JP2009193139A - Proximity detector and detection method - Google Patents

Proximity detector and detection method Download PDF

Info

Publication number
JP2009193139A
JP2009193139A JP2008030616A JP2008030616A JP2009193139A JP 2009193139 A JP2009193139 A JP 2009193139A JP 2008030616 A JP2008030616 A JP 2008030616A JP 2008030616 A JP2008030616 A JP 2008030616A JP 2009193139 A JP2009193139 A JP 2009193139A
Authority
JP
Japan
Prior art keywords
capacitance
electrode
feedback
differential
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030616A
Other languages
Japanese (ja)
Inventor
Kenichi Matsushima
健一 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008030616A priority Critical patent/JP2009193139A/en
Publication of JP2009193139A publication Critical patent/JP2009193139A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proximity detector for detecting an accurate position by eliminating the influence of noise with a relatively simple configuration in a proximity sensor for detecting the approach of an object by the capacitance of an electrode. <P>SOLUTION: By adding an internal capacitor to a differential electrode, capacitance is obtained from the frequency of a comparison oscillation means obtained by compositing three feedbacks, thus detecting the difference in the capacitance of the differential electrode by in-phase charge/discharge and the sum of the capacitance by inverse-phase charge/discharge by the similar operation and accurately detecting the capacitance of individual element electrodes of the differential electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、静電容量により人の指などの物体の接近や位置を検出する近接検出装置及びその方法に関する。   The present invention relates to a proximity detection apparatus and method for detecting the approach and position of an object such as a human finger by electrostatic capacitance.

人など静電容量を持つ物体が電極に接近すると、電極の見かけの静電容量が増加することが知られている。この原理を応用して、静電タッチセンサなどの近接検出装置が実用化されている。   It is known that when an object having a capacitance such as a person approaches the electrode, the apparent capacitance of the electrode increases. By applying this principle, proximity detection devices such as electrostatic touch sensors have been put into practical use.

このような近接検出装置では、電極の静電容量を検出するために、電極への充電時あるいは放電時の電圧と電荷との関係から電極の見かけの静電容量を求めている。しかし、人などの接近による電極の静電容量の増加は1pF程度の微小な値のために、電極の静電容量への1回の充電あるいは放電の特性からノイズを除去した正確な静電容量を求めることは困難である。このため、交流を印加したりスイッチを切換えたりすることにより電極への充放電を繰り返して、充放電特性を累積することにより静電容量の検出精度を向上させるのが一般的である(例えば、特許文献1参照)。   In such a proximity detection device, in order to detect the capacitance of the electrode, the apparent capacitance of the electrode is obtained from the relationship between the voltage and charge during charging or discharging of the electrode. However, since the increase in the capacitance of the electrode due to the approach of a person or the like is a minute value of about 1 pF, an accurate capacitance that removes noise from the characteristics of one-time charge or discharge to the capacitance of the electrode. It is difficult to seek. For this reason, it is common to improve the detection accuracy of capacitance by accumulating charge / discharge characteristics by repeatedly charging / discharging the electrode by applying an alternating current or switching a switch (for example, Patent Document 1).

また、従来の近接検出装置では、電極へのノイズの影響を除去するために、差動検出によるリファレンス電極との容量差を基に物体の接近を検出する方法も広く用いられている。   In the conventional proximity detection apparatus, a method of detecting the approach of an object based on a difference in capacitance with a reference electrode by differential detection is widely used in order to remove the influence of noise on the electrode.

しかし、ディスプレイ装置と透明な近接検出装置を重ねて使用する場合などには、ディスプレイ領域と近接検出装置の検出領域がほぼ同一で、リファレンス電極をディスプレイ領域と異なる位置に配置すると、ディスプレイ装置からのノイズを効率的に除去することができないと言う課題があった。また、リファレンス電極を検出領域内に配置すると、リファレンス電極も物体の接近で容量が変化してしまい、正確な除去が出来ないと言う課題があった。   However, when a display device and a transparent proximity detection device are used in an overlapping manner, if the display region and the detection region of the proximity detection device are substantially the same and the reference electrode is arranged at a position different from the display region, There was a problem that noise could not be removed efficiently. Further, when the reference electrode is arranged in the detection region, there is a problem that the capacity of the reference electrode also changes due to the approach of the object and cannot be removed accurately.

この課題を解決するために、同相充放電差動による差動電極の容量差と逆相充放電差動による容量和から差動電極の各々のノイズを除去した静電容量を検出する方法がある。
特開平8−194025号公報
In order to solve this problem, there is a method for detecting the capacitance obtained by removing each noise of the differential electrode from the capacitance difference of the differential electrode due to the in-phase charge / discharge differential and the sum of the capacitance due to the reverse phase charge / discharge differential .
JP-A-8-194025

しかし、従来の同相充放電差動と逆相充放電差動を併用する方法は、図2に示すように、差動電極に繰り返し充電した電荷を、大きな静電容量のコンデンサに蓄積して、蓄積コンデンサの電圧により静電容量を検出していたために、大容量のコンデンサを必要としていて、集積回路等を用いて省スペースとすることで安価に構成しようとした場合に、課題となっていた。   However, the conventional method using both in-phase charge / discharge differential and reverse-phase charge / discharge differential, as shown in FIG. 2, accumulates charge repeatedly charged in the differential electrode in a capacitor having a large capacitance, Since the capacitance was detected by the voltage of the storage capacitor, a large-capacity capacitor was required, and it was a problem when trying to configure it inexpensively by saving space using an integrated circuit etc. .

また、交流波形を差動電極に印加して、差動電極の静電容量を用いたフィルタによる電圧降下から静電容量を求める方法もあったが、この方法では正弦波の発振回路やフィルタ回路や検波回路やA/D変換回路などのアナログ回路が必要で、回路規模が大きくなると言う課題があった。   There was also a method of applying an AC waveform to the differential electrode and obtaining the capacitance from the voltage drop due to the filter using the capacitance of the differential electrode, but this method uses a sinusoidal oscillation circuit or filter circuit. In addition, analog circuits such as a detection circuit and an A / D conversion circuit are necessary, and there is a problem that the circuit scale increases.

このように、従来の近接検出装置やその方法には、回路規模が大きくなると言う課題があった。そこで本発明は、この課題を解決して、比較的簡単な構成で、リファレンス電極を必要とせずにノイズを除去することのできる近接検出装置あるいはその方法を実現することを目的とする。   As described above, the conventional proximity detection apparatus and method have a problem that the circuit scale becomes large. Accordingly, an object of the present invention is to solve this problem and to realize a proximity detection apparatus or method that can remove noise without using a reference electrode with a relatively simple configuration.

本発明による近接検出装置は、物体の接近を静電容量の変化として検出する差動電極と、前記差動電極の静電容量を求める静電容量検出手段と、前記静電容量から想定する物体の接近を検出する近接演算手段とにより構成した。また、前記静電容量検出手段は、差動電極の端子波形の差を求める減算手段と前記減算手段で求めた差の波形を比較して前記差動電極の両端子に抵抗により帰還をかけることにより発振させる比較発振手段と前記比較発振手段からの発振波形の周期に対応した値を求める計測手段とにより構成した。   A proximity detection device according to the present invention includes a differential electrode that detects an approach of an object as a change in capacitance, a capacitance detection means that determines a capacitance of the differential electrode, and an object that is assumed from the capacitance. Proximity calculation means for detecting the approach of. The capacitance detecting means compares the difference waveform obtained by the subtracting means for obtaining a difference between the terminal waveforms of the differential electrodes and the difference waveform obtained by the subtracting means, and applies feedback to both terminals of the differential electrodes by resistors. And a measurement means for obtaining a value corresponding to the period of the oscillation waveform from the comparison oscillation means.

本発明によれば、比較的簡単な構成で、リファレンス電極を必要とせずにノイズを除去する近接検出装置あるいはその方法を実現することができる。   According to the present invention, it is possible to realize a proximity detection apparatus or method that removes noise without using a reference electrode with a relatively simple configuration.

本発明による近接検出装置は、物体の接近を静電容量の変化として検出する差動電極と、前記差動電極の静電容量を求める静電容量検出手段と、前記静電容量から想定する物体の接近を検出する近接演算手段とにより構成する。また、前記静電容量検出手段は、差動電極の端子波形の差を求める減算手段と前記減算手段で求めた差の波形を比較して前記差動電極の両端子に抵抗により帰還をかけることにより発振させる比較発振手段と前記比較発振手段からの発振波形の周期に対応した値を求める計測手段とにより構成する。   A proximity detection device according to the present invention includes a differential electrode that detects an approach of an object as a change in capacitance, a capacitance detection means that determines a capacitance of the differential electrode, and an object that is assumed from the capacitance. It is comprised with the proximity calculating means which detects approach of these. The capacitance detecting means compares the difference waveform obtained by the subtracting means for obtaining the difference between the terminal waveforms of the differential electrodes and the subtracting means, and applies feedback to both terminals of the differential electrode by resistance. And a measurement means for obtaining a value corresponding to the period of the oscillation waveform from the comparison oscillation means.

本発明の好適な実施例を、図1を基に説明する。   A preferred embodiment of the present invention will be described with reference to FIG.

図1において、差動電極1は、従来の近接検出装置と同様に正の素電極と負の素電極とにより構成され、検出対象の物体が接近すると見かけの静電容量を増加させる。   In FIG. 1, a differential electrode 1 is composed of a positive element electrode and a negative element electrode as in a conventional proximity detection device, and increases the apparent capacitance when an object to be detected approaches.

静電容量検出手段2は、差動電極を構成する正の素電極と負の素電極の静電容量の和や差あるいはその両方を検出する。但し、ここでの静電容量とは、必ずしも静電容量の絶対値である必要はない。近接検出のためには、例えば発振波形の周期など静電容量の変化に対応して変化する値が得られれば良いからである。   The electrostatic capacitance detection means 2 detects the sum and / or difference of the electrostatic capacitances of the positive and negative element electrodes constituting the differential electrode. However, the capacitance here does not necessarily need to be an absolute value of the capacitance. This is because, for proximity detection, it is only necessary to obtain a value that changes in accordance with a change in capacitance such as the period of the oscillation waveform.

近接演算手段3では、静電容量検出手段で求めたノイズを除去した静電容量の値が予め設定した値より大きくなった場合には、予め想定した物体の接近として検出するようにする。   In the proximity calculation means 3, when the value of the capacitance obtained by removing the noise obtained by the capacitance detection means becomes larger than a preset value, it is detected as an approach of an object assumed in advance.

さらに静電容量検出手段2は、両素電極に共通のノイズを除去するための減算手段と、ヒステリシス特性を持つ比較器と帰還抵抗により発振させる比較発振手段と、前記比較発振手段からの発振波形の周期など静電容量に対応する値を求める計測手段とにより構成する。ここで、正の素電極と負の素電極は近傍に配置されているため、外来ノイズの影響も似たものになっているため、減算手段によりノイズが大幅に除去されるのである。   Further, the capacitance detecting means 2 includes a subtracting means for removing noise common to both the elementary electrodes, a comparator having hysteresis characteristics, a comparative oscillating means for oscillating by a feedback resistor, and an oscillation waveform from the comparative oscillating means. Measuring means for obtaining a value corresponding to the capacitance, such as the period of. Here, since the positive element electrode and the negative element electrode are arranged in the vicinity, the influence of the external noise is also similar, so that the noise is largely removed by the subtracting means.

この静電容量検出手段の内部構成の一例を、図4に示す。図4の例では、正の素電極4と負の素電極5には抵抗を介して逆相の発振波形が印加されているため、減算手段6で減算することにより、ノイズを除去しつつ凡そ両素電極の静電容量あるいはその変化の和に応じた充放電波形を得ることが出来る。   An example of the internal configuration of this capacitance detection means is shown in FIG. In the example of FIG. 4, since the negative phase oscillation waveform is applied to the positive elementary electrode 4 and the negative elementary electrode 5 via a resistor, subtraction by the subtracting means 6 is performed while removing noise. A charge / discharge waveform corresponding to the capacitance of both element electrodes or the sum of the changes can be obtained.

ここで、比較発振手段15は、例えば、図5に示すようなヒステリシス特性を持つ比較器7と正の素電極への帰還抵抗Rp(8)と負の素電極への帰還抵抗Rm(9)とにより構成した。ここでの帰還は、安定して発振するために、正の素電極側も負の素電極側も負の帰還である。また、正の素電極と帰還抵抗Rpによる時定数と、負の素電極と帰還抵抗Rmによる時定数がほぼ同じになるように帰還抵抗Rp,Rmの値を設定する。   Here, the comparison oscillation means 15 includes, for example, a comparator 7 having hysteresis characteristics as shown in FIG. 5, a feedback resistance Rp (8) to the positive element electrode, and a feedback resistance Rm (9) to the negative element electrode. And composed. The feedback here is a negative feedback on both the positive and negative electrode sides in order to oscillate stably. Further, the values of the feedback resistors Rp and Rm are set so that the time constant due to the positive element electrode and the feedback resistor Rp is substantially the same as the time constant due to the negative element electrode and the feedback resistor Rm.

計測手段10は、発振信号の周期をクロックのカウントにより求めるようにしたが、一定期間の発振信号をカウントして周波数を求めるようにしても良いことは言うまでもない。   Although the measuring means 10 obtains the period of the oscillation signal by counting the clock, it goes without saying that the frequency may be obtained by counting the oscillation signal for a certain period.

静電容量検出手段の他の例を、図6に示す。図6の例では、正の素電極4と負の素電極5に同相の充放電を行い、減算することにより、ノイズを除去した両素電極の静電容量の差を検出するようにしたものである。但し、この場合には、両素電極への充放電が同相のため、減算によりノイズの除去と同時に基本的な発振波形自体も除去されてしまう。従って、減算手段6からの波形は、両素電極の静電容量の差に応じた成分のみである。このため、比較発振手段15は、図7に示すように、それ自体に帰還抵抗Ri(12)とコンデンサCi(13)を設けて、加算器16を介して比較器7にフィードバックすることで、両素電極の静電容量が全く同じで減算手段6の出力が常に0の場合でも、発振するようにしたものである。つまり、帰還抵抗Riによる帰還は負の帰還であり常に安定した発振をするようにしたものである。   Another example of the capacitance detection means is shown in FIG. In the example of FIG. 6, the positive electrode 4 and the negative electrode 5 are charged and discharged in the same phase and subtracted to detect the difference in capacitance between the two electrodes from which noise has been removed. It is. However, in this case, since the charge and discharge to both element electrodes are in phase, the basic oscillation waveform itself is removed simultaneously with the removal of noise by subtraction. Accordingly, the waveform from the subtracting means 6 is only a component corresponding to the difference in capacitance between the two elementary electrodes. For this reason, as shown in FIG. 7, the comparison oscillation means 15 is provided with a feedback resistor Ri (12) and a capacitor Ci (13), and feeds back to the comparator 7 via the adder 16. Even when the capacitances of both the element electrodes are exactly the same and the output of the subtracting means 6 is always 0, oscillation is performed. In other words, the feedback by the feedback resistor Ri is a negative feedback and always oscillates stably.

ここで、例えばコンデンサCiと両素電極の充放電が同相で、かつ減算手段で正の素電極の充放電波形から負の素電極の充放電波形を差し引く場合には、正の素電極への帰還抵抗Rp(8)はコンデンサCi(13)への帰還抵抗Ri(12)による帰還と同様に負の帰還であり、負の素電極への帰還抵抗Rm(9)による帰還は減算しているため逆に正の帰還である。同様の3つの帰還のうちの2つが負の帰還で1つが正の帰還で、負の帰還が強いために安定して発振するようにしたものである。   Here, for example, when the charge and discharge of the capacitor Ci and both element electrodes are in phase, and the subtraction means subtracts the charge / discharge waveform of the negative element electrode from the charge / discharge waveform of the positive element electrode, The feedback resistor Rp (8) is a negative feedback like the feedback by the feedback resistor Ri (12) to the capacitor Ci (13), and the feedback by the feedback resistor Rm (9) to the negative element electrode is subtracted. Therefore, it is a positive feedback. Two of the same three feedbacks are negative feedback, one is positive feedback, and the negative feedback is strong, so that it oscillates stably.

この場合に、例えば、正の素電極に検出対象の物体が接近して負の素電極より静電容量が大きくなると、正の素電極とコンデンサCiへの帰還の極性が同じためコンデンサCiの容量が大きくなったかのごとく発振周期が長くなる。逆に負の素電極の方が大きくなった場合には、減算手段で−1倍されていると考えることが出来るために、負の素電極とコンデンサCiへの帰還の極性が逆のため、発振周期が短くなるように作用する。   In this case, for example, when an object to be detected approaches the positive elementary electrode and the capacitance becomes larger than that of the negative elementary electrode, the polarity of the feedback to the positive elementary electrode and the capacitor Ci is the same. The oscillation period becomes longer as if becomes larger. Conversely, when the negative element electrode becomes larger, it can be considered that the subtraction means has multiplied by −1. Therefore, the polarity of the feedback to the negative element electrode and the capacitor Ci is opposite. It works to shorten the oscillation period.

但し、この関係は、帰還抵抗RiとコンデンサCiによる時定数と両素電極の静電容量と帰還抵抗Rp,Rmとによる時定数はほぼ同じであることが前提である。具体的には、これら3つの値の比が0.5倍より大きく2.0倍より小さい値であれば効果的に機能する。   However, this relationship is based on the premise that the time constant due to the feedback resistor Ri and the capacitor Ci is substantially the same as the time constant due to the capacitance of the two electrodes and the feedback resistors Rp and Rm. Specifically, if the ratio of these three values is larger than 0.5 times and smaller than 2.0 times, it functions effectively.

なお、図6での乗算手段14は、減算した波形にさらに係数を掛けることにより、両素電極の静電容量の差を検出する感度を変えることが出来る。但し、この乗算手段は、必ずしも必要ではなく、感度を変えたい場合にのみ設ければ良い。また、この乗算手段は、必ずしも減算した後に設ける必要はなく、減算手段で減算する前に設けても同様である。   Note that the multiplication means 14 in FIG. 6 can change the sensitivity for detecting the difference in capacitance between the two elementary electrodes by further multiplying the subtracted waveform by a coefficient. However, this multiplication means is not always necessary, and may be provided only when it is desired to change the sensitivity. Further, this multiplication means is not necessarily provided after subtraction, and it is the same even if it is provided before subtraction by the subtraction means.

また、図6における計測手段は、図4における計測手段と同様である。   Moreover, the measuring means in FIG. 6 is the same as the measuring means in FIG.

静電容量検出手段のさらに他の例を、図8に示す。図8の例では、正の素電極と負の素電極に同相の充放電と逆相の充放電を時分割して行い、減算することにより、ノイズを除去した両素電極の静電容量の和と差を検出するようにしたものである。和と差の両方が分かると、正の素電極と負の素電極の各々の静電容量を加減算により容易に求めることが出来るためである。   Still another example of the capacitance detecting means is shown in FIG. In the example of FIG. 8, the charge and discharge in the same phase and the charge and discharge in the opposite phase are performed on the positive and negative element electrodes in a time-sharing manner, and the capacitance of both element electrodes from which noise is removed by subtraction is obtained. The sum and difference are detected. This is because if both the sum and the difference are known, the capacitances of the positive and negative element electrodes can be easily obtained by addition and subtraction.

ここで、同相充放電により両素電極の静電容量の差を求める場合の構成及び動作は、図6の例の場合と同様である。   Here, the configuration and operation for obtaining the difference in capacitance between the two elementary electrodes by in-phase charge / discharge are the same as in the example of FIG.

但し、逆相充放電の場合は、図4に示す例の場合と以下の点が異なる。図4に示す例の場合には、比較発振手段15内部の帰還抵抗とコンデンサがなく、両素電極への帰還は、両方とも負の帰還である。これに対し、図8の例では、逆相充放電の場合でも、図6の例の場合と同様に帰還抵抗RiとコンデンサCiを用いる。但し、両素電極への帰還抵抗Rp(8),Rm(9)による帰還は負の帰還であり、コンデンサCiへの帰還抵抗Riによる帰還は正の帰還とした。こうすることにより、2つの負の帰還と1つの正の帰還による発振となり、同相充放電による静電容量差と逆相充放電による静電容量差の動作がほぼ同様になる。このため、同相充放電と逆相充放電の周波数もほぼ等しくなり、同じ容量変化に対する周波数の変化もほぼ同様となるために、同相充放電による静電容量差と逆相充放電による静電容量和とから加減算により両素電極個別の静電容量をより正確に計算できるようになる。   However, in the case of reverse-phase charge / discharge, the following points are different from the example shown in FIG. In the case of the example shown in FIG. 4, there is no feedback resistor and capacitor inside the comparison oscillation means 15, and both feedbacks to both element electrodes are negative feedbacks. On the other hand, in the example of FIG. 8, even in the case of reverse phase charge / discharge, the feedback resistor Ri and the capacitor Ci are used as in the example of FIG. However, the feedback by the feedback resistors Rp (8) and Rm (9) to both element electrodes is a negative feedback, and the feedback by the feedback resistor Ri to the capacitor Ci is a positive feedback. By doing so, oscillation is caused by two negative feedbacks and one positive feedback, and the operations of the electrostatic capacity difference due to in-phase charging / discharging and the electrostatic capacity difference due to reverse phase charging / discharging become substantially the same. For this reason, the in-phase charge / discharge frequency and the reverse-phase charge / discharge frequency are almost equal, and the frequency change for the same capacity change is almost the same. By adding and subtracting from the sum, the capacitance of each elemental electrode can be calculated more accurately.

このように、同相充放電の場合には両素電極への帰還抵抗Rp,Rmによる帰還が負の帰還で比較発振手段内部の帰還が正の帰還とし、逆相充放電の場合には両素電極への帰還抵抗Rp,Rmによる帰還の一方が正の帰還でもう一方が負の帰還で比較発振手段内部の帰還が負の帰還とすれば良い。正の帰還をかけるか負の帰還をかけるかは、3つの帰還抵抗Rp,Rm,Riの各々に比較発振手段の比較器の正論理出力を接続するか負論理出力を接続するかで容易に制御することが出来る。あるいは、排他的論理和により論理を反転させても良いことは言うまでもない。   Thus, in the case of in-phase charge / discharge, the feedback by the feedback resistors Rp, Rm to the both element electrodes is a negative feedback and the feedback in the comparison oscillation means is a positive feedback. One of the feedbacks by the feedback resistors Rp and Rm to the electrodes may be positive feedback, the other may be negative feedback, and the feedback inside the comparison oscillation means may be negative feedback. Whether to apply positive feedback or negative feedback is easily determined by connecting the positive logic output or the negative logic output of the comparator of the comparison oscillation means to each of the three feedback resistors Rp, Rm, Ri. Can be controlled. Alternatively, it goes without saying that the logic may be inverted by exclusive OR.

なお、図8における計測手段10も、図4における計測手段と同様である。   The measuring means 10 in FIG. 8 is the same as the measuring means in FIG.

以上では、説明の便宜上、減算手段と加算手段と乗算手段を分けた場合の例を示したが、これらは順番を入換えたり、一つの演算手段でまとめて実現するなど、同様の機能を実現できるような手段や方法であればどのようなものを用いても良いことは言うまでもない。   In the above, for the sake of convenience of explanation, an example in which the subtracting means, the adding means, and the multiplying means are separated has been shown. However, these functions can be realized by changing the order or realizing them together by one arithmetic means. It goes without saying that any means and method that can be used may be used.

以上に、図1に示す一対の差動電極により物体の接近を検出する近接検出装置の場合について説明したが、同様に図3に示すように、複数の差動電極を用いることにより、物体の接近ばかりでなくその位置まで検出することの出来る近接検出装置に本発明を用いることが出来ることは言うまでもない。   In the above, the case of the proximity detection device that detects the approach of an object by the pair of differential electrodes shown in FIG. 1 has been described. Similarly, as shown in FIG. 3, by using a plurality of differential electrodes, It goes without saying that the present invention can be applied to a proximity detection device that can detect not only the approach but also the position.

以上に説明したように、本発明による近接検出装置では、内部に安定した発振手段を設けて3つの帰還を合成するとこにより、大容量の累積コンデンサや複雑なアナログ回路を用いることなく比較的簡単な構成で、リファレンス電極を必要とせずにノイズを除去して正確な物体の接近や位置を検出することのできる近接検出装置あるいはその方法を実現することが可能である。   As described above, the proximity detection device according to the present invention is relatively simple without using a large-capacity accumulation capacitor or a complicated analog circuit by providing a stable oscillation means inside and synthesizing three feedbacks. With this configuration, it is possible to realize a proximity detection apparatus or method that can detect noise and accurately detect the approach and position of an object without the need for a reference electrode.

本発明に係る近接検出装置の第1の実施例を示すブロック図The block diagram which shows the 1st Example of the proximity detection apparatus which concerns on this invention 従来の近接検出装置の静電容量検出手段の接続図Connection diagram of capacitance detection means of a conventional proximity detector 本発明に係る近接検出装置の他の実施例を示すブロック図The block diagram which shows the other Example of the proximity detection apparatus which concerns on this invention 本発明に係る静電容量検出手段の例を示すブロック図The block diagram which shows the example of the electrostatic capacitance detection means which concerns on this invention 本発明に係る比較器の例を示す接続図Connection diagram showing an example of a comparator according to the present invention 本発明に係る静電容量検出手段の例を示すブロック図The block diagram which shows the example of the electrostatic capacitance detection means which concerns on this invention 本発明に係る比較発振手段例を示す内部接続図Internal connection diagram showing an example of comparative oscillation means according to the present invention 本発明に係る静電容量検出手段の例を示すブロック図The block diagram which shows the example of the electrostatic capacitance detection means which concerns on this invention

符号の説明Explanation of symbols

1 差動電極
2 静電容量検出手段
3 近接演算手段
4 正の素電極
5 負の素電極
6 減算手段
7 比較器
8、9、12 帰還抵抗
10 計測手段
13 コンデンサ
14 乗算手段
15 比較発振手段
16 加算器
DESCRIPTION OF SYMBOLS 1 Differential electrode 2 Capacitance detection means 3 Proximity calculation means 4 Positive elementary electrode 5 Negative elementary electrode 6 Subtraction means 7 Comparator 8, 9, 12 Feedback resistance 10 Measuring means 13 Capacitor 14 Multiplication means 15 Comparative oscillation means 16 Adder

Claims (10)

差動電極の静電容量の変化により物体の接近あるいは位置を検出する近接検出装置であって、
前記物体の接近により見かけの静電容量を変化させる単数または複数の差動電極と、
前記差動電極の静電容量に応じた値を検出する静電容量検出手段と、
前記静電容量に応じた値から前記物体の接近あるいは位置を検出する近接演算手段とを有し、
前記静電容量検出手段は、前記差動電極の波形の差分を求める減算手段と、前記波形の差分を比較するヒステリシス特性を有する比較発振手段と、前記比較発振手段の出力により前記差動電極の各々に充放電を行う第1および第2の帰還抵抗と、を有することを特徴とする近接検出装置。
A proximity detection device that detects the approach or position of an object by a change in capacitance of a differential electrode,
One or more differential electrodes that change the apparent capacitance due to the approach of the object;
Capacitance detecting means for detecting a value corresponding to the capacitance of the differential electrode;
Proximity calculation means for detecting the approach or position of the object from a value according to the capacitance,
The capacitance detecting means includes a subtracting means for obtaining a difference between the waveforms of the differential electrodes, a comparison oscillating means having a hysteresis characteristic for comparing the differences in the waveforms, and an output of the differential oscillating means. A proximity detection device comprising: first and second feedback resistors that charge and discharge each.
前記静電容量検出手段は、前記差動電極とは異なる蓄電手段と、前記比較発振手段の出力により前記蓄電手段に充放電を行う第3の帰還抵抗と、を有することを特徴とする請求項1に記載の近接検出装置。   The capacitance detecting means includes a power storage means different from the differential electrode, and a third feedback resistor that charges and discharges the power storage means by an output of the comparative oscillation means. The proximity detection device according to 1. 前記差動電極への前記第1および第2帰還抵抗による2つの帰還と前記蓄電手段への前記第3の帰還抵抗による帰還のうちのいずれか1つが正の帰還で他の2つが負の帰還であることを特徴とする請求項2に記載の近接検出装置。   Any one of the two feedbacks by the first and second feedback resistors to the differential electrode and the feedback by the third feedback resistor to the storage means is a positive feedback, and the other two are negative feedbacks. The proximity detection device according to claim 2, wherein 前記差動電極を構成する正の素電極の静電容量と前記正の素電極への前記第1の帰還抵抗による時定数と、前記差動電極を構成する負の素電極の静電容量と前記負の素電極への前記第2の帰還抵抗による時定数と、前記蓄電手段の静電容量と前記蓄電手段への前記第3の帰還抵抗による時定数の中で、最も長い時定数と最も短い時定数との比が0.5倍より大きく2.0場合より小さいことを特徴とする請求項2に記載の近接検出装置。   A capacitance of a positive elementary electrode constituting the differential electrode, a time constant due to the first feedback resistance to the positive elementary electrode, and a capacitance of a negative elementary electrode constituting the differential electrode, Among the time constant due to the second feedback resistance to the negative element electrode, and the longest time constant among the capacitance of the power storage means and the time constant due to the third feedback resistance to the power storage means, 3. The proximity detection apparatus according to claim 2, wherein a ratio with a short time constant is larger than 0.5 times and smaller than 2.0. 前記静電容量検出手段は、乗算手段を有することを特徴とする請求項1に記載の近接検出装置。   The proximity detection apparatus according to claim 1, wherein the capacitance detection unit includes a multiplication unit. 差動電極の静電容量の変化により物体の接近あるいは位置を検出する近接検出方法であって、
前記物体の接近により見かけの静電容量を変化させる単数または複数の差動電極の静電容量に応じた値を検出する静電容量検出工程と、
前記静電容量に応じた値から前記物体の接近あるいは位置を検出する近接演算工程とを有し、
前記静電容量検出工程は前記差動電極の波形の差分を求める減算工程と、前記波形の差分を比較し発振を行う比較発振工程と、前記比較発振工程の出力により前記差動電極の各々に帰還抵抗を介して充放電を行う工程と、を有することを特徴とする近接検出方法。
A proximity detection method for detecting the approach or position of an object by a change in capacitance of a differential electrode,
A capacitance detecting step of detecting a value corresponding to the capacitance of the differential electrode or electrodes that change the apparent capacitance due to the approach of the object;
A proximity calculation step of detecting the approach or position of the object from a value according to the capacitance,
The capacitance detection step includes a subtraction step for obtaining a difference in waveform of the differential electrode, a comparison oscillation step for comparing the waveform difference to oscillate, and an output of the comparison oscillation step for each of the differential electrodes. And a step of charging and discharging via a feedback resistor.
前記静電容量検出工程は、帰還抵抗を介して前記比較発振工程の出力を前記差動電極とは異なる蓄電手段に充放電を行うことを特徴とする請求項6に記載の近接検出方法。   The proximity detection method according to claim 6, wherein the capacitance detection step charges / discharges the output of the comparison oscillation step to a power storage unit different from the differential electrode via a feedback resistor. 前記差動電極への帰還抵抗による2つの帰還と前記蓄電手段への帰還抵抗による帰還のうちのいずれか1つが正の帰還で他の2つが負の帰還であることを特徴とする請求項7に記載の近接検出装置。   8. One of two feedbacks by a feedback resistor to the differential electrode and feedback by a feedback resistor to the power storage means is a positive feedback, and the other two are negative feedbacks. The proximity detector described in 1. 前記差動電極を構成する正の素電極の静電容量と前記正の素電極への前記第1の帰還抵抗による時定数と、前記差動電極を構成する負の素電極の静電容量と前記負の素電極への前記第2の帰還抵抗による時定数と、前記蓄電手段の静電容量と前記蓄電手段への前記第3の帰還抵抗による時定数の中で、最も長い時定数と最も短い時定数との比が0.5倍より大きく2.0場合より小さいことを特徴とする請求項7に記載の近接検出方法。   A capacitance of a positive elementary electrode constituting the differential electrode, a time constant due to the first feedback resistance to the positive elementary electrode, and a capacitance of a negative elementary electrode constituting the differential electrode, Among the time constant due to the second feedback resistance to the negative element electrode, and the longest time constant among the capacitance of the power storage means and the time constant due to the third feedback resistance to the power storage means, The proximity detection method according to claim 7, wherein a ratio with a short time constant is larger than 0.5 times and smaller than 2.0. 前記静電容量検出方法は、乗算工程を有することを特徴とする請求項6に記載の近接検出方法。   The proximity detection method according to claim 6, wherein the capacitance detection method includes a multiplication step.
JP2008030616A 2008-02-12 2008-02-12 Proximity detector and detection method Pending JP2009193139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030616A JP2009193139A (en) 2008-02-12 2008-02-12 Proximity detector and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030616A JP2009193139A (en) 2008-02-12 2008-02-12 Proximity detector and detection method

Publications (1)

Publication Number Publication Date
JP2009193139A true JP2009193139A (en) 2009-08-27

Family

ID=41075122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030616A Pending JP2009193139A (en) 2008-02-12 2008-02-12 Proximity detector and detection method

Country Status (1)

Country Link
JP (1) JP2009193139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133964A (en) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Capacitance discrimination circuit and touch switch equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133964A (en) * 2009-12-22 2011-07-07 Sanyo Electric Co Ltd Capacitance discrimination circuit and touch switch equipped with the same

Similar Documents

Publication Publication Date Title
JP6240530B2 (en) Signal processing circuit, signal processing method, position detection device, and electronic apparatus
TW201517514A (en) Capacitive proximity detection using delta-sigma conversion
KR20100109935A (en) Time-sloped capacitance measuring circuits and methods
JP2009239666A (en) Capacitance detecting apparatus and method
JP2010152876A (en) Electrostatic capacitance detection device, electrostatic capacitance detection circuit, electrostatic capacitance detection method and initialization method
US20110169768A1 (en) Electrostatic detection device, information apparatus, and electrostatic detection method
JP2011089937A (en) Electrostatic detection device and electrostatic detection method using the same
CN211375581U (en) Capacitance detection circuit, touch device and terminal equipment
JP2011107086A (en) Capacitance detection circuit, pressure detector, acceleration detector and transducer for microphone
WO2017164052A1 (en) Compound sensor
KR101430402B1 (en) Measuring method for measuring capacitance and capacitive touch switch using the same
JP2015161631A (en) Ac impedance measurement device and method for measuring ac impedance
JP2009193139A (en) Proximity detector and detection method
JP2010054229A (en) Capacitance measuring apparatus
JP2005140657A (en) Capacity change detecting circuit for electrostatic capacity type sensor
KR101354782B1 (en) Detecting appartus for gyro sensor signal and method thereof
JP2009192253A (en) Device and method for detecting proximity
KR20130028346A (en) Device for measuring acceleration and method for measuring acceleation
US11281314B2 (en) Methods and apparatus for variable capacitance detection
CN111474412B (en) Capacitance detection circuit and capacitance detection method
TWI470527B (en) An integrated circuit that achieves touch capacitance sensing with charge sharing
JP2009200681A (en) Proximity detection apparatus and proximity detecting method
CN113287027A (en) Capacitance detection circuit, touch device, terminal equipment and capacitance detection method
JP2005233626A (en) Wheel speed detecting apparatus
JP5150148B2 (en) Capacitance detection circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113