JP2009193110A - Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device - Google Patents

Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device Download PDF

Info

Publication number
JP2009193110A
JP2009193110A JP2008030193A JP2008030193A JP2009193110A JP 2009193110 A JP2009193110 A JP 2009193110A JP 2008030193 A JP2008030193 A JP 2008030193A JP 2008030193 A JP2008030193 A JP 2008030193A JP 2009193110 A JP2009193110 A JP 2009193110A
Authority
JP
Japan
Prior art keywords
gas
solid
circulation
calculated
phase flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030193A
Other languages
Japanese (ja)
Inventor
Tomomi Uchiyama
知実 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008030193A priority Critical patent/JP2009193110A/en
Publication of JP2009193110A publication Critical patent/JP2009193110A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-gas two-phase flow simulation program using a grid-free method, a storage medium with the program stored, and a solid-gas two-phase flow simulation device, for precisely analyzing an analytic region without dividing it into calculation grids with a solid-gas two-phase flow in which particles coexist in an air flow as an object. <P>SOLUTION: This analytic method by the grid-free method includes: discretizing by a plurality of vortex elements, focusing attention on the vorticity field of a solid-gas two-phase flow in which micro-fine solid particles disperse in an air flow and flow while intereacting with the air flow; deriving a vorticity equation from a momentum conservation relation in consideration of the force of particles affecting the air flow; and calculating the behavior of vortex elements by the Lagrangian calculation of the vorticity equation, thus dispensing with division of the analytic region into calculation grids. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,微小な固体粒子が気流中に分散し,気流と相互作用を及ぼし合いながら流れる固気二相流の挙動の解析方法に関する,グリッドフリー手法を用いた固気二相流シミュレーションプログラム及びそれを記憶した記憶媒体並びに固気二相流シミュレーション装置に関する.   The present invention relates to a solid-gas two-phase flow simulation program using a grid-free method and a method for analyzing the behavior of a solid-gas two-phase flow in which minute solid particles are dispersed in an air flow and interact with each other. It relates to a storage medium storing it and a solid-gas two-phase flow simulation device.

微小な固体粒子が気流中に分散し,気流と相互作用を及ぼし合いながら流れる固気二相流は,微粉炭燃焼機器,固体ロケットエンジン,サンドブラスト装置など,様々な工業装置において観察される.このため,この固気二相流の挙動について,合理的な数値解析方法の確立が望まれている.   Solid-gas two-phase flow in which fine solid particles are dispersed in an air stream and interact with each other is observed in various industrial equipment such as pulverized coal combustion equipment, solid rocket engines, and sandblasting equipment. Therefore, the establishment of a rational numerical analysis method for the behavior of this solid-gas two-phase flow is desired.

固気二相流の数値解析には,従来,差分法や有限体積法などのオイラー型解法が多用されている.これらの解析では,その前処理として,解析領域を多数の格子(グリッド)に分割する必要がある.格子は解析領域の全域をメッシュ状に覆うものであり,計算格子とよばれている.各格子の形状は,一般に四角形である.各格子の頂点で流れの変数(速度や圧力など)が定義され,上記解法により計算される.図1(a)は,液体を満たした円筒容器内に円柱が設置された場合に対する,円柱周りの液体流れ場(解析領域)を示す.図1(b)は,格子分割の一例を示す.解析精度は格子分割の状態に依存するため,高い精度を確保するには,流れが急峻に変化するものと予測される領域は多数の細かな格子に分割する必要がある.また,格子の間には重なりや隙間があってはならないという幾何学的条件も満足しなければならない.したがって,複雑な幾何形状をもつ流れ場を扱う工学上の実務的シミュレーションでは,格子分割に細心の注意と多大な作業が要求され,解析を複雑化する原因となっていた.   For numerical analysis of solid-gas two-phase flow, Euler-type methods such as the difference method and the finite volume method have been widely used. In these analyses, it is necessary to divide the analysis area into a number of grids (grids) as preprocessing. The grid covers the entire analysis area in a mesh and is called a calculation grid. The shape of each grid is generally rectangular. Flow variables (velocity, pressure, etc.) are defined at the vertices of each grid and calculated by the above solution. Fig. 1 (a) shows the liquid flow field (analysis region) around a cylinder when the cylinder is installed in a cylindrical container filled with liquid. Fig. 1 (b) shows an example of grid division. Since the analysis accuracy depends on the state of grid division, to ensure high accuracy, the region where the flow is expected to change sharply needs to be divided into many fine grids. It must also satisfy the geometric requirement that there should be no overlap or gaps between the grids. Therefore, in engineering practical simulations dealing with flow fields with complex geometric shapes, careful attention and a great deal of work were required for grid division, which caused the analysis to be complicated.

また,前記の従来の解析方法では,流れの変数として速度と圧力が用いられ,それらを支配する複数の偏微分方程式が解析され,上記計算格子の頂点において流れの変数が計算されていた.これらの偏微分方程式は,微分を差分で近似表現することにより,代数方程式に置き換えられるが,非線形項が数値不安定性を有するため,固気二相流のレイノルズ数が高い場合には,計算過程で発散が生じるおそれがある.とくに,工業装置で見受けられる固気二相流は,レイノルズ数が高いものが多く,精度の高い解析ができないという問題があった.   In the conventional analysis method described above, velocity and pressure were used as flow variables, multiple partial differential equations governing them were analyzed, and flow variables were calculated at the top of the calculation grid. These partial differential equations can be replaced by algebraic equations by approximating the differential with a difference. However, since the nonlinear term has numerical instability, if the Reynolds number of the solid-gas two-phase flow is high, the calculation process There is a risk of divergence. In particular, solid-gas two-phase flows found in industrial equipment often have high Reynolds numbers, and there is a problem that high-precision analysis cannot be performed.

ところで,従来,気体あるいは液体のみの単相流の解析については渦法が有効に利用されている.ここで,渦法とは,渦度をもつ渦要素を追跡して渦度場の時間変化を求めるラグランジュ型解法であり,計算格子を用いることなく,大規模渦の形成や変形などの渦構造の発展過程を良好に計算できる特徴がある.下記非特許文献1〜8には,この渦法を利用して,固気二相流の挙動を解析する技術が開示されている.
Chung, J. N. and Troutt, T. R., Simulation of particle dispersion in an axisymmetric jet, J. Fluid Mech., 186(1988), 199-222. 内山知実・ほか2名,渦法による固気二相自由乱流の数値解法(数値モデルと二次元混合層への適用),日本機械学会論文集(B編),66-651(2000), 2853-2860. 内山知実・成瀬正章,Vortex in Cell法による固気二相自由乱流の数値解析,日本機械学会論文集(B編),69巻686号(2003),2200-2207. 内山知実・深瀬昭仁,三次元渦法による固気二相同軸円形噴流の数値解析,日本機械学会論文集(B編),70巻696号(2004),1957-1964. 内山知実・北野佳伸,自由落下粒子群が形成する粒子噴流の数値解析,日本機械学会論文集(B編),69巻684号(2003),1737-1745. Uchiyama, T. and Yagami, H., Numerical Analysis of Gas-Particle Two-Phase Wake Flow by Vortex Method, Powder Technol., 149(2005), 112-120. Uchiyama, T. and Fukase, A., Three-Dimensional Vortex Simulation of Particle-Laden Air Jet, Chem. Eng. Sci., 61(2006), 1767-1778. 内山知実・成瀬正章,自由落下粒子群が形成する粒子噴流の三次元渦法解析,日本機械学会論文集(B編),71巻707号(2005),1738-1745. 特開2004−126925公報 特開2006−85603公報 特開2007−308916公報 特開2007−286955公報 特開2007−286514公報 特開2007−17380公報 特開2006−259911公報 特開2006−77288公報 特開2000−214134公報 特開平7−84992公報
By the way, the vortex method has been used effectively for the analysis of single-phase flow with only gas or liquid. Here, the vortex method is a Lagrangian method for tracking the vortex elements with vorticity and obtaining the temporal change of the vorticity field. The vortex structure can be used to form and deform large-scale vortices without using a computational grid. It has the feature that the development process of can be calculated well. Non-Patent Documents 1 to 8 below disclose techniques for analyzing the behavior of solid-gas two-phase flow using this vortex method.
Chung, JN and Troutt, TR, Simulation of particle dispersion in an axisymmetric jet, J. Fluid Mech., 186 (1988), 199-222. Tomomi Uchiyama and two others, Numerical solution of solid-gas two-phase free turbulence by the vortex method (numerical model and application to two-dimensional mixed layer), Transactions of the Japan Society of Mechanical Engineers (B), 66-651 (2000), 2853-2860. Tomomi Uchiyama and Masaaki Naruse, Numerical analysis of solid-gas two-phase free turbulence by the Vortex in Cell method, Transactions of the Japan Society of Mechanical Engineers (B), Vol.69, No.686 (2003), 2200-2207. Tomomi Uchiyama and Akihito Fukase, Numerical analysis of a solid-gas two-axis circular jet by the three-dimensional vortex method, Transactions of the Japan Society of Mechanical Engineers (Part B), Volume 70, No. 696 (2004), 1957-1964. Tomomi Uchiyama and Yoshinobu Kitano, Numerical Analysis of Particle Jets Formed by Free-Falling Particles, Transactions of the Japan Society of Mechanical Engineers (Part B), 69, 684 (2003), 1737-1745. Uchiyama, T. and Yagami, H., Numerical Analysis of Gas-Particle Two-Phase Wake Flow by Vortex Method, Powder Technol., 149 (2005), 112-120. Uchiyama, T. and Fukase, A., Three-Dimensional Vortex Simulation of Particle-Laden Air Jet, Chem. Eng. Sci., 61 (2006), 1767-1778. Tomomi Uchiyama and Masaaki Naruse, Three-dimensional vortex analysis of particle jets formed by free-falling particles, Transactions of the Japan Society of Mechanical Engineers (B), 71 707 (2005), 1738-1745. JP 2004-126925 A JP 2006-85603 A JP 2007-308916 A JP 2007-286955 A JP 2007-286514 A JP 2007-17380 A JP 2006-259911 A JP 2006-77288 A JP 2000-214134 A JP-A-7-84992

しかしながら,上記非特許文献1に記載の技術は,まず粒子がない場合の気流を渦法により計算し,つぎに前記気流の中におかれた粒子の運動を計算するものであり,粒子が気流に及ぼす影響は無視されており,固気二相流の挙動を精度良く解析できるものではなかった.   However, the technique described in Non-Patent Document 1 first calculates the airflow when there is no particle by the vortex method, and then calculates the motion of the particle placed in the airflow. The effect on the gas flow was ignored, and the behavior of solid-gas two-phase flow could not be analyzed accurately.

上記非特許文献2および3に記載の技術は,本願が対象とする,渦法による固気二相流のシミュレーションに関するものである.しかし,粒子が気流に及ぼす影響を計算する際に解析領域を計算格子(グリッド)に分割する手法を用いている.よって,本願が対象とする計算格子を用いない手法(グリッドフリー手法)は導入されていない.本願のグリッドフリー手法は,上記非特許文献2および3に記載の方程式およびアルゴリズムとは全くことなるため,これらの手法を適用することはできない.   The technologies described in Non-Patent Documents 2 and 3 relate to the simulation of solid-gas two-phase flow by the vortex method, which is the subject of this application. However, we use a method that divides the analysis area into calculation grids (grids) when calculating the effect of particles on the airflow. Therefore, the method that does not use the calculation grid (grid-free method) targeted by this application has not been introduced. The grid-free methods of this application are completely different from the equations and algorithms described in Non-Patent Documents 2 and 3 above, so these methods cannot be applied.

上記非特許文献4に記載の技術は,上記非特許文献2に記載の技術を三次元解析用に拡張したものであり,上記非特許文献2の技術と同様,解析領域を計算格子(グリッド)に分割する手法を用いている.よって,本願が対象とする計算格子を用いない手法(グリッドフリー手法)は導入されていない.また,本願のグリッドフリー手法は,上記非特許文献4に記載の方程式およびアルゴリズムとは全くことなるため,これらの手法を適用することはできない.   The technique described in Non-Patent Document 4 is an extension of the technique described in Non-Patent Document 2 for three-dimensional analysis. Similar to the technique of Non-Patent Document 2, the analysis region is a calculation grid (grid). The method of dividing into two is used. Therefore, the method that does not use the calculation grid (grid-free method) targeted by this application has not been introduced. In addition, since the grid-free method of this application is completely different from the equations and algorithms described in Non-Patent Document 4, these methods cannot be applied.

上記非特許文献5〜8は,上記非特許文献2〜4のいずれかに記載のシミュレーション技術を用いて,様々な固気二相流を解析した場合の解析結果を記述したものである.よって,本願のグリッドフリー手法とは関連しない内容である.   The non-patent documents 5 to 8 describe the analysis results when various solid-gas two-phase flows are analyzed using the simulation technique described in any of the non-patent documents 2 to 4. Therefore, it is not related to the grid-free method of this application.

特許文献1の技術は,渦法を用いて流体の流れを解析するものであるが,水または空気などの単相流を解析の対象とするものであり,本願が解析対象とする固気二相流は解析できない.
特許文献2の技術は,液中に分散した気泡が液体と相互作用を及ぼし合いながら流れる気泡流に対する渦法による解析方法に関するものであり,本願が解析の対象とする固気二相流の解析には適用できない.
The technique of Patent Document 1 analyzes fluid flow using the vortex method, but analyzes single-phase flow such as water or air. Phase flow cannot be analyzed.
The technique of Patent Document 2 relates to an analysis method by a vortex method for a bubble flow in which bubbles dispersed in a liquid interact and interact with each other. Not applicable to.

特許文献3〜10には,固体粒子の運動をその支配方程式から計算によって解析しようとする技術が開示されているが,いずれも,本願が対象とする計算格子を使用しないグリッドフリー手法を用いた渦法に準拠した解法ではなく,かつ気流中を運動する粒子に関するものでもない.   Patent Documents 3 to 10 disclose techniques for analyzing the motion of solid particles from their governing equations by calculation, but all use a grid-free technique that does not use the calculation grid that is the subject of this application. It is not a solution based on the vortex method, nor is it related to particles moving in an air stream.

すなわち,特許文献3の技術は,海底に投入された土砂を対象として,海浜流による移動現象をシミュレーションするものであり,固体粒子を含む気流すなわち固気二相流に関するものではない.
特許文献4の技術は,容器内の粒子の挙動シミュレーションに関するものであるが,渦法に基づく解法ではない.
In other words, the technology of Patent Document 3 is intended to simulate the movement phenomenon caused by beach currents for the sand and sand thrown into the seabed, and is not related to the air flow containing solid particles, that is, the solid-gas two-phase flow.
The technique of Patent Document 4 relates to the behavioral simulation of particles in a container, but is not a solution based on the vortex method.

特許文献5の技術は,離散粒子法による粒子挙動シミュレーション装置、粒子挙動シミュレーション方法、及びコンピュータプログラムを提供するものであり,粒子間の衝突や接触の計算に関するものであり,気流中の粒子挙動を対象としていない.
特許文献6の技術は,多数の粒子が存在する場合の粒子間衝突のためのシミュレーションに関するものであり,流体の計算は対象としていない.
The technology of Patent Document 5 provides a particle behavior simulation apparatus, a particle behavior simulation method, and a computer program by the discrete particle method, and is related to calculation of collision and contact between particles. Not targeted.
The technique of Patent Document 6 relates to a simulation for collision between particles when a large number of particles exist, and does not cover fluid calculation.

特許文献7の技術は,個別要素法を用いて粒子間の影響を考慮する解析方法ならびにコンピュータプログラムに関するものであり,固気二相流としての扱いはしていない.
特許文献8の技術は,自熔炉内の精鉱粒子同士の衝突および成長現象を考慮した燃焼現象を予測する手法を提供するものであり,気体の流動については省略している.
The technique of Patent Document 7 relates to an analysis method and a computer program that consider the influence between particles using the discrete element method, and is not treated as a solid-gas two-phase flow.
The technique of Patent Document 8 provides a method for predicting the combustion phenomenon in consideration of the collision and growth phenomenon of concentrate particles in the flash furnace, and omits the gas flow.

特許文献9の技術は,粉粒体を収容した容器内での撹拌部材を用いた混合撹拌操作に伴って発生する静電気量を基にしたシミュレーションであり,流動に関するシミュレーションではない.
特許文献10の技術は,回転する混合容器内の粒子挙動の予測に関するものであり,粒子間の衝突による運動を解析しており,流体運動に起因する粒子挙動までは扱ってはいない.
The technique of Patent Document 9 is a simulation based on the amount of static electricity generated by the mixing and agitation operation using the agitation member in the container containing the granular material, not the simulation relating to the flow.
The technique of Patent Document 10 relates to the prediction of particle behavior in a rotating mixing vessel, analyzes the motion due to collision between particles, and does not deal with particle behavior due to fluid motion.

本発明は上記のような事情に基づいて完成されたものであって,気流中に粒子が混在する固気二相流を対象として,解析領域を計算格子(グリッド)に分割することなく精度よく解析できる,グリッドフリー手法を用いた固気二相流シミュレーションプログラム及びそれを記憶した記憶媒体並びに固気二相流シミュレーション装置を提供することを目的とする.   The present invention has been completed based on the above-described circumstances, and is intended for a solid-gas two-phase flow in which particles are mixed in an air current, and without being divided into calculation grids (grids) with high accuracy. The purpose is to provide a solid-gas two-phase flow simulation program using a grid-free method, a storage medium storing it, and a solid-gas two-phase flow simulation device.

上記の目的を達成するための手段として,請求項1の発明に関するグリッドフリー手法を用いた固気二相流シミュレーションプログラムは,気流中に微小な固体粒子を含む固気二相流を解析するための固気二相流シミュレーションプログラムであって,コンピュータに,次のステップ(a)〜(i)を実行させて,前記固気二相流の挙動を解析する.
(a)前記解析領域内に存在する各粒子の速度をラグランジュ的に計算するステップ.
(b)前記各粒子の位置をラグランジュ的に計算するステップ.
(c)前記各粒子の周りに4つの正方形のセルを配置するステップ.
(d)前記各粒子に作用する流体抗力を,前記ステップ(a)で算出された速度に基づいて計算するステップ.
(e)前記ステップ(d)で算出された流体抗力に基づいて,前記各セルにおける循環変化量を,気流の運動量保存方程式から導出される渦度方程式と,レイノルズの輸送定理とに基づいて計算するステップ.
(f)前記ステップ(e)で算出された前記各セルにおける循環変化量に基づいて,当該セル内の各渦要素の循環を計算し,各渦要素の位置と循環を記憶手段(1)に保存するステップ.
(g)各渦要素のコア半径をラグランジュ的に計算して記憶手段(2)に保存するステップ.
(h)前記ステップ(f)および前記ステップ(g)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,各渦要素の移流すなわち位置をラグランジュ的に計算し,各渦要素の位置,循環およびコア半径を記憶手段(3)に保存するステップ.
(i)前記ステップ(h)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,前記評価点における気体の速度をビオサバールの式を用いて計算し,記憶手段(4)に保存するステップ.
As a means for achieving the above object, a solid-gas two-phase flow simulation program using a grid-free method relating to the invention of claim 1 is used to analyze a solid-gas two-phase flow including minute solid particles in an air flow. This is a solid-gas two-phase flow simulation program for causing a computer to execute the following steps (a) to (i) and analyzing the behavior of the solid-gas two-phase flow.
(A) calculating a velocity of each particle existing in the analysis region in a Lagrangian manner.
(B) A step of calculating the position of each particle in a Lagrangian manner.
(C) placing four square cells around each particle;
(D) calculating a fluid drag acting on each particle based on the velocity calculated in the step (a).
(E) Based on the fluid drag calculated in step (d), the amount of change in circulation in each cell is calculated based on the vorticity equation derived from the momentum conservation equation of airflow and the Reynolds transport theorem. Step to do.
(F) Based on the circulation change amount in each cell calculated in the step (e), the circulation of each vortex element in the cell is calculated, and the position and circulation of each vortex element are stored in the storage means (1). Saving step.
(G) A step of calculating the core radius of each vortex element in a Lagrangian manner and storing it in the storage means (2).
(H) The position, circulation and core radius data of each vortex element stored in the step (f) and the step (g) are read, and the advection, that is, the position of each vortex element is calculated in a Lagrangian manner. Storing the position, circulation and core radius of the memory in the storage means (3).
(I) The position, circulation and core radius data of each vortex element stored in the step (h) is read out, the gas velocity at the evaluation point is calculated using the Biosavart equation, and stored in the storage means (4) Saving step.

請求項2の発明は,上記請求項1に記載のグリッドフリー手法を用いた固気二相流シミュレーションプログラムを記憶した記憶媒体である.なお,記憶媒体としては,フロッピー(登録商標)ディスク,CD−ROM等が好適である.   The invention of claim 2 is a storage medium storing a solid-gas two-phase flow simulation program using the grid-free method of claim 1. As the storage medium, floppy (registered trademark) disk, CD-ROM, etc. are suitable.

請求項3に係る固気二相流シミュレーション装置は,気流中に微小な固体粒子を含む固気二相流を解析するためのグリッドフリー手法を用いた固気二相流シミュレーション装置であって,次の手段(a)〜(i)を備え,これらの手段を実行させて,前記固気二相流の挙動を解析する.
(a)前記解析領域内に存在する各粒子の速度をラグランジュ的に計算する手段.
(b)前記各粒子の位置をラグランジュ的に計算する手段.
(c)前記各粒子の周りに4つの正方形のセルを配置する手段.
(d)前記各粒子に作用する流体抗力を,前記手段(a)で算出された速度に基づいて計算する手段.
(e)前記手段(d)で算出された流体抗力に基づいて,前記各セルにおける循環変化量を,気流の運動量保存方程式から導出される渦度方程式と,レイノルズの輸送定理とに基づいて計算する手段.
(f)前記手段(e)で算出された前記各セルにおける循環変化量に基づいて,当該セル内の各渦要素の循環を計算し,各渦要素の位置と循環を記憶手段(1)に保存する手段.
(g)各渦要素のコア半径をラグランジュ的に計算して記憶手段(2)に保存する手段.
(h)前記手段(f)および前記手段(g)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,各渦要素の移流すなわち位置をラグランジュ的に計算し,各渦要素の位置,循環およびコア半径を記憶手段(3)に保存する手段.
(i)前記手段(h)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,前記評価点における気体の速度をビオサバールの式を用いて計算し,記憶手段(4)に保存する手段.
A solid-gas two-phase flow simulation apparatus according to claim 3 is a solid-gas two-phase flow simulation apparatus using a grid-free method for analyzing a solid-gas two-phase flow including minute solid particles in an air flow, The following means (a) to (i) are provided, and these means are executed to analyze the behavior of the solid-gas two-phase flow.
(A) A means for calculating the velocity of each particle existing in the analysis region in a Lagrangian manner.
(B) Means for calculating the position of each particle in a Lagrangian manner.
(C) means for arranging four square cells around each particle;
(D) Means for calculating the fluid drag acting on each particle based on the velocity calculated by the means (a).
(E) Based on the fluid drag calculated by the means (d), the amount of change in circulation in each cell is calculated based on the vorticity equation derived from the momentum conservation equation of airflow and the Reynolds transport theorem. Means to do.
(F) Based on the circulation change amount in each cell calculated by the means (e), the circulation of each vortex element in the cell is calculated, and the position and circulation of each vortex element are stored in the storage means (1). Means for storage.
(G) Means for calculating the core radius of each vortex element in a Lagrangian manner and storing it in the storage means (2).
(H) The position, circulation and core radius data of each vortex element stored by the means (f) and the means (g) are read out, and the advection, that is, the position of each vortex element is calculated in a Lagrangian manner. Means for storing the position, circulation and core radius of the memory in the storage means (3).
(I) The position, circulation and core radius data of each vortex element stored by the means (h) is read out, the gas velocity at the evaluation point is calculated using the Biosavart equation, and stored in the storage means (4) Means for storage.

本発明は,微小な固体粒子が気流中に分散し,気流と相互作用を及ぼし合いながら流れる固気二相流の渦度場に着目して複数の渦要素で離散化し,気流に及ぼす粒子の力を考慮した運動量保存関係から渦度方程式を導出し,この渦度方程式のラグランジュ計算により渦要素の挙動を求めるものである.
解析領域を計算格子(グリッド)に分割する必要がない解析方法である.格子の寸法や配置は,解析精度に影響を及ぼすため,格子分割には細心の注意と多大な作業が要求される.よって,格子分割作業を省略できるこのグリッドフリー手法は,工業装置内など複雑な幾何形状をもつ流れ場の解析に極めて有用である.
The present invention focuses on the vorticity field of a solid-gas two-phase flow in which minute solid particles are dispersed in an air flow and interact with each other, and are discretized by a plurality of vortex elements, and The vorticity equation is derived from the momentum conservation relation considering the force, and the behavior of the vortex element is obtained by Lagrange calculation of this vorticity equation.
This is an analysis method that does not require the analysis area to be divided into grids. Since the size and arrangement of the grid influence the analysis accuracy, careful attention and a great deal of work are required for grid division. Therefore, this grid-free method, which can omit the grid division work, is extremely useful for analysis of flow fields with complicated geometric shapes such as in industrial equipment.

また,渦度輸送方程式のラグランジュ計算には非線形項が現れないため,レイノルズ数に依存することなく,高レイノルズ数の固気二相流についても安定で高精度の解析が可能となる.また,渦度の高い領域には渦要素が能動的に密集する特徴があるため,高い解析精度を自動的に確保できる.   In addition, since the nonlinear term does not appear in the Lagrangian calculation of the vorticity transport equation, it is possible to perform a stable and highly accurate analysis of a solid-phase two-phase flow with a high Reynolds number without depending on the Reynolds number. In addition, the high vorticity region has the feature that vortex elements are actively concentrated, so that high analysis accuracy can be automatically secured.

さらに,渦度を求めるに際して,渦要素のコア半径を時間の経過とともに増大させるコアスプレッディング法を適用することが望ましい.このようにすれば,粘性拡散による渦度の減衰が考慮され,適切な渦度を求めることができる.   Furthermore, when calculating the vorticity, it is desirable to apply a core spreading method that increases the core radius of the vortex element over time. In this way, the attenuation of vorticity due to viscous diffusion is taken into account, and an appropriate vorticity can be obtained.

<理論>
次の本発明の理論について説明する.
1.記号
本発明において下記に登場する各符号は次のように定義されている.
A:粒子の周りに設置するセルの一つあたりの面積
CD:粒子の抵抗係数
d:粒子直径
FD:単位体積の気体が粒子から受ける力
fD:粒子に作用する流体抗力
g:重力加速度
L:正方形セルの一辺の長さ
Nv:解析領域内の渦要素数
p:圧力
t:時間
u:速度
vp:気体に対する粒子の相対速度 =up-ug
x, y:空間座標
Γ:循環
ν:気体の動粘度
ρ:密度
σ:渦要素のコア半径
ω:渦度 =∇×ug
添字
g:気体
p:粒子
<Theory>
The following theory of the present invention will be described.
1. Symbols In the present invention, the following symbols are defined as follows.
A: Area per cell installed around the particle
C D : Particle resistance coefficient
d: Particle diameter
F D : Force that a unit volume of gas receives from particles
f D : Fluid drag acting on particles
g: Gravity acceleration
L: Length of one side of the square cell
N v : Number of vortex elements in the analysis region
p: Pressure
t: time
u: Speed
v p : Relative velocity of particles relative to gas = u p -u g
x, y: spatial coordinates
Γ: Circulation
ν: Kinematic viscosity of gas
ρ: Density
σ: Core radius of vortex element
ω: Vorticity = ∇ x u g
Subscript
g: Gas
p: Particle

2.仮定
本発明は以下の仮定を前提としている.
(a)気体は非圧縮である.
(b)粒子の密度は気体に比べ十分に大きい.
(c)粒子は球形であり,均一な直径をもつ.
(d)流れ場全体に及ぼす粒子間衝突の影響は小さく,無視できる.
2. Assumptions The present invention assumes the following assumptions.
(A) The gas is incompressible.
(B) The density of particles is sufficiently larger than that of gas.
(C) The particles are spherical and have a uniform diameter.
(D) The impact of interparticle collisions on the entire flow field is small and can be ignored.

3.基礎式
本発明では,所定の設定データ(後述する入力データ)に基づいて,計算に必要な条件を設定し,流れの基礎方程式に基づいて計算を実行する.以下,計算に用いる流れの基礎方程式について説明する.
3. Basic Expression In the present invention, conditions necessary for the calculation are set based on predetermined setting data (input data described later), and the calculation is executed based on the basic equation of flow. The basic flow equations used in the calculation are explained below.

(1)気体の支配方程式
気体の質量および運動量の保存方程式は,上記仮定(a)〜(d)を前提とした場合,それぞれ次式で表される.

Figure 2009193110
Figure 2009193110
(1) Gas governing equation The gas mass and momentum conservation equations are expressed by the following equations, assuming the above assumptions (a) to (d).
Figure 2009193110
Figure 2009193110

(2)粒子の支配方程式
粒子に作用する支配的な力は,上記仮定(a)〜(d)を前提とした場合,流体抗力と重力であり,次式で与えられる.

Figure 2009193110
ここで,mは粒子の質量であり,流体抗力fDは次式で与えられる.
Figure 2009193110
ただし,dは粒子直径であり,抗力係数CDは次式で定められる.
Figure 2009193110
ここで,Rep=d|ug-up|/νである. (2) The governing equation of particles The prevailing forces acting on the particles are the fluid drag and gravity, assuming the above assumptions (a) to (d), and are given by the following equation.
Figure 2009193110
Where m is the mass of the particle and the fluid drag f D is given by
Figure 2009193110
Where d is the particle diameter and drag coefficient CD is determined by the following equation.
Figure 2009193110
Here, Re p = d | u g -u p | / ν.

(3)渦要素による渦度場の離散化
二次元流れ場を解析の対象とすれば,気体の渦度方程式は,上記数式2の回転をとり上記数式1を代入して得られる次式で表される.

Figure 2009193110
一方,任意の位置xにおける気体の速度は次のビオサバールの式により求められる.
Figure 2009193110
ここで,ug0は一様流またはポテンシャル流れの速度を表す. (3) Discretization of the vorticity field by the vortex element If the analysis target is a two-dimensional flow field, the vorticity equation of the gas is obtained by substituting the above equation 1 by rotating the equation 2 above. expressed.
Figure 2009193110
On the other hand, the velocity of the gas at an arbitrary position x can be obtained by the following biosavart equation.
Figure 2009193110
Here, u g0 represents the velocity of uniform flow or potential flow.

つぎに,渦度場を多数の渦要素により離散化する.単相流解析に対する渦要素モデルを適用し,コア構造をもつ渦要素を導入する.渦要素αの循環をΓα,コア半径をσα,位置ベクトルをxα とすれば,渦要素αによる位置xの渦度は次式で与えられる.

Figure 2009193110
ここで,コア関数fは次式で与えられる.
Figure 2009193110
Next, the vorticity field is discretized by many vortex elements. A vortex element model for single-phase flow analysis is applied and a vortex element with a core structure is introduced. If the circulation of the vortex element α is Γ α , the core radius is σ α and the position vector is x α , the vorticity of the position x by the vortex element α is given by
Figure 2009193110
Here, the core function f is given by the following equation.
Figure 2009193110

渦度場をNv個の渦要素で離散化すれば,気体の速度は上記数式7と上記数式8から得られる次式で表される.

Figure 2009193110
ここで,kは渦度ベクトルと同一方向の単位ベクトルであり,関数gは次式で与えられる.
Figure 2009193110
If the vorticity field is discretized with N v vortex elements, the velocity of the gas can be expressed by the following equation obtained from Equation 7 and Equation 8 above.
Figure 2009193110
Here, k is a unit vector in the same direction as the vorticity vector, and the function g is given by
Figure 2009193110

また,渦要素は気流速度で移流するので,次のラグランジュ解析から計算できる.

Figure 2009193110
Moreover, since the vortex element is advected at the air velocity, it can be calculated from the following Lagrangian analysis.
Figure 2009193110

(4)粘性拡散によるコア半径の変化
渦度は粘性拡散により減衰する.ここで,液体のみまたは気体のみの単相流解析では,コア半径を時間の経過とともに増大させるコアスプレッディング(Core spreading)法により考慮される.そこで,本発明においても,これを準用し,次式をラグランジュ解析してコア半径の時間変化を求める.

Figure 2009193110
なお,Core spreading法は,Leonard, A., Vortex methods for flow simulation, J. Comput. Phys., 37(1980), 289-335. に記載されている. (4) Change in core radius due to viscous diffusion Vorticity is attenuated by viscous diffusion. Here, in the single-phase flow analysis with only liquid or gas, it is considered by the core spreading method that increases the core radius with time. Therefore, in the present invention, this is applied mutatis mutandis, and the time change of the core radius is obtained by Lagrangian analysis of the following equation.
Figure 2009193110
The Core spreading method is described in Leonard, A., Vortex methods for flow simulation, J. Comput. Phys., 37 (1980), 289-335.

(5)粒子運動による循環の変化
任意の閉曲線まわりの循環Γの時間変化率は,次式で表される.

Figure 2009193110
上記数式14にレイノルズの輸送定理を適用したのち,上記数式1と上記数式2を代入し,変形すれば次式を得る.
Figure 2009193110
ここで,drは線素ベクトルである.また,粘性拡散項は,上記数式13で考慮されているので,代入に際し無視している. (5) Change in circulation due to particle motion The time change rate of the circulation Γ around an arbitrary closed curve is expressed by the following equation.
Figure 2009193110
After applying Reynolds' transport theorem to the above formula 14, substituting the above formula 1 and the above formula 2, we can obtain the following formula.
Figure 2009193110
Where dr is a line element vector. In addition, the viscous diffusion term is taken into account in the above equation 13, so it is ignored in the substitution.

(6)粒子運動による循環変化の計算方法
図2に示すように,粒子Pの周囲に4つの正方形のセル6を設ける.セル6は,粒子の位置が既知であれば容易に配置できる.よって,その配置に要する作業は,解析領域を多数の格子(グリッド)に分割する従来技術に比べて著しく簡単である.とくに,複雑な幾何形状をもつ解析領域を対象とする場合には,特段の効果が現れる.セル6は座標軸xおよびyに沿っており,一辺の長さをLとする.気体Gに対する粒子の相対速度をvp(=up-ug)とすれば,-vpの方向に流体抗力fDが作用する.fDがx軸となす角度をθとする.この場合,粒子Pが位置するセル頂点Oに作用するFDのx方向成分FDxおよびy方向成分FDyは,それぞれ次式で与えられる.

Figure 2009193110
ここで,Δzはx-y平面に垂直方向(図2で紙面奥行方向)に粒子が等間隔で分布するもと仮定したときの分布間隔である.
セル頂点7の間でFDが線形変化するものと仮定し,4つのセル1,2,3,4に上記数式15を適用すれば,セル1,2,3,4の循環変化ΔΓ1,ΔΓ2,ΔΓ3,ΔΓ4は次式で表される.
Figure 2009193110
(6) Calculation method of circulation change due to particle motion As shown in FIG. 2, four square cells 6 are provided around the particle P. Cell 6 can be easily placed if the position of the particle is known. Therefore, the work required for the placement is significantly easier than the conventional technology that divides the analysis area into a large number of grids. In particular, a special effect appears when an analysis region having a complicated geometric shape is targeted. Cell 6 is along the coordinate axes x and y, and the length of one side is L. If the relative velocity of the particle with respect to the gas G is v p (= u p -u g ), the fluid drag f D acts in the -v p direction. Let θ be the angle that f D makes with the x-axis. In this case, the x-direction component F Dx and y-direction components F Dy of F D acting on the cell vertex O to position particles P, are respectively given by the following equation.
Figure 2009193110
Here, Δz is the distribution interval when the particles are assumed to be distributed at regular intervals in the direction perpendicular to the xy plane (the depth direction in FIG. 2).
Assuming that F D between the cell vertices 7 is linearly changed, by applying the above equation 15 into four cells 1, 2, 3, 4, circulatory changes [Delta] [gamma] 1 of the cell 1, 2, 3, 4, ΔΓ 2 , ΔΓ 3 , and ΔΓ 4 are expressed by the following equations.
Figure 2009193110

各粒子Pのまわりに設置した4つのセルに対し,セルβ(β=1,2,3,4)にnv個の渦要素が存在する場合には,渦要素一つ当たりの循環をΔΓβ/nvとする.渦要素が存在しない場合には循環ΔΓβをもつ1つの渦要素をセル中央から発生させる. When n v vortex elements exist in the cell β (β = 1, 2, 3, 4) for four cells installed around each particle P, the circulation per vortex element is expressed as ΔΓ. Let β / n v . When there is no vortex element, one vortex element with circulation ΔΓ β is generated from the cell center.

いま,試みに,粒子運動により4つのセル6から渦要素5が一つずつ新たに発生する場合を考えてみる.θ=90°のときには,図3(a)に示すように,気流に対する粒子Pの運動方向に関して,渦要素5の配置が左右対称となる.さらに,数式17からわかるように循環の絶対値も対称となる.4つの渦要素5が誘起する粒子Pまわりの気流を計算すると図3(b)のようになり,粒子運動方向に関して気流も左右対称となる.粒子は球形であり進行方向に対して形状は軸対称であるから,その運動に起因する流れは,二次元解析の場合には軸に関して線対称すなわち左右対称であらねばならない.よって,図3(b)では合理的な速度場が求められている.θ=0°,180°,270°の場合にも同様な気流速度が求められる.   Let us consider a case where a new vortex element 5 is generated from four cells 6 one by one by particle motion. When θ = 90 °, as shown in FIG. 3A, the arrangement of the vortex elements 5 is symmetrical with respect to the moving direction of the particles P with respect to the airflow. Furthermore, as can be seen from Equation 17, the absolute value of the circulation is also symmetric. The airflow around the particle P induced by the four vortex elements 5 is calculated as shown in FIG. 3B, and the airflow is also symmetrical with respect to the direction of particle motion. Since the particles are spherical and the shape is axisymmetric with respect to the direction of travel, the flow resulting from the motion must be line-symmetric or symmetric about the axis in the case of two-dimensional analysis. Therefore, a reasonable velocity field is required in Fig. 3 (b). Similar airflow velocities are obtained when θ = 0 °, 180 °, and 270 °.

一方,θの値が0°,90°,180°,270°でない場合には,図4(a)に示すように渦要素5の配置と循環の絶対値が粒子進行方向に関して対称でない.たとえばθ=65°の場合の気流を求めると,図4(b)に示すように非対称な速度分布となり,適切な結果は得られない.   On the other hand, when the value of θ is not 0 °, 90 °, 180 °, or 270 °, the arrangement of the vortex elements 5 and the absolute value of circulation are not symmetric with respect to the particle traveling direction as shown in FIG. For example, when the airflow when θ = 65 ° is obtained, an asymmetric velocity distribution is obtained as shown in FIG. 4B, and an appropriate result cannot be obtained.

そこで,図5に示すように,粒子位置(セル頂点O)からセル頂点Nに向かうベクトルがつねにfDと一致するように4つのセル6を配置する.このセル配置は,図3(a)の配置に相当するため,粒子まわりの左右対称な気流を正確に計算できる[図3 (b)参照]. Therefore, as shown in FIG. 5, to place the four cells 6 so that the vector from the particle location (cell vertex O) in the cell vertex N coincides with always f D. Since this cell arrangement corresponds to the arrangement in Fig. 3 (a), a symmetrical airflow around the particle can be accurately calculated [see Fig. 3 (b)].

(7)解析手順
時刻t=tでの粒子および気体の流れが既知であれば,時刻t=t+Δtの流れを,例えば以下の手順で計算できる.なお,図6に示すように,解析領域Hには渦要素5と粒子Pが存在し,気体の速度を計算する評価点8が予め配置されている.
(a)粒子Pの運動を数式3から求める.
(b)粒子Pの周囲に4つの正方形セル6を設置し,各セル6における循環変化量ΔΓ1〜ΔΓ4を数式17においてθ=90°として求める.
(c)各セル6における循環変化量ΔΓ1〜ΔΓ4を当該セル6内の渦要素の循環に付与する.セル内に渦要素がない場合には,循環変化量に等しい循環をもつ1つの渦要素をセル中央から発生させる.
(d)渦要素5のコア半径σを数式13から求める.
(e)渦要素5の位置を数式12から求める.
(f)評価点8における気流の速度ugを数式10から求める.
(7) Analysis procedure If the flow of particles and gas at time t = t is known, the flow at time t = t + Δt can be calculated by the following procedure, for example. In addition, as shown in FIG. 6, the vortex element 5 and the particle P exist in the analysis region H, and the evaluation point 8 for calculating the gas velocity is arranged in advance.
(A) The motion of the particle P is obtained from Equation 3.
(B) Four square cells 6 are installed around the particle P, and the circulation variation amounts ΔΓ 1 to ΔΓ 4 in each cell 6 are obtained as θ = 90 ° in Equation 17.
(C) The circulation variation amounts ΔΓ 1 to ΔΓ 4 in each cell 6 are given to the circulation of the vortex element in the cell 6. If there is no vortex element in the cell, one vortex element with circulation equal to the circulation variation is generated from the center of the cell.
(D) The core radius σ of the vortex element 5 is obtained from Equation 13.
(E) The position of the vortex element 5 is obtained from Equation 12.
(F) determining the velocity u g of the airflow at the evaluation point 8 from Equation 10.

このような手順を予め定めた時間間隔毎に繰り返し実行することで,計算格子を用いることなく(グリッドフリー),固気二相流を高精度で解析することができる.   By repeating this procedure at predetermined time intervals, it is possible to analyze solid-gas two-phase flow with high accuracy without using a grid (grid-free).

以下,本発明の一実施形態を前述した理論および図1〜図10によって説明する.   Hereinafter, an embodiment of the present invention will be described with reference to the above-described theory and FIGS.

本実施形態に係るグリッドフリー手法を用いた固気二相流シミュレーションプログラムは,後述する情報記憶装置16に記録され,パーソナルコンピュータ(以下「コンピュータ11」という)に導入することにより,そのコンピュータ11に後述する固気二相流の挙動の解析ステップを実行させるためのものである.   A solid-gas two-phase flow simulation program using the grid-free method according to the present embodiment is recorded in an information storage device 16 to be described later and introduced into a personal computer (hereinafter referred to as “computer 11”). This is to execute the analysis step of the behavior of solid-gas two-phase flow described later.

1.コンピュータとその周辺機器の構成
図7には,コンピュータ11とその周辺機器の構成を示した.コンピュータ11には,演算および周辺機器の制御等を行うための中央処理部12,この中央処理部12と周辺機器との接続を行うためのI/Oインターフェイス13,および周辺機器である表示装置14,印刷装置15,情報記憶装置16および入力装置17が接続されている.
1. Configuration of Computer and its Peripheral Equipment Figure 7 shows the configuration of the computer 11 and its peripheral equipment. The computer 11 includes a central processing unit 12 for performing arithmetic operations and controlling peripheral devices, an I / O interface 13 for connecting the central processing unit 12 and peripheral devices, and a display device 14 which is a peripheral device. , A printing device 15, an information storage device 16, and an input device 17 are connected.

なお,表示装置14には,カソードレイチューブ(CRT)の他に液晶装置,液晶プロジェクタ等が含まれる.また,印刷装置15は,コンピュータ11に直接に連結されている必要はなく,LAN等のネットワークを介して連結されていてもよい.また,入力装置17は,例えばキーボードやマウスなどのコンソールであって,ここでの操作によって解析領域Hの境界を設定する座標位置データや流体特性を設定する入力データなどを入力することができる.   In addition to the cathode ray tube (CRT), the display device 14 includes a liquid crystal device, a liquid crystal projector, and the like. The printing device 15 does not need to be directly connected to the computer 11 but may be connected via a network such as a LAN. The input device 17 is a console such as a keyboard or a mouse, for example, and can input coordinate position data for setting the boundary of the analysis region H, input data for setting fluid characteristics, and the like by operation here.

中央処理部12の詳細については図示しないが,中央演算処理装置(CPU)のほかに,ROM,各種RAM,チップセット等から構成されている.情報記憶装置6は,ハードディスクやフロッピー(登録商標)ディスク,およびMOやCD−ROM等であり,コンピュータ1のプログラムや各種データを読み込みまたは記録することができる.   Although details of the central processing unit 12 are not shown, the central processing unit 12 includes a ROM, various RAMs, a chip set, and the like in addition to a central processing unit (CPU). The information storage device 6 is a hard disk, floppy (registered trademark) disk, MO, CD-ROM, or the like, and can read or record programs and various data of the computer 1.

2.固気二相流の解析
さて,本実施形態の作用を上記中央処理部12にて実行される固気二相流シミュレーションプログラムのフローチャートを参照しつつ説明する.
2. Analysis of Solid-Gas Two-Phase Flow Now, the operation of this embodiment will be described with reference to a flowchart of a solid-gas two-phase flow simulation program executed by the central processing unit 12.

(1)計算に必要な入力データの入力および境界条件の設定
まず,上記入力装置17の操作によって,計算に必要な入力データを入力する.ここで,入力データとしては,気体Gの密度ρgおよび動粘度νg,固体粒子Pの密度ρpおよび直径d,解析領域Hの入口における単位時間当たりの粒子Pの流入個数,解析領域Hの幾何形状および寸法,解析時間,解析時間タイミングΔtである.
(1) Input of input data necessary for calculation and setting of boundary condition First, input data necessary for calculation is input by operating the input device 17. Here, as input data, the density ρ g and kinematic viscosity ν g of the gas G, the density ρ p and diameter d of the solid particles P, the number of inflows of particles P per unit time at the entrance of the analysis region H, the analysis region H Geometric shape and dimensions, analysis time, analysis time timing Δt.

(1)条件設定
本実施形態では,壁面で囲まれていない自由空間における,粒子Pを含む気流(固気二相流)に対する数値解析である.より,具体的には,図8に示すような,粒子Pが静止空気中に落下し,落下粒子が周囲に気体Gの流れ(気流)を誘起し,粒子Pと気体Gが相互作用を及ぼし合いながら流れる固気二相流を解析対象としている.
(1) Condition setting In this embodiment, it is a numerical analysis with respect to the air flow (solid-gas two-phase flow) containing the particle P in the free space not surrounded by the wall surface. More specifically, as shown in FIG. 8, the particles P fall into still air, the falling particles induce a flow of gas G (air flow) around them, and the particles P and the gas G interact with each other. The analysis target is a solid-gas two-phase flow flowing together.

(2)解析処理
コンピュータ11は,上記条件設定後,図9に示すフローチャートの処理を上記解析時間タイミングΔtで繰り返し実行し,固気二相流の挙動を数値解析する.
(2) Analysis processing After setting the above conditions, the computer 11 repeatedly executes the processing of the flowchart shown in FIG. 9 at the above analysis time timing Δt, and numerically analyzes the behavior of the solid-gas two-phase flow.

ステップS1で解析時間タイミングになったかどうかを判断し,解析時間タイミングになったとき(ステップS1で「Y」),ステップS2で粒子Pの速度upを,数式3から計算する.すなわち,本発明の請求項に記載の「ステップ(a)」および「手段(a)」でいう「解析領域内に存在する各粒子の速度をラグランジュ的に計算」に相当する処理を実行する.より具体的には,数式3にオイラーの前進差分法を適用し,ラグランジュ解析により解析領域H内の各粒子Pを追跡するのである.この際,数式3のfDは数式4で与えられるが,数式4の右辺の気体Gと粒子Pの速度には,前回の解析時間タイミングで算出された速度を用いるのである.なお,気体Gの速度は,解析領域H内に予め配置した評価点8の速度の補間から定められるのである.補間には,評価したい位置の近傍点8を選択し,内挿補間法を利用すればよい. To determine what happened to the analysis time timing in step S1, when it is analysis time timing ( "Y" in step S1), the velocity u p of the particles P in step S2, is calculated from Equation 3. That is, a process corresponding to “calculate the velocity of each particle existing in the analysis region in a Lagrangian manner” in “step (a)” and “means (a)” described in the claims of the present invention is executed. More specifically, Euler's forward difference method is applied to Equation 3, and each particle P in the analysis region H is tracked by Lagrangian analysis. In this case, although the f D of Equation 3 is given by Equation 4, the velocity of the gas G and the particles P of the right side of Equation 4 is to use a rate calculated in the previous analysis time timing. Note that the velocity of the gas G is determined by interpolation of the velocity at the evaluation point 8 arranged in advance in the analysis region H. For interpolation, select the neighboring point 8 of the position to be evaluated and use the interpolation method.

ステップS3では,上記ステップS2で算出された粒子Pの速度upをもとにして,粒子Pの位置をラグランジュ法により計算する.すなわち,本発明の請求項に記載の「ステップ(b)」および「手段(b)」でいう「各粒子の位置をラグランジュ的に計算」に相当する処理を実行する.より具体的には,速度が既知であれば,その時間積分により位置が求められるので,上記粒子速度の場合と同様,オイラーの前進差分法により計算するのである. In step S3, the position of the particle P is calculated by the Lagrangian method based on the velocity p of the particle P calculated in step S2. That is, a process corresponding to “calculate the position of each particle in a Lagrangian manner” in “step (b)” and “means (b)” described in the claims of the present invention is executed. More specifically, if the velocity is known, the position can be obtained by integration over time, so it is calculated by Euler's forward difference method as in the case of the particle velocity.

ステップS4では,各粒子の周りに4つの正方形のセル6を配置する.すなわち,本発明の請求項に記載の「ステップ(c)」および「手段(c)」でいう「各粒子の周りに4つの正方形のセルを配置」に相当する処理を実行する.より具体的には,気体Gに対する粒子Pの相対速度vp(=up-ug)を計算し,図5に示したように,粒子位置(セル頂点O)からセル頂点Nに向かうベクトルがvpと一致するようにセル6を配置する. In step S4, four square cells 6 are arranged around each particle. That is, processing corresponding to “place four square cells around each particle” in “step (c)” and “means (c)” described in the claims of the present invention is executed. Vector More specifically, the relative velocity v p of the particles P (= u p -u g) was calculated to gas G, as shown in FIG. 5, directed from the particle location (cell vertex O) to the cell vertex N Place cell 6 so that matches with v p .

ステップS5では,各粒子に作用する流体抗力fDを,前回の解析時間タイミングで算出された気体Gの速度ugと,ステップS1で計算した粒子Pの速度upを用いて,数式4から算出する.すなわち,本発明の請求項に記載の「ステップ(d)」および「手段(d)」でいう「各粒子に作用する流体抗力を,ステップ(a)あるいは手段(a)で算出された速度に基づいて計算」に相当する処理を実行する.なお,気体Gの速度ugは,解析領域H内に予め配置した評価点の速度の補間から定められるのである. In step S5, the fluid drag force f D acting on each particle is calculated from Equation 4 using the velocity u g of the gas G calculated at the previous analysis time timing and the velocity u p of the particle P calculated in step S1. calculate. That is, the “fluid drag acting on each particle” in “step (d)” and “means (d)” described in the claims of the present invention is set to the speed calculated in step (a) or means (a). The process corresponding to “Calculate based on” is executed. Incidentally, the speed u g of the gas G is to be determined from the interpolation of the speed of advance arrangement the evaluation points in the analysis region H.

ステップS6では,各粒子のまわりの4つのセルにおける循環変化量ΔΓ1〜ΔΓ4を,上記ステップS5で算出された各粒子に作用する流体抗力に基づいて,数式17から計算する.すなわち,本発明の請求項に記載の「ステップ(e)」および「手段(e)」でいう「ステップ(d)あるいは手段(d)で算出された流体抗力に基づいて,前記各セルにおける循環変化量を,気流の運動量保存方程式から導出される渦度方程式と,レイノルズの輸送定理とに基づいて計算」に相当する処理を実行する.なお,ステップS4におけるセルの配置からして,数式17ではθ=90°として計算する. In step S6, the circulating amount of change ΔΓ 1 ~ΔΓ 4 in four cells around each particle, based on the fluid drag force acting on each particle calculated in step S5, calculated from Equation 17. That is, based on the fluid drag calculated in “step (d)” or “means (d)” in “step (e)” and “means (e)” described in the claims of the present invention, the circulation in each cell The process corresponding to "Calculate the amount of change based on the vorticity equation derived from the momentum conservation equation of airflow and the Reynolds transport theorem" is executed. In addition, from the arrangement of the cells in step S4, the calculation is performed with θ = 90 ° in Equation 17.

ステップS7では,上記ステップS6で算出された各セルの循環変化量データを基にして,各セルに存在する渦要素の循環を計算し,各渦要素の位置と循環を,例えば上記情報記録装置16の所定の保存領域あるいはRAMの所定領域に保存する.すなわち,本発明の請求項に記載の「ステップ(f)」および「手段(f)」でいう「ステップ(e)あるいは手段(e)によって保存された前記各セルにおける循環変化量データを読み出して,当該セル内の各渦要素の循環を計算し,各渦要素の位置と循環を記憶手段(1)に保存」に相当する処理を実行する.具体的には,循環変化量がΔΓのセルの内部に渦要素がnv個存在する場合,各渦要素の循環の変化量をΔΓ/nvとする.渦要素が存在しない場合には,循環ΔΓをもつ渦要素を1つ新しく発生させる. In step S7, based on the circulation variation data of each cell calculated in step S6, the circulation of the vortex element existing in each cell is calculated, and the position and circulation of each vortex element are determined by, for example, the information recording device. The data is stored in 16 predetermined storage areas or a predetermined area of RAM. That is, the cyclic change data in each cell stored by “step (e)” or “means (e)” in “step (f)” and “means (f)” described in the claims of the present invention is read out. , Calculate the circulation of each vortex element in the cell, and execute the process corresponding to “save the position and circulation of each vortex element in the storage means (1)”. Specifically, if there are n v vortex elements in a cell with a circulation change of ΔΓ, the change of circulation of each vortex element is ΔΓ / n v . If there is no vortex element, a new vortex element with circulation ΔΓ is generated.

ステップS8では,時間変化する渦要素のコア半径σを数式13から計算し,例えば上記情報記録装置16の所定の保存領域あるいはRAMの所定領域に保存する.すなわち,本発明の請求項に記載の「ステップ(g)」および「手段(g)」でいう「各渦要素のコア半径をラグランジュ的に計算して記憶手段(2)に保存」に相当する処理を実行する.このラグランジュ計算には,オイラーの前進差分法が適用できる.   In step S8, the core radius σ of the time-varying vortex element is calculated from Equation 13, and stored in, for example, a predetermined storage area of the information recording device 16 or a predetermined area of the RAM. That is, it corresponds to “the core radius of each vortex element is calculated in a Lagrangian manner and stored in the storage means (2)” in “step (g)” and “means (g)” recited in the claims of the present invention. Execute the process. Euler's forward difference method can be applied to this Lagrangian calculation.

ステップS9では,渦要素5の移流を数式12から計算し,例えば上記情報記録装置16の所定の保存領域あるいはRAMの所定領域に保存する.すなわち,本発明の請求項に記載の「ステップ(h)」および「手段(h)」でいう「ステップ(f)およびステップ(g)あるいは手段(f)および手段(g)によって保存された渦要素の位置,循環およびコア半径データを読み出して,各渦要素の移流すなわち位置をラグランジュ的に計算し,各渦要素の位置,循環およびコア半径を記憶手段(3)に保存」に相当する処理を実行する.より具体的には,上記粒子Pの運動計算の場合と同様,オイラーの前進差分法により数式12を解析して,解析領域Hにおける渦要素16の位置を追跡するのである.   In step S9, the advection of the vortex element 5 is calculated from Equation 12, and stored in, for example, a predetermined storage area of the information recording device 16 or a predetermined area of the RAM. That is, the vortex stored by “step (f) and step (g)” or “means (f) and means (g)” in “step (h)” and “means (h)” described in the claims of the present invention. Processing corresponding to “reading element position, circulation and core radius data, calculating advection, ie position, of each vortex element in a Lagrangian manner, and storing the position, circulation and core radius of each vortex element in storage means (3)” Execute More specifically, the position of the vortex element 16 in the analysis region H is tracked by analyzing Formula 12 by the Euler forward difference method as in the case of the motion calculation of the particle P.

ステップS10では,ステップS7〜S9で計算した渦要素の位置,循環およびコア半径を数式10に代入して,解析領域に予め設定した評価点における気体Gの速度を計算し,例えば上記情報記録装置16の所定の保存領域内またはRAMの所定領域に保存する.すなわち,本発明の請求項に記載の「ステップ(i)」および「手段(i)」でいう「ステップ(h)あるいは手段(h)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,前記評価点における気体の速度をビオサバールの式を用いて計算し,記憶手段(4)に保存」に相当する処理を実行する.ステップ12で解析継続の場合(ステップS12で「Y」),ステップS1に戻る.   In step S10, the position, circulation and core radius of the vortex element calculated in steps S7 to S9 are substituted into Equation 10, and the velocity of the gas G at the evaluation point preset in the analysis region is calculated. Store in 16 predetermined storage areas or in a predetermined area of RAM. That is, the position, circulation, and core radius data of each vortex element stored by “step (h) or means (h)” in “step (i)” and “means (i)” described in the claims of the present invention , And the gas velocity at the evaluation point is calculated using the Biosavart equation, and the process corresponding to “save in the storage means (4)” is executed. If the analysis is continued in step 12 (“Y” in step S12), the process returns to step S1.

以上のステップを繰り返し実行することにより,粒子Pと気体Gの流れ,すなわち固気二相流の時間変化をシミュレートすることができる.なお,以上の演算が終了すると,コンピュータ11は,その解析データを例えば表示装置14や印刷装置15に引き渡す.解析データは,粒子Pおよび気体Gの速度upおよびug,粒子Pおよび渦要素5の位置座標であり,一般的に利用できる可視化ソフトウェアを用いることにより,ベクトル表示や等高線表示できる. By repeatedly executing the above steps, the flow of particles P and gas G, that is, the time change of the solid-gas two-phase flow can be simulated. When the above calculation is completed, the computer 11 delivers the analysis data to, for example, the display device 14 or the printing device 15. The analysis data are the speeds u p and u g of the particle P and gas G, the position coordinates of the particle P and the vortex element 5, and can be displayed in vector or contour by using generally available visualization software.

なお,図10は計算結果の一例であり,粒子Pが空気中を自由落下する場合に発生する粒子,渦要素および気流の挙動であり,上記解析データをもとにして,粒子P,渦要素6,気流の速度ベクトルを表示してある.   FIG. 10 shows an example of the calculation result, which shows the behavior of particles, vortex elements and air currents generated when the particles P freely fall in the air. Based on the analysis data, the particles P and vortex elements 6. The velocity vector of the airflow is displayed.

3.本実施形態の効果
固気二相流の解析に従来用いられている方法は,例外なく,解析の前処理として解析領域を計算格子(グリッド)に分割する必要がある.格子は解析領域の全域をメッシュ状に覆うものであり,計算格子とよばれている.各格子の形状は,一般に四角形である.各格子の頂点で流れの変数(速度や圧力など)が定義され,上記解法により計算される.解析精度は格子分割の状態に依存するため,高い精度を確保するには,流れが急峻に変化するものと予測される領域は多数の細かな格子に分割する必要がある.また,格子の間には重なりや隙間があってはならないという幾何学的条件も満足しなければならない.したがって,工業装置の設計などの際に用いられる実務的シミュレーションでは,複雑な幾何形状をもつ流れ場を解析の対象とする場合が多く,格子分割に多大な作業が要求されてきた.本実施形態による固気二相流の解析方法では,解析領域を計算格子に分割する必要がない.このグリッドフリー技術は,解析の前処理を著しく簡単化するものであり,実務的シミュレーションの合理化をもたらす.
3. Advantages of this embodiment The methods used in the past for analysis of solid-gas two-phase flows, without exception, need to divide the analysis region into calculation grids (grids) as preprocessing of the analysis. The grid covers the entire analysis area in a mesh and is called a calculation grid. The shape of each grid is generally rectangular. Flow variables (velocity, pressure, etc.) are defined at the vertices of each grid and calculated by the above solution. Since the analysis accuracy depends on the state of grid division, to ensure high accuracy, the region where the flow is expected to change sharply needs to be divided into many fine grids. It must also satisfy the geometric requirement that there should be no overlap or gaps between the grids. Therefore, in practical simulations used in the design of industrial equipment, flow fields with complex geometries are often the subject of analysis, and a great deal of work has been required for grid division. In the solid-gas two-phase flow analysis method according to this embodiment, it is not necessary to divide the analysis region into calculation grids. This grid-free technology greatly simplifies the preprocessing of analysis and brings about rationalization of practical simulation.

また,本実施形態による解析方法では,支配方程式の微分項を差分近似する必要がない.このため,従来の解析方法では数値不安定に起因して計算が破綻するような,高レイノルズ数の流れの解析にも適用可能である.
また,渦度の高い領域に渦要素が能動的に移流するため,高い解析精度を確保できる.
In the analysis method according to this embodiment, it is not necessary to approximate the differential term of the governing equation by difference. For this reason, the conventional analysis method can be applied to the analysis of high Reynolds number flows where the calculation fails due to numerical instability.
In addition, since the vortex element actively advects to the region with high vorticity, high analysis accuracy can be secured.

さらに,流体の速度や圧力を未知変数とする従来の解析方法では乱流モデルの利用が不可欠であったが,本実施形態の解析方法では乱流モデルを用いることなく,固気二相流を解析できる.
<他の実施形態>
本発明は上記記述および図面によって説明した実施形態に限定されるものではなく,例えば次のような実施形態も本発明の技術的範囲に含まれ,さらに,下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる.
(1)上記実施形態では,解析領域Hについて二次元解析を行った例を説明したが,本発明は三次元解析についても勿論適用することができる.
Furthermore, in the conventional analysis method in which the velocity and pressure of the fluid are unknown variables, the use of the turbulent flow model was indispensable. However, in the analysis method of this embodiment, the solid-gas two-phase flow is not used without using the turbulent flow model. Can be analyzed.
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and are within the scope not departing from the gist other than the following. Various changes can be made with.
(1) In the above embodiment, the example in which the two-dimensional analysis is performed on the analysis region H has been described. However, the present invention can also be applied to the three-dimensional analysis.

(2)上記実施形態では,粒子Pは球形としたが,これに限らず,高機能化を図る観点で,例えば楕円球などであってもよい.この場合,例えば入力装置17にて粒子Pについての複数種の形状を選択可能とし,それらの複数種の粒子について計算してもよい.   (2) In the above-described embodiment, the particles P are spherical. However, the present invention is not limited to this, and may be, for example, an elliptical sphere from the viewpoint of achieving high functionality. In this case, for example, the input device 17 may select a plurality of types of shapes for the particles P, and the calculation may be performed for the plurality of types of particles.

流体解析における解析領域と計算格子を説明するための図Diagram for explaining analysis area and calculation grid in fluid analysis 本発明の粒子のまわりに設置するセルを説明するための図The figure for demonstrating the cell installed around the particle | grains of this invention 本発明のセルを適切に設置したときの図と得られる気体速度を説明するための図The figure when the cell of this invention is installed appropriately, and the figure for explaining the gas velocity which is obtained 本発明のセルを不適切に設置したときの図と得られる気体速度を説明するための図The figure when the cell of this invention is installed improperly and the figure for explaining the gas velocity which is obtained 本発明の粒子のまわりに設置するセルの配置を説明するための図The figure for demonstrating arrangement | positioning of the cell installed around the particle | grains of this invention 本発明の渦要素,固体粒子,気体速度評価点を説明するための図The figure for demonstrating the vortex element of this invention, a solid particle, and a gas velocity evaluation point 本発明の一実施形態に係る固気二相流シミュレーションプログラムが導入されるコンピュータおよび周辺機器を示す図The figure which shows the computer and peripheral device in which the solid-gas two-phase flow simulation program which concerns on one Embodiment of this invention is introduce | transduced 本発明の計算が対象とする固気二相流を説明するための図The figure for demonstrating the solid-gas two-phase flow which calculation of this invention makes object コンピュータによる処理内容を示すフローチャートFlow chart showing processing contents by computer 本実施形態による解析結果を示す図The figure which shows the analysis result by this embodiment

符号の説明Explanation of symbols

5・・・渦要素
6・・・セル
7・・・セル頂点
8・・・気体の速度の評価点
11・・・コンピュータ
12・・・中央処理部
16・・・情報記録装置(記憶手段)
G・・・気体
H・・・解析領域
P・・・固体粒子
DESCRIPTION OF SYMBOLS 5 ... Vortex element 6 ... Cell 7 ... Cell vertex 8 ... Evaluation point of gas velocity 11 ... Computer 12 ... Central processing part 16 ... Information recording device (storage means)
G ... Gas H ... Analysis area P ... Solid particles

Claims (3)

気流中に微小な固体粒子を含む固気二相流を解析するための,グリッドフリー手法を用いた固気二相流シミュレーションプログラムであって,コンピュータに,次のステップ(a)〜(i)を実行させて,解析領域における粒子の位置と速度,および前記解析領域内に予め設定した評価点における気流の速度を解析する固気二相流シミュレーションプログラム.
(a)前記解析領域内に存在する各粒子の速度をラグランジュ的に計算するステップ.
(b)前記各粒子の位置をラグランジュ的に計算するステップ.
(c)前記各粒子の周りに4つの正方形のセルを配置するステップ.
(d)前記各粒子に作用する流体抗力を,前記ステップ(a)で算出された速度に基づいて計算するステップ.
(e)前記ステップ(d)で算出された流体抗力に基づいて,前記各セルにおける循環変化量を,気流の運動量保存方程式から導出される渦度方程式と,レイノルズの輸送定理とに基づいて計算するステップ.
(f)前記ステップ(e)で算出された前記各セルにおける循環変化量に基づいて,当該セル内の各渦要素の循環を計算し,各渦要素の位置と循環を記憶手段(1)に保存するステップ.
(g)各渦要素のコア半径をラグランジュ的に計算して記憶手段(2)に保存するステップ.
(h)前記ステップ(f)および前記ステップ(g)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,各渦要素の移流すなわち位置をラグランジュ的に計算し,各渦要素の位置,循環およびコア半径を記憶手段(3)に保存するステップ.
(i)前記ステップ(h)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,前記評価点における気体の速度をビオサバールの式を用いて計算し,記憶手段(4)に保存するステップ.
A solid-gas two-phase flow simulation program using a grid-free method for analyzing a solid-gas two-phase flow including minute solid particles in an air current, and the computer performs the following steps (a) to (i) This is a solid-gas two-phase flow simulation program that analyzes the position and velocity of particles in the analysis region and the velocity of airflow at the evaluation points set in advance in the analysis region.
(A) calculating a velocity of each particle existing in the analysis region in a Lagrangian manner.
(B) A step of calculating the position of each particle in a Lagrangian manner.
(C) placing four square cells around each particle;
(D) calculating a fluid drag acting on each particle based on the velocity calculated in the step (a).
(E) Based on the fluid drag calculated in step (d), the amount of change in circulation in each cell is calculated based on the vorticity equation derived from the momentum conservation equation of airflow and the Reynolds transport theorem. Step to do.
(F) Based on the circulation change amount in each cell calculated in the step (e), the circulation of each vortex element in the cell is calculated, and the position and circulation of each vortex element are stored in the storage means (1). Saving step.
(G) A step of calculating the core radius of each vortex element in a Lagrangian manner and storing it in the storage means (2).
(H) The position, circulation and core radius data of each vortex element stored in the step (f) and the step (g) are read, and the advection, that is, the position of each vortex element is calculated in a Lagrangian manner. Storing the position, circulation and core radius of the memory in the storage means (3).
(I) The position, circulation and core radius data of each vortex element stored in the step (h) is read out, the gas velocity at the evaluation point is calculated using the Biosavart equation, and stored in the storage means (4) Saving step.
請求項1に記載のグリッドフリー手法を用いた固気二相流シミュレーションプログラムを記憶した記憶媒体. A storage medium storing a solid-gas two-phase flow simulation program using the grid-free method according to claim 1. 気流中に微小な固体粒子を含む固気二相流を解析するための固気二相流シミュレーション装置であって,次の手段(a)〜(i)を備え,これらの手段を実行させて,解析領域における粒子の位置と速度,および前記解析領域内に予め設定した評価点における気流の速度を解析する固気二相流シミュレーション装置.
(a)前記解析領域内に存在する各粒子の速度をラグランジュ的に計算する手段.
(b)前記各粒子の位置をラグランジュ的に計算する手段.
(c)前記各粒子の周りに4つの正方形のセルを配置する手段.
(d)前記各粒子に作用する流体抗力を,前記手段(a)で算出された速度に基づいて計算する手段.
(e)前記手段(d)で算出された流体抗力に基づいて,前記各セルにおける循環変化量を,気流の運動量保存方程式から導出される渦度方程式と,レイノルズの輸送定理とに基づいて計算する手段.
(f)前記手段(e)で算出された前記各セルにおける循環変化量に基づいて,当該セル内の各渦要素の循環を計算し,各渦要素の位置と循環を記憶手段(1)に保存する手段.
(g)各渦要素のコア半径をラグランジュ的に計算して記憶手段(2)に保存する手段.
(h)前記手段(f)および前記手段(g)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,各渦要素の移流すなわち位置をラグランジュ的に計算し,各渦要素の位置,循環およびコア半径を記憶手段(3)に保存する手段.
(i)前記手段(h)によって保存された各渦要素の位置,循環およびコア半径データを読み出して,前記評価点における気体の速度をビオサバールの式を用いて計算し,記憶手段(4)に保存する手段.
A solid-gas two-phase flow simulation apparatus for analyzing a solid-gas two-phase flow containing minute solid particles in an air flow, comprising the following means (a) to (i), and executing these means: , A solid-gas two-phase flow simulation device that analyzes the position and velocity of particles in the analysis region, and the velocity of the airflow at the evaluation points set in advance in the analysis region.
(A) A means for calculating the velocity of each particle existing in the analysis region in a Lagrangian manner.
(B) Means for calculating the position of each particle in a Lagrangian manner.
(C) means for arranging four square cells around each particle;
(D) Means for calculating the fluid drag acting on each particle based on the velocity calculated by the means (a).
(E) Based on the fluid drag calculated by the means (d), the amount of change in circulation in each cell is calculated based on the vorticity equation derived from the momentum conservation equation of airflow and the Reynolds transport theorem. Means to do.
(F) Based on the circulation change amount in each cell calculated by the means (e), the circulation of each vortex element in the cell is calculated, and the position and circulation of each vortex element are stored in the storage means (1). Means for storage.
(G) Means for calculating the core radius of each vortex element in a Lagrangian manner and storing it in the storage means (2).
(H) The position, circulation and core radius data of each vortex element stored by the means (f) and the means (g) are read out, and the advection, that is, the position of each vortex element is calculated in a Lagrangian manner. Means for storing the position, circulation and core radius of the memory in the storage means (3).
(I) The position, circulation and core radius data of each vortex element stored by the means (h) is read out, the gas velocity at the evaluation point is calculated using the Biosavart equation, and stored in the storage means (4) Means for storage.
JP2008030193A 2008-02-12 2008-02-12 Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device Pending JP2009193110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030193A JP2009193110A (en) 2008-02-12 2008-02-12 Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030193A JP2009193110A (en) 2008-02-12 2008-02-12 Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device

Publications (1)

Publication Number Publication Date
JP2009193110A true JP2009193110A (en) 2009-08-27

Family

ID=41075094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030193A Pending JP2009193110A (en) 2008-02-12 2008-02-12 Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device

Country Status (1)

Country Link
JP (1) JP2009193110A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663211A (en) * 2012-05-04 2012-09-12 广东电网公司电力科学研究院 Industrial monitoring and control method and device under gas-solid phase flow environment
RU2461890C2 (en) * 2010-10-08 2012-09-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Simulation method of gasification process of liquid rocket fuel residues in tanks of detachable part of launch-vehicle stage, and device for its implementation
JP2014035614A (en) * 2012-08-08 2014-02-24 Furukawa Electric Co Ltd:The Simulation method of particle growth process, program, and simulation device
CN103698114A (en) * 2013-12-06 2014-04-02 广东电网公司电力科学研究院 Performance detection method and device of spray device
CN109522589A (en) * 2018-09-27 2019-03-26 北京大学 For simulating the non-analytic method and electronic equipment of pipeline particle two-phase flow
CN111736166A (en) * 2020-08-24 2020-10-02 中国人民解放军国防科技大学 Single/multi-target judgment method for detecting air wake vortex based on coherent laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461890C2 (en) * 2010-10-08 2012-09-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Simulation method of gasification process of liquid rocket fuel residues in tanks of detachable part of launch-vehicle stage, and device for its implementation
CN102663211A (en) * 2012-05-04 2012-09-12 广东电网公司电力科学研究院 Industrial monitoring and control method and device under gas-solid phase flow environment
JP2014035614A (en) * 2012-08-08 2014-02-24 Furukawa Electric Co Ltd:The Simulation method of particle growth process, program, and simulation device
CN103698114A (en) * 2013-12-06 2014-04-02 广东电网公司电力科学研究院 Performance detection method and device of spray device
CN109522589A (en) * 2018-09-27 2019-03-26 北京大学 For simulating the non-analytic method and electronic equipment of pipeline particle two-phase flow
CN109522589B (en) * 2018-09-27 2022-10-14 北京大学 Non-analytic method for simulating two-phase flow of pipeline particles and electronic equipment
CN111736166A (en) * 2020-08-24 2020-10-02 中国人民解放军国防科技大学 Single/multi-target judgment method for detecting air wake vortex based on coherent laser

Similar Documents

Publication Publication Date Title
Wang et al. A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM
Zu et al. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts
Vincent et al. A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows
Horne et al. A massively-parallel, unstructured overset method to simulate moving bodies in turbulent flows
He et al. Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly
Jacobs et al. High-order resolution Eulerian–Lagrangian simulations of particle dispersion in the accelerated flow behind a moving shock
Panicker et al. On the hyperbolicity of the two-fluid model for gas–liquid bubbly flows
Liu et al. Harnessing the power of virtual reality
JP2009193110A (en) Solid-gas two-phase flow simulation program using grid-free method, storage medium with the program stored, and solid-gas two-phase flow simulation device
Chen et al. Immersed boundary method based lattice Boltzmann method to simulate 2D and 3D complex geometry flows
Chadil et al. Accurate estimate of drag forces using particle-resolved direct numerical simulations
Gale et al. Gas-granular flow solver for plume surface interaction and cratering simulations
US11188692B2 (en) Turbulent boundary layer modeling via incorporation of pressure gradient directional effect
Liu et al. Modeling bubble column reactor with the volume of fluid approach: Comparison of surface tension models
Gillissen et al. A lattice Boltzmann study on the drag force in bubble swarms
Kuehn Computer simulation of airflow and particle transport in cleanrooms
Uchiyama Numerical simulation of particle-laden gas flow by vortex in cell method
Krepper et al. CFD modeling of adiabatic bubbly flow
Chen et al. Simulations of settling object using moving domain and immersed-boundary method
Tenneti Momentum, energy and scalar transport in polydisperse gas-solid flows using particle-resolved direct numerical simulations
JP4032123B2 (en) Bubble flow simulation program, storage medium storing the same, and bubble flow simulation device
Davis et al. High-Fidelity Eulerian-Lagrangian Methods for Simulation of Three Dimensional, Unsteady, High-Speed, Two-Phase Flows in High-Speed Combustors.
Hlawitschka et al. CFD Simulation of Liquid-Liquid Extraction Columns and Visualization of Eulerian Datasets
Horwitz Verifiable point-particle methods for two-way coupled particle-laden flows
Sikanen et al. Large scale simulation of high pressure water mist systems