JP2009192759A - Liquid crystal alignment layer evaluation method and liquid crystal alignment layer - Google Patents

Liquid crystal alignment layer evaluation method and liquid crystal alignment layer Download PDF

Info

Publication number
JP2009192759A
JP2009192759A JP2008032576A JP2008032576A JP2009192759A JP 2009192759 A JP2009192759 A JP 2009192759A JP 2008032576 A JP2008032576 A JP 2008032576A JP 2008032576 A JP2008032576 A JP 2008032576A JP 2009192759 A JP2009192759 A JP 2009192759A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal alignment
bond
alignment film
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008032576A
Other languages
Japanese (ja)
Inventor
Takeshi Matsumoto
武 松本
Yasunori Ando
靖典 安東
Yasuhiro Matsuda
恭博 松田
Akinori Ebe
明憲 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Ion Equipment Co Ltd
Original Assignee
Nissin Ion Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Ion Equipment Co Ltd filed Critical Nissin Ion Equipment Co Ltd
Priority to JP2008032576A priority Critical patent/JP2009192759A/en
Publication of JP2009192759A publication Critical patent/JP2009192759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal alignment layer which includes low residual DC voltage and hardly causes image persistence. <P>SOLUTION: The liquid crystal alignment layer includes at least a carbon element and a hydrogen atom and is formed by a non-water vapor phase film-deposition method in order to obtain the liquid crystal display element having the low residual DC voltage, wherein peak intensity (2,930 cm<SP>-1</SP>) of an IR absorption spectrum of a CH bond and peak intensity (700 cm<SP>-1</SP>) of an IR absorption spectrum of a =CH bond are measured and a liquid crystal alignment layer having a peak intensity ratio CH bond/=CH bond of 0.5 or less is selected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、残留DC電圧が低く、画像の焼き付きが生じにくい液晶配向膜及びその評価方法に関するものである。   The present invention relates to a liquid crystal alignment film having a low residual DC voltage and hardly causing image burn-in, and an evaluation method thereof.

従来の液晶表示素子としては、ポリイミド等の有機系高分子化合物からなる液晶配向膜を備えたものが最も一般的に使用されている。   As a conventional liquid crystal display element, one having a liquid crystal alignment film made of an organic polymer compound such as polyimide is most commonly used.

しかし、ポリイミド等の配向剤を用いて作製した液晶表示素子は、画面にある一定のパターンを表示し続けた場合に、パターンが消えにくくなるという現象(以下、画像の焼き付きという。)が発生し、問題となっている。画像の焼き付きは、液晶表示素子に印加する駆動波形が、直流成分を含んでいる場合にこれが蓄積して、電圧を除いても液晶表示素子の電極間に残ってしまう直流電圧(残留DC電圧)に関係しており、この問題の改善のために、残留DC電圧が低くなる液晶配向膜が求められている。   However, in a liquid crystal display device manufactured using an alignment agent such as polyimide, a phenomenon that the pattern is difficult to disappear (hereinafter referred to as image burn-in) occurs when a certain pattern is continuously displayed on the screen. , Has become a problem. Image burn-in is a direct current voltage (residual DC voltage) that accumulates when the drive waveform applied to the liquid crystal display element contains a direct current component and remains between the electrodes of the liquid crystal display element even if the voltage is removed. In order to improve this problem, there is a demand for a liquid crystal alignment film with a low residual DC voltage.

一方、炭素元素を含有する無機化合物からなる液晶配向膜も知られており、このような液晶配向膜はポリイミド等の有機系高分子化合物からなる液晶配向膜に比べて優れた化学的安定性を有している。   On the other hand, liquid crystal alignment films made of inorganic compounds containing carbon elements are also known, and such liquid crystal alignment films have superior chemical stability compared to liquid crystal alignment films made of organic polymer compounds such as polyimide. Have.

このような炭素元素を含有する無機化合物からなる液晶配向膜を製造する方法としては特許文献1及び特許文献2に開示されている方法が知られている。すなわち、特許文献1には、炭素を基板上に蒸着させながら、斜方からイオンビームを照射することにより、液晶配向膜の形成及びその配向処理を行なうことが記載されており、特許文献2には、蒸着やスパッタリング等の非水性気相成膜法により液晶配向膜を作製し、続いて、得られた液晶配向膜に対し真空室内で粒子ビームを斜方から照射し、配向処理を行なうことが記載されている。
特開2005−84147 特許3229281
As methods for producing a liquid crystal alignment film made of an inorganic compound containing such a carbon element, methods disclosed in Patent Document 1 and Patent Document 2 are known. That is, Patent Document 1 describes that a liquid crystal alignment film is formed and its alignment treatment is performed by irradiating an ion beam from an oblique direction while vapor-depositing carbon on a substrate. Prepares a liquid crystal alignment film by a non-aqueous vapor deposition method such as vapor deposition or sputtering, and subsequently irradiates the obtained liquid crystal alignment film with a particle beam obliquely in a vacuum chamber to perform alignment treatment. Is described.
JP 2005-84147 A Patent 3229281

しかしながら、特許文献1や特許文献2に記載の方法により液晶配向膜が作製された液晶表示素子は、ポリイミド等の有機系高分子化合物からなる液晶配向膜を備えた従来の液晶表示素子と同様に、画像の焼き付き現象が生じるという問題を有する。   However, the liquid crystal display element in which the liquid crystal alignment film is produced by the method described in Patent Document 1 or Patent Document 2 is the same as the conventional liquid crystal display element including a liquid crystal alignment film made of an organic polymer compound such as polyimide. The image burn-in phenomenon occurs.

そこで本発明は、残留DC電圧が低く、画像の焼き付きが生じにくい液晶配向膜を提供すべく図ったものである。   Therefore, the present invention is intended to provide a liquid crystal alignment film having a low residual DC voltage and hardly causing image sticking.

本発明者らは、鋭意検討の結果、少なくとも炭素元素及び水素元素を含有する無機化合物からなる液晶配向膜におけるCH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合と、当該液晶配向膜を備えた液晶表示素子の残留DC電圧との間には、相関関係があり、基本的な傾向として、当該ピーク強度比が小さい方が残留DC電圧も低いことを見出した。本発明はこの知見に基づき完成されたものである。   As a result of intensive studies, the present inventors have determined that the peak intensity ratio CH between the infrared absorption spectrum of CH bonds and the infrared absorption spectrum of CH bonds in a liquid crystal alignment film composed of an inorganic compound containing at least a carbon element and a hydrogen element. There is a correlation between the bond / = CH bond and the residual DC voltage of the liquid crystal display element provided with the liquid crystal alignment film. As a basic tendency, the smaller the peak intensity ratio is, the more the residual DC voltage is. Found low. The present invention has been completed based on this finding.

すなわち本発明に係る液晶配向膜評価方法は、残留DC電圧が低い液晶表示素子を得るために、少なくとも炭素元素及び水素原子を含有し非水性気相成膜法により形成された液晶配向膜について、2930cm−1におけるCH結合の赤外吸収スペクトルのピーク強度と、700cm−1における=CH結合の赤外吸収スペクトルのピーク強度とを測定し、これらのピーク強度比CH結合/=CH結合が0.5以下である液晶配向膜を選出することを特徴とする。なお、本発明において、非水性気相成膜法とは、蒸着、スパッタリング、イオンビーム付着、化学気相成長(CVD)等を含む乾式成膜法の総称を意味する。 That is, the liquid crystal alignment film evaluation method according to the present invention includes a liquid crystal alignment film containing at least a carbon element and a hydrogen atom and formed by a non-aqueous vapor deposition method in order to obtain a liquid crystal display element having a low residual DC voltage. and the peak intensity of the infrared absorption spectrum of the CH bonds in 2930 cm -1, and measuring the peak intensity of the infrared absorption spectrum of the = CH bonds in 700 cm -1, these peak intensity ratio CH bonds / = CH bond 0. A liquid crystal alignment film that is 5 or less is selected. In the present invention, the non-aqueous vapor deposition method means a general term for dry deposition methods including vapor deposition, sputtering, ion beam deposition, chemical vapor deposition (CVD) and the like.

このようなものであれば、CH結合(CH伸縮振動)の赤外吸収スペクトルと=CH結合(HC=CHの振動)の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合を指標にして液晶配向膜を選出するので、液晶表示素子を組み立てる前に、組み立て後の液晶表示素子の残留DC電圧を予測することができ、同一の電界を印加し続けても、残留DC電圧が1〜0.6V以下の充分低い値であって、画像の焼き付きが生じ難い液晶表示素子を、高い歩留まりで生産することができる。   In such a case, the peak intensity ratio between the infrared absorption spectrum of the CH bond (CH stretching vibration) and the infrared absorption spectrum of the = CH bond (HC = CH vibration) is CH bond / = CH bond as an index. Since the liquid crystal alignment film is selected, the residual DC voltage of the assembled liquid crystal display element can be predicted before the liquid crystal display element is assembled. Even if the same electric field is continuously applied, the residual DC voltage is 1 to 1. A liquid crystal display element that has a sufficiently low value of 0.6 V or less and hardly causes image burn-in can be produced with a high yield.

また、本発明では、CH結合の赤外吸収スペクトルのピーク強度を2930cm−1において測定し、=CH結合の赤外吸収スペクトルのピーク強度を700cm−1において測定するが、これらの波長においては、CH結合及び=CH結合の赤外吸収スペクトルのピークは他の結合や官能基等に由来するピークと重ならないので、2930cm−1及び700cm−1を採用することにより精度の高い測定を行うことが可能となる。 In the present invention, the peak intensity of the infrared absorption spectrum of the CH bond is measured at 2930 cm -1, = the peak intensity of the infrared absorption spectrum of the CH bond is measured at 700 cm -1, at these wavelengths, since the CH bond and = CH bond of the peaks of the infrared absorption spectrum does not overlap with the peaks derived from other binding or functional group, it is possible to perform measurement with high accuracy by adopting the 2930 cm -1 and 700 cm -1 It becomes possible.

本発明に係る液晶配向膜評価方法において、CH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合が、0.1以下である液晶配向膜を選出することが好ましい。   In the liquid crystal alignment film evaluation method according to the present invention, a liquid crystal alignment film having a peak intensity ratio CH bond / = CH bond between an infrared absorption spectrum of CH bond and an infrared absorption spectrum of CH bond of 0.1 or less is provided. It is preferable to select.

少なくとも炭素元素及び水素原子を含有し非水性気相成膜法により形成された膜であって、2930cm−1におけるCH結合の赤外吸収スペクトルのピーク強度と、700cm−1における=CH結合の赤外吸収スペクトルのピーク強度とのピーク強度比CH結合/=CH結合が、0.5以下である液晶配向膜もまた本発明の1つである。 A film formed by the non-aqueous vapor phase deposition method and containing at least carbon elements and hydrogen atoms, and the peak intensity of the infrared absorption spectrum of the CH bonds in 2930 cm -1, red = CH bonds in 700 cm -1 A liquid crystal alignment film having a peak intensity ratio CH bond / = CH bond to the peak intensity of the outer absorption spectrum of 0.5 or less is also one aspect of the present invention.

本発明に係る液晶配向膜は、非水性気相成膜法における成膜原料ガスとして、炭化水素ガスと、窒素元素及び/又は酸素元素を構成元素として含む化合物のガスとの混合ガス、又は、炭素元素、水素元素、並びに、窒素元素及び/又は酸素元素を構成元素として含む化合物のガス、を用いて形成されたものが好ましい。   The liquid crystal alignment film according to the present invention is a mixed gas of a hydrocarbon gas and a compound gas containing nitrogen element and / or oxygen element as a constituent element as a film forming source gas in a non-aqueous vapor phase film forming method, or Those formed using a carbon element, a hydrogen element, and a compound gas containing a nitrogen element and / or an oxygen element as constituent elements are preferable.

なかでも、非水性気相成膜法における成膜原料ガスとして、炭化水素ガスと窒素ガスとの混合ガスを用いて形成されたものがより好ましい。   Especially, what was formed using the mixed gas of hydrocarbon gas and nitrogen gas as a film-forming raw material gas in a non-aqueous vapor-phase film-forming method is more preferable.

本発明に係る液晶配向膜には、粒子線を照射することにより配向処理が施されることが好ましい。   The liquid crystal alignment film according to the present invention is preferably subjected to alignment treatment by irradiation with particle beams.

2枚の液晶配向膜付基板間に液晶分子を挟んでなる液晶表示素子であって、前記液晶配向膜付基板の少なくともいずれか一方は、本発明に係る液晶配向膜を備えたものである液晶表示素子もまた、本発明の1つである。   A liquid crystal display element comprising liquid crystal molecules sandwiched between two substrates with a liquid crystal alignment film, wherein at least one of the substrates with a liquid crystal alignment film includes the liquid crystal alignment film according to the present invention. A display element is also one aspect of the present invention.

このように本発明によれば、CH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合を指標として液晶配向膜を選別して、残留DC電圧が低く、画像の焼き付きが生じにくい液晶表示素子を得ることができる。   As described above, according to the present invention, the liquid crystal alignment film is selected using the peak intensity ratio CH bond / = CH bond between the infrared absorption spectrum of CH bond and the infrared absorption spectrum of CH bond as an index, and the residual DC voltage is selected. And a liquid crystal display element that is less likely to cause image sticking.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る液晶表示素子1は、図1に示すように、液晶配向膜付基板2と、2枚の液晶配向膜付基板2に挟まれた液晶層3と、液晶層3中に分散されたスペーサ4と、を備えている。   As shown in FIG. 1, the liquid crystal display element 1 according to this embodiment includes a substrate 2 with a liquid crystal alignment film, a liquid crystal layer 3 sandwiched between two substrates 2 with a liquid crystal alignment film, and a dispersion in the liquid crystal layer 3. Spacer 4.

以下に各部を説明する。液晶配向膜付基板2は、基板21と、基板21の表面に形成された透明電極膜22と、透明電極膜22の上に形成された液晶配向膜23と、から構成されており、液晶配向膜23は液晶層3と接している。   Each part will be described below. The substrate 2 with a liquid crystal alignment film includes a substrate 21, a transparent electrode film 22 formed on the surface of the substrate 21, and a liquid crystal alignment film 23 formed on the transparent electrode film 22. The film 23 is in contact with the liquid crystal layer 3.

基板21は、例えば、石英ガラス等のガラスやポリエチレンテレフタレート等のプラスチック材料等の光透過性、絶縁性及び機械的強度等を兼ね備えた材料からなるものが挙げられる。これらの中でも石英ガラス等からなるガラス基板が好ましい。これにより、そり、たわみ等の生じにくい、安定性に優れた液晶表示素子を得ることができる。   Examples of the substrate 21 include those made of a material having light transmissivity, insulating properties, mechanical strength, and the like, such as glass such as quartz glass and plastic materials such as polyethylene terephthalate. Among these, a glass substrate made of quartz glass or the like is preferable. Thereby, it is possible to obtain a liquid crystal display element excellent in stability, which is less likely to be warped or bent.

透明電極膜22は、液晶層3に電圧を印加するためのものであり、例えばITO(インジウム錫酸化物)からなる。透明電極膜22は、透明であるため、基板21を通過してきた光を透過することができる。   The transparent electrode film 22 is for applying a voltage to the liquid crystal layer 3 and is made of, for example, ITO (indium tin oxide). Since the transparent electrode film 22 is transparent, it can transmit light that has passed through the substrate 21.

液晶配向膜23は、液晶層3中の液晶分子を液晶配向膜付基板2に対して所定の方向に配向させるための膜であり、透明電極膜22間に電圧を印加していないときは、液晶分子は当該方向に配向している。   The liquid crystal alignment film 23 is a film for aligning liquid crystal molecules in the liquid crystal layer 3 in a predetermined direction with respect to the substrate 2 with a liquid crystal alignment film, and when no voltage is applied between the transparent electrode films 22, The liquid crystal molecules are aligned in this direction.

本実施形態における液晶配向膜23は、少なくとも炭素元素及び水素原子を含有し非水性気相成膜法により形成された膜である。ここで、非水性気相成膜法とは、蒸着、スパッタリング、イオンビーム付着、化学気相成長(CVD)等を含む乾式成膜法の総称である。   The liquid crystal alignment film 23 in the present embodiment is a film containing at least a carbon element and a hydrogen atom and formed by a non-aqueous vapor deposition method. Here, the non-aqueous vapor deposition method is a general term for dry deposition methods including vapor deposition, sputtering, ion beam deposition, chemical vapor deposition (CVD) and the like.

本実施形態における液晶配向膜23は、成膜原料ガスとして、炭化水素ガスと、窒素元素及び/又は酸素元素を構成元素として含む化合物のガスとの混合ガスや、炭素元素、水素元素、並びに、窒素元素及び/又は酸素元素を構成元素として含む化合物のガス等を用いて、プラズマ強化化学気相成長法(PECVD)により作製されたものであることが好ましい。   In the present embodiment, the liquid crystal alignment film 23 includes a mixed gas of a hydrocarbon gas and a compound gas containing nitrogen and / or oxygen as constituent elements, a carbon element, a hydrogen element, It is preferable to be produced by plasma enhanced chemical vapor deposition (PECVD) using a compound gas containing nitrogen and / or oxygen as a constituent element.

前記炭化水素としては、アルカン、アルケン及びアルキンのいずれであってもよく、アルカンとしては、例えば、メタン、エタン、プロパン、ブタン等が挙げられ、アルケンとしては、例えば、エテン(エチレン)、プロペン、n−ブテン等が挙げられ、アルキンとしては、例えば、アセチレン、プロピン、1−ブチン、2−ブチン等が挙げられる。これらの炭化水素は単独で用いても良く、併用しても良い。   The hydrocarbon may be any of alkane, alkene, and alkyne. Examples of the alkane include methane, ethane, propane, butane, and the alkene includes, for example, ethene (ethylene), propene, n-butene etc. are mentioned, As an alkyne, acetylene, propyne, 1-butyne, 2-butyne etc. are mentioned, for example. These hydrocarbons may be used alone or in combination.

前記窒素元素及び/又は酸素元素を構成元素として含む化合物としては、例えば、窒素、二酸化窒素、一酸化窒素、二酸化炭素、一酸化炭素等が挙げられる。これらの化合物は単独で用いても良く、併用しても良い。   Examples of the compound containing nitrogen and / or oxygen as constituent elements include nitrogen, nitrogen dioxide, nitrogen monoxide, carbon dioxide, and carbon monoxide. These compounds may be used alone or in combination.

前記炭素元素、水素元素、並びに、窒素元素及び/又は酸素元素を構成元素として含む化合物としては、ベンジルアルコール、アニリン等が挙げられ、これらの化合物は気化させることによって前記原料ガスとして使用することができる。   Examples of the compound containing carbon element, hydrogen element, and nitrogen element and / or oxygen element as constituent elements include benzyl alcohol, aniline and the like, and these compounds can be used as the source gas by vaporizing. it can.

なお、窒素原子は、炭素原子との間にπ結合を効率よく作り出すことが報告されている(特許文献1)。また、配向膜表面のπ結合の配向が、液晶分子を配向させる役割を担っていると推測されている(SCIENCE 292 (2001) 2299-2302)。したがって、窒素原子の添加は、液晶分子の配向性を向上させると考えられる。一方、酸素原子は、炭素原子との間で不飽和結合を形成して、液晶配向膜の透明性をより向上させることができると考えられる。   In addition, it has been reported that a nitrogen atom efficiently creates a π bond with a carbon atom (Patent Document 1). Further, it is presumed that the orientation of π bonds on the surface of the alignment film plays a role of aligning liquid crystal molecules (SCIENCE 292 (2001) 2299-2302). Therefore, it is thought that the addition of nitrogen atoms improves the orientation of the liquid crystal molecules. On the other hand, it is considered that the oxygen atom can form an unsaturated bond with the carbon atom to further improve the transparency of the liquid crystal alignment film.

これらのガスに更に水素ガスを添加して成膜原料ガスとして用いてもよい。   Hydrogen gas may be further added to these gases and used as a film forming material gas.

本実施形態における液晶配向膜23は、CH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合を指標にして選出されたものであり、当該ピーク強度比が0.5以下であり、好ましくは0.1以下である。当該ピーク強度比が0.5以下であると、液晶配向膜23を備えた液晶表示素子1の残留DC電圧が1〜0.6V以下の充分低い値となり、同一の電界を印加し続けても画像の焼き付きが生じ難くなる。これらのピーク強度は、例えば、フーリエ変換型赤外分光法(FT−IR)を用いて測定され、CH結合の赤外吸収スペクトルのピーク値は2930cm−1で測定され、=CH結合の赤外吸収スペクトルピーク値は700cm−1で測定される。 The liquid crystal alignment film 23 in the present embodiment is selected using the peak intensity ratio CH bond / = CH bond between the infrared absorption spectrum of CH bond and the infrared absorption spectrum of CH bond as an index. The intensity ratio is 0.5 or less, preferably 0.1 or less. When the peak intensity ratio is 0.5 or less, the residual DC voltage of the liquid crystal display element 1 having the liquid crystal alignment film 23 becomes a sufficiently low value of 1 to 0.6 V or less, and even if the same electric field is continuously applied. Image burn-in is less likely to occur. These peak intensities are measured using, for example, Fourier transform infrared spectroscopy (FT-IR), and the peak value of the infrared absorption spectrum of the CH bond is measured at 2930 cm −1. The absorption spectrum peak value is measured at 700 cm −1 .

残留DC電圧は、同一の電界が印加し続けられたために、その表示部位の液晶配向膜等に分極を生ずることが原因であり、液晶配向膜の極性が低い方が発生しにくいと考えられるが、残留DC電圧を制御するための極性の指標としてCH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合が適しているものと思われる。   The residual DC voltage is caused by polarization in the liquid crystal alignment film or the like at the display site because the same electric field is continuously applied, and it is considered that the lower polarity of the liquid crystal alignment film is less likely to occur. The peak intensity ratio CH bond / = CH bond between the infrared absorption spectrum of CH bond and the infrared absorption spectrum of CH bond seems to be suitable as an index of polarity for controlling the residual DC voltage.

このような液晶配向膜23の厚さは、5〜100nmであるのが好ましく、5〜30nmであるのがより好ましい。5nm未満であると、配向処理時にプレチルト角を制御するのが困難となる場合があり、100nmを超えると、駆動電圧が高くなり、消費電力が大きくなる場合がある。液晶配向膜23の光透過度は厚さに依存するので、この厚さの範囲内で各組成に応じた適切な厚さを選択すればよい。   The thickness of the liquid crystal alignment film 23 is preferably 5 to 100 nm, and more preferably 5 to 30 nm. If it is less than 5 nm, it may be difficult to control the pretilt angle during the alignment treatment, and if it exceeds 100 nm, the drive voltage may increase and the power consumption may increase. Since the light transmittance of the liquid crystal alignment film 23 depends on the thickness, an appropriate thickness corresponding to each composition may be selected within the thickness range.

本実施形態における液晶配向膜23はイオンビームや原子ビーム等の粒子線を照射することにより配向処理が施される。このような配向処理を行なう粒子ビーム配向装置の1例としてイオンビームを照射するイオン配向装置10を、図2を参照して説明する。   The liquid crystal alignment film 23 in this embodiment is subjected to an alignment process by irradiating a particle beam such as an ion beam or an atomic beam. An ion alignment apparatus 10 that irradiates an ion beam as an example of a particle beam alignment apparatus that performs such an alignment process will be described with reference to FIG.

イオン配向装置10は、図2に示すように、配向処理を施そうとする液晶配向膜付基板2を載置するための試料保持台11と、配向膜に対してイオンビームBMを照射するイオン源12と、を備えており、これらは真空ポンプ13を備えた処理室14内に設置されている。   As shown in FIG. 2, the ion alignment apparatus 10 includes a sample holder 11 for placing the substrate 2 with a liquid crystal alignment film to be subjected to alignment processing, and ions that irradiate the alignment film with an ion beam BM. And a source 12, which are installed in a processing chamber 14 provided with a vacuum pump 13.

イオン配向装置10を用いて液晶配向膜23に配向処理を施すには、真空ポンプ13により処理室14を真空状態になるよう減圧した状態で、イオン源12にガス導入口121より希ガス等のガスを導入し、更に、イオン源12に設けられたプラズマ生成用電源、イオン引出用電源、及び、電極等を用い(これらは図示しない。)、イオン源12外にイオンを引き出し、試料保持台11上に載置された液晶配向膜付基板2にイオンビームBMを照射して、液晶配向膜23に配向処理を施す。   In order to perform an alignment process on the liquid crystal alignment film 23 using the ion alignment apparatus 10, a rare gas or the like is introduced into the ion source 12 from the gas inlet 121 while the processing chamber 14 is decompressed by the vacuum pump 13. A gas is introduced, and further, a plasma generation power source, an ion extraction power source, an electrode, and the like provided in the ion source 12 are used (these are not shown), and ions are drawn out of the ion source 12 to obtain a sample holder. The substrate 2 with a liquid crystal alignment film placed on 11 is irradiated with an ion beam BM, and the liquid crystal alignment film 23 is subjected to an alignment process.

液晶層3は、主として液晶分子から構成されている。液晶層3を構成する液晶分子としては、ネマチック液晶、スメクチック液晶等に配列し得るものであれば特に限定されないが、TN型液晶パネルの場合、ネマチック液晶を形成するものが好ましく、例えば、フェニルシクロヘキサン誘導体、ビフェニル誘導体、ビフェニルシクロヘキサン誘導体、テルフェニル誘導体、フェニルエーテル誘導体、フェニルエステル誘導体、ビシクロヘキサン誘導体、アゾメチン誘導体、アゾキシ誘導体、ピリミジン誘導体、ジオキサン誘導体、キュバン誘導体等が挙げられる。更に、これらネマチック液晶分子にモノフルオロ基、ジフルオロ基、トリフルオロ基、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメトキシ基等のフッ素系置換基が導入されていてもよい。   The liquid crystal layer 3 is mainly composed of liquid crystal molecules. The liquid crystal molecules constituting the liquid crystal layer 3 are not particularly limited as long as they can be arranged in nematic liquid crystals, smectic liquid crystals, and the like, but in the case of a TN type liquid crystal panel, those that form nematic liquid crystals are preferable. Derivatives, biphenyl derivatives, biphenylcyclohexane derivatives, terphenyl derivatives, phenyl ether derivatives, phenyl ester derivatives, bicyclohexane derivatives, azomethine derivatives, azoxy derivatives, pyrimidine derivatives, dioxane derivatives, cubane derivatives, and the like. Furthermore, fluorine-based substituents such as a monofluoro group, a difluoro group, a trifluoro group, a trifluoromethyl group, a trifluoromethoxy group, and a difluoromethoxy group may be introduced into these nematic liquid crystal molecules.

スペーサ4は、2枚の液晶配向膜付基板2間に空隙を形成して液晶層3の厚みを一定に保つものであり、樹脂組成物等からなるものである。   The spacer 4 forms a gap between the two substrates 2 with a liquid crystal alignment film to keep the thickness of the liquid crystal layer 3 constant, and is made of a resin composition or the like.

本実施形態に係る液晶表示素子1は、透明電極膜22間に電圧を印加すると、電圧の大きさに従って液晶分子の配向の向きが変化して、液晶分子の配向の向きと図示しない偏光板とによって、液晶表示素子中を通過する光量を調節することができる。   In the liquid crystal display element 1 according to this embodiment, when a voltage is applied between the transparent electrode films 22, the orientation direction of the liquid crystal molecules changes according to the magnitude of the voltage, and the orientation direction of the liquid crystal molecules and a polarizing plate (not shown) Thus, the amount of light passing through the liquid crystal display element can be adjusted.

このように構成した本実施形態によれば、液晶配向膜23が、CH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合を指標にして選出されたものであるので、同一の電界を印加し続けても、残留DC電圧が1〜0.6V以下の充分低い値であり、画像の焼き付きが生じ難くなる。   According to the present embodiment configured as described above, the liquid crystal alignment film 23 is selected using the peak intensity ratio CH bond / = CH bond between the infrared absorption spectrum of CH bond and the infrared absorption spectrum of CH bond as an index. Therefore, even if the same electric field is continuously applied, the residual DC voltage is a sufficiently low value of 1 to 0.6 V or less, and image burn-in hardly occurs.

また、本実施形態によれば、液晶表示素子1を組み立てる前に、液晶配向膜23のCH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合から、組み立てた後の液晶表示素子1の残留DC電圧を予測することができるので、画像の焼き付きが生じ難にくい液晶表示素子を高い歩留まりで生産することができる。   Further, according to the present embodiment, before the liquid crystal display element 1 is assembled, the peak intensity ratio between the infrared absorption spectrum of the CH bond and the infrared absorption spectrum of the = CH bond of the liquid crystal alignment film 23 is CH bond / = CH bond. Therefore, since the residual DC voltage of the assembled liquid crystal display element 1 can be predicted, it is possible to produce a liquid crystal display element that is unlikely to cause image burn-in with a high yield.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

小型のPECVD(プラズマ強化化学気相成長)成膜装置と、中型のPECVD成膜装置を用いて、表1に示す条件により、ITO透明電極膜付ガラス基板上に液晶配向膜を形成した。なお、小型のPECVD成膜装置としては、成膜室容積24.3リットル、最大基板サイズ6インチφのものを、中型のPECVD成膜装置としては、成膜室容積261.7リットル、最大基板サイズ410×520mmのものを使用した。   Using a small PECVD (plasma enhanced chemical vapor deposition) film forming apparatus and a medium-sized PECVD film forming apparatus, a liquid crystal alignment film was formed on a glass substrate with an ITO transparent electrode film under the conditions shown in Table 1. Note that a small PECVD film forming apparatus has a film forming chamber volume of 24.3 liters and a maximum substrate size of 6 inches φ, and a medium PECVD film forming apparatus has a film forming chamber volume of 261.7 liters and a maximum substrate. A size of 410 × 520 mm was used.

表1に記載の各原料ガスの成分ガス比を、「N又はCOガスの流量/(炭化水素ガスの流量+N又はCOガスの流量)」が0、1/5、1/3、1/2となるように変化させて、ITO透明電極膜付ガラス基板上に液晶配向膜を形成し、得られた液晶配向膜のCH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比(2930cm−1/700cm−1)を、フーリエ変換型赤外分光計(FT−IR)を用いて測定した。 The component gas ratio of each raw material gas shown in Table 1 is “N 2 or CO 2 gas flow rate / (hydrocarbon gas flow rate + N 2 or CO 2 gas flow rate)” being 0, 1/5, 1/3. The liquid crystal alignment film is formed on a glass substrate with an ITO transparent electrode film, and the infrared absorption spectrum of the CH bond and the infrared absorption of the CH bond are obtained. The peak intensity ratio (2930 cm −1 / 700 cm −1 ) with the spectrum was measured using a Fourier transform infrared spectrometer (FT-IR).

次いで、得られた液晶配向膜付ガラス基板2枚を、シール材を介して、配向膜の配向方向が90°ねじれるように接合した。次いで、配向膜−配向膜間に形成された空隙部(セルギャップ5μm)の封入孔から液晶(メルク社製、ZLI4792)を空隙部内に注入し、封入孔を塞いで、TNモードの液晶表示素子を作製した。   Subsequently, the obtained two glass substrates with a liquid crystal alignment film were joined via a sealing material so that the alignment direction of the alignment film was twisted by 90 °. Next, a liquid crystal (ZLI4792 manufactured by Merck & Co., Inc.) is injected into the gap portion from the sealing hole in the gap portion (cell gap 5 μm) formed between the alignment film and the alignment film to close the sealing hole, and a TN mode liquid crystal display element Was made.

そして、得られた液晶表示素子に、DC 10Vを240時間印加し、一旦液晶表示素子の両側の電極を短絡させて電位差を0Vとした後に、電極間の電位差をエレクトロメータで測定し、エレクトロメータ接続10分後の電圧を、残留DC電圧として評価した。ピーク強度比(2930cm−1/700cm−1)と残留DC電圧との値を表2に示し、これらの関係を示すグラフを図3に示した。 Then, DC 10V is applied to the obtained liquid crystal display element for 240 hours, the electrodes on both sides of the liquid crystal display element are once short-circuited to set the potential difference to 0 V, and then the potential difference between the electrodes is measured with an electrometer. The voltage 10 minutes after connection was evaluated as a residual DC voltage. The values of the peak intensity ratio (2930 cm −1 / 700 cm −1 ) and the residual DC voltage are shown in Table 2, and a graph showing these relationships is shown in FIG.

図3に示すように、ピーク強度比(2930cm−1/700cm−1)と残留DC電圧との間には相関関係が見られ、ピーク強度比(2930cm−1/700cm−1)が0.5以下であると、残留DC電圧が1V以下の充分低い値となり、画像の焼き付きが生じにくいことが判明した。 As shown in FIG. 3, seen is a correlation between the peak intensity ratio (2930cm -1 / 700cm -1) and the residual DC voltage, the peak intensity ratio (2930cm -1 / 700cm -1) 0.5 The residual DC voltage was a sufficiently low value of 1 V or less, and it was found that image burn-in hardly occurred.

本発明の一実施形態に係る液晶表示素子の模式的断面図。1 is a schematic cross-sectional view of a liquid crystal display element according to an embodiment of the present invention. 同実施形態におけるイオン配向装置の概略構成図。The schematic block diagram of the ion orientation apparatus in the embodiment. ピーク強度比(2930cm−1/700cm−1)と残留DC電圧との関係を示すグラフ。Graph showing the relationship between the peak intensity ratio (2930cm -1 / 700cm -1) and the residual DC voltage.

符号の説明Explanation of symbols

1・・・液晶表示素子
2・・・液晶配向膜付ガラス基板
21・・・基板
22・・・透明電極膜
23・・・液晶配向膜
DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display element 2 ... Glass substrate 21 with a liquid crystal aligning film ... Substrate 22 ... Transparent electrode film 23 ... Liquid crystal aligning film

Claims (7)

残留DC電圧が低い液晶表示素子を得るために、少なくとも炭素元素及び水素原子を含有し非水性気相成膜法により形成された液晶配向膜について、2930cm−1におけるCH結合の赤外吸収スペクトルのピーク強度と、700cm−1における=CH結合の赤外吸収スペクトルのピーク強度とを測定し、これらのピーク強度比CH結合/=CH結合が0.5以下である液晶配向膜を選出する液晶配向膜評価方法。 In order to obtain a liquid crystal display element having a low residual DC voltage, an infrared absorption spectrum of a CH bond at 2930 cm −1 for a liquid crystal alignment film containing at least a carbon element and a hydrogen atom and formed by a non-aqueous vapor deposition method. Measure the peak intensity and the peak intensity of the infrared absorption spectrum of the = CH bond at 700 cm -1 , and select the liquid crystal alignment film whose peak intensity ratio CH bond / = CH bond is 0.5 or less Membrane evaluation method. CH結合の赤外吸収スペクトルと=CH結合の赤外吸収スペクトルとのピーク強度比CH結合/=CH結合が、0.1以下である液晶配向膜を選出する請求項1記載の液晶配向膜評価方法。   2. The liquid crystal alignment film evaluation according to claim 1, wherein a liquid crystal alignment film having a peak intensity ratio CH bond / = CH bond of 0.1 or less is selected between an infrared absorption spectrum of CH bond and an infrared absorption spectrum of CH bond. Method. 少なくとも炭素元素及び水素原子を含有し非水性気相成膜法により形成された膜であって、
2930cm−1におけるCH結合の赤外吸収スペクトルのピーク強度と、700cm−1における=CH結合の赤外吸収スペクトルのピーク強度とのピーク強度比CH結合/=CH結合が、0.5以下である液晶配向膜。
A film containing at least a carbon element and a hydrogen atom and formed by a non-aqueous vapor deposition method,
And the peak intensity of the infrared absorption spectrum of the CH bonds in 2930 cm -1, the peak intensity ratio CH bond between the peak intensity of the infrared absorption spectrum of the = CH bonds in 700 cm -1 / = CH bond, is 0.5 or less Liquid crystal alignment film.
非水性気相成膜法における成膜原料ガスとして、
炭化水素ガスと、窒素元素及び/又は酸素元素を構成元素として含む化合物のガスとの混合ガス、又は、
炭素元素、水素元素、並びに、窒素元素及び/又は酸素元素を構成元素として含む化合物のガス、を用いて形成された請求項3記載の液晶配向膜。
As a film forming source gas in the non-aqueous vapor phase film forming method,
A mixed gas of a hydrocarbon gas and a compound gas containing nitrogen and / or oxygen as constituent elements, or
4. The liquid crystal alignment film according to claim 3, wherein the liquid crystal alignment film is formed using a carbon element, a hydrogen element, and a compound gas containing nitrogen and / or oxygen as constituent elements.
非水性気相成膜法における成膜原料ガスとして、
炭化水素ガスと窒素ガスとの混合ガスを用いて形成された請求項4記載の液晶配向膜。
As a film forming source gas in the non-aqueous vapor phase film forming method,
The liquid crystal alignment film according to claim 4, which is formed using a mixed gas of hydrocarbon gas and nitrogen gas.
粒子線を照射することにより配向処理が施された請求項3、4又は5記載の液晶配向膜。   6. The liquid crystal alignment film according to claim 3, 4 or 5, which has been subjected to an alignment treatment by irradiating a particle beam. 2枚の液晶配向膜付基板間に液晶分子を挟んでなる液晶表示素子であって、前記液晶配向膜付基板の少なくともいずれか一方は、請求項6記載の液晶配向膜を備えたものである液晶表示素子。   A liquid crystal display element having liquid crystal molecules sandwiched between two substrates with a liquid crystal alignment film, wherein at least one of the substrates with a liquid crystal alignment film comprises the liquid crystal alignment film according to claim 6. Liquid crystal display element.
JP2008032576A 2008-02-14 2008-02-14 Liquid crystal alignment layer evaluation method and liquid crystal alignment layer Pending JP2009192759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032576A JP2009192759A (en) 2008-02-14 2008-02-14 Liquid crystal alignment layer evaluation method and liquid crystal alignment layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032576A JP2009192759A (en) 2008-02-14 2008-02-14 Liquid crystal alignment layer evaluation method and liquid crystal alignment layer

Publications (1)

Publication Number Publication Date
JP2009192759A true JP2009192759A (en) 2009-08-27

Family

ID=41074838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032576A Pending JP2009192759A (en) 2008-02-14 2008-02-14 Liquid crystal alignment layer evaluation method and liquid crystal alignment layer

Country Status (1)

Country Link
JP (1) JP2009192759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468776B (en) * 2012-04-19 2015-01-11 Blind test method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468776B (en) * 2012-04-19 2015-01-11 Blind test method and system
US9164025B2 (en) 2012-04-19 2015-10-20 Daxin Materials Corp. Method for inspection of image sticking

Similar Documents

Publication Publication Date Title
KR101631045B1 (en) Alignment film for liquid crystals obtainable by direct particle beam deposition
Takatoh et al. Alignment technology and applications of liquid crystal devices
Kang et al. Tin dioxide inorganic nanolevel films with different liquid crystal molecular orientations for application in liquid crystal displays (LCDs)
JP4839194B2 (en) Liquid crystal display device and manufacturing method thereof
TWI522699B (en) Liquid crystal display panel and liquid crystal display device
US6485614B2 (en) Method to stabilize a carbon alignment layer for liquid crystal displays
JP2009192759A (en) Liquid crystal alignment layer evaluation method and liquid crystal alignment layer
Son et al. Investigation of ion‐beam‐treated SiOx film surfaces for liquid crystal alignment
WO2013069487A1 (en) Liquid crystal display device and method for manufacturing same
Hasebe et al. 29.3: performance of novel LC‐photo‐aligning cinnamoyl side‐chain polymers
Polyakov et al. Intermolecular interactions in target organophilic pervaporation through the films of amorphous Teflon AF2400
Oh-e et al. Surface anisotropy from photo-induced bond breaking at polymer surfaces: A sum-frequency vibrational spectroscopic study of polyimide
Usami et al. Improvement in photo-alignment efficiency of azobenzene-containing polyimide films
Hwang et al. Electro-optical characteristics of the ion-beam-aligned twisted nematic liquid crystal display on a diamond-like-carbon thin film surface
Kim et al. Novel alignment mechanism of liquid crystal on a hydrogenated amorphous silicon oxide
Lin et al. Electro-optic characteristics of fringe-field-switching mode with controllable anchoring strength of liquid crystal alignment
Yaroshchuk et al. Liquid-crystal anchoring transitions on aligning substrates processed by a plasma beam
Shahidzadeh et al. Orientation of lyotropic and thermotropic liquid crystals on plasma-treated fluorinated surfaces
Rushnova et al. High anchoring composite photoalignment material with high photosensitivity
Konshina Production methods and properties of liquid-crystal-orienting layers based on amorphous carbon
Kim et al. Vertically aligned liquid crystal molecules on a silicon nitride film treated by ion-beam irradiation
Otono et al. 75‐3: Chemical Gas Sensors using Chiral Nematic Liquid Crystals
Lee et al. Alignment properties of liquid crystal on DLC film using ion beam
KR100721417B1 (en) Stable method of liquid crystal alignment layer
Park et al. Investigation of the Alignment Phenomena on the aC: H Thin Films by PECVD System using Ion-beam Alignment Method