JP2009190067A - Laser welding method, semiconductor device, and its manufacturing method - Google Patents

Laser welding method, semiconductor device, and its manufacturing method Download PDF

Info

Publication number
JP2009190067A
JP2009190067A JP2008034297A JP2008034297A JP2009190067A JP 2009190067 A JP2009190067 A JP 2009190067A JP 2008034297 A JP2008034297 A JP 2008034297A JP 2008034297 A JP2008034297 A JP 2008034297A JP 2009190067 A JP2009190067 A JP 2009190067A
Authority
JP
Japan
Prior art keywords
laser
upper member
laser welding
heat
control terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008034297A
Other languages
Japanese (ja)
Other versions
JP5453720B2 (en
Inventor
Katsuhiko Yoshihara
克彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008034297A priority Critical patent/JP5453720B2/en
Publication of JP2009190067A publication Critical patent/JP2009190067A/en
Application granted granted Critical
Publication of JP5453720B2 publication Critical patent/JP5453720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method by which, even if an upper side member has a small heat capacity and the vicinity of a weld portion is a body of small heat capacity, high joining strength is obtained, and a semiconductor device, and its manufacturing method. <P>SOLUTION: When superimposing an upper side member 5, which has a small heat capacity, on a lower side member 1 and laser welding them, a heat transfer probe 8 for heatsinking a heat generated in welding is pressed against the vicinity of a laser weld portion 6. Thereby, melt rising of a weld part 9 is prevented and a joining area is secured, so that high joining strength is obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、2つの部材を重ね合わせた状態でレーザ溶接を行う場合において、上側部材の熱伝導率と熱容量が小さい場合でも、高い接合強度を確保できるレーザ溶接方法および半導体装置の製造方法に関する。   The present invention relates to a laser welding method and a semiconductor device manufacturing method capable of ensuring high joint strength even when laser welding is performed in a state where two members are overlapped, even when the thermal conductivity and heat capacity of an upper member are small.

図6は、熱容量が大きな上側部材を溶接した場合の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した溶接後の要部断面図である。この上側部材2は面積が広く、厚みが厚く、熱容量が大きな部材あり、レーザ照射が照射される箇所(レーザ照射箇所6)が上側部材2の端部から離れている場合である。また、溶接部材とは上側部材2と下側部材1のことである。
2つの部材を重ね合わせた状態で上側部材2の表面にレーザ光4を照射し、上側部材2と下側部材2を溶接している。熱容量が大きい上側部材2は、下側部材1との間に良好な溶接部27が形成され、照射するレーザ光4のパワー密度を調整することで必要とする溶接面積を得ることができる。
このパワー密度はレーザ光4のパワーと、照射する面積により決まる。パワー密度を高くしたい場合には、レーザパワーを高くするか、照射面積を小さくすれば良い。パワー密度を低くしたい場合には、レーザパワーを低くするか、照射面積を大きくすれば良い。
一方、上側部材2の熱容量が小さい場合には、下側部材1が十分溶ける温度まで昇温する前に、上側部材2が溶融し、その溶け上がりにレーザパワーが消費されるため、下側部材1との溶接面積が充分得られないことになる。特に、上側部材の熱伝導率が小さな場合に溶け上がりが顕著になる。このことをつぎに説明する。
FIGS. 6A and 6B are configuration diagrams when the upper member having a large heat capacity is welded. FIG. 6A is a plan view of the main part, and FIG. 6B is a weld cut along line XX in FIG. It is subsequent principal part sectional drawing. The upper member 2 is a member having a large area, a large thickness, and a large heat capacity, and the portion irradiated with laser irradiation (laser irradiation portion 6) is separated from the end of the upper member 2. Further, the welding members are the upper member 2 and the lower member 1.
The laser beam 4 is irradiated on the surface of the upper member 2 in a state where the two members are overlapped, and the upper member 2 and the lower member 2 are welded. The upper member 2 having a large heat capacity is formed with a good welded portion 27 between the lower member 1 and a required welding area can be obtained by adjusting the power density of the laser light 4 to be irradiated.
This power density is determined by the power of the laser beam 4 and the area to be irradiated. In order to increase the power density, the laser power may be increased or the irradiation area may be decreased. When it is desired to reduce the power density, the laser power may be decreased or the irradiation area may be increased.
On the other hand, when the heat capacity of the upper member 2 is small, the upper member 2 is melted before the temperature is raised to a temperature at which the lower member 1 is sufficiently melted, and the laser power is consumed for the melting. A sufficient weld area with 1 cannot be obtained. In particular, when the upper member has a low thermal conductivity, the melt-up becomes significant. This will be described next.

図7は、熱容量が小さな上側部材を溶接する場合の構成図であり、同図(a)は平面図、同図(b)は同図(a)のX−X線で切断したレーザ照射直後の要部断面図、同図(c)は同図(a)のX−X線で切断した溶接後の要部断面図である。図7では上側部材5が熱伝導率が小さく、細長い長方形をしており、レーザ溶接箇所6が上側部材5の端部近傍である場合を示す。
同図(a)に示すように下側部材1の上面に上側部材5が重ねられ、同図(b)に示すようにレーザ光4が上側部材5の端部近傍の表面に照射され、同図(c)に示すように上側部材5の先端部分が溶融する。
図7に示すような、幅の狭い細長い長方形で熱伝導率の小さな上側部材5を溶接する場合、照射したレーザ光4が上側部材5のレーザ照射箇所6近傍に吸収されて熱エネルギに変換され加熱される。
上側部材5の熱伝導率が小さくレーザ照射箇所6から上側部材5の端部までの最短距離Lが小さい場合には、下側部材1が融点温度に達する前に、レーザ照射箇所6近傍の上側部材5が急速に融点温度に達してしまい、下側部材1の溶融が不十分な状態で、同図(c)に示したように上側部材5の先端部分が溶け上がり、溶接部28に溶け上がり7を生じる。
FIGS. 7A and 7B are configuration diagrams in the case of welding the upper member having a small heat capacity. FIG. 7A is a plan view, and FIG. 7B is a state immediately after laser irradiation cut along the XX line of FIG. The principal part sectional drawing of this, and the figure (c) are principal part sectional drawings after the welding cut | disconnected by the XX line of the figure (a). FIG. 7 shows a case where the upper member 5 has a small thermal conductivity and has an elongated rectangular shape, and the laser welding location 6 is near the end of the upper member 5.
The upper member 5 is superimposed on the upper surface of the lower member 1 as shown in FIG. 5A, and the laser beam 4 is irradiated on the surface near the end of the upper member 5 as shown in FIG. As shown in FIG. 3C, the tip portion of the upper member 5 is melted.
When the upper member 5 having a narrow and narrow width and a low thermal conductivity as shown in FIG. 7 is welded, the irradiated laser beam 4 is absorbed in the vicinity of the laser irradiation point 6 of the upper member 5 and converted into thermal energy. Heated.
When the thermal conductivity of the upper member 5 is small and the shortest distance L from the laser irradiation point 6 to the end of the upper member 5 is small, the upper side near the laser irradiation point 6 is reached before the lower member 1 reaches the melting point temperature. When the member 5 rapidly reaches the melting point temperature and the lower member 1 is not sufficiently melted, the tip portion of the upper member 5 is melted and melted in the welded portion 28 as shown in FIG. A rise 7 is produced.

このような溶接部28では、上側部材5の溶け上がり7が生じても下側部材1に溶け込むことがなく、溶接部28は下側部材1の表面に接触しているだけの状態となる。この場合、溶接部28の接合強度は著しく低くなる。
この溶け上がり7を回避するため、レーザ光4のパワー自体を低くするか、照射面積を広げることでパワー密度を下げることが考えられるが、パワー密度を下げた場合には下側部材1の温度が上がらず、図6(b)に示したような溶接部27を得ることは困難となる。
ところで、レーザ溶接においては、溶接部材の蒸発にともなったキーホール形成による溶接形態と、単純に熱伝導による溶接形態とがある。図6(b)に示したような縦長(ナゲット径(表面の溶融径)に対して溶融深さの方が大きい)の溶接部27を形成するためには、キーホール型の溶接形態とする必要がある。
このキーホール型溶接の特徴は、短時間のパルスレーザ照射で溶接が行えるという点にあり、図7に示したような細長の上側部材5のような表面積の小さな部材を瞬時に加熱して溶接する場合に有利である。
しかし、このキーホール型溶接の場合でも、熱伝導率が小さく熱容量が小さな部材では、熱が蓄積されて部材の溶け上がり7が生じて、接合面積が小さくなり接合強度が小さくなる。
In such a welded portion 28, even if the upper member 5 melts up, it does not melt into the lower member 1, and the welded portion 28 is only in contact with the surface of the lower member 1. In this case, the joint strength of the welded portion 28 is significantly reduced.
In order to avoid this melt-up 7, it is conceivable to lower the power density by reducing the power of the laser beam 4 or increasing the irradiation area. However, when the power density is lowered, the temperature of the lower member 1 is reduced. It is difficult to obtain the welded portion 27 as shown in FIG.
By the way, in laser welding, there are a welding form by keyhole formation accompanying the evaporation of the welding member and a welding form simply by heat conduction. In order to form the welded portion 27 having a vertically long shape (the melt depth is larger than the nugget diameter (surface melt diameter)) as shown in FIG. There is a need.
A feature of this keyhole type welding is that welding can be performed by short-time pulse laser irradiation. A member having a small surface area such as the elongated upper member 5 as shown in FIG. This is advantageous.
However, even in the case of this keyhole type welding, in a member having a small thermal conductivity and a small heat capacity, heat is accumulated and the member melts up 7 to reduce the joining area and the joining strength.

特に、上側部材5の幅が狭い場合には部材5の端部からレーザ照射箇所6までの最短距離L内にある体積Vが小さい小熱容量体の場合に溶け上がり7が顕著になる。
例えば、上側部材の幅Wが1.5mm、厚さTが0.8mmの場合に、上側部材5の端部からレーザ光照射箇所6までの最短距離Lを3mmとした場合、体積Vは、L×W×T=3mm×1.5mm×0.8mm=3.6mm3となる。体積Vがこの程度小さくなると熱伝導率の小さな部材では、キーホール型であっても熱が蓄積されて溶け上がり7が生じる。この体積Vが4mm3程度以上となると溶け上がり7は生じにくくなることが実験的に確認されているので、ここでは体積Vが4mm3以下の場合を便宜的に、この箇所を小熱容量体と呼ぶことにする。
また、キーホール型のレーザ光4としては、YAGレーザ(波長1064nm)やYAGレーザの第2高調波(波長532nm)が使用できる。
一方、熱伝導型の溶接形態では縦長の溶融部を得ることが出来ないため、所望の溶接面積を得るためには、YAGレーザの場合よりも長い時間レーザを照射する必要がある。
熱伝導型溶接のレーザ光としては半導体レーザ(波長600nm〜900nm)が使用できる。熱伝導型溶接の場合には、長い時間レーザ光を照射するため、図7に示したような熱伝導率が小さな部材で溶接箇所近傍が小熱容量体の場合では、キーホール型と同様にレーザ溶接された熱が上側部材5中に蓄積され、下側部材1と溶接されるよりも先に上側部材5自身が溶け上がってしまい、所望の溶接面積が得られない。
In particular, when the width of the upper member 5 is narrow, the melt 7 becomes noticeable in the case of a small heat capacity body having a small volume V within the shortest distance L from the end of the member 5 to the laser irradiation point 6.
For example, when the width W of the upper member is 1.5 mm and the thickness T is 0.8 mm, when the shortest distance L from the end of the upper member 5 to the laser beam irradiation point 6 is 3 mm, the volume V is L × W × T = 3 mm × 1.5 mm × 0.8 mm = 3.6 mm 3 When the volume V is reduced to such a degree, in a member having a low thermal conductivity, even if it is a keyhole type, heat is accumulated and melted 7 occurs. Since it has been experimentally confirmed that the melt 7 is less likely to occur when the volume V is about 4 mm 3 or more. Here, for convenience when the volume V is 4 mm 3 or less, this portion is referred to as a small heat capacity body. I will call it.
As the keyhole type laser beam 4, a YAG laser (wavelength 1064 nm) or a second harmonic of a YAG laser (wavelength 532 nm) can be used.
On the other hand, in the heat conduction type welding mode, a vertically long melted portion cannot be obtained. Therefore, in order to obtain a desired welding area, it is necessary to irradiate the laser for a longer time than in the case of the YAG laser.
A semiconductor laser (wavelength: 600 nm to 900 nm) can be used as the laser beam for heat conduction welding. In the case of heat conduction type welding, the laser beam is irradiated for a long time. Therefore, in the case of a member having a small thermal conductivity as shown in FIG. The welded heat is accumulated in the upper member 5, and the upper member 5 melts before being welded to the lower member 1, and a desired welding area cannot be obtained.

短時間で溶接が可能なYAGレーザにおいて、熱伝導率が小さな部材でレーザ溶接箇所近傍が小熱容量体の場合には、前記したように部材の過度な溶け上がり7が生じる。特に、上側部材5として熱伝導率の小さなステンレス鋼やリン青銅を用いた場合には、溶接される箇所の上側部材5の体積が小さく熱容量が小さい小熱容量体ときに顕著に現れる。このリン青銅はバネ作用があり、半導体装置における制御端子の材料としてよく用いられる。
図8〜図10は、従来の半導体装置の製造方法を工程順に示した製造工程図であり、各工程図で(a)は要部製造工程平面図、(b)は(a)のX−X線で切断した要部製造工程断面図である。
図8〜図10は制御端子17を絶縁回路基板40上に形成された制御端子用パッド12にレーザ溶接する場合の工程を示す。
図8(a)および図8(b)において、セラミクス10・コレクタ銅箔11・制御端子用パッド12からなる絶縁回路基板40にIGBTチップ13をはんだ15により接合する。工程としては、絶縁回路基板40上に形成されたコレクタ銅箔11の上面にはんだ15を配置し、その上にIGBTチップ13を載せ、加熱することによりはんだ15を溶融させ、冷却することでコレクタ銅箔11とIGBTチップ13とを接合する。
In a YAG laser that can be welded in a short time, when the thermal conductivity is a member with a small heat capacity in the vicinity of the laser welding location, excessive melting 7 of the member occurs as described above. In particular, when stainless steel or phosphor bronze having a small thermal conductivity is used as the upper member 5, it appears remarkably when the volume of the upper member 5 at the location to be welded is small and the heat capacity is small. This phosphor bronze has a spring action and is often used as a material for control terminals in semiconductor devices.
8 to 10 are manufacturing process diagrams showing a conventional method of manufacturing a semiconductor device in the order of processes. In each process diagram, (a) is a plan view of a main part manufacturing process, and (b) is an X- It is principal part manufacturing process sectional drawing cut | disconnected by X-ray | X_line.
8 to 10 show steps in the case of laser welding the control terminal 17 to the control terminal pad 12 formed on the insulated circuit board 40. FIG.
8A and 8B, the IGBT chip 13 is joined to the insulating circuit board 40 including the ceramics 10, the collector copper foil 11, and the control terminal pads 12 with solder 15. As a process, the solder 15 is disposed on the upper surface of the collector copper foil 11 formed on the insulating circuit board 40, the IGBT chip 13 is placed thereon, and the solder 15 is melted by heating, and then cooled. The copper foil 11 and the IGBT chip 13 are joined.

次に、図9(a)および図9(b)において、IGBTチップ13に形成された電気信号取り出し用の制御信号用パッド14と、絶縁回路基板40に形成された制御端子用パッド12とをアルミワイヤ16で電気的に接続する。
次に、図10(a)および図10(b)において、リン青銅の制御端子17を制御端子用パッド12に押し当て、レーザ光19を照射する箇所(レーザ照射箇所18)で溶接部22を形成する。ここで使用する制御端子17の材質はリン青銅であり、表面にはその後のはんだ付け工程のためにスズめっきが施されている。リン青銅の熱伝導率は67W/mKであり純銅の17%程度である。
図11は図10のA部拡大図であり、同図(a)はレーザ照射直後で制御端子17がまだ解け始めていない状態の図であり、同図(b)は制御端子17がレーザ光19によって溶融し、再凝固した状態の図である。
図11において、例えば、制御端子の幅Wが1.5mm、厚さTが0.8mmの場合に、制御端子の端部からの最短距離Lの位置にレーザ光を照射したとすると、小容量体の体積Vは、3mm×1.5mm×0.8mm=3.6mm3となる。小容量体の体積Vがこの程度小さくなるとリン青銅のような熱伝導率の小さな部材では、キーホール型であっても熱が蓄積されて溶接部29に溶け上がり20が生じる。
Next, in FIG. 9A and FIG. 9B, the control signal pad 14 for extracting an electric signal formed on the IGBT chip 13 and the control terminal pad 12 formed on the insulating circuit board 40 are used. Electrical connection is made with an aluminum wire 16.
Next, in FIGS. 10A and 10B, the phosphor bronze control terminal 17 is pressed against the control terminal pad 12, and the welded portion 22 is attached at a position where the laser beam 19 is irradiated (laser irradiation position 18). Form. The material of the control terminal 17 used here is phosphor bronze, and the surface is plated with tin for the subsequent soldering process. The thermal conductivity of phosphor bronze is 67 W / mK, which is about 17% of pure copper.
FIG. 11 is an enlarged view of a part A in FIG. 10. FIG. 11 (a) is a diagram showing a state in which the control terminal 17 has not yet begun immediately after laser irradiation, and FIG. It is the figure of the state which melted and re-solidified by.
In FIG. 11, for example, when the width W of the control terminal is 1.5 mm and the thickness T is 0.8 mm, if the laser beam is irradiated to the position of the shortest distance L from the end of the control terminal, the small capacity The volume V of the body is 3 mm × 1.5 mm × 0.8 mm = 3.6 mm 3 . When the volume V of the small-capacity body is reduced to this extent, heat is accumulated in a member having a low thermal conductivity such as phosphor bronze even if it is a keyhole type, and melts 20 in the welded portion 29.

用いるレーザ光はYAGレーザ(波長1064nm)でスポット径はφ0.4mm〜φ1.0mmである。制御端子17の素材に純銅を用いた場合には、熱容量が小さな上述の制御端子17でも、下側の制御端子用パッド12に溶接時の熱が逃げやすいために、図11に示したような過度の溶け上がり20は無い。
しかし、リン青銅に比べてバネ作用が無いため、制御端子用パッド12に押し当てた状態を保持することが困難である。このため、制御端子17の素材に純銅を用いるには、溶接時に制御端子17を加圧保持するような治具が必要となる。リン青銅を用いた場合には、図示しないリン青銅をインサート成型した端子ケースにより、制御端子17が制御端子用パッド12に押し当てられた状態を保持できるため治具が不要である。
しかしながら、制御端子17の素材としてリン青銅を用いた場合には、熱伝導率が純銅の1/5程度であり、体積Vが4mm3以下の小熱容量体となる場合には、熱が蓄積されて過度に溶け上がり20が生じてしまうという不都合が生じる。
このように、溶け上がり20が生じると、溶融・再凝固した制御端子17の溶接部29は、制御端子用パッド12に溶け込むことが無く、極めて接合強度が低下してしまう。
また、特許文献1において、高強度鋼板をレーザ溶接方法で溶接する場合、溶接進行方向に対して、レーザ照射位置の後方近傍にロール式抜熱体を接触させて冷却しながら溶接することが開示されている。
特開2006−68808号公報
The laser beam used is a YAG laser (wavelength 1064 nm) and the spot diameter is φ0.4 mm to φ1.0 mm. When pure copper is used as the material of the control terminal 17, even when the above-described control terminal 17 has a small heat capacity, heat at the time of welding can easily escape to the lower control terminal pad 12, so as shown in FIG. There is no excessive melt 20.
However, since there is no spring action compared to phosphor bronze, it is difficult to keep the state pressed against the control terminal pad 12. For this reason, in order to use pure copper for the material of the control terminal 17, a jig for holding the control terminal 17 under pressure during welding is required. When phosphor bronze is used, a jig is unnecessary because the terminal case in which phosphor bronze (not shown) is insert-molded can keep the control terminal 17 pressed against the control terminal pad 12.
However, when phosphor bronze is used as the material of the control terminal 17, heat is accumulated when the thermal conductivity is about 1/5 of pure copper and the volume V is 4 mm 3 or less. Therefore, there is a disadvantage that the melt 20 is excessively generated.
As described above, when the melted-up 20 occurs, the welded portion 29 of the control terminal 17 that has been melted and re-solidified does not melt into the control terminal pad 12 and the joint strength is extremely reduced.
Moreover, in patent document 1, when welding a high-strength steel plate with a laser welding method, it is disclosed that welding is performed while cooling a roll-type heat removal body in the vicinity of the rear of the laser irradiation position with respect to the welding progress direction. Has been.
JP 2006-68808 A

このように、熱伝導率が小さい上側部材5(制御端子17)で溶接箇所近傍が小熱容量体である場合、溶接部28(溶接部29)は過度に溶け上がってしまうため、充分な溶接面積を確保することが困難となる。
また、前記の特許文献1では、上側部材も下側部材も大面積の鋼板を対象としおり、抜熱体としてはロール式が記載されているが、半導体装置の制御端子のような上側部材で溶接箇所近傍が小熱容量体である場合に抜熱体で押さえて吸熱し、レーザ溶接による上側部材の過度な溶け上がり量を防止する方法については記載されていない。
この発明の目的は、前記の課題を解決して、熱伝導率が小さい上側部材で溶接箇所近傍が小熱容量体の場合でも、過度な溶け上がりがなく十分な溶接面積を確保し、高い接合強度を得ることができるレーザ溶接方法および半導体装置とその製造方法を提供することである。
In this way, when the upper member 5 (control terminal 17) having a small thermal conductivity is a small heat capacity body in the vicinity of the welded portion, the welded portion 28 (welded portion 29) melts excessively, so that a sufficient welding area is obtained. It becomes difficult to ensure.
Further, in Patent Document 1, both the upper member and the lower member are for large-area steel plates, and a roll type is described as the heat removal body, but the upper member such as a control terminal of a semiconductor device is used. In the case where the vicinity of the welded portion is a small heat capacity body, there is no description about a method for suppressing heat absorption by the heat removal body and preventing excessive melting of the upper member by laser welding.
The object of the present invention is to solve the above-mentioned problems and ensure a sufficient welding area without excessive melting even when the vicinity of the welded portion is a small heat capacity body with an upper member having a low thermal conductivity, and a high joint strength. A laser welding method and a semiconductor device and a method of manufacturing the same.

前記の目的を達成するために、2つの部材を重ね合わせた状態で上側部材にレーザ光を照射することにより、2つの部材を接合するレーザ溶接方法において、前記上側部材のレーザ照射される箇所近傍に抜熱体を接してレーザ溶接を行う方法とする。
また、前記上側部材の形状が細長い長方形であり、前記レーザ照射される箇所が前記上側部材の長手方向の一方の端部近傍に位置し、前記レーザ照射される箇所から前記長手方向の一方の端部までの最短距離と前記上側部材の幅と前記上側部材の厚さの積で算出される前記上側部材の体積が所定の体積以下の小熱容量体である上側部材に効果的である。
また、前記上側部材の材質が純銅の熱伝導率の半分以下であり、前記所定の体積が4mm3である上側部材の場合に効果的である。
また、前記抜熱体が熱を外部に伝達する伝熱プローブであり、該伝熱プローブを前記上側部材に押し当てながらレーザ溶接する方法とする。
また、前記伝熱プローブの材料の熱伝導率が、溶接する上側部材と同等かそれ以上であるとよい。
また、前記上側部材と接しない前記伝熱プローブの他方の端部が冷却手段(冷却体など)に接続されていると連続してレーザ溶接する場合に抜熱効果を高めることができる。
In order to achieve the above object, in the laser welding method for joining two members by irradiating the upper member with laser light in a state where the two members are overlapped, in the vicinity of the portion of the upper member where the laser is irradiated A method of performing laser welding by contacting a heat-extracting body to the surface.
In addition, the shape of the upper member is a long and narrow rectangle, and the portion irradiated with the laser is located in the vicinity of one end in the longitudinal direction of the upper member, and one end in the longitudinal direction from the portion irradiated with the laser It is effective for the upper member which is a small heat capacity body in which the volume of the upper member calculated by the product of the shortest distance to the part, the width of the upper member and the thickness of the upper member is a predetermined volume or less.
Further, it is effective in the case of the upper member in which the material of the upper member is less than half the thermal conductivity of pure copper and the predetermined volume is 4 mm 3 .
The heat removal body is a heat transfer probe that transfers heat to the outside, and laser welding is performed while pressing the heat transfer probe against the upper member.
Moreover, the thermal conductivity of the material of the heat transfer probe is preferably equal to or higher than that of the upper member to be welded.
Further, when the other end portion of the heat transfer probe that is not in contact with the upper member is connected to a cooling means (cooling body or the like), the heat removal effect can be enhanced when laser welding is continuously performed.

また、前記レーザ溶接に用いるレーザ光の波長が1064nm(YAGレーザ)または532nm(YAGレーザの第2高調波)であると効果的である。
また、絶縁回路基板を構成する複数の回路パターンと、該回路パターンのうち第1の回路パターンにはんだで固着される半導体チップと、第2の回路パターンにレーザ溶接で固着される制御信号を伝達する制御端子とを備える半導体装置において、前記レーザ溶接で発生する熱を伝熱プローブで抜熱しながら形成された溶接部で前記制御端子と前記第2の回路パターンとを固着するとよい。
また、前記制御端子の熱伝導率が純銅の熱伝導率の半分以下であるとよい。
また、前記制御端子の材質がバネ作用を有するリン青銅である場合に効果を発揮する。
また、絶縁回路基板を構成する複数の回路パターンと、該回路パターンのうち第1の回路パターンにはんだで固着される半導体チップと、第2の回路パターンにレーザ溶接で固着される制御信号を伝達する制御端子とを備える半導体装置の製造方法において、前記レーザ溶接で発生する熱を前記制御端子に押し当てた伝熱プローブで抜熱しながらレーザ溶接を行なうとよい。
Further, it is effective that the wavelength of the laser beam used for the laser welding is 1064 nm (YAG laser) or 532 nm (second harmonic of YAG laser).
In addition, a plurality of circuit patterns constituting the insulated circuit board, a semiconductor chip fixed to the first circuit pattern of the circuit patterns with solder, and a control signal fixed to the second circuit pattern by laser welding are transmitted. In the semiconductor device including the control terminal, the control terminal and the second circuit pattern may be fixed to each other at a weld formed while the heat generated by the laser welding is removed by a heat transfer probe.
The thermal conductivity of the control terminal may be less than or equal to half that of pure copper.
Further, the effect is exhibited when the material of the control terminal is phosphor bronze having a spring action.
In addition, a plurality of circuit patterns constituting the insulated circuit board, a semiconductor chip fixed to the first circuit pattern of the circuit patterns with solder, and a control signal fixed to the second circuit pattern by laser welding are transmitted. In the method of manufacturing a semiconductor device including the control terminal, the laser welding may be performed while the heat generated by the laser welding is removed by a heat transfer probe pressed against the control terminal.

実施の形態を以下の実施例で説明する。尚、従来構造の部位と同一の部位には同一の符号を付した。   Embodiments will be described in the following examples. In addition, the same code | symbol was attached | subjected to the site | part same as the site | part of a conventional structure.

図1は、この発明の第1実施例の小熱容量体のレーザ溶接方法を示す構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断したレーザ照射直後の要部断面図、同図(c)は同図(a)のX−X線で切断した溶接後の要部断面図である。
下側部材1の上面に上側部材5を重ね、さらに上側部材5のレーザ照射箇所6(レーザ照射を行う場所)に近い部分に伝熱プローブ8を押し当てた状態でレーザ光4を照射する。上側部材5は細長い長方形をしておりその幅は狭い。レーザ光4が上側部材5の表面に吸収され、熱エネルギに変換されることによって上側部材5のレーザ照射箇所6が溶融する。ここで、レーザ光が照射された上側部材5は、照射されたレーザスポット径に対してその幅が数倍程度しかないために熱が蓄積されていく。特に、上側部材5の材質が純銅の熱伝導率の半分以下で、上側部材5の形状が細長い長方形であり、前記レーザ照射箇所6が上側部材6の端部近傍に位置し、前記レーザ照射箇所6から端部まで最短距離Lと上側部材5の幅Wと上側部材6の厚さTの積で算出される前記上側部材の体積25が4mm3以下と体積が小さい場合には、この箇所が小熱容量体となり熱の蓄積が著しくなる。
しかしながら、レーザ照射箇所6の近傍に伝熱プローブ8が押し当てられているため、熱は伝熱プローブ8に伝導して抜熱されるので、上側部材5の溶接部9への入熱過多となることが無い。このため、図7(c)に示すような溶け上がりが無く、充分な溶接面積を確保できる。
1A and 1B are configuration diagrams showing a laser welding method for a small heat capacity body according to a first embodiment of the present invention, in which FIG. 1A is a plan view of an essential part and FIG. 1B is an X of FIG. 1A. FIG. 6C is a cross-sectional view of the main part immediately after laser irradiation cut by -X-ray, and FIG.
The upper member 5 is overlapped on the upper surface of the lower member 1, and the laser beam 4 is irradiated in a state where the heat transfer probe 8 is pressed against a portion of the upper member 5 close to the laser irradiation spot 6 (place where laser irradiation is performed). The upper member 5 has an elongated rectangular shape and its width is narrow. The laser beam 4 is absorbed by the surface of the upper member 5 and converted into thermal energy, so that the laser irradiation portion 6 of the upper member 5 is melted. Here, since the upper member 5 irradiated with the laser beam has only a few times the width of the irradiated laser spot diameter, heat is accumulated. In particular, the material of the upper member 5 is less than half of the thermal conductivity of pure copper, the shape of the upper member 5 is an elongated rectangle, the laser irradiation spot 6 is located near the end of the upper member 6, and the laser irradiation spot When the volume 25 of the upper member calculated by the product of the shortest distance L, the width W of the upper member 5 and the thickness T of the upper member 6 is as small as 4 mm 3 or less, the location is It becomes a small heat capacity body and heat accumulation becomes remarkable.
However, since the heat transfer probe 8 is pressed in the vicinity of the laser irradiation spot 6, the heat is conducted to the heat transfer probe 8 and is removed, so that the heat input to the welded portion 9 of the upper member 5 is excessive. There is nothing. For this reason, there is no melting as shown in FIG. 7C, and a sufficient welding area can be secured.

尚、前記の体積Vが4mm3より大きい場合には、熱容量が大きくなるため、溶け上がりが少なくなり、必ずしも伝熱プローブ8を押し当てる必要はない。
また、図1(c)では上側部材5の端部が溶融していないが、前記の体積Vがさらに小さくなると端部まで溶融するようになるが、伝熱プローブ8で抜熱しているので溶接部9が盛り上がることはなく、高い接合強度が得られる。
図2に示すように上側部材5と接しない伝熱プローブ8の他方の端に冷却体30を取り付けて、伝熱プローブ8が蓄熱されないようにするとよい。特に、連続してレーザ溶接する場合には伝熱プローブ8が徐々に蓄熱されて行くため、熱を逃がす冷却体30の取り付けは有効である。また、伝熱プローブ8から効果的に抜熱できる冷却手段であれば冷却体30に限らない。
また、伝熱プローブ8の熱伝導率は、上側部材5の熱伝導率と同等以上であるとよい。勿論大きければ大きいほど伝熱プローブ8での抜熱効果が大きくなるので望ましい。
また、熱を効率的に外部へ逃がすヒートパイプで伝熱プローブ8を製作すると効果的である。
また、伝熱プローブ8の先端の大きさは、接触する熱容量の小さな上側部材5の幅よりも広くした方が効率よく熱伝導ができて好ましい。
また、用いるレーザ光4の波長は、1064nm(YAGレーザ)または532nm(YAGレーザの第2高調波)が好適である。
When the volume V is larger than 4 mm 3 , the heat capacity is increased, so that the melting is reduced and it is not always necessary to press the heat transfer probe 8.
Further, in FIG. 1C, the end of the upper member 5 is not melted. However, when the volume V is further reduced, it melts to the end, but since heat is removed by the heat transfer probe 8, welding is performed. The portion 9 does not rise and a high bonding strength is obtained.
As shown in FIG. 2, a cooling body 30 may be attached to the other end of the heat transfer probe 8 that does not contact the upper member 5 so that the heat transfer probe 8 is not stored with heat. In particular, in the case of continuous laser welding, the heat transfer probe 8 gradually accumulates heat, so it is effective to attach the cooling body 30 that releases heat. Further, the cooling body 30 is not limited as long as it is a cooling means that can effectively remove heat from the heat transfer probe 8.
Further, the thermal conductivity of the heat transfer probe 8 is preferably equal to or higher than the thermal conductivity of the upper member 5. Of course, a larger value is desirable because the heat removal effect of the heat transfer probe 8 is increased.
It is also effective to manufacture the heat transfer probe 8 with a heat pipe that efficiently releases heat to the outside.
Further, it is preferable that the tip of the heat transfer probe 8 is wider than the width of the upper member 5 having a small heat capacity to be in contact with the heat transfer probe 8 because heat conduction can be performed efficiently.
Further, the wavelength of the laser beam 4 used is preferably 1064 nm (YAG laser) or 532 nm (second harmonic of the YAG laser).

図3は、この発明の第2実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。この半導体装置は、図1のレーザ溶接方法を用いて製造した半導体装置の構成図である。
この半導体装置の構成は、絶縁回路基板40の回路パターンであるコレクタ銅箔11にはんだ15を介して半導体チップであるIGBTチップ13が固着し、IGBTチップ13の制御信号パッド14と絶縁回路基板40の制御端子用パッド12をアルミワイヤ16で接続する。純銅の制御端子用パッド12とリン青銅の制御端子17を伝熱プローブ21を押し当てながらのレーザ溶接による溶接部22で固着する。制御端子17は制御信号を伝達する端子である。
リン青銅の制御端子17に伝熱プローブ21を押し当てながらレーザ溶接することで溶け上がりなく接合面積も広く良好に制御端子17と絶縁回路基板40の制御端子用パッド21が溶接されている。伝熱プローブ21を押し当てた制御端子17にはその押し当てた痕跡(図3の痕跡31)が残留している場合もある。
また、このリン青銅の制御端子17はバネ作用があるので、外部からの圧接力が小さい場合でも制御端子17と制御端子用パッド12の密着性が良好となり、レーザ溶接ができる。
FIG. 3 is a block diagram of a semiconductor device according to a second embodiment of the present invention. FIG. 3 (a) is a plan view of an essential part, and FIG. 3 (b) is cut along line XX in FIG. 3 (a). It is principal part sectional drawing. This semiconductor device is a block diagram of a semiconductor device manufactured using the laser welding method of FIG.
In the configuration of this semiconductor device, an IGBT chip 13 as a semiconductor chip is fixed to a collector copper foil 11 which is a circuit pattern of the insulating circuit board 40 via a solder 15, and the control signal pad 14 of the IGBT chip 13 and the insulating circuit board 40 are fixed. These control terminal pads 12 are connected by an aluminum wire 16. The control terminal pad 12 made of pure copper and the control terminal 17 made of phosphor bronze are fixed by a welded portion 22 by laser welding while pressing the heat transfer probe 21. The control terminal 17 is a terminal that transmits a control signal.
The control terminal 17 and the control terminal pad 21 of the insulated circuit board 40 are well welded without being melted by laser welding while pressing the heat transfer probe 21 against the phosphor bronze control terminal 17. In some cases, the pressed trace (the trace 31 in FIG. 3) remains on the control terminal 17 pressed against the heat transfer probe 21.
Further, since the phosphor bronze control terminal 17 has a spring action, even when the external pressure contact force is small, the adhesion between the control terminal 17 and the control terminal pad 12 is improved, and laser welding can be performed.

尚、制御端子17のリン青銅は熱伝導率が純銅の1/5程度と小さい。また、図1に相当する箇所で、レーザ照射箇所18から制御端子17の端部まで最短距離Lと制御端子17の幅Wと制御端子17の厚さTの積で表される制御端子の体積V(後述の図4の体積V)は3mm×1.5mm×0.8mm=3.6mm3である。この体積Vは4mm3以下であり、小熱容量体であるので、レーザパワーで容易に温度が上昇し、溶け上がりが起こるが、伝熱プローブ21により抜熱しながらレーザ溶接することで溶け上がりを防止できる。 The phosphor bronze of the control terminal 17 has a thermal conductivity as small as about 1/5 of pure copper. 1, the volume of the control terminal represented by the product of the shortest distance L from the laser irradiation point 18 to the end of the control terminal 17, the width W of the control terminal 17, and the thickness T of the control terminal 17. V (volume V in FIG. 4 described later) is 3 mm × 1.5 mm × 0.8 mm = 3.6 mm 3 . This volume V is 4 mm 3 or less, and since it is a small heat capacity body, the temperature easily rises and melts up due to the laser power, but it is prevented by laser welding while removing heat with the heat transfer probe 21. it can.

図4は、この発明の第3実施例の半導体装置の製造方法を示した図であり、同図(a)、同図(b)は工程順に示した製造工程断面図であり、同図(a)はレーザ照射直後の製造工程断面図、同図(b)は溶接後の製造工程断面図である。この製造工程断面図は図3(b)のA部の断面に相当する。
図4は図3の半導体装置の製造方法であり、半導体装置に使用される絶縁回路基板40の純銅の制御端子用パッド12とリン青銅の制御端子17とのレーザ溶接時に、伝熱プローブ21を用いている。
リン青銅の制御端子17が絶縁回路基板40上に形成された純銅の制御端子用パッド12に押し当てられた状態でレーザ光19が照射される。このとき、レーザ照射箇所18近傍に伝熱プローブ21が押し当てられているため、レーザ光により生じた熱は熱容量の小さな制御端子17に蓄積されずに伝熱プローブ21に伝導していき、溶接部22は過度に溶け上がることが無く、充分な溶接面積を確保することができる。
伝熱プローブ21の材質としては、溶接する制御端子17(リン青銅)の熱伝導率と同等以上のものを用いるのが良い。例えば、純銅や銅合金などがよい。
図4の伝熱プローブ21の形状はテーパの付いた円柱状としたが、これに限らず熱伝導できれば角柱状でも構わない。また、図5に示す伝熱プローブ23のように段差を持った形状としても構わない。
4A and 4B are views showing a method of manufacturing a semiconductor device according to a third embodiment of the present invention. FIG. 4A and FIG. 4B are cross-sectional views of manufacturing steps shown in the order of steps. a) is a sectional view of the manufacturing process immediately after laser irradiation, and (b) is a sectional view of the manufacturing process after welding. This manufacturing process cross-sectional view corresponds to the cross section of the portion A in FIG.
FIG. 4 shows a manufacturing method of the semiconductor device of FIG. 3, and the heat transfer probe 21 is attached during laser welding of the pure copper control terminal pad 12 and the phosphor bronze control terminal 17 of the insulating circuit board 40 used in the semiconductor device. Used.
The laser light 19 is irradiated in a state where the phosphor bronze control terminal 17 is pressed against the pure copper control terminal pad 12 formed on the insulating circuit board 40. At this time, since the heat transfer probe 21 is pressed in the vicinity of the laser irradiation spot 18, the heat generated by the laser light is conducted to the heat transfer probe 21 without being accumulated in the control terminal 17 having a small heat capacity, and welded. The portion 22 does not melt excessively, and a sufficient welding area can be secured.
As a material for the heat transfer probe 21, a material equivalent to or higher than the thermal conductivity of the control terminal 17 (phosphor bronze) to be welded is preferably used. For example, pure copper or copper alloy is preferable.
Although the shape of the heat transfer probe 21 in FIG. 4 is a cylindrical column with a taper, the shape is not limited to this, and may be a prismatic shape as long as it can conduct heat. Moreover, it is good also as a shape with a level | step difference like the heat-transfer probe 23 shown in FIG.

この発明の第1実施例の小熱容量体のレーザ溶接方法を示す構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断したレーザ照射直後の要部断面図、(c)は(a)のX−X線で切断した溶接後の要部断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the laser welding method of the small heat capacity body of 1st Example of this invention, (a) is a principal part top view, (b) is immediately after laser irradiation cut | disconnected by the XX line of (a). Cross-sectional view of the main part, (c) is a cross-sectional view of the main part after welding cut along line XX in (a) 上側部材5と接しない伝熱プローブ8の他方の端に冷却体30を取り付けた図The figure which attached the cooling body 30 to the other end of the heat-transfer probe 8 which does not contact the upper member 5 この発明の第2実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図It is a block diagram of the semiconductor device of 2nd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). この発明の第3実施例の半導体装置の製造方法であり、(a)、(b)は工程順に示した製造工程断面図であり、(a)はレーザ照射直後の製造工程断面図、(b)は溶接後の製造工程断面図FIG. 4 is a manufacturing method of a semiconductor device according to a third embodiment of the present invention, wherein (a) and (b) are manufacturing process cross-sectional views shown in the order of processes; (a) is a manufacturing process cross-sectional view immediately after laser irradiation; ) Cross-sectional view of the manufacturing process after welding 段差を有する伝熱プローブの図Illustration of heat transfer probe with steps 熱容量が大きな上側部材を溶接した場合の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した溶接後の要部断面図It is a block diagram at the time of welding the upper member with a large heat capacity, (a) is a principal part top view, (b) is principal part sectional drawing after the welding cut | disconnected by the XX line of (a). 熱容量が小さな上側部材を溶接する場合の構成図であり、(a)は平面図、(b)は(a)のX−X線で切断したレーザ照射直後の要部断面図、(c)は(a)のX−X線で切断した溶接後の要部断面図It is a block diagram in the case of welding an upper member with a small heat capacity, (a) is a plan view, (b) is a main part cross-sectional view immediately after laser irradiation cut by the XX line of (a), (c) is Sectional drawing of the principal part after welding cut | disconnected by the XX line of (a) 従来の半導体装置の製造方法を製造工程図Manufacturing process diagram of conventional semiconductor device manufacturing method 図8に続く、従来の半導体装置の製造方法を製造工程図FIG. 8 is a manufacturing process diagram illustrating a conventional method for manufacturing a semiconductor device. 図9に続く、従来の半導体装置の製造方法を製造工程図FIG. 9 is a manufacturing process diagram illustrating a conventional method for manufacturing a semiconductor device. 図10のA部拡大図であり、(a)はレーザ照射直後で制御端子17がまだ解け始めていない状態の図であり、(b)は制御端子17がレーザ光19によって溶融し、再凝固した状態の図It is the A section enlarged view of Drawing 10, (a) is a figure in the state where control terminal 17 has not yet begun to melt immediately after laser irradiation, and (b) is the control terminal 17 melted by laser beam 19, and re-solidified. State diagram

符号の説明Explanation of symbols

1 下側部材
2、5 上側部材
4、19 レーザ光
6 レーザ照射箇所
7 溶け上がり
8、21、23 伝熱プローブ
9、22 溶接部
10 セラミックス
11 コレクタ銅箔
12 制御端子用パッド
13 IGBTチップ
14 制御信号用パッド
15 はんだ
16 アルミワイヤ
17 制御端子
18 レーザ照射箇所
30 冷却体
31 押さえ痕跡
40 絶縁回路基板
L 最短距離
W 幅
T 厚さ
V 体積(小熱容量体の体積)
DESCRIPTION OF SYMBOLS 1 Lower member 2, 5 Upper member 4, 19 Laser beam 6 Laser irradiation place 7 Melting up 8, 21, 23 Heat transfer probe 9, 22 Welding part 10 Ceramics 11 Collector copper foil 12 Pad for control terminal 13 IGBT chip 14 Control Signal pad 15 Solder 16 Aluminum wire 17 Control terminal 18 Laser irradiation point 30 Cooling body 31 Pressing trace 40 Insulated circuit board L Shortest distance W Width T Thickness V Volume (volume of small heat capacity body)

Claims (11)

2つの部材を重ね合わせた状態で上側部材にレーザ光を照射することにより、2つの部材を接合するレーザ溶接方法において、前記上側部材のレーザ照射される箇所近傍に抜熱体を接してレーザ溶接を行うことを特徴としたレーザ溶接方法。 In the laser welding method for joining two members by irradiating the upper member with laser light in a state where the two members are overlapped, a heat removal body is brought into contact with the laser irradiation portion of the upper member in the vicinity of the laser irradiation. Laser welding method characterized by performing. 前記上側部材の形状が細長い長方形であり、前記レーザ照射される箇所が前記上側部材の長手方向の一方の端部近傍に位置し、前記レーザ照射される箇所から前記長手方向の一方の端部までの最短距離と前記上側部材の幅と前記上側部材の厚さの積で算出される前記上側部材の体積が所定の体積以下の小熱容量体であることを特徴とする請求項1に記載のレーザ溶接方法。 The shape of the upper member is a long and narrow rectangle, and the portion irradiated with the laser is located near one end in the longitudinal direction of the upper member, from the portion irradiated with the laser to one end in the longitudinal direction. 2. The laser according to claim 1, wherein the volume of the upper member calculated by a product of the shortest distance of the first member, the width of the upper member, and the thickness of the upper member is a small heat capacity body having a predetermined volume or less. Welding method. 前記上側部材の材質が純銅の熱伝導率の半分以下であり、前記所定の体積が4mm3であることを特徴とする請求項2に記載のレーザ熔接方法。 3. The laser welding method according to claim 2, wherein a material of the upper member is not more than half of a thermal conductivity of pure copper, and the predetermined volume is 4 mm 3 . 前記抜熱体が熱を外部に伝達する伝熱プローブであり、該伝熱プローブを前記上側部材に押し当てながらレーザ溶接することを特徴とする請求項1に記載のレーザ溶接方法。 The laser welding method according to claim 1, wherein the heat removal body is a heat transfer probe that transfers heat to the outside, and laser welding is performed while pressing the heat transfer probe against the upper member. 前記伝熱プローブの材料の熱伝導率が、溶接する上側部材と同等かそれ以上であることを特徴とした請求項4に記載のレーザ溶接方法。 The laser welding method according to claim 4, wherein the heat conductivity of the material of the heat transfer probe is equal to or higher than that of the upper member to be welded. 前記上側部材と接しない前記伝熱プローブの他方の端部が冷却手段に接続されていることを特徴とした請求項4または5に記載のレーザ溶接方法。 6. The laser welding method according to claim 4, wherein the other end portion of the heat transfer probe not in contact with the upper member is connected to a cooling means. 前記レーザ溶接に用いるレーザ光の波長が1064nm(YAGレーザ)または532nm(YAGレーザの第2高調波)であることを特徴とした請求項1のレーザ溶接方法。 The laser welding method according to claim 1, wherein a wavelength of laser light used for the laser welding is 1064 nm (YAG laser) or 532 nm (second harmonic of YAG laser). 絶縁回路基板を構成する複数の回路パターンと、該回路パターンのうち第1の回路パターンにはんだで固着される半導体チップと、第2の回路パターンにレーザ熔接で固着される制御信号を伝達する制御端子とを備える半導体装置において、前記レーザ熔接で発生する熱を伝熱プローブで抜熱しながら形成された溶接部で前記制御端子と前記第2の回路パターンとを固着することを特徴とする半導体装置。 Control for transmitting a plurality of circuit patterns constituting the insulated circuit board, a semiconductor chip fixed to the first circuit pattern among the circuit patterns by solder, and a control signal fixed to the second circuit pattern by laser welding A semiconductor device comprising: a terminal, wherein the control terminal and the second circuit pattern are fixed to each other by a weld formed by removing heat generated by the laser welding with a heat transfer probe. . 前記制御端子の熱伝導率が純銅の熱伝導率の半分以下であることを特徴とする請求項8に記載の半導体装置。 The semiconductor device according to claim 8, wherein the thermal conductivity of the control terminal is not more than half of the thermal conductivity of pure copper. 前記制御端子の材質がバネ作用を有するリン青銅であることを特徴とする請求項9に記載の半導体装置。 The semiconductor device according to claim 9, wherein a material of the control terminal is phosphor bronze having a spring action. 絶縁回路基板を構成する複数の回路パターンと、該回路パターンのうち第1の回路パターンにはんだで固着される半導体チップと、第2の回路パターンにレーザ熔接で固着される制御信号を伝達する制御端子とを備える半導体装置の製造方法において、前記レーザ熔接で発生する熱を前記制御端子に押し当てた伝熱プローブで抜熱することを特徴とする半導体装置の製造方法。
Control for transmitting a plurality of circuit patterns constituting the insulated circuit board, a semiconductor chip fixed to the first circuit pattern among the circuit patterns by solder, and a control signal fixed to the second circuit pattern by laser welding A method of manufacturing a semiconductor device comprising: a terminal, wherein heat generated by the laser welding is removed by a heat transfer probe pressed against the control terminal.
JP2008034297A 2008-02-15 2008-02-15 Laser welding method, semiconductor device and manufacturing method thereof Expired - Fee Related JP5453720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034297A JP5453720B2 (en) 2008-02-15 2008-02-15 Laser welding method, semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034297A JP5453720B2 (en) 2008-02-15 2008-02-15 Laser welding method, semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009190067A true JP2009190067A (en) 2009-08-27
JP5453720B2 JP5453720B2 (en) 2014-03-26

Family

ID=41072568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034297A Expired - Fee Related JP5453720B2 (en) 2008-02-15 2008-02-15 Laser welding method, semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5453720B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299420A (en) * 2011-01-07 2013-09-11 富士电机株式会社 Semiconductor device and manufacturing method thereof
US20140042609A1 (en) * 2011-05-13 2014-02-13 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US9399268B2 (en) 2013-12-19 2016-07-26 Fuji Electric Co., Ltd. Laser welding method, laser welding jig, and semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246433A (en) * 2004-03-04 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for joining amorphous metal sheet, and hydrogen permeation unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246433A (en) * 2004-03-04 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for joining amorphous metal sheet, and hydrogen permeation unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299420A (en) * 2011-01-07 2013-09-11 富士电机株式会社 Semiconductor device and manufacturing method thereof
US20130285221A1 (en) * 2011-01-07 2013-10-31 Fuji Electric Co., Ltd Semiconductor device and method of manufacturing same
US9136209B2 (en) * 2011-01-07 2015-09-15 Fuji Electric Co., Ltd. Semiconductor device with specific lead frame for a power semiconductor module
US20140042609A1 (en) * 2011-05-13 2014-02-13 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US9153519B2 (en) * 2011-05-13 2015-10-06 Fuji Electric Co., Ltd. Semiconductor device for preventing a progression of a crack in a solder layer and method of manufacturing the same
US9399268B2 (en) 2013-12-19 2016-07-26 Fuji Electric Co., Ltd. Laser welding method, laser welding jig, and semiconductor device
US10442035B2 (en) 2013-12-19 2019-10-15 Fuji Electric Co., Ltd. Laser welding method

Also Published As

Publication number Publication date
JP5453720B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5794577B2 (en) Heater chip, joining device, joining method, and conductor thin wire and terminal connection structure
JP6784232B2 (en) Welding method of laminated metal foil
JP5103863B2 (en) Semiconductor device
JP4858238B2 (en) Laser welding member and semiconductor device using the same
JP2008177307A (en) Wiring joining method for semiconductor device
JP4765853B2 (en) Manufacturing method of semiconductor device
JP4764983B2 (en) Manufacturing method of semiconductor device
JP5453720B2 (en) Laser welding method, semiconductor device and manufacturing method thereof
JP2010075967A (en) Method for welding different kind of metal
CN104625299A (en) Tin soldering jig and laser tin soldering method
JP5040269B2 (en) Laser welding method
JP2007305620A (en) Manufacturing method of semiconductor device
JP2012252935A (en) Semiconductor device for electricity
JP2010051989A (en) Laser joining method
JP2010082673A (en) Laser beam welding member and laser beam welding method
JP2011101894A (en) Joining structure and joining method
JP4599929B2 (en) Method for manufacturing power semiconductor device
JPH0722096A (en) Hybrid integrated circuit
JP5239187B2 (en) Laser welding member and laser welding method
CN114502315A (en) Welding device and method for welding at least two components
JPH0489190A (en) Method for joining insulated electric wire and terminal
JP2007103527A (en) Electrolytic capacitor and method of manufacturing same
JP2022026626A (en) Semiconductor device and manufacturing method therefor
JP2007287991A (en) Manufacturing method of semiconductor device
JP2006100561A (en) Manufacturing method of electrolytic capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees