原料を、蒸着原料容器であるるつぼ21に装入し、蒸発エネルギーとして電子ビーム、レーザービームまたは抵抗加熱を行う。蒸発エネルギーの投入によってるつぼ21からは、リチウム、コバルト等の蒸気23が、基板ホルダー29に保持された基材1に向けて蒸発する。蒸気23の状態が安定するまで、図示しないシャッタで遮断しておき、蒸気23の状態が安定したらシャッタを開いて、基材1の上にリチウム複合酸化物の蒸着層を形成する。   Next, the manufacturing method of the positive electrode 3 of this invention is demonstrated. Referring to FIG. 4, when depositing a thin film on substrate 1, substrate 1 is heated to an arbitrary temperature within the range of deposition temperature of 250 ° C. or lower and 500 ° C. or lower. Then, a thin film is formed on the substrate 1 using the amount of the vapor deposition source containing lithium as the vapor deposition source. FIG. 5 is a schematic diagram showing a vapor deposition apparatus used for vapor deposition. In FIG. 5, vapor deposition is performed in a vacuum chamber 30, and a raw material such as lithium or cobalt is charged into a crucible 21 that is a vapor deposition raw material container, and an electron beam, a laser beam, or resistance heating is performed as evaporation energy. By supplying the evaporation energy, the vapor 23 such as lithium or cobalt evaporates from the crucible 21 toward the base material 1 held by the substrate holder 29. It shuts off with a shutter (not shown) until the state of the vapor 23 is stabilized, and when the state of the vapor 23 is stabilized, the shutter is opened to form a lithium composite oxide vapor deposition layer on the substrate 1.

蒸着原料としては、LiCoO2、LiMnO2、LiNiO2などのリチウム酸化物を用いることができる。またはLi、Li2Oなどのリチウムを含む物質と、Co、Mn、Ni、Co34、MnO2、NiOなどの金属を含む物質とを混合したものを用いてもよい。蒸着法としては、電子ビーム蒸着法、抵抗加熱蒸着法、レーザー蒸着法またはスパッタ蒸着法など、任意の蒸着法を用いることができる。正極3の厚みは、0.2μm以上50μm以下の範囲内の任意の厚みとするのがよい。 As a deposition material, lithium oxides such as LiCoO 2 , LiMnO 2 , and LiNiO 2 can be used. Alternatively, a mixture of a substance containing lithium such as Li or Li 2 O and a substance containing a metal such as Co, Mn, Ni, Co 3 O 4 , MnO 2 , or NiO may be used. As an evaporation method, any evaporation method such as an electron beam evaporation method, a resistance heating evaporation method, a laser evaporation method, or a sputtering evaporation method can be used. The thickness of the positive electrode 3 is preferably an arbitrary thickness within a range of 0.2 μm or more and 50 μm or less.

図4において、上記のように薄膜を基材1上に蒸着した後、基材1ごと薄膜をアニール温度475℃以上700℃以下の範囲内の任意の温度に加熱してアニールする。アニールの雰囲気は、大気雰囲気または酸素雰囲気で行うのがよい。アニール温度が475℃未満では、リチウム複合酸化物の結晶性および酸素濃度の調製が十分ではなく、一方、700℃を超えてアニールすると混合層3aの厚みが増大し、正極3の利用率が低下する。また、基材1と正極3の熱膨張率の相違により、室温に冷却したときに内部応力が大きく生じ、剥離しやすくなる。   In FIG. 4, after depositing a thin film on the substrate 1 as described above, the thin film is annealed together with the substrate 1 by heating to an arbitrary temperature within the annealing temperature range of 475 ° C. to 700 ° C. The annealing atmosphere is preferably an air atmosphere or an oxygen atmosphere. When the annealing temperature is less than 475 ° C., the crystallinity and oxygen concentration of the lithium composite oxide are not sufficiently adjusted. On the other hand, when the annealing temperature exceeds 700 ° C., the thickness of the mixed layer 3a increases and the utilization rate of the positive electrode 3 decreases. To do. In addition, due to the difference in thermal expansion coefficient between the base material 1 and the positive electrode 3, a large internal stress is generated when it is cooled to room temperature, and it becomes easy to peel off.

上記のように、薄膜の蒸着工程で250℃以上500℃以下という低温域に加熱することで、薄膜の基材1への密着性を確保しながら、薄膜と基材1との熱膨張率の相違に起因する薄膜の基材1からの剥離を防止し、かつ混合層3aの厚み成長を抑制することができる。また、アニール工程では、475℃以上700℃以下という温度域に加熱することで、リチウム複合酸化物の酸素濃度を調製しながら、結晶性を良好にし、密着性を向上させ、かつ混合層3aの増大を抑制することができる。   As described above, the thermal expansion coefficient of the thin film and the base material 1 is maintained while ensuring the adhesion of the thin film to the base material 1 by heating to a low temperature range of 250 ° C. or more and 500 ° C. or less in the thin film deposition step. The peeling of the thin film from the base material 1 due to the difference can be prevented, and the thickness growth of the mixed layer 3a can be suppressed. Further, in the annealing step, by heating to a temperature range of 475 ° C. or more and 700 ° C. or less, while adjusting the oxygen concentration of the lithium composite oxide, the crystallinity is improved, the adhesion is improved, and the mixed layer 3a is improved. The increase can be suppressed.

本発明例および2つの比較例の試験体をつぎの手順で作製した。これら試験体の評価は、基材1/正極3の断面を光学顕微鏡および走査型電子顕微鏡(SEM)で観察してクラック等の有無を調べた。また、XPS(X線光電子分光)およびEDX(エネルギー分散型)組成分析を用いて断面の厚み方向に化学組成を測定して、混合層3aの厚みを測定した。また、試験体の正極を組み込んだ全固体リチウム二次電池を作製して、放電容量を測定した。
(本発明例)
酸化リチウム(Li2O)および酸化コバルト(Co34)を混合した蒸着原料をるつぼに装入し、基材の温度が蒸着温度範囲内の300℃になったことを確認してから、電子ビームを照射して蒸気化した。蒸気化が安定したらシャッタを開け、ステンレススティール製の基材に10分間蒸着した。蒸着した薄膜を基材ごと500℃で3時間、大気雰囲気でアニールした。これによって、基材上に厚み10μmのコバルト酸リチウム(LiCoO2)の正極を作製した。
(比較例1)
酸化リチウム(Li2O)および酸化コバルト(Co34)を混合した蒸着原料をるつぼに装入し、電子ビームを照射して蒸気化した。蒸気化が安定したらシャッタを開け、ステンレススティール製の基材に10分間蒸着した。このとき基材1の温度は、室温とした。蒸着した薄膜を基材ごと800℃で3時間、大気雰囲気でアニールした。これによって、基材上に厚み10μmのコバルト酸リチウム(LiCoO2)の正極を作製した。
(比較例2)
酸化リチウム(Li2O)および酸化コバルト(Co34)を混合した蒸着原料をるつぼに装入し、電子ビームを照射して蒸気化した。蒸気化が安定したらシャッタを開け、ステンレススティール製の基材に10分間蒸着した。このとき基材1の温度は、室温とした。蒸着した薄膜を基材ごと500℃で3時間、大気雰囲気でアニールした。これによって、基材上に厚み10μmのコバルト酸リチウム(LiCoO2)の正極を作製した。
Test specimens of the present invention and two comparative examples were prepared by the following procedure. For the evaluation of these test specimens, the cross section of the substrate 1 / positive electrode 3 was observed with an optical microscope and a scanning electron microscope (SEM) to examine the presence or absence of cracks and the like. Moreover, the chemical composition was measured in the thickness direction of the cross section using XPS (X-ray photoelectron spectroscopy) and EDX (energy dispersion type) composition analysis, and the thickness of the mixed layer 3a was measured. Moreover, an all-solid lithium secondary battery incorporating the positive electrode of the test body was produced, and the discharge capacity was measured.
(Example of the present invention)
After charging a crucible with a deposition raw material mixed with lithium oxide (Li 2 O) and cobalt oxide (Co 3 O 4 ), and confirming that the temperature of the substrate was 300 ° C. within the deposition temperature range, Vaporized by electron beam irradiation. When the vaporization stabilized, the shutter was opened, and vapor deposition was performed on a stainless steel substrate for 10 minutes. The deposited thin film was annealed together with the substrate at 500 ° C. for 3 hours in the air atmosphere. Thus, a positive electrode of lithium cobaltate (LiCoO 2 ) having a thickness of 10 μm was produced on the substrate.
(Comparative Example 1)
An evaporation material mixed with lithium oxide (Li 2 O) and cobalt oxide (Co 3 O 4 ) was placed in a crucible and vaporized by irradiation with an electron beam. When the vaporization stabilized, the shutter was opened, and vapor deposition was performed on a stainless steel substrate for 10 minutes. At this time, the temperature of the base material 1 was set to room temperature. The deposited thin film was annealed together with the substrate at 800 ° C. for 3 hours in the air atmosphere. Thus, a positive electrode of lithium cobaltate (LiCoO 2 ) having a thickness of 10 μm was produced on the substrate.
(Comparative Example 2)
An evaporation material mixed with lithium oxide (Li 2 O) and cobalt oxide (Co 3 O 4 ) was placed in a crucible and vaporized by irradiation with an electron beam. When the vaporization stabilized, the shutter was opened, and vapor deposition was performed on a stainless steel substrate for 10 minutes. At this time, the temperature of the base material 1 was set to room temperature. The deposited thin film was annealed together with the substrate at 500 ° C. for 3 hours in the air atmosphere. As a result, a positive electrode of lithium cobaltate (LiCoO2) having a thickness of 10 μm was produced on the substrate.

1.正極の形態
上記の試験体についての評価は、つぎのようになった。比較例1は、正極3にクラックが発生していた。また正極3の基材1への密着性が悪く、剥離した箇所が認められた。比較例1は、リチウム電池用正極に用いることは中止した。また、比較例2では、蒸着温度が室温と低いために、正極を形成するLiCoO2の結晶性は良好ではなかった。これに対して、本発明例では、正極3の基材1への密着性は良好であり、クラックおよび剥離ともに認められなかった。また、本発明例についてのみ測定した混合層の厚みは、0.3μmであった。また、本発明例にのみ認められたことであるが、LiCoO2は、リチウム電池の正極として好ましい層状結晶構造を示した。
2.放電容量
比較例2の正極をリチウム電池に組み込んで測定した放電容量は、90mAh/gと低いものであった。また放電電圧も低かった。これに対して、本発明例では、放電容量は140mAh/gと望ましい結果が得られた。
1. Form of the positive electrode The evaluation of the above-mentioned specimen was as follows. In Comparative Example 1, cracks occurred in the positive electrode 3. Moreover, the adhesiveness to the base material 1 of the positive electrode 3 was bad, and the location which peeled was recognized. In Comparative Example 1, use of the positive electrode for a lithium battery was stopped. In Comparative Example 2, since the deposition temperature was as low as room temperature, the crystallinity of LiCoO 2 forming the positive electrode was not good. On the other hand, in the example of the present invention, the adhesion of the positive electrode 3 to the substrate 1 was good, and neither cracking nor peeling was observed. Moreover, the thickness of the mixed layer measured only about the example of this invention was 0.3 micrometer. Moreover, although it was recognized only in the examples of the present invention, LiCoO 2 exhibited a layered crystal structure preferable as a positive electrode of a lithium battery.
2. Discharge capacity The discharge capacity measured by incorporating the positive electrode of Comparative Example 2 in a lithium battery was as low as 90 mAh / g. The discharge voltage was also low. On the other hand, in the present invention example, a desirable result was obtained with a discharge capacity of 140 mAh / g.

(その他の実施の形態)
(1)上記した本発明の実施の形態および実施例では、実施例において全固体リチウム二次電池を例示したが、本発明のリチウム電池用正極は、どのようなリチウム電池にも用いることができる。たとえば、リチウム二次電池およびリチウム一次電池を含み、電解質は固体電解質がもっとも適しているが、液相の電解質であってもかまわない。
(Other embodiments)
(1) In the above-described embodiments and examples of the present invention, all-solid lithium secondary batteries are exemplified in the examples. However, the positive electrode for a lithium battery of the present invention can be used for any lithium battery. . For example, a lithium secondary battery and a lithium primary battery are included, and the electrolyte is most preferably a solid electrolyte, but may be a liquid phase electrolyte.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明によれば、密着性に優れ、利用率の高いリチウム電池用正極を、簡単に得ることができるので、安価で高信頼のリチウム電池の製造に貢献することができる。   According to the present invention, it is possible to easily obtain a positive electrode for a lithium battery having excellent adhesion and high utilization rate, which can contribute to the manufacture of an inexpensive and highly reliable lithium battery.

本発明の実施の形態におけるリチウム電池用正極を示す図である。It is a figure which shows the positive electrode for lithium batteries in embodiment of this invention. 図1の正極内の混合層を説明するための図である。It is a figure for demonstrating the mixed layer in the positive electrode of FIG. クラックを説明するための図である。It is a figure for demonstrating a crack. 本発明のリチウム電池用正極の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the positive electrode for lithium batteries of this invention. 蒸着装置の模式図である。It is a schematic diagram of a vapor deposition apparatus.

符号の説明Explanation of symbols

1 基材、3 正極、3a 混合層、21 るつぼ、23 蒸気、29 基板ホルダー、30 チャンバ。 1 base material, 3 positive electrode, 3a mixed layer, 21 crucible, 23 steam, 29 substrate holder, 30 chamber.

Claims (7)

蒸着によって金属基材にリチウム複合酸化物の薄膜を作製する方法であって、
前記金属基材を250℃〜500℃の範囲の温度に加熱して、リチウムを含む薄膜を蒸着する工程と、
前記薄膜が蒸着された金属基材を475℃〜700℃の範囲の温度に加熱するアニール工程とを備えることを特徴とする、リチウム電池用正極の製造方法。
A method for producing a thin film of lithium composite oxide on a metal substrate by vapor deposition,
Heating the metal substrate to a temperature in the range of 250 ° C. to 500 ° C. to deposit a thin film containing lithium;
An annealing step of heating the metal substrate on which the thin film is deposited to a temperature in the range of 475 ° C to 700 ° C.
前記アニール工程の後、前記金属基材から前記薄膜へと該金属基材の構成元素が拡散して形成される混合層の厚みが0.5μm以下であることを特徴とする、請求項1に記載のリチウム電池用正極の製造方法。   The mixed layer formed by diffusing constituent elements of the metal base material from the metal base material to the thin film after the annealing step has a thickness of 0.5 μm or less. The manufacturing method of the positive electrode for lithium batteries of description. 前記リチウムを含む薄膜の蒸着では、リチウムならびに、Co、NiおよびMnの一種以上を含む薄膜を蒸着することを特徴とする、請求項1または2に記載のリチウム電池用正極の製造方法。   3. The method for producing a positive electrode for a lithium battery according to claim 1, wherein in the vapor deposition of the thin film containing lithium, a thin film containing lithium and one or more of Co, Ni, and Mn is vapor deposited. Cr,FeおよびNiの一種以上を含む金属基材に形成され、リチウム電池に用いられる正極であって、
Co,NiおよびMnの一種以上およびリチウムを含むリチウム複合酸化物であり、
0.2μm〜50μmの範囲内の厚みを有し、
前記金属基材からの原子の拡散で形成された混合層の厚みが0.5μm以下であることを特徴とする、リチウム電池用正極。
A positive electrode formed on a metal substrate containing one or more of Cr, Fe and Ni and used in a lithium battery,
A lithium composite oxide containing one or more of Co, Ni and Mn and lithium;
Having a thickness in the range of 0.2 μm to 50 μm,
A positive electrode for a lithium battery, wherein a thickness of a mixed layer formed by diffusion of atoms from the metal substrate is 0.5 μm or less.
前記金属基材と前記正極との間に剥離防止層を含まず、該金属基材と正極との間に剥離が無いことを特徴とする、請求項4に記載のリチウム電池用正極。   5. The positive electrode for a lithium battery according to claim 4, wherein an exfoliation preventing layer is not included between the metal substrate and the positive electrode, and there is no exfoliation between the metal substrate and the positive electrode. 前記正極の10箇所以上での断面観察においてクラックがないことを特徴とする、請求項4または5に記載のリチウム電池用正極。   The positive electrode for a lithium battery according to claim 4 or 5, wherein there is no crack in cross-sectional observation at 10 or more locations of the positive electrode. 請求項1〜3のいずれか1つに記載のリチウム電池用正極の製造方法で作製された正極、または請求項4〜6のいずれか1つに記載のリチウム電池用正極を備えることを特徴とする、リチウム電池。

It comprises the positive electrode produced with the manufacturing method of the positive electrode for lithium batteries as described in any one of Claims 1-3, or the positive electrode for lithium batteries as described in any one of Claims 4-6, A lithium battery.

JP2008030434A 2008-02-12 2008-02-12 Lithium battery, positive electrode for lithium battery and method for producing the same Expired - Fee Related JP5396717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030434A JP5396717B2 (en) 2008-02-12 2008-02-12 Lithium battery, positive electrode for lithium battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030434A JP5396717B2 (en) 2008-02-12 2008-02-12 Lithium battery, positive electrode for lithium battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009193701A true JP2009193701A (en) 2009-08-27
JP5396717B2 JP5396717B2 (en) 2014-01-22

Family

ID=41075566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030434A Expired - Fee Related JP5396717B2 (en) 2008-02-12 2008-02-12 Lithium battery, positive electrode for lithium battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5396717B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100640A2 (en) * 2010-02-12 2011-08-18 Applied Materials, Inc. ELECTRODE FOR HIGH PERFORMANCE Li-ION BATTERIES
WO2015133275A1 (en) * 2014-03-06 2015-09-11 シャープ株式会社 Mixed material, method for producing same, and organic element using same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236105A (en) * 1995-02-28 1996-09-13 Nissin Electric Co Ltd Manufacture of lithium secondary battery positive electrode
JPH08287901A (en) * 1995-04-19 1996-11-01 Nissin Electric Co Ltd Manufacture of positive electrode for lithium secondary battery
JPH09249962A (en) * 1996-03-14 1997-09-22 Toshiba Corp Formation of oxide thin film and oxide thin film
JP2001011611A (en) * 1999-06-24 2001-01-16 Suzuki Motor Corp METHOD FOR SYNTHESIZING THIN LiMn2O4 FILM, PRODUCTION OF LITHIUM CELL AND SPUTTERING APPARATUS
JP2002298834A (en) * 2001-01-29 2002-10-11 Sanyo Electric Co Ltd Lithium secondary battery and positive electrode for the lithium secondary battery
JP2003217580A (en) * 2002-01-17 2003-07-31 Sanyo Electric Co Ltd Electrode for lithium secondary battery and its manufacturing method
WO2006021718A1 (en) * 2004-07-30 2006-03-02 Commissariat A L'energie Atomique Method of producing a lithium-bearing electrode, electrode thus produced and uses thereof
WO2006063308A2 (en) * 2004-12-08 2006-06-15 Symmorphix, Inc. DEPOSITION OF LICoO2
JP2007273381A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Lithium ion secondary battery negative electrode material
WO2008012970A1 (en) * 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236105A (en) * 1995-02-28 1996-09-13 Nissin Electric Co Ltd Manufacture of lithium secondary battery positive electrode
JPH08287901A (en) * 1995-04-19 1996-11-01 Nissin Electric Co Ltd Manufacture of positive electrode for lithium secondary battery
JPH09249962A (en) * 1996-03-14 1997-09-22 Toshiba Corp Formation of oxide thin film and oxide thin film
JP2001011611A (en) * 1999-06-24 2001-01-16 Suzuki Motor Corp METHOD FOR SYNTHESIZING THIN LiMn2O4 FILM, PRODUCTION OF LITHIUM CELL AND SPUTTERING APPARATUS
JP2002298834A (en) * 2001-01-29 2002-10-11 Sanyo Electric Co Ltd Lithium secondary battery and positive electrode for the lithium secondary battery
JP2003217580A (en) * 2002-01-17 2003-07-31 Sanyo Electric Co Ltd Electrode for lithium secondary battery and its manufacturing method
WO2006021718A1 (en) * 2004-07-30 2006-03-02 Commissariat A L'energie Atomique Method of producing a lithium-bearing electrode, electrode thus produced and uses thereof
JP2008508671A (en) * 2004-07-30 2008-03-21 コミツサリア タ レネルジー アトミーク Method for producing lithiated electrode, lithiated electrode obtained by this method, and use thereof
WO2006063308A2 (en) * 2004-12-08 2006-06-15 Symmorphix, Inc. DEPOSITION OF LICoO2
JP2008523567A (en) * 2004-12-08 2008-07-03 シモーフィックス,インコーポレーテッド LiCoO2 deposition
JP2007273381A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Lithium ion secondary battery negative electrode material
WO2008012970A1 (en) * 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100640A2 (en) * 2010-02-12 2011-08-18 Applied Materials, Inc. ELECTRODE FOR HIGH PERFORMANCE Li-ION BATTERIES
WO2011100640A3 (en) * 2010-02-12 2011-12-29 Applied Materials, Inc. ELECTRODE FOR HIGH PERFORMANCE Li-ION BATTERIES
WO2015133275A1 (en) * 2014-03-06 2015-09-11 シャープ株式会社 Mixed material, method for producing same, and organic element using same

Also Published As

Publication number Publication date
JP5396717B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
Neudecker et al. “Lithium‐Free” thin‐film battery with in situ plated Li anode
JP5549192B2 (en) Solid electrolyte battery and positive electrode active material
US9300008B2 (en) Solid electrolyte material, lithium battery, and method of producing solid electrolyte material
KR101020909B1 (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2011062113A1 (en) Solid electrolyte cell and cathode active material
WO2012074138A1 (en) Solid electrolyte cell and positive electrode active material
WO2006063308A2 (en) DEPOSITION OF LICoO2
CN101388470A (en) Lithium battery
Yang et al. Direct View on the Origin of High Li+ Transfer Impedance in All‐Solid‐State Battery
JP5595349B2 (en) Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and method for producing positive electrode current collector for lithium ion secondary battery
JP2010040439A (en) Lithium battery
WO2011043267A1 (en) Non-aqueous electrolyte cell
Chen et al. Electrode and solid electrolyte thin films for secondary lithium-ion batteries
CN102379049A (en) Method for producing positive electrode active material layer
JP5217455B2 (en) Lithium battery and method for producing lithium battery
JP2009199920A (en) Lithium battery
Liu et al. Stretchable separator/current collector composite for superior battery safety
Maranchi et al. LiCoO2 and SnO2 thin film electrodes for lithium-ion battery applications
JP5396717B2 (en) Lithium battery, positive electrode for lithium battery and method for producing the same
WO2012111783A1 (en) Solid electrolyte battery
JP6495009B2 (en) Secondary battery positive electrode, secondary battery, and method for producing secondary battery positive electrode
KR20230081962A (en) Stacked stucuture thin film, electrochemical battery comprising stacked stucuture thin film, and preparation method thereof
KR20110112067A (en) Thin film battery having improved anode characteristics and method of manufacturing the same
Rumpel et al. How interdiffusion affects the electrochemical performance of LiMn 2 O 4 thin films on stainless steel
US10784506B1 (en) Solid solution cathode for solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees