JP2009191746A - Intake air control device for multicylinder internal combustion engine - Google Patents

Intake air control device for multicylinder internal combustion engine Download PDF

Info

Publication number
JP2009191746A
JP2009191746A JP2008033605A JP2008033605A JP2009191746A JP 2009191746 A JP2009191746 A JP 2009191746A JP 2008033605 A JP2008033605 A JP 2008033605A JP 2008033605 A JP2008033605 A JP 2008033605A JP 2009191746 A JP2009191746 A JP 2009191746A
Authority
JP
Japan
Prior art keywords
intake control
intake
control valve
valve
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008033605A
Other languages
Japanese (ja)
Other versions
JP4901779B2 (en
Inventor
Masaji Katsumata
正司 勝間田
Atsutoshi Ikegawa
敦俊 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008033605A priority Critical patent/JP4901779B2/en
Publication of JP2009191746A publication Critical patent/JP2009191746A/en
Application granted granted Critical
Publication of JP4901779B2 publication Critical patent/JP4901779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake control device for a multicylinder internal combustion engine, which is capable of controlling the variation of inertia supercharging effect for every cylinders even when distances from intake air control valves to intake valves for closing and opening independent passages are different from one another. <P>SOLUTION: The distance from intake control valves 13 of independent passages 10 provided to the #1 cylinder and #4 cylinder of an internal combustion engine 1 to intake valves 7 are shorter than the distance from intake control valves 13 of independent passages 10 provided to the #2 cylinder and #3 cylinder, and the intake control valves 13 of the independent passages 10 provided to the #1 cylinder and #4 cylinder, and the intake control valves 13 of the independent passages 10 provided to the #2 cylinder and #3 cylinder are driven by common valve shafts 17 and 18, respectively. The distances L1 and L2 from opened ends 10b of the independent passages 10 with respect to a surge tank 11 to the intake control valves 13 are equal to each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サージタンクから吸気弁までの間に吸気制御弁が設けられた多気筒内燃機関の吸気制御装置に関する。   The present invention relates to an intake control device for a multi-cylinder internal combustion engine in which an intake control valve is provided between a surge tank and an intake valve.

内燃機関に対する吸気の供給方法として、サージタンクと吸気弁との間に設けられた吸気制御弁を閉弁させた状態で吸気行程におけるピストン下降を利用して気筒内の負圧を高めておき、圧縮行程に移行する前に速やかに吸気制御弁を開弁して吸気通路内に吸気圧力波を発生させて慣性過給効果を積極的に活用するインパルス過給が知られている。   As a method of supplying intake air to the internal combustion engine, with the intake control valve provided between the surge tank and the intake valve closed, the negative pressure in the cylinder is increased using the piston lowering in the intake stroke, Impulse supercharging is known in which the intake control valve is quickly opened before shifting to the compression stroke to generate an intake pressure wave in the intake passage to actively utilize the inertia supercharging effect.

一般に、内燃機関では吸気行程の初期に気筒内に生じる負圧が慣性効果で反転して正圧になるタイミングと、吸気弁が閉弁するタイミングとが同期しているときに、最も効率の良い慣性過給効果が得られることが知られている。そのため、最大トルクを実現したい機関回転数でこれらのタイミングが同期して高効率の慣性過給効果が得られるように、内燃機関の吸気系が設計されている。従って、内燃機関の回転数が設計基準となっている回転数から外れると慣性過給効果を十分に得ることができず出力トルクが低下する。例えば、その基準の回転数よりも低回転域では吸気弁の開弁時間、即ち吸気行程時間が圧力の反転時間に対して長くなるので、気筒内の圧力が最大になるタイミングをやり過ごしてから吸気弁が閉弁することになってしまう。   In general, the internal combustion engine is most efficient when the negative pressure generated in the cylinder at the beginning of the intake stroke is reversed by the inertia effect to become positive pressure and the timing at which the intake valve is closed is synchronized. It is known that an inertial supercharging effect can be obtained. For this reason, the intake system of the internal combustion engine is designed so that a highly efficient inertial supercharging effect can be obtained by synchronizing these timings at the engine speed at which maximum torque is desired. Therefore, if the rotational speed of the internal combustion engine deviates from the rotational speed that is the design standard, the inertial supercharging effect cannot be obtained sufficiently and the output torque is reduced. For example, since the intake valve opening time, i.e., the intake stroke time, becomes longer than the pressure reversal time in the lower rotation range than the reference rotation speed, the intake pressure after the timing when the pressure in the cylinder becomes maximum is passed. The valve will close.

こうした内燃機関にインパルス過給を適用した場合には、上述した設計基準よりも低回転域において、吸気制御弁を閉弁状態に維持したまま吸気行程を開始しその後吸気制御弁を開弁することで吸気行程の開始時期を実質的に遅らせることができる。これにより、低回転域において圧力の反転時間に対して間延びした吸気行程時間が短くなるから、慣性過給効果を広範囲で活用することができる。   When impulse supercharging is applied to such an internal combustion engine, an intake stroke is started while the intake control valve is kept closed in a lower rotation range than the design standard described above, and then the intake control valve is opened. Thus, the start time of the intake stroke can be substantially delayed. Thereby, since the intake stroke time extended with respect to the pressure reversal time in the low rotation range is shortened, the inertia supercharging effect can be utilized in a wide range.

インパルス過給を多気筒内燃機関に対して適用する場合には気筒毎の慣性過給効果のばらつきを抑えて吸気充填効率を気筒毎に均一化することが望ましい。例えば、インパルス過給を行い得る吸気制御装置として、V型6気筒の内燃機関の気筒毎に設けられた独立通路に吸気制御弁を設け、バンク毎に設けられた共通の弁軸に吸気制御弁を連結し、各吸気制御弁をバンク毎に駆動するものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   When impulse supercharging is applied to a multi-cylinder internal combustion engine, it is desirable to suppress variation in the inertia supercharging effect for each cylinder and make the intake charge efficiency uniform for each cylinder. For example, as an intake control device capable of performing impulse supercharging, an intake control valve is provided in an independent passage provided for each cylinder of a V-type 6-cylinder internal combustion engine, and an intake control valve is provided on a common valve shaft provided for each bank. Are connected to drive each intake control valve for each bank (Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

特開平5−248247号公報JP-A-5-248247 特開2006−207454号公報JP 2006-207454 A

特許文献1の吸気装置は、バンク毎の吸気制御弁を共通の弁軸で駆動するものであるので、独立通路に対する吸気制御弁の配置を各バンクの気筒間で揃えることは容易である。しかし、一本の弁軸で駆動できる吸気制御弁の個数には限界があるので、気筒数の増加に伴って吸気制御弁の駆動を複数の弁軸で分担せざるを得ない場合がある。複数の弁軸を用いる場合、各弁軸を相互の干渉を回避しつつ同軸に配置することは困難であるので、独立通路の長手方向に位置をずらして各弁軸を配置する必要がある。このように各弁軸を配置した場合には、吸気制御弁から吸気弁までの距離が異なることから、サージタンクから吸気制御弁までの距離も気筒間で相違することになる。その結果、吸気制御弁を利用した慣性過給効果に気筒間のばらつきが生じる。そのばらつきを抑えるために吸気制御弁の開閉時期を気筒毎に相違させる対応もあり得るが、その場合には制御内容の複雑化を回避することが困難である。   Since the intake device of Patent Document 1 drives the intake control valve for each bank with a common valve shaft, it is easy to align the arrangement of the intake control valve with respect to the independent passage among the cylinders of each bank. However, since there is a limit to the number of intake control valves that can be driven by a single valve shaft, the drive of the intake control valves may have to be shared by a plurality of valve shafts as the number of cylinders increases. In the case of using a plurality of valve shafts, it is difficult to arrange the valve shafts coaxially while avoiding mutual interference. Therefore, it is necessary to dispose the valve shafts in the longitudinal direction of the independent passage. When the valve shafts are arranged in this way, the distance from the intake control valve to the intake valve is different, so the distance from the surge tank to the intake control valve is also different among the cylinders. As a result, variation between cylinders occurs in the inertia supercharging effect using the intake control valve. In order to suppress the variation, it is possible to make the opening / closing timing of the intake control valve different for each cylinder, but in that case, it is difficult to avoid complication of control contents.

そこで、本発明は、吸気制御弁から独立通路を開閉する吸気弁までの距離が異なる場合であっても、気筒毎の慣性過給効果のばらつきを抑制できる多気筒内燃機関の吸気制御装置を提供することを目的とする。   Accordingly, the present invention provides an intake control device for a multi-cylinder internal combustion engine that can suppress variations in the inertia boost effect for each cylinder even when the distance from the intake control valve to the intake valve that opens and closes the independent passage is different. The purpose is to do.

本発明の第1の吸気制御装置は、多気筒内燃機関の気筒毎に設けられて吸気弁にて開閉される独立通路及び前記独立通路のそれぞれが接続されたサージタンクを有する吸気通路と、前記独立通路毎に設けられた吸気制御弁と、を備え、前記独立通路毎に設けられた前記吸気制御弁のなかに前記吸気弁までの距離が異なる少なくとも二つの吸気制御弁が含まれ、かつ前記距離が同一の吸気制御弁が共通の弁軸にて駆動される多気筒内燃機関の吸気制御装置であって、前記気筒毎に設けられた前記独立通路の前記サージタンクに対する開放端から前記吸気制御弁までの距離が互いに等しくなるように構成されていることにより、上述した課題を解決する(請求項1)。   The first intake control device of the present invention includes an independent passage provided for each cylinder of a multi-cylinder internal combustion engine and opened and closed by an intake valve, and an intake passage having a surge tank connected to each of the independent passages, An intake control valve provided for each independent passage, and the intake control valve provided for each independent passage includes at least two intake control valves having different distances to the intake valve, and An intake control device for a multi-cylinder internal combustion engine in which intake control valves having the same distance are driven by a common valve shaft, wherein the intake control is performed from an open end of the independent passage provided for each cylinder with respect to the surge tank. By configuring the distances to the valves to be equal to each other, the above-described problem is solved (claim 1).

第1の吸気制御装置によれば、各吸気制御弁を駆動するために少なくとも2つの弁軸が必要になるが、各弁軸に一つずつアクチュエータを設けることにより全ての吸気制御弁を駆動できる。そのため、各吸気制御弁に対して弁軸を一つずつ設ける態様に比べてアクチュエータの数を減らすことができる。しかも、気筒毎に設けられた独立通路のサージタンクに対する開放端から吸気制御弁までの距離が互いに等しいので、吸気制御弁を利用した慣性過給効果の気筒間のばらつきを抑えることができる。   According to the first intake control device, at least two valve shafts are required to drive each intake control valve, but all intake control valves can be driven by providing one actuator for each valve shaft. . Therefore, the number of actuators can be reduced as compared with an aspect in which one valve shaft is provided for each intake control valve. In addition, since the distance from the open end to the intake tank of the independent tank provided for each cylinder to the intake control valve is equal to each other, it is possible to suppress variations among the cylinders of the inertia supercharging effect using the intake control valve.

独立通路の開放端から吸気制御弁までの距離を等しくするためには種々の態様を採用できる。例えば、前記開放端から前記吸気制御弁までの距離が互いに等しくなるように、前記サージタンクの形状が設定されていてもよい(請求項2)。また、前記開放端から前記吸気制御弁までの距離が互いに等しくなるように、前記吸気制御弁から前記吸気弁までの距離が長い前記独立通路の一端を前記サージタンクの内部に突出させてもよい(請求項3)。独立通路の一端をサージタンクの内部に突出させた場合は開放端がサージタンクの内部に位置することになる。そのため吸気制御弁から吸気弁までの距離が長い独立通路とその距離が短い独立通路との間で、開放端から吸気制御弁までの距離を互いに等しくすることができる。   Various modes can be adopted to equalize the distance from the open end of the independent passage to the intake control valve. For example, the shape of the surge tank may be set so that the distance from the open end to the intake control valve is equal to each other (Claim 2). In addition, one end of the independent passage having a long distance from the intake control valve to the intake valve may protrude into the surge tank so that the distance from the open end to the intake control valve is equal to each other. (Claim 3). When one end of the independent passage is protruded into the surge tank, the open end is positioned inside the surge tank. Therefore, the distance from the open end to the intake control valve can be made equal between the independent passage having a long distance from the intake control valve to the intake valve and the independent passage having a short distance.

本発明の第2の吸気制御装置は、多気筒内燃機関の気筒毎に設けられて吸気弁にて開閉される独立通路及び前記独立通路のそれぞれが接続されたサージタンクを有する吸気通路と、前記独立通路毎に設けられた吸気制御弁と、を備え、前記独立通路毎に設けられた前記吸気制御弁のなかに前記吸気弁までの距離が異なる少なくとも二つの吸気制御弁が含まれ、かつ前記吸気弁までの距離が同一の吸気制御弁が共通の弁軸にて駆動される多気筒内燃機関の吸気制御装置であって、前記気筒毎に設けられた前記独立通路の前記サージタンクに対する開放端から前記吸気制御弁までの距離が互いに異なり、かつ前記開放端から前記吸気制御弁までの距離が短い前記独立通路の通路断面積が前記開放端から前記吸気制御弁までの距離が長い前記独立通路の通路断面積よりも小さくなるように構成されていることにより、上述した課題を解決する(請求項4)。   The second intake control device of the present invention includes an independent passage provided for each cylinder of a multi-cylinder internal combustion engine and opened and closed by an intake valve, and an intake passage having a surge tank connected to each of the independent passages, An intake control valve provided for each independent passage, and the intake control valve provided for each independent passage includes at least two intake control valves having different distances to the intake valve, and An intake control device for a multi-cylinder internal combustion engine in which an intake control valve having the same distance to the intake valve is driven by a common valve shaft, the open end of the independent passage provided for each cylinder with respect to the surge tank The distance from the open end to the intake control valve is different from each other, and the distance from the open end to the intake control valve is short. The cross-sectional area of the independent path is long from the open end to the intake control valve. By being configured to be smaller than the cross-sectional area, to solve the problems described above (Claim 4).

第2の吸気制御装置によれば、各吸気制御弁を駆動するために少なくとも2つの弁軸が必要になるが、各弁軸に一つずつアクチュエータを設けることにより全ての吸気制御弁を駆動できる。そのため、各吸気制御弁に対して弁軸を一つずつ設ける態様に比べてアクチュエータの数を減らすことができる。   According to the second intake control device, at least two valve shafts are required to drive each intake control valve, but all intake control valves can be driven by providing one actuator for each valve shaft. . Therefore, the number of actuators can be reduced as compared with an aspect in which one valve shaft is provided for each intake control valve.

慣性過給の原理として周知なヘルムホルツの共鳴の原理によれば、容量がVの容積部に長さL、通路断面積Aの管が繋がっている系の共鳴の振動数fは、音速をCとすると式:f∝C×[(A/(L×V)]0.5で表される。従って、共鳴の振動数fを気筒毎に揃えることにより慣性過給効果を気筒毎に揃えることができるようになる。第2の吸気制御装置は、独立通路の開放端から吸気制御弁までの距離が互いに異なっているが、その距離が短い独立通路の通路断面積はその距離が長い独立通路の通路断面積よりも小さくなっている。そのため、共鳴の振動数fの気筒間の差違をなくす、又は低減することができる。これにより、独立通路の開放端から吸気制御弁までの距離を揃えずとも、吸気制御弁を利用した慣性過給効果の気筒間のばらつきを抑えることができる。 According to the Helmholtz resonance principle, which is well known as the principle of inertial supercharging, the resonance frequency f of a system in which a tube with a length L and a passage cross-sectional area A is connected to a volume part with a capacity V is the speed of sound C Then, the formula: f∝C × [(A / (L × V)] 0.5 Therefore, the inertial supercharging effect is made uniform for each cylinder by making the resonance frequency f uniform for each cylinder. In the second intake control device, although the distance from the open end of the independent passage to the intake control valve is different from each other, the sectional area of the independent passage having a short distance is an independent passage having a long distance. Therefore, the difference between the cylinders having the resonance frequency f can be eliminated or reduced, and the distance from the open end of the independent passage to the intake control valve can be made uniform. At least between the cylinders of the inertia supercharging effect using the intake control valve Variability can be suppressed.

第2の吸気制御装置においては、独立通路の全長に亘って通路断面積が相違していなくてもよく、その一部において通路断面積が相違していれば十分である。また、独立通路の通路断面積は長手方向に一定であってもよいし変化してもよい。例えば、第2の吸気制御装置の一態様において、前記開放端から前記吸気制御弁までの距離が短い前記独立通路は、その通路断面積が前記サージタンクに向かって徐々に縮小するように構成されてもよい(請求項5)。この態様によれば、独立通路の通路断面積の急変を防止できるので、独立通路間における通路抵抗の差違を低減できる。   In the second intake control device, the passage cross-sectional area does not have to be different over the entire length of the independent passage, and it is sufficient if the passage cross-sectional area is different in a part thereof. Further, the passage cross-sectional area of the independent passage may be constant in the longitudinal direction or may vary. For example, in one aspect of the second intake control device, the independent passage having a short distance from the open end to the intake control valve is configured such that the passage cross-sectional area gradually decreases toward the surge tank. (Claim 5). According to this aspect, since a sudden change in the cross-sectional area of the independent passage can be prevented, a difference in passage resistance between the independent passages can be reduced.

また、第2の吸気制御装置の一態様において、前記開放端から前記吸気制御弁までの距離が短い前記独立通路に設けられた前記吸気制御弁の大きさが、前記開放端から前記吸気制御弁までの距離が長い前記独立通路に設けられた前記吸気制御弁の大きさよりも小さくてもよい(請求項6)。つまり、独立通路の通路断面積の相違に合わせて吸気制御弁の大きさを相違させてもよい。この場合、大きさが小さい吸気制御弁はその重量及び慣性がそれぞれ小さくなるので、その吸気制御弁の応答速度が向上するとともに、その駆動に要するエネルギー消費を抑えることができる。   Further, in one aspect of the second intake control device, the size of the intake control valve provided in the independent passage having a short distance from the open end to the intake control valve is determined from the open end to the intake control valve. The distance may be smaller than the size of the intake control valve provided in the independent passage. That is, the size of the intake control valve may be made different according to the difference in the passage sectional area of the independent passage. In this case, since the intake control valve having a small size is reduced in weight and inertia, the response speed of the intake control valve is improved and energy consumption required for driving the intake control valve can be suppressed.

なお、本発明における開放端は、サージタンク内部に向かって独立通路の通路断面積が増加して行く過程でその増加割合が所定割合に達した位置に設定される。   In the present invention, the open end is set at a position where the increase rate reaches a predetermined rate in the process of increasing the cross-sectional area of the independent passage toward the inside of the surge tank.

以上説明したように、第1の吸気制御装置によれば、気筒毎に設けられた独立通路のサージタンクに対する開放端から吸気制御弁までの距離が互いに等しいので、吸気制御弁を利用した慣性過給効果の気筒間のばらつきを抑えることができる。また、第2の吸気制御装置によれば、開放端から吸気制御弁までの距離が短い独立通路の通路断面積がその距離が長い独立通路の通路断面積よりも小さくなっているため、独立通路の開放端から吸気制御弁までの距離を揃えずとも、吸気制御弁を利用した慣性過給効果の気筒間のばらつきを抑えることができる。   As described above, according to the first intake control device, since the distance from the open end to the surge tank of the independent passage provided for each cylinder is equal to the intake control valve, the inertia excess using the intake control valve is equal. Variations in the supply effect between cylinders can be suppressed. Further, according to the second intake control device, since the passage sectional area of the independent passage with a short distance from the open end to the intake control valve is smaller than the passage sectional area of the independent passage with a long distance, the independent passage Even if the distance from the open end of the engine to the intake control valve is not uniform, it is possible to suppress the variation between cylinders of the inertia supercharging effect using the intake control valve.

(第1の形態)
図1は本発明の一形態に係る吸気制御装置が適用された内燃機関の要部を模式的に示した図である。内燃機関1は一方向に並ぶ4つの気筒2を有した直列4気筒型の多気筒内燃機関として構成されている。なお、以下の説明で各気筒2を互いに区別する必要があるときには気筒2の並び方向に対応する気筒番号♯1〜#4を付与して説明する場合がある。
(First form)
FIG. 1 is a diagram schematically showing a main part of an internal combustion engine to which an intake control device according to one embodiment of the present invention is applied. The internal combustion engine 1 is configured as an in-line four-cylinder multi-cylinder internal combustion engine having four cylinders 2 arranged in one direction. In the following description, when it is necessary to distinguish the cylinders 2 from each other, cylinder numbers # 1 to # 4 corresponding to the direction in which the cylinders 2 are arranged may be assigned and described.

各気筒2には吸気通路5と排気通路6とがそれぞれ接続されており、吸気通路5は各気筒2に2本ずつ設けられた吸気弁7にて開閉され、排気通路6は各気筒2に2本ずつ設けられた排気弁(不図示)にて開閉される。これらの弁は不図示の動弁機構にて所定のタイミングで開閉駆動される。各気筒2に対する燃焼順序は#1、#3、#4、#2の順番に設定されている。   Each cylinder 2 is connected to an intake passage 5 and an exhaust passage 6. The intake passage 5 is opened and closed by two intake valves 7 provided in each cylinder 2, and the exhaust passage 6 is connected to each cylinder 2. They are opened and closed by two exhaust valves (not shown). These valves are driven to open and close at a predetermined timing by a valve operating mechanism (not shown). The order of combustion for each cylinder 2 is set in the order of # 1, # 3, # 4, and # 2.

吸気通路5は、気筒2毎に設けられて吸気弁7にて開閉される独立通路10と、各独立通路10が接続されたサージタンク11とを有している。各独立通路10は各気筒2に開口する吸気ポート10aを含んでいる。サージタンク11は気筒2毎の吸気干渉を緩和し得る所定容積を持っている。サージタンク11の上流側には吸気絞り弁12が設けられている。   The intake passage 5 has an independent passage 10 provided for each cylinder 2 and opened and closed by an intake valve 7 and a surge tank 11 to which each independent passage 10 is connected. Each independent passage 10 includes an intake port 10 a that opens to each cylinder 2. The surge tank 11 has a predetermined volume that can alleviate intake air interference for each cylinder 2. An intake throttle valve 12 is provided on the upstream side of the surge tank 11.

各独立通路10には吸気制御弁13が一つずつ設けられている。各吸気制御弁13は二つの弁駆動装置15、16にて開閉駆動される。第1弁駆動装置15は#1、#4気筒に対して設けられた二つの吸気制御弁13の開閉を担当し、第2弁駆動装置16は#2、#3気筒に対して設けられた二つの吸気制御弁13の開閉を担当する。   Each independent passage 10 is provided with one intake control valve 13. Each intake control valve 13 is driven to open and close by two valve drive devices 15 and 16. The first valve drive unit 15 is responsible for opening and closing the two intake control valves 13 provided for the # 1 and # 4 cylinders, and the second valve drive unit 16 is provided for the # 2 and # 3 cylinders. It is responsible for opening and closing the two intake control valves 13.

第1弁駆動装置15は気筒2の並び方向に延びる弁軸17を有し、その弁軸17には#1、#4気筒に対して設けられた二つの吸気制御弁13が一体回転可能に取付けられている。また、第2弁駆動装置16は気筒2の並び方向に延び、かつ弁軸17に対して独立通路10の長手方向に位置をずらして配置された弁軸18を有し、その弁軸18には#2、#3気筒に対して設けられた二つの吸気制御弁13が一体回転可能に取り付けられている。各弁軸17、18は独立通路10を貫いていて、これらの一端にはアクチュエータ20が一つずつ取り付けられている。このアクチュエータ20は電動アクチュエータとして構成されている。アクチュエータ20に対して所定のタイミングで制御信号を送ることにより、各吸気制御弁13は全閉位置から全開位置までの間で回転駆動される。   The first valve drive device 15 has a valve shaft 17 extending in the direction in which the cylinders 2 are arranged, and two intake control valves 13 provided for the # 1 and # 4 cylinders can be integrally rotated on the valve shaft 17. Installed. The second valve drive device 16 has a valve shaft 18 that extends in the direction in which the cylinders 2 are arranged and is displaced in the longitudinal direction of the independent passage 10 with respect to the valve shaft 17. The two intake control valves 13 provided for the # 2 and # 3 cylinders are attached so as to be integrally rotatable. Each of the valve shafts 17 and 18 penetrates the independent passage 10, and one actuator 20 is attached to one end thereof. The actuator 20 is configured as an electric actuator. By sending a control signal to the actuator 20 at a predetermined timing, each intake control valve 13 is rotationally driven from the fully closed position to the fully open position.

各弁駆動装置15、16が図示のように構成されているので、4つの吸気制御弁13のなかには吸気弁7までの距離が短い吸気制御弁13と、吸気弁7までの距離が長い吸気制御弁13とが2つずつ含まれる。本形態では、第1弁駆動装置15にて駆動される吸気制御弁13が吸気弁7までの距離が短いものに相当し、第2弁駆動装置16にて駆動される吸気制御弁13が吸気弁7までの距離が長いものに相当する。   Since each of the valve drive devices 15 and 16 is configured as shown in the drawing, the intake control valve 13 having a short distance to the intake valve 7 and the intake control having a long distance to the intake valve 7 among the four intake control valves 13. Two valves 13 are included. In this embodiment, the intake control valve 13 driven by the first valve drive device 15 corresponds to a short distance to the intake valve 7, and the intake control valve 13 driven by the second valve drive device 16 is the intake air. This corresponds to a long distance to the valve 7.

本形態では、吸気制御弁13から吸気弁7までの距離に拘わらず、独立通路10のサージタンク11に対する開放端10bから吸気制御弁13までの距離L1、L2が互いに等しくなるようにサージタンク11の形状が設定されている。即ち、#1、#4気筒に設けられた独立通路10に接続するサージタンク11の両端部11aは、独立通路10よりも外側に膨らんでいる。そのため、#1、#4気筒に設けられた独立通路10の開放端10bは他の独立通路10の開放端10bよりも気筒2に近い側に位置する。その結果、独立通路10の開放端10bから吸気制御弁13までの距離L1、L2が互いに等しくなっている。そのため、ヘルムホルツの共鳴の原理に係る共鳴の振動数が各気筒2に関して均一化できる。これにより、吸気制御弁13を利用した慣性過給効果の気筒間のばらつきを抑制することができる。   In this embodiment, regardless of the distance from the intake control valve 13 to the intake valve 7, the surge tank 11 is set such that the distances L1, L2 from the open end 10b of the independent passage 10 to the surge tank 11 to the intake control valve 13 are equal to each other. The shape is set. That is, both end portions 11 a of the surge tank 11 connected to the independent passages 10 provided in the # 1 and # 4 cylinders bulge outward from the independent passages 10. Therefore, the open ends 10b of the independent passages 10 provided in the # 1 and # 4 cylinders are located closer to the cylinder 2 than the open ends 10b of the other independent passages 10. As a result, the distances L1 and L2 from the open end 10b of the independent passage 10 to the intake control valve 13 are equal to each other. Therefore, the resonance frequency according to the Helmholtz resonance principle can be made uniform for each cylinder 2. Thereby, the dispersion | variation between the cylinders of the inertia supercharging effect using the intake control valve 13 can be suppressed.

(第2の形態)
次に、図2を参照して本発明の第2の形態について説明する。図2は本発明の第2の形態に係る吸気制御装置の一例を示している。第2の形態において、第1の形態と共通する部材には同一の参照符号を図2に示して説明を省略する。図2に示すように、この形態では、第1弁駆動装置15と第2弁駆動装置16との並び順、言い換えれば各気筒2に対して設けられた吸気制御弁13の配置が図1に示した形態と比べて入れ替わっている。つまり、本形態では第1弁駆動装置15にて駆動される吸気制御弁13が吸気弁7までの距離が長いものに相当し、第2弁駆動装置16にて駆動される吸気制御弁13が吸気弁7までの距離が短いものに相当する。本形態も、図1の形態と同様に独立通路10の開放端10bから吸気制御弁13までの距離L1、L2が互いに等しくなるように形状が設定されたサージタンク21が設けられている。サージタンク21は、#2、#3気筒に設けられた独立通路10に接続するその中央部21aが気筒2に近い側に膨らんでいる。そのため、#2、#3気筒に設けられた独立通路10の開放端10bは他の独立通路10の開放端10bよりも気筒2に近い側に位置する。その結果、独立通路10の開放端10bから吸気制御弁13までの距離L1、L2が互いに等しくなり、図1に示した形態と同等の効果を発揮できる。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows an example of an intake air control apparatus according to the second embodiment of the present invention. In the second embodiment, the same members as those in the first embodiment are denoted by the same reference numerals in FIG. As shown in FIG. 2, in this embodiment, the arrangement order of the first valve drive device 15 and the second valve drive device 16, in other words, the arrangement of the intake control valves 13 provided for each cylinder 2 is shown in FIG. 1. Compared to the form shown. That is, in this embodiment, the intake control valve 13 driven by the first valve drive device 15 corresponds to a long distance to the intake valve 7, and the intake control valve 13 driven by the second valve drive device 16 is This corresponds to a short distance to the intake valve 7. Also in this embodiment, a surge tank 21 having a shape set so that the distances L1 and L2 from the open end 10b of the independent passage 10 to the intake control valve 13 are equal to each other is provided as in the embodiment of FIG. The surge tank 21 has a central portion 21a connected to the independent passage 10 provided in the # 2 and # 3 cylinders and bulges toward the side close to the cylinder 2. Therefore, the open ends 10b of the independent passages 10 provided in the # 2 and # 3 cylinders are positioned closer to the cylinder 2 than the open ends 10b of the other independent passages 10. As a result, the distances L1 and L2 from the open end 10b of the independent passage 10 to the intake control valve 13 are equal to each other, and an effect equivalent to that of the embodiment shown in FIG.

(第3の形態)
次に、図3を参照して本発明の第3の形態について説明する。図3は本発明の第3の形態に係る吸気制御装置の一例を示している。第3の形態において、第1の形態と共通する部材には同一の参照符号を図3に付して説明を省略する。図3に示すように、この形態では、第1弁駆動装置15と第2弁駆動装置16とが図1に示した形態と同様に配置されている。また、本形態には各独立通路10が接続されたサージタンク31が設けられている。#2、#3気筒に設けられた独立通路10の開放端10bはサージタンク31の内部に位置している。言い換えれば、#2、#3気筒に設けられた独立通路10の一端がサージタンク31の内部に突出している。#2、#3気筒に設けられた独立通路10と#1、#4気筒に設けられた独立通路10との間で、開放端10bから吸気制御弁13までの距離L1、L2を互いに等しくすることができる。これにより本形態も図1に示した形態と同等の効果を発揮することができる。
(Third form)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 shows an example of an intake air control apparatus according to the third embodiment of the present invention. In the third embodiment, members that are the same as those in the first embodiment are given the same reference numerals in FIG. As shown in FIG. 3, in this embodiment, the first valve driving device 15 and the second valve driving device 16 are arranged in the same manner as in the embodiment shown in FIG. In this embodiment, a surge tank 31 to which each independent passage 10 is connected is provided. The open end 10 b of the independent passage 10 provided in the # 2 and # 3 cylinders is located inside the surge tank 31. In other words, one end of the independent passage 10 provided in the # 2 and # 3 cylinders protrudes into the surge tank 31. The distances L1 and L2 from the open end 10b to the intake control valve 13 are made equal between the independent passage 10 provided in the # 2 and # 3 cylinders and the independent passage 10 provided in the # 1 and # 4 cylinders. be able to. Thereby, this embodiment can also exhibit the same effect as the embodiment shown in FIG.

サージタンク31の内部に突出した独立通路10の突出部の形状は任意であり、また、その突出部が独立通路10と一体であっても良いし別体であってもよい。図4は図3の形態の変形例を示した拡大図である。この図に示すように、この変形例には独立通路10の突出部として機能するファンネル33が設けられており、そのファンネル33はボルト等の締結部材34を利用してサージタンク31の内側に着脱可能に取り付けられている。ファンネル33は、サージタンク31から空気を効率良く気筒2に取り込むことができるように開放端10bに向かって通路断面積が徐々に拡大するように構成されている。この変形例においても図3の形態と同等の効果を発揮できる。   The shape of the protruding portion of the independent passage 10 protruding into the surge tank 31 is arbitrary, and the protruding portion may be integrated with the independent passage 10 or separate. FIG. 4 is an enlarged view showing a modification of the embodiment of FIG. As shown in this figure, this modification is provided with a funnel 33 that functions as a protruding portion of the independent passage 10, and the funnel 33 is attached to and detached from the inside of the surge tank 31 using a fastening member 34 such as a bolt. It is attached as possible. The funnel 33 is configured such that the passage cross-sectional area gradually increases toward the open end 10b so that air can be efficiently taken into the cylinder 2 from the surge tank 31. Also in this modified example, an effect equivalent to that of the embodiment of FIG. 3 can be exhibited.

(第4の形態)
次に、図5を参照して本発明の第4の形態について説明する。図5は本発明の第4の形態に係る吸気制御装置の一例を示している。第4の形態において、第1の形態と共通する部材には同一の参照符号を図5に付して説明を省略する。本形態は第1弁駆動装置15と第2弁駆動装置16とが図1に示した形態と同様に配置されている。また、本形態は吸気弁7までの距離が長い吸気制御弁13が設けられた独立通路40を有している。独立通路40は気筒2に開口する吸気ポート40aを含んでいて#2、#3気筒に接続されている。独立通路40のサージタンク41に対する開放端40bの位置は、#1、#4気筒の独立通路10の開放端10bと同一レベルに並んでいる。従って、独立通路10の開放端10bから吸気制御弁13までの距離L1は、独立通路40の開放端40bから吸気制御弁13までの距離L2よりも長い。上述したヘルムホルツの共鳴の原理によれば、通路断面積の平方根が共鳴の振動数に比例し、通路長さの平方根が共鳴の振動数に反比例する。そこで、本形態は各独立通路10、40に関して共鳴の振動数を等しくするため、独立通路40の通路断面積を独立通路10の通路断面積よりも小さくしている。図示の例では、吸気制御弁13よりも上流側に位置する独立通路40の上流部分40cの通路断面積を、独立通路10の通路断面積よりも小さくし、かつ上流部分40cの通路断面積を略一定としている。これにより、共鳴の振動数が各気筒2に関して均一化又は気筒間の差を低減できる。このため、各独立通路10、40の開放端10b、40bから吸気制御弁13までの距離L1、L2を揃えずとも、吸気制御弁13を利用した慣性過給効果の気筒間のばらつきを抑えることができる。
(4th form)
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 shows an example of an intake air control apparatus according to the fourth embodiment of the present invention. In the fourth embodiment, members that are the same as those in the first embodiment are given the same reference numerals in FIG. In this embodiment, the first valve driving device 15 and the second valve driving device 16 are arranged in the same manner as the embodiment shown in FIG. Further, this embodiment has an independent passage 40 provided with an intake control valve 13 having a long distance to the intake valve 7. The independent passage 40 includes an intake port 40a that opens to the cylinder 2, and is connected to the # 2 and # 3 cylinders. The position of the open end 40b of the independent passage 40 with respect to the surge tank 41 is aligned with the open end 10b of the independent passage 10 of the # 1 and # 4 cylinders. Accordingly, the distance L1 from the open end 10b of the independent passage 10 to the intake control valve 13 is longer than the distance L2 from the open end 40b of the independent passage 40 to the intake control valve 13. According to the Helmholtz resonance principle described above, the square root of the passage cross-sectional area is proportional to the resonance frequency, and the square root of the passage length is inversely proportional to the resonance frequency. Therefore, in the present embodiment, the cross-sectional area of the independent passage 40 is made smaller than the cross-sectional area of the independent passage 10 in order to equalize the resonance frequency for each of the independent passages 10 and 40. In the illustrated example, the passage sectional area of the upstream portion 40c of the independent passage 40 located upstream of the intake control valve 13 is made smaller than the passage sectional area of the independent passage 10, and the passage sectional area of the upstream portion 40c is made smaller. It is almost constant. As a result, the resonance frequency can be made uniform for each cylinder 2 or the difference between the cylinders can be reduced. For this reason, even if the distances L1 and L2 from the open ends 10b and 40b of the independent passages 10 and 40 to the intake control valve 13 are not aligned, the variation in the inertia supercharging effect using the intake control valve 13 among cylinders is suppressed. Can do.

(第5の形態)
次に、図6を参照して本発明の第5の形態について説明する。この形態は、図5の形態の変形例に相当する。本形態の独立通路50は#2、#3気筒に開口する吸気ポート50aを含んでいる。そして、独立通路50はその上流部分50cが開放端50bに向かって向かって徐々に縮小するように構成され、サージタンク51に接続されている。その縮小具合は共鳴の振動数が各気筒2に関して均一化又は気筒間の差を低減できるように設定されている。従って、この形態によれば、吸気制御弁13を利用した慣性過給効果の気筒間のばらつきを抑えることができ、なおかつ独立通路40の通路断面積の急変を防止できるので、独立通路間における通路抵抗の差違を低減できる。
(5th form)
Next, a fifth embodiment of the present invention will be described with reference to FIG. This form corresponds to a modification of the form of FIG. The independent passage 50 of this embodiment includes an intake port 50a that opens to the # 2 and # 3 cylinders. The independent passage 50 is configured such that its upstream portion 50 c gradually decreases toward the open end 50 b and is connected to the surge tank 51. The degree of reduction is set so that the resonance frequency can be made uniform for each cylinder 2 or the difference between the cylinders can be reduced. Therefore, according to this embodiment, the variation between the cylinders of the inertia supercharging effect using the intake control valve 13 can be suppressed, and a sudden change in the sectional area of the independent passage 40 can be prevented. The difference in resistance can be reduced.

(第6の形態)
次に、図7を参照して本発明の第6の形態について説明する。図7は本発明の第6の形態に係る吸気制御装置の一例を示している。第6の形態において、第1の形態と共通する部材には同一の参照符号を図7に付して説明を省略する。図7に示すように、第1弁駆動装置15と第2弁駆動装置16とが図1に示した形態と同様に配置されている。また、#2、#3気筒の独立通路60は気筒2に開口する吸気ポート60aを含んでおり、独立通路60のサージタンク61に対する開放端60bの位置は#1、#4気筒の独立通路10の開放端10bと同一レベルに並んでいる。従って、第4及び第5の形態と同様に、独立通路10の開放端10bから吸気制御弁13までの距離L1は、独立通路60の開放端60bから吸気制御弁63までの距離L2よりも長い。本形態は、各独立通路10、60に関して共鳴の振動数を等しくするため、独立通路10の通路断面積よりも独立通路60の通路断面積をその全長に亘って小さくしている。そして、独立通路60の通路断面積に対応するように、独立通路60の吸気制御弁63は独立通路10の吸気制御弁13に対して小型化されている。この形態によれば、ヘルムホルツの共鳴の原理に係る共鳴の振動数が各気筒2に関して均一化又は気筒間の差を低減できるため、距離L1、L2を揃えずとも、吸気制御弁13、63を利用した慣性過給効果の気筒間のばらつきを抑えることができる。しかも、小型化された吸気制御弁63はその重量及び慣性が他の吸気制御弁13よりも小さくなるので、吸気制御弁63の応答速度が向上するとともに、その駆動に要するエネルギー消費を抑えることができる。
(Sixth form)
Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 7 shows an example of an intake air control apparatus according to the sixth embodiment of the present invention. In the sixth embodiment, members that are the same as those in the first embodiment are given the same reference numerals in FIG. As shown in FIG. 7, the 1st valve drive device 15 and the 2nd valve drive device 16 are arrange | positioned similarly to the form shown in FIG. The independent passages 60 of the # 2 and # 3 cylinders include an intake port 60a that opens to the cylinder 2. The position of the open end 60b of the independent passage 60 with respect to the surge tank 61 is the independent passage 10 of the # 1 and # 4 cylinders. Are arranged at the same level as the open end 10b. Accordingly, as in the fourth and fifth embodiments, the distance L1 from the open end 10b of the independent passage 10 to the intake control valve 13 is longer than the distance L2 from the open end 60b of the independent passage 60 to the intake control valve 63. . In this embodiment, in order to equalize the resonance frequency for each of the independent passages 10 and 60, the passage cross-sectional area of the independent passage 60 is smaller than the passage cross-sectional area of the independent passage 10 over its entire length. The intake control valve 63 of the independent passage 60 is downsized relative to the intake control valve 13 of the independent passage 10 so as to correspond to the cross-sectional area of the independent passage 60. According to this embodiment, since the resonance frequency according to the principle of Helmholtz resonance can be made uniform with respect to each cylinder 2 or the difference between the cylinders can be reduced, the intake control valves 13 and 63 can be controlled without the distances L1 and L2. It is possible to suppress the variation between the cylinders of the used inertial supercharging effect. In addition, since the reduced intake control valve 63 is smaller in weight and inertia than the other intake control valves 13, the response speed of the intake control valve 63 is improved and the energy consumption required for driving the intake control valve 63 can be suppressed. it can.

本発明は以上の各形態に限定されず、種々の形態にて実施することができる。本発明の吸気制御装置はその適用対象となり得る内燃機関の気筒数に制限はない。従って、本発明の吸気制御装置を、上述した4気筒の他、6気筒や8気筒の多気筒内燃機関に適用して実施することもできる。本発明に係る独立通路の通路断面形状は任意である。即ち、上述したヘルムホルツの共鳴の原理は通路断面積がパラメータの一つであるので、独立通路は円形や楕円形或いは多角形状であってもよい。   The present invention is not limited to the above embodiments, and can be implemented in various forms. The intake control device of the present invention is not limited in the number of cylinders of the internal combustion engine that can be applied. Therefore, the intake control device of the present invention can be applied to a multi-cylinder internal combustion engine of 6 cylinders or 8 cylinders in addition to the above-described 4 cylinders. The cross-sectional shape of the independent passage according to the present invention is arbitrary. That is, since the Helmholtz resonance principle described above is one of the parameters of the cross-sectional area of the path, the independent path may be circular, elliptical, or polygonal.

また、本発明に係る吸気制御弁の搭載位置はサージタンクから吸気弁までの間であればいずれの箇所でもよく、例えばシリンダヘッドに形成された吸気ポート内に吸気制御弁を搭載することもできる。   Further, the mounting position of the intake control valve according to the present invention may be anywhere between the surge tank and the intake valve. For example, the intake control valve can be mounted in the intake port formed in the cylinder head. .

本発明の一形態に係る吸気制御装置が適用された内燃機関の要部を模式的に示した図。The figure which showed typically the principal part of the internal combustion engine to which the intake control device which concerns on one form of this invention was applied. 本発明の第2の形態に係る吸気制御装置の一例を示した図。The figure which showed an example of the intake control device which concerns on the 2nd form of this invention. 本発明の第3の形態に係る吸気制御装置の一例を示した図。The figure which showed an example of the intake control device which concerns on the 3rd form of this invention. 図3の形態の変形例を示した拡大図。The enlarged view which showed the modification of the form of FIG. 本発明の第4の形態に係る吸気制御装置の一例を示した図。The figure which showed an example of the intake control device which concerns on the 4th form of this invention. 本発明の第5の形態に係る吸気制御装置の一例を示した図。The figure which showed an example of the intake control apparatus which concerns on the 5th form of this invention. 本発明の第6の形態に係る吸気制御装置の一例を示した図。The figure which showed an example of the intake control apparatus which concerns on the 6th form of this invention.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
5 吸気通路
7 吸気弁
10 独立通路
10b 開放端
11 サージタンク
13 吸気制御弁
17、18 弁軸
21 サージタンク
31 サージタンク
40 独立通路
40b 開放端
41 サージタンク
50 独立通路
50b 開放端
60 独立通路
60b 開放端
63 吸気制御弁
1 Internal combustion engine 2 Cylinder 5 Intake passage 7 Intake valve 10 Independent passage 10b Open end 11 Surge tank 13 Intake control valves 17, 18 Valve shaft 21 Surge tank 31 Surge tank 40 Independent passage 40b Open end 41 Surge tank 50 Independent passage 50b Open end 60 Independent passage 60b Open end 63 Intake control valve

Claims (6)

多気筒内燃機関の気筒毎に設けられて吸気弁にて開閉される独立通路及び前記独立通路のそれぞれが接続されたサージタンクを有する吸気通路と、前記独立通路毎に設けられた吸気制御弁と、を備え、前記独立通路毎に設けられた前記吸気制御弁のなかに前記吸気弁までの距離が異なる少なくとも二つの吸気制御弁が含まれ、かつ前記吸気弁までの距離が同一の吸気制御弁が共通の弁軸にて駆動される多気筒内燃機関の吸気制御装置であって、
前記気筒毎に設けられた前記独立通路の前記サージタンクに対する開放端から前記吸気制御弁までの距離が互いに等しくなるように構成されていることを特徴とする多気筒内燃機関の吸気制御装置。
An independent passage provided for each cylinder of a multi-cylinder internal combustion engine and opened and closed by an intake valve; an intake passage having a surge tank connected to each of the independent passages; and an intake control valve provided for each independent passage; And the intake control valve provided for each independent passage includes at least two intake control valves having different distances to the intake valve, and the intake control valve has the same distance to the intake valve. Is an intake control device for a multi-cylinder internal combustion engine driven by a common valve shaft,
An intake control device for a multi-cylinder internal combustion engine, characterized in that a distance from an open end of the independent passage provided for each cylinder to the surge tank to the intake control valve is equal to each other.
前記開放端から前記吸気制御弁までの距離が互いに等しくなるように、前記サージタンクの形状が設定されている請求項1に記載の吸気制御装置。   The intake control device according to claim 1, wherein the shape of the surge tank is set so that distances from the open end to the intake control valve are equal to each other. 前記開放端から前記吸気制御弁までの距離が互いに等しくなるように、前記吸気制御弁から前記吸気弁までの距離が長い前記独立通路の一端を前記サージタンクの内部に突出させている請求項1に記載の吸気制御装置。   The one end of the independent passage having a long distance from the intake control valve to the intake valve is protruded into the surge tank so that the distance from the open end to the intake control valve becomes equal to each other. The intake control device described in 1. 多気筒内燃機関の気筒毎に設けられて吸気弁にて開閉される独立通路及び前記独立通路のそれぞれが接続されたサージタンクを有する吸気通路と、前記独立通路毎に設けられた吸気制御弁と、を備え、前記独立通路毎に設けられた前記吸気制御弁のなかに前記吸気弁までの距離が異なる少なくとも二つの吸気制御弁が含まれ、かつ前記吸気弁までの距離が同一の吸気制御弁が共通の弁軸にて駆動される多気筒内燃機関の吸気制御装置であって、
前記気筒毎に設けられた前記独立通路の前記サージタンクに対する開放端から前記吸気制御弁までの距離が互いに異なり、かつ前記開放端から前記吸気制御弁までの距離が短い前記独立通路の通路断面積が前記開放端から前記吸気制御弁までの距離が長い前記独立通路の通路断面積よりも小さくなるように構成されていることを特徴とする多気筒内燃機関の吸気制御装置。
An independent passage provided for each cylinder of a multi-cylinder internal combustion engine and opened and closed by an intake valve; an intake passage having a surge tank connected to each of the independent passages; and an intake control valve provided for each independent passage; And the intake control valve provided for each independent passage includes at least two intake control valves having different distances to the intake valve, and the intake control valve has the same distance to the intake valve. Is an intake control device for a multi-cylinder internal combustion engine driven by a common valve shaft,
The cross-sectional area of the independent passage where the distance from the open end to the intake control valve with respect to the surge tank of the independent passage provided for each cylinder is different from each other and the distance from the open end to the intake control valve is short An intake control device for a multi-cylinder internal combustion engine, wherein the distance from the open end to the intake control valve is smaller than the cross-sectional area of the independent passage.
前記開放端から前記吸気制御弁までの距離が短い前記独立通路は、その通路断面積が前記サージタンクに向かって徐々に縮小するように構成されている請求項4に記載の吸気制御装置。   The intake control device according to claim 4, wherein the independent passage having a short distance from the open end to the intake control valve is configured such that a passage cross-sectional area thereof gradually decreases toward the surge tank. 前記開放端から前記吸気制御弁までの距離が短い前記独立通路に設けられた前記吸気制御弁の大きさが、前記開放端から前記吸気制御弁までの距離が長い前記独立通路に設けられた前記吸気制御弁の大きさよりも小さい請求項4に記載の吸気制御装置。   The size of the intake control valve provided in the independent passage where the distance from the open end to the intake control valve is short is the size of the intake control valve provided in the independent passage where the distance from the open end to the intake control valve is long. The intake control device according to claim 4, wherein the intake control valve is smaller than a size of the intake control valve.
JP2008033605A 2008-02-14 2008-02-14 Intake control device for multi-cylinder internal combustion engine Expired - Fee Related JP4901779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033605A JP4901779B2 (en) 2008-02-14 2008-02-14 Intake control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033605A JP4901779B2 (en) 2008-02-14 2008-02-14 Intake control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009191746A true JP2009191746A (en) 2009-08-27
JP4901779B2 JP4901779B2 (en) 2012-03-21

Family

ID=41073989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033605A Expired - Fee Related JP4901779B2 (en) 2008-02-14 2008-02-14 Intake control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4901779B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222049A (en) * 2013-05-14 2014-11-27 株式会社デンソー Intake system of internal combustion engine
JP2019027393A (en) * 2017-08-01 2019-02-21 マツダ株式会社 Engine intake passage structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136419A (en) * 1990-09-28 1992-05-11 Mazda Motor Corp Intake device for engine
JPH08218906A (en) * 1995-02-10 1996-08-27 Nippondenso Co Ltd Intake air control device for internal combustion engine
JP2006194120A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Intake device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136419A (en) * 1990-09-28 1992-05-11 Mazda Motor Corp Intake device for engine
JPH08218906A (en) * 1995-02-10 1996-08-27 Nippondenso Co Ltd Intake air control device for internal combustion engine
JP2006194120A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Intake device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222049A (en) * 2013-05-14 2014-11-27 株式会社デンソー Intake system of internal combustion engine
JP2019027393A (en) * 2017-08-01 2019-02-21 マツダ株式会社 Engine intake passage structure

Also Published As

Publication number Publication date
JP4901779B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP5007825B2 (en) Multi-cylinder engine
US8185295B2 (en) Multi-cylinder engine
US9874166B2 (en) Method for controlling vibrations during transitions in a variable displacement engine
JP2010196486A (en) Engine with variable valve gear
JP2011214469A (en) Exhaust device of multi-cylinder engine
JP2006046293A (en) Intake air control device for internal combustion engine
US20160333801A1 (en) Four-cylinder engine and method of operating four-cylinder engine
JP2011099392A (en) Variable valve gear for internal combustion engine
JP2009257169A (en) Multi-cylinder engine
JP4901779B2 (en) Intake control device for multi-cylinder internal combustion engine
JP5067331B2 (en) Engine valve timing variable device
JP2009127609A (en) Intake device for multi-cylinder internal combustion engine
JP5151866B2 (en) Engine exhaust control device
JP4985814B2 (en) Multi-cylinder engine
JP6538440B2 (en) Control device for internal combustion engine
JP4561445B2 (en) Multi-cylinder engine intake system
JPH071009B2 (en) Engine intake control device
JP4410772B2 (en) Intake device for multi-cylinder internal combustion engine
JP2006161633A (en) Control device for internal combustion engine
JP5407992B2 (en) Exhaust system for multi-cylinder engine
JP2008057345A (en) Intake device
JP2010229911A (en) Control device for variable valve train
JP2011102558A (en) Engine with variable valve gear
JP5067026B2 (en) Control device for internal combustion engine
JP2006283570A (en) Control device of multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R151 Written notification of patent or utility model registration

Ref document number: 4901779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees