JP2009189929A - Gas separation method and gas separation device - Google Patents

Gas separation method and gas separation device Download PDF

Info

Publication number
JP2009189929A
JP2009189929A JP2008032060A JP2008032060A JP2009189929A JP 2009189929 A JP2009189929 A JP 2009189929A JP 2008032060 A JP2008032060 A JP 2008032060A JP 2008032060 A JP2008032060 A JP 2008032060A JP 2009189929 A JP2009189929 A JP 2009189929A
Authority
JP
Japan
Prior art keywords
gas
liquid
absorption liquid
absorption
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008032060A
Other languages
Japanese (ja)
Inventor
Hiroshi Mano
弘 真野
Kazuhiro Okabe
和弘 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2008032060A priority Critical patent/JP2009189929A/en
Publication of JP2009189929A publication Critical patent/JP2009189929A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit the performance deterioration of a porous membrane due to the clogging of its pores with included solid particles, when the gas of an absorbing liquid is dissipated into a vacuum space by injecting the absorbing liquid into the vacuum space through micropores of the porous membrane. <P>SOLUTION: A gas to be separated and the absorbing liquid are brought into gas-liquid contact with each other through a gas permeable membrane. Through this process, the absorption of a specific component gas of the gas to be separated by the absorbing liquid can be achieved without including the solid particle in the gas to be separated into the absorbing liquid. Following this procedure, the absorbing liquid which has absorbed the specific component gas is brought into contact with the more pressure-reduced space than the absorbing liquid side through the liquid permeable porous membrane, and the absorbing liquid is jetted into the vacuum space through the fine pores of the porous membrane. Thus the specific component gas contained in the absorbing liquid is dissipated into the vacuum space to achieve the separation of the specific component gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は火力発電により排出される燃焼ガスや、製鉄、セメント製造、化学工業、発酵等の反応プロセスにおいて生成するガスから、二酸化炭素などの特定成分ガスを分離するための方法と装置に関するものである。   The present invention relates to a method and an apparatus for separating a specific component gas such as carbon dioxide from combustion gas discharged by thermal power generation and gas generated in a reaction process such as iron making, cement manufacturing, chemical industry, and fermentation. is there.

燃焼排ガスや反応プロセスガスの中には二酸化炭素(CO2)が多く含まれている。二酸化炭素は温室効果により地球の温暖化をもたらすため、これらのガスから二酸化炭素を回収することが望まれている。 A large amount of carbon dioxide (CO 2 ) is contained in combustion exhaust gas and reaction process gas. Since carbon dioxide brings about global warming due to the greenhouse effect, it is desired to recover carbon dioxide from these gases.

被分離ガス中の特定成分ガスを分離する方法として吸収法がある。吸収法は、充填物を充填した吸収塔で被分離ガスと吸収液を接触させて被分離ガス中の特定成分ガスを吸収液に吸収させる吸収工程と、次いで吸収液を加熱する等により特定成分ガスを放散させる放散工程とを備えて、特定成分ガスを回収する方法であり、最も一般的な方法である。   There is an absorption method as a method of separating the specific component gas in the gas to be separated. The absorption method consists of an absorption step in which a gas to be separated and an absorption liquid are brought into contact with each other in an absorption tower packed with a packing to absorb the specific component gas in the gas to be separated into the absorption liquid, and then the specific component is heated by heating the absorption liquid. A method for recovering a specific component gas, and the most common method.

吸収工程で用いられる吸収塔としては、充填物を充填した吸収塔以外に、吸収塔の小型化を図る目的で、疎水性多孔質膜を介して気液接触させることにより気液接触効率を向上させる方法も知られている(特許文献1参照)。   As an absorption tower used in the absorption process, in addition to the absorption tower packed with packing, the gas-liquid contact efficiency is improved by making the liquid-liquid contact through a hydrophobic porous membrane in order to reduce the size of the absorption tower. The method of making it known is also known (see Patent Document 1).

一方、その吸収法で一般的な化学吸収法では、放散工程で特定成分ガスを吸収した吸収液全体を沸騰させるような高温に加熱する必要があるため、分離に要するエネルギーとコストが大きくなる問題があった。   On the other hand, in the general chemical absorption method in the absorption method, it is necessary to heat the entire absorption liquid that has absorbed the specific component gas in the diffusion process to a high temperature so as to boil, so that the energy and cost required for separation increase. was there.

そこで、本発明者らは、放散工程を改良するために、特定成分ガスを吸収した吸収液を吸収液側よりも減圧の空間と接触させて吸収液中の特定成分ガスを減圧空間に放散させるように、充填材を充填したガス減圧分離装置を用いた放散工程を提案している(特許文献2参照)。ガス減圧分離装置を用いて吸収液中の特定成分ガスを減圧空間に放散させる提案の放散工程は、吸収液を高温に加熱することにより吸収液中の特定成分ガスを放散させる方法に比べて分離に要するエネルギーとコストを低減できる。   Therefore, in order to improve the diffusion process, the present inventors bring the absorbing liquid that has absorbed the specific component gas into contact with the reduced pressure space from the absorbing liquid side to release the specific component gas in the absorbing liquid to the reduced pressure space. Thus, a diffusion process using a gas vacuum separator filled with a filler has been proposed (see Patent Document 2). The proposed diffusion process, in which the specific component gas in the absorption liquid is diffused into the decompression space using the gas decompression separator, is separated compared to the method in which the specific component gas in the absorption liquid is diffused by heating the absorption liquid to a high temperature. Energy and cost can be reduced.

そして、その提案の中で、ガス減圧分離装置の前段として、特定成分ガスを吸収した吸収液を液透過膜を介して減圧空間と接触させることにより、吸収液を特定成分ガス以外のガスから分離して液透過膜を通して減圧空間に噴射させるとともに、特定成分ガスを吸収液から放散させる工程を設けてもよいことも提案している。   And in the proposal, as the first stage of the gas decompression separation device, the absorbing liquid that has absorbed the specific component gas is brought into contact with the decompression space through the liquid permeable membrane, thereby separating the absorbing liquid from the gas other than the specific component gas. In addition, it is proposed that a step of ejecting the specific component gas from the absorbing liquid may be provided while being injected into the reduced pressure space through the liquid permeable membrane.

特開平3−296413号公報JP-A-3-296413 特開2005−270814号公報JP 2005-270814 A

放散工程にガス減圧分離方法を用いる提案の方法をさらに改良するために、充填材を充填したガス減圧分離装置を使用しないで、特定成分ガスを吸収した吸収液を液透過膜を介して減圧空間と接触させる放散工程を主たる放散工程とするガス分離方法を検討した。   In order to further improve the proposed method using the gas decompression separation method in the diffusion step, the absorption liquid that has absorbed the specific component gas is removed through the liquid permeable membrane without using a gas decompression separation device filled with a filler. A gas separation method was studied in which the diffusion process brought into contact with the gas was the main diffusion process.

しかしながら、このガス分離方法で吸収工程として充填物を充填した吸収塔を使用し、放散工程では液透過膜として多孔質膜を用いた放散装置を用いると、使用時間にともなって放散装置の機能が著しく低下する問題が発生した。   However, if an absorption tower packed with a packing is used as an absorption step in this gas separation method, and if a diffusion device using a porous membrane is used as a liquid permeable membrane in the diffusion step, the function of the diffusion device is increased with the use time. There was a significant problem.

その原因を探求するうちに、その放散装置では吸収液が多孔質膜の微細孔を通って噴射されるため、吸収液中に固体粒子が混入して多孔質膜が目詰まりすることが判明した。特に、燃焼排ガス中の二酸化炭素ガスを吸収する場合などは充填物を充填した吸収塔内で燃焼排ガス中に含まれる煤塵が吸収液中に混入することが多く、多孔質膜が短時間で使用できなくなった。このような多孔質膜の目詰まりは、多孔質膜を介して気液接触させても気相側を減圧にしなければ発生することはなく、検討中の放散装置のように気液接触している多孔質膜の気相側を減圧にすることに起因していることもわかった。これまで、主たる放散工程として多孔質膜を用いたガス減圧分離方法を採用したガス分離方法は行われておらず、したがって多孔質膜が目詰まりを起こすことが課題となることもなかった。   While investigating the cause, it was found that the absorbing solution was injected through the micropores of the porous membrane in the diffusion device, so that solid particles were mixed in the absorbing solution and the porous membrane was clogged. . Especially when absorbing carbon dioxide gas in combustion exhaust gas, the dust contained in the combustion exhaust gas is often mixed in the absorption liquid in the absorption tower packed with packing, and the porous membrane is used in a short time. I can't. Such clogging of the porous membrane does not occur even if the gas-liquid contact is made through the porous membrane unless the gas-phase side is depressurized. It was also found that this was caused by reducing the pressure on the gas phase side of the porous membrane. Up to now, no gas separation method employing a gas vacuum separation method using a porous membrane as a main diffusion step has been performed, and therefore, there was no problem that the porous membrane was clogged.

そこで、本発明は、主たる放散工程として多孔質膜を用いたガス減圧分離方法を採用するとともに、多孔質膜の目詰まりを防いで連続運転を可能にすることを目的とするものである。   Therefore, the present invention aims to adopt a gas vacuum separation method using a porous membrane as a main diffusion step, and to enable continuous operation by preventing clogging of the porous membrane.

本発明者らは、従来の充填物を充填した吸収塔に代えて膜を介して気液接触させることによる膜コンタクターと言われている方法が吸収塔の小型化という効果だけでなく、吸収液中への固定粒子の混入を回避するにも効果があると考え、これを吸収工程として採用することにより、吸収液を多孔質膜の微細孔を通して減圧空間に噴射させて吸収液中のガスを放散させる放散工程を採用しても、上述の機能低下の問題を解決するに至った。   The inventors of the present invention have not only the effect of reducing the size of the absorption tower but also the absorption liquid as a method called a membrane contactor by contacting a gas and liquid through a membrane instead of an absorption tower filled with a conventional packing. It is thought that it is effective in avoiding the mixing of fixed particles into the inside, and by adopting this as an absorption process, the absorption liquid is injected into the reduced pressure space through the micropores of the porous membrane, and the gas in the absorption liquid is Even if the diffusion process to diffuse was adopted, it came to solve the problem of the above-mentioned function fall.

即ち、本発明のガス分離方法は、被分離ガスと吸収液とをガス透過性膜を介して気液接触させることにより前記被分離ガス中の特定成分ガスを前記吸収液に吸収させる吸収工程と、それに続く前記吸収液を液透過性多孔質膜を介して吸収液側よりも減圧の空間と接触させて前記吸収液を前記多孔質膜の微細孔を通して減圧空間に噴射させることにより前記吸収液中の前記特定成分ガスを減圧空間に放散させる放散工程とを含むガス分離方法である。   That is, the gas separation method of the present invention comprises an absorption step in which a specific component gas in the separation gas is absorbed by the absorption liquid by bringing the separation gas and the absorption liquid into gas-liquid contact via a gas permeable membrane. Then, the absorption liquid is brought into contact with the reduced-pressure space from the absorption liquid side through the liquid-permeable porous membrane, and the absorption liquid is jetted into the reduced-pressure space through the micropores of the porous film. A gas separation method including a diffusion step of diffusing the specific component gas therein to a reduced pressure space.

被分離ガスと吸収液とをガス透過性膜を介して気液接触させることにより被分離ガス中の特定成分ガスを上記吸収液に吸収させる吸収工程では、被分離ガス中に固体粒子が含まれている場合でも吸収液中には固体粒子がほとんど入り込まないため、後の工程で用いられる多孔質膜がその微細孔から吸収液を噴射しても目詰まりすることは大幅に低減され、多孔質膜の寿命が長くなるという利点がある。このように本発明は通常の吸収法の放散工程に多孔質膜の微細孔を通して吸収液を噴射する方法を採用するにあたり、その前工程である吸収工程にも膜を利用することにより課題を克服するものであり、さらには膜による気液接触効率の向上に伴う吸収塔の小型化という利点もある。   In the absorption step of absorbing the specific component gas in the gas to be separated into the absorption liquid by bringing the gas to be separated and the liquid absorption into contact with each other through a gas permeable membrane, solid particles are contained in the gas to be separated. Even in the case where the absorption liquid is present, the solid particles hardly enter the absorption liquid, so that the porous film used in the subsequent process is greatly reduced from being clogged even if the absorption liquid is sprayed from the fine pores. There is an advantage that the lifetime of the film is prolonged. As described above, the present invention overcomes the problem by utilizing the membrane in the absorption step, which is the previous step, in adopting the method of injecting the absorbing liquid through the fine pores of the porous membrane in the diffusion step of the normal absorption method. Furthermore, there is an advantage that the absorption tower is downsized along with the improvement of the gas-liquid contact efficiency by the membrane.

本発明のガス分離方法の吸収工程におけるガス透過性膜は、それを介して気液接触させることにより被分離ガス中の特定成分ガスを吸収液に吸収させる役割を果たすものであるので、ガス透過性が良好で、かつ吸収液が漏れ出ないことが要求される。このことから本発明の吸収工程に使用されるガス透過性膜は、ガス透過性の良好な非多孔質膜又は疎水性の多孔質膜である。   Since the gas permeable membrane in the absorption step of the gas separation method of the present invention plays a role of absorbing the specific component gas in the gas to be separated into the absorption liquid through gas-liquid contact therewith, It is required that the property is good and the absorbing solution does not leak. Therefore, the gas permeable membrane used in the absorption process of the present invention is a non-porous membrane or a hydrophobic porous membrane having good gas permeability.

非多孔質膜の場合には吸収液が漏れ出ることは起こり得ないが、ガス透過性を向上させるために支持体の表面に薄膜状に形成したものが好適に用いられる。非多孔質膜の材料例としてはガス透過性の良好なシリコーンゴム、ポリトリメチルシリルプロピン等があげられる。疎水性多孔質膜の材料例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂、ポリプロピレン、ポリエチレン等のポリオレフィンがあげられる。   In the case of a non-porous membrane, the absorbing liquid cannot leak out, but a thin film formed on the surface of the support is preferably used in order to improve gas permeability. Examples of the material of the non-porous film include silicone rubber having good gas permeability, polytrimethylsilylpropyne and the like. Examples of the material of the hydrophobic porous membrane include fluororesins such as polytetrafluoroethylene and polyvinylidene fluoride, and polyolefins such as polypropylene and polyethylene.

疎水性多孔質膜は吸収液が漏れ出ないことが要求されるので、0.01μmから10μmの範囲の孔径を有することが好ましく、より好ましくは0.01μmから1μmの範囲の孔径を有することである。   Since the hydrophobic porous membrane is required to prevent the absorption liquid from leaking out, the hydrophobic porous membrane preferably has a pore diameter in the range of 0.01 μm to 10 μm, and more preferably has a pore diameter in the range of 0.01 μm to 1 μm. is there.

膜の形状は、平膜、管状膜、中空糸膜等、特に限定されず、膜に隔てられた一方の側にガスを、他方の側に吸収液を流すことができればよい。管状膜又は中空糸膜の場合には膜の内側と外側の一方にガスを流し、他方に吸収液を流すが、どちらを内側に流すかは特に限定されない。また、大量のガスを処理する場合にはガスが外側で吸収液が内側になるように流すと操作が容易になる。実用的には、膜を容器に収めてガスと吸収液の出入り口を設けた膜モジュールの形で使用する。   The shape of the membrane is not particularly limited, such as a flat membrane, a tubular membrane, or a hollow fiber membrane, as long as the gas can flow on one side separated by the membrane and the absorbing solution can flow on the other side. In the case of a tubular membrane or a hollow fiber membrane, gas flows through one of the inside and outside of the membrane and the absorbing solution flows through the other, but there is no particular limitation on which one flows inside. When a large amount of gas is processed, the operation is facilitated by flowing the gas so that the gas is on the outside and the absorbing liquid is on the inside. Practically, it is used in the form of a membrane module in which the membrane is housed in a container and provided with a gas and absorbent inlet / outlet.

ガスと吸収液の流れの方向は並流型、向流型、十字流型(流れ方向が互いに直交する方式)等から選択されるが、本発明の目的には向流型または十字流型が好ましい。   The flow direction of the gas and the absorbing liquid is selected from a parallel flow type, a counter flow type, a cross flow type (a method in which the flow directions are orthogonal to each other), and the like. preferable.

本発明における被分離ガスは分離対象の特定成分ガスを含む混合ガスである。特定成分ガスは種類を限定されるものではないが、その一例は酸性ガスであり、その場合の吸収液はアルカリ水溶液が好ましい。酸性ガスの例としては、二酸化炭素ガス(CO2)、二酸化硫黄ガス(SO2)が挙げられる。酸性ガスの吸収液としては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)又はトリエタノールアミン(TEA)などのアルカノールアミンに代表されるアミン類の水溶液のほか、炭酸塩類、アミノ酸類、アミノ酸塩類等が単独又は複数混合の水溶液の形で好適に用いられる。 The gas to be separated in the present invention is a mixed gas containing a specific component gas to be separated. The type of the specific component gas is not limited, but an example thereof is an acidic gas, and the absorbent in that case is preferably an alkaline aqueous solution. Examples of the acid gas include carbon dioxide gas (CO 2 ) and sulfur dioxide gas (SO 2 ). Acid gas absorption liquids include aqueous solutions of amines represented by alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA), as well as carbonates, amino acids, amino acid salts, and the like. Is suitably used in the form of a single or a mixture of aqueous solutions.

本発明のガス分離方法は、上記の吸収工程に続き、特定成分ガスを吸収した吸収液を液透過性多孔質膜を介して吸収液側よりも減圧の空間と接触させて前記吸収液を前記多孔質膜の微細孔を通して減圧空間に噴射させることにより前記吸収液中の前記特定成分ガスを減圧空間に放散させる放散工程を設けて特定成分ガスが分離回収されることになる。また、放散工程は吸収液を再生する工程ともなる。   In the gas separation method of the present invention, following the above absorption step, the absorption liquid that has absorbed the specific component gas is brought into contact with the space under reduced pressure from the absorption liquid side through the liquid-permeable porous membrane, and the absorption liquid is The specific component gas is separated and recovered by providing a diffusion step of diffusing the specific component gas in the absorption liquid into the reduced pressure space by spraying it into the reduced pressure space through the micropores of the porous membrane. Further, the diffusion step is a step of regenerating the absorbing solution.

本発明のガス分離方法の放散工程における液透過性多孔質膜は、それの微細孔を通して減圧空間に吸収液を噴射させるためのものであるので、吸収液の透過性が良好であることが要求される。このことから本発明の放散工程に使用される膜は、液透過性の良好な多孔質膜である。   Since the liquid permeable porous membrane in the diffusion step of the gas separation method of the present invention is for injecting the absorbing liquid into the reduced pressure space through its fine pores, it is required that the absorbing liquid has good permeability. Is done. For this reason, the membrane used in the diffusion process of the present invention is a porous membrane having good liquid permeability.

本発明のガス分離方法の放散工程における液透過性多孔質膜の材料として、各種セラミックス、金属等の無機材料、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、酢酸セルロース等の各種有機高分子材料があげられる。   As the material of the liquid permeable porous membrane in the diffusion process of the gas separation method of the present invention, various organic materials such as various ceramics, metals, inorganic materials, polyethylene, polypropylene, polyvinylidene fluoride, polysulfone, polyethersulfone, cellulose acetate, etc. Molecular materials.

この液透過性多孔質膜の好ましい微細孔径は0.01〜200μmである。   A preferable fine pore diameter of the liquid permeable porous membrane is 0.01 to 200 μm.

この液透過性多孔質膜の一例は、流路形状に形成されており、吸収液が流路内を流れ、流路の外側が減圧にされるものである。膜の形状は、平膜、管状膜、中空糸膜等、特に限定されないが、大量のガスを放散させるには、管状膜又は中空糸膜の内側に吸収液を供給して外側を減圧にすると操作が容易になる。実用的には、膜を容器に収めて吸収液の出入り口と真空ポンプの接続口を設けた膜モジュールの形で使用する。   An example of this liquid-permeable porous membrane is formed in a channel shape, in which the absorbing liquid flows in the channel and the outside of the channel is decompressed. The shape of the membrane is not particularly limited, such as a flat membrane, a tubular membrane, and a hollow fiber membrane, but in order to dissipate a large amount of gas, an absorbing liquid is supplied to the inside of the tubular membrane or the hollow fiber membrane and the outside is decompressed. Easy to operate. Practically, it is used in the form of a membrane module in which the membrane is housed in a container and an inlet / outlet port for the absorbing liquid and a connection port for a vacuum pump are provided.

本発明のガス分離方法を実現するガス分離装置は吸収部と放散部を備えている。吸収部は、第一の容器、この第一の容器の内部に配置されて気液接触させるガス透過性膜、該ガス透過性膜の一方の面に被分離ガスを供給するガス供給口、該ガス透過性膜の他方の面に沿った吸収液流路に吸収液を供給する吸収液供給口、前記被分離ガス中の特定成分ガスを前記ガス透過性膜を介して吸収した前記吸収液を前記第一の容器から外部に取り出す吸収液取出し口、及び前記第一の容器から残余ガスを外部に出すガス排出口を備えている。   The gas separation device for realizing the gas separation method of the present invention includes an absorption part and a diffusion part. The absorption unit includes a first container, a gas permeable membrane disposed in the first container and brought into gas-liquid contact, a gas supply port for supplying a gas to be separated to one surface of the gas permeable membrane, An absorption liquid supply port for supplying an absorption liquid to an absorption liquid flow path along the other surface of the gas permeable membrane, and the absorption liquid that has absorbed a specific component gas in the gas to be separated through the gas permeable film. An absorption liquid outlet for taking out the first container from the first container and a gas outlet for letting out residual gas from the first container are provided.

放散部は、第二の容器、その容器の内部に配置されて前記第一の容器から取り出された吸収液が接触する液透過性多孔質膜、該液透過性多孔質膜の一方の面に沿った吸収液流路に前記第一の容器から取り出された吸収液を供給する吸収液供給口、及び前記第二の容器中に前記液透過性多孔質膜を介して吸収液側よりも減圧の空間を形成するための減圧機器を備え、前記吸収部の後段に設けられる。   The diffusion part is disposed on the one surface of the second container, the liquid-permeable porous membrane that is disposed inside the container and contacts the absorbing liquid taken out from the first container, and the liquid-permeable porous membrane. An absorption liquid supply port for supplying the absorption liquid taken out from the first container to the absorption liquid flow path, and a reduced pressure from the absorption liquid side through the liquid permeable porous membrane in the second container A decompression device for forming the space is provided, and is provided at the rear stage of the absorption unit.

本発明のガス分離装置は、このような構成に基づいて前記第二の容器に供給された吸収液を前記液透過性多孔質膜の微細孔を通して減圧空間に噴射させることにより、前記第二の容器に供給された吸収液中の前記特定成分ガスを減圧空間に放散させて前記減圧機器のガス排出口から回収する。   In the gas separation device of the present invention, the absorption liquid supplied to the second container based on such a configuration is injected into the reduced pressure space through the micropores of the liquid-permeable porous membrane, thereby The specific component gas in the absorption liquid supplied to the container is diffused into the decompression space and recovered from the gas outlet of the decompression device.

本発明のガス分離装置における第一の容器内のガス透過性膜と第二の容器内の液透過性多孔質膜の好ましい形態は、本発明のガス分離方法に関する記載内容と同様である。   Preferred forms of the gas permeable membrane in the first container and the liquid permeable porous membrane in the second container in the gas separation apparatus of the present invention are the same as those described for the gas separation method of the present invention.

本発明のガス分離方法及びガス分離装置においては、被分離ガスと吸収液とをガス透過性膜を介して気液接触させることにより被分離ガス中の特定成分ガスを吸収液に吸収させるので、被分離ガス中に固体粒子が含まれていてもそれが吸収液中に入り込むことがほとんど無くなり、後に続く放散工程において用いられる多孔質膜の目詰まりを低減でき、その寿命を延ばすという大きな効果がある。さらに、ガス透過性膜を介して気液接触させる吸収は、気液接触面積が通常の充填物表面を気液接触面とする充填塔による吸収に比べて増大するので吸収装置を小型化できる上、多孔質膜を用いて圧力差で放散することにより所要エネルギーを大幅に低減できるという効果も併せ持ち、ガス分離に要するコストも低減することができる。   In the gas separation method and gas separation apparatus of the present invention, the gas to be separated and the absorption liquid are brought into gas-liquid contact with each other through the gas permeable membrane, so that the specific component gas in the separation gas is absorbed by the absorption liquid. Even if solid gas is contained in the gas to be separated, it hardly enters the absorption liquid, and the clogging of the porous membrane used in the subsequent diffusion process can be reduced, and the great effect of extending its life is achieved. is there. Furthermore, the absorption of gas-liquid contact through the gas-permeable membrane increases the gas-liquid contact area compared to the absorption by a packed tower having the normal packing surface as the gas-liquid contact surface. In addition, by using a porous membrane to dissipate due to a pressure difference, the required energy can be greatly reduced, and the cost required for gas separation can also be reduced.

本発明は分離対象である特定成分ガスに応じて吸収液を選択することにより、種々のガス分離に適用することができる広範囲に適用可能な技術である。分離対象である特定成分ガスの一例は二酸化炭素ガスであり、その場合の適当な吸収液は上述した通りである。   The present invention is a widely applicable technique that can be applied to various gas separations by selecting an absorbing liquid according to a specific component gas to be separated. An example of the specific component gas to be separated is carbon dioxide gas, and an appropriate absorbent in that case is as described above.

以下に本発明の一実施例を説明する。
図1はガス分離装置の概略断面図であり、本発明を二酸化炭素分離装置に適用した一態様の概略を表わしている。この実施例図では、被分離ガスとして二酸化炭素含有ガスを用い、特定成分ガスとして二酸化炭素を採り上げる。
An embodiment of the present invention will be described below.
FIG. 1 is a schematic cross-sectional view of a gas separation apparatus, and represents an outline of one embodiment in which the present invention is applied to a carbon dioxide separation apparatus. In this embodiment diagram, carbon dioxide-containing gas is used as the gas to be separated, and carbon dioxide is taken up as the specific component gas.

膜モジュールからなる吸収装置1は、その内部に設けられたガス透過性膜に対して一方の側にCO2含有ガスを導入し、他方の側に吸収液を流し、膜を介してCO2を吸収液に吸収させるものである。CO2を吸収した吸収液は吸収装置1から第二の膜モジュールからなる放散装置3にポンプ2により送られるようになっている。なお、図1中の吸収装置1の上部が吸収液供給部、下部が吸収液取出し部である。 The absorption device 1 composed of a membrane module introduces a CO 2 -containing gas on one side with respect to a gas permeable membrane provided therein, and flows an absorption liquid on the other side, and CO 2 is passed through the membrane. Absorbed in the absorbent. The absorption liquid that has absorbed CO 2 is sent from the absorption device 1 to the diffusion device 3 including the second membrane module by the pump 2. In addition, the upper part of the absorption apparatus 1 in FIG. 1 is an absorption liquid supply part, and a lower part is an absorption liquid extraction part.

放散装置3は、その内部に設けられた液透過性多孔質膜に対して一方の側にCO2を吸収した吸収液を導入し、他方の側を減圧機器(真空ポンプ)4で引いて減圧状態にする。多孔質膜の微細孔を通して吸収液が減圧空間に噴射されることにより吸収液中のCO2が放散させられて吸収液が再生される。放散されたCO2は減圧装置4を経由して熱交換器5で冷却され、CO2と共存する水が分離除去されてCO2が回収される。 The diffusion device 3 introduces an absorbing solution that absorbs CO 2 into one side of the liquid-permeable porous membrane provided therein, and draws the other side with a decompression device (vacuum pump) 4 to reduce the pressure. Put it in a state. The absorbing liquid is injected into the reduced pressure space through the micropores of the porous membrane, whereby CO 2 in the absorbing liquid is diffused and the absorbing liquid is regenerated. The diffused CO 2 is cooled by the heat exchanger 5 via the decompression device 4, and water coexisting with CO 2 is separated and removed to recover CO 2 .

一方、放散装置3で再生された吸収液はポンプ6により送られて吸収装置1に導入され、再度CO2の吸収に使用される。このように、吸収液は吸収装置1と放散装置3の間で循環使用される。 On the other hand, the absorption liquid regenerated by the diffusion device 3 is sent by the pump 6 and introduced into the absorption device 1 to be used again for absorbing CO 2 . In this way, the absorption liquid is circulated between the absorption device 1 and the diffusion device 3.

図2は図1のガス分離装置における吸収装置1の一例としての吸収装置10を概略的に表したものであり、中空糸膜12を介してガスと吸収液が気液接触する構造の膜モジュールからなる吸収装置の垂直断面図である。図2では簡略化のために中空糸膜は1本のみを表示しているが、実際には多数の中空糸膜12が束ねられてモジュール化され、モジュール化されたものが吸収装置10内に備えられている。   FIG. 2 schematically shows an absorption device 10 as an example of the absorption device 1 in the gas separation device of FIG. 1, and a membrane module having a structure in which a gas and an absorption liquid are in gas-liquid contact via a hollow fiber membrane 12. It is a vertical sectional view of the absorption device consisting of. In FIG. 2, only one hollow fiber membrane is shown for simplification. However, in reality, a large number of hollow fiber membranes 12 are bundled to form a module, and the modularized product is stored in the absorption device 10. Is provided.

中空糸膜12の外側にあるガス流路10aは下端部にガス入口13a、上端部にガス排出部となるガス排出口13bを有し、ガスは吸収装置10の下側から上側に向かって流れるように供給される。中空糸膜12の内側にある吸収液流路10bは上端部に吸収液入口14a、下端部に吸収液取出し部となる吸収液排出口14bを有し、吸収液は吸収装置10の上側から下側に向かって流れるように供給される。   The gas flow path 10a outside the hollow fiber membrane 12 has a gas inlet 13a at the lower end and a gas outlet 13b serving as a gas outlet at the upper end, and the gas flows from the lower side to the upper side of the absorber 10. Supplied as The absorbent channel 10b inside the hollow fiber membrane 12 has an absorbent inlet 14a at the upper end and an absorbent outlet 14b as an absorbent outlet at the lower end. Supplied to flow toward the side.

図1、図2の実施例において、ガスが吸収装置10の上側から下側に向かって流れるように供給され、吸収液が吸収装置10の下側から上側に向かって流れるように供給されるように、ガスと吸収液の流れる方向を逆にしてもよい。   1 and 2, the gas is supplied so as to flow from the upper side to the lower side of the absorption device 10, and the absorption liquid is supplied so as to flow from the lower side to the upper side of the absorption device 10. In addition, the flow direction of the gas and the absorbing liquid may be reversed.

図3は図1のガス分離装置における放散装置3の一例としての放散装置30を概略的に表したものであり、多孔質中空糸膜32の微細孔33から吸収液を減圧空間に噴射させるための膜モジュールからなる放散装置の垂直断面図である。図3では簡略化のために多孔質中空糸膜は1本のみを表示しているが、実際には多数の中空糸膜32が束ねられてモジュール化され、モジュール化されたものが放散装置30内に備えられている。   FIG. 3 schematically shows a diffusion device 30 as an example of the diffusion device 3 in the gas separation device of FIG. 1, in order to inject the absorbing liquid from the micropores 33 of the porous hollow fiber membrane 32 into the reduced pressure space. It is a vertical sectional view of a diffusion device comprising the membrane module. Although only one porous hollow fiber membrane is shown in FIG. 3 for the sake of simplification, in reality, a number of hollow fiber membranes 32 are bundled into a module, and the modularized one is the diffusion device 30. It is provided within.

多孔質中空糸膜32の内側にある吸収液流路30bは下端部に吸収液入口34aを有し、吸収液は放散装置30の下側から上側に向かって流れるように供給される。多孔質中空糸膜32の外側にある空間30aは上端部にガス排出口35、下端部に吸収液排出口34bを有し、ガス排出口35は減圧機器(真空ポンプ)4に接続され、空間30aは減圧状態に保たれる。   The absorption liquid flow path 30b inside the porous hollow fiber membrane 32 has an absorption liquid inlet 34a at the lower end, and the absorption liquid is supplied so as to flow from the lower side toward the upper side. A space 30a outside the porous hollow fiber membrane 32 has a gas discharge port 35 at the upper end and an absorbent discharge port 34b at the lower end, and the gas discharge port 35 is connected to the decompression device (vacuum pump) 4 to 30a is kept in a reduced pressure state.

実施例では被分離ガスから分離対象である特定成分ガスとして二酸化炭素を分離して回収する例を示しているが、分離対象である特定成分ガスは二酸化炭素に限られない。   In the embodiment, an example is shown in which carbon dioxide is separated and recovered as a specific component gas to be separated from the gas to be separated, but the specific component gas to be separated is not limited to carbon dioxide.

また、その場合の吸収液としては他の特定成分ガスを選択的に吸収するもの、例えば、二酸化硫黄(SO2)含有ガスに対して亜硫酸塩の水溶液を用いることにより二酸化硫黄を分離することができる。このように二酸化炭素以外の特定成分ガスに対しても本発明を同様に適用することができる。 In this case, the absorbing liquid selectively absorbs other specific component gases, for example, sulfur dioxide can be separated by using an aqueous solution of sulfite with respect to a sulfur dioxide (SO 2 ) -containing gas. it can. Thus, the present invention can be similarly applied to specific component gases other than carbon dioxide.

本発明は火力発電、製鉄、セメント工業もしくは焼却炉などのプラントなどから排出されるガス、下水道や環境処理等で発生するバイオガスや消化ガス、石油化学工業などにおけるガス分離プロセスやガス精製プロセスから発生するガス、又は半導体産業などで発生するガスから二酸化炭素ガスその他の対象とするガスを分離し回収するために利用することができる。   The present invention relates to gas discharged from thermal power generation, steelmaking, cement industry or incinerators, biogas and digestion gas generated in sewage and environmental treatment, gas separation process and gas purification process in petrochemical industry, etc. It can be used to separate and recover carbon dioxide gas or other target gas from the generated gas or gas generated in the semiconductor industry.

一実施例のガス分離装置の概略断面図である。It is a schematic sectional drawing of the gas separation apparatus of one Example. 同実施例における吸収装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the absorber in the Example. 同実施例における放散装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the diffusion apparatus in the Example.

符号の説明Explanation of symbols

1,10 吸収装置
2,6 ポンプ
3,30 放散装置
4 減圧機器(真空ポンプ)
5 熱交換器
10a ガス流路
10b 吸収液流路
12 中空糸膜
13a ガス入口
13b ガス排出口
14a 吸収液入口
14b 吸収液排出口
30a 多孔質中空糸膜外側空間
30b 吸収液流路
32 多孔質中空糸膜
33 微細孔
34a 吸収液入口
34b 吸収液排出口
35 ガス排出口
1,10 Absorption device 2,6 Pump 3,30 Dissipation device 4 Pressure reducing device (vacuum pump)
5 Heat exchanger 10a Gas flow path 10b Absorption liquid flow path 12 Hollow fiber membrane 13a Gas inlet 13b Gas discharge port 14a Absorption liquid inlet 14b Absorption liquid discharge port 30a Porous hollow fiber membrane outer space 30b Absorption liquid flow path 32 Porous hollow Thread membrane 33 Fine hole 34a Absorbent inlet 34b Absorbent outlet 35 Gas outlet

Claims (4)

被分離ガスと吸収液とをガス透過性膜を介して気液接触させることにより前記被分離ガス中の特定成分ガスを前記吸収液に吸収させる吸収工程と、
それに続く、前記吸収液を液透過性多孔質膜を介して吸収液側よりも減圧の空間と接触させて前記吸収液を前記多孔質膜の微細孔を通して減圧空間に噴射させることにより前記吸収液中の前記特定成分ガスを減圧空間に放散させる放散工程と
を含むガス分離方法。
An absorption step in which the absorption liquid absorbs the specific component gas in the separation gas by bringing the separation gas and the absorption liquid into gas-liquid contact through a gas permeable membrane;
Subsequently, the absorption liquid is brought into contact with the reduced pressure space from the absorption liquid side through the liquid-permeable porous membrane, and the absorption liquid is sprayed into the reduced pressure space through the micropores of the porous film, thereby absorbing the absorption liquid. A gas separation method including a diffusion step of diffusing the specific component gas therein to a reduced pressure space.
前記特定成分ガスが二酸化炭素であり、前記吸収液がアミン、アミノ酸、アミノ酸塩及び炭酸塩のうちの少なくとも1種を含む溶液である請求項1に記載のガス分離方法。   The gas separation method according to claim 1, wherein the specific component gas is carbon dioxide, and the absorption liquid is a solution containing at least one of amine, amino acid, amino acid salt, and carbonate. 第一の容器、この容器の内部に配置されて気液接触させるガス透過性膜、該膜の一方の面に被分離ガスを供給するガス供給口、該膜の他方の面に沿った吸収液流路に吸収液を供給する吸収液供給口、前記被分離ガス中の特定成分ガスを前記膜を介して吸収した前記吸収液を前記容器から外部に取り出す吸収液取出し口、及び前記容器から残余ガスを外部に出すガス排出口を備えた吸収部と、
第二の容器、この第二の容器の内部に配置されて前記第一の容器から取り出された吸収液が接触する液透過性多孔質膜、該多孔質膜の一方の面に沿った吸収液流路に前記第一の容器から取り出された吸収液を供給する吸収液供給口、及び前記第二の容器中に前記多孔質膜を介して吸収液側よりも減圧の空間を形成するための減圧機器を備え、前記吸収部の後段に設けられた放散部と、を備え、
前記第二の容器に供給された吸収液を前記多孔質膜の微細孔を通して減圧空間に噴射させることにより、前記第二の容器に供給された吸収液中の前記特定成分ガスを減圧空間に放散させて前記減圧機器のガス排出口から回収するガス分離装置。
A first container, a gas permeable membrane disposed in the container and brought into gas-liquid contact, a gas supply port for supplying a gas to be separated to one surface of the membrane, and an absorbing liquid along the other surface of the membrane An absorption liquid supply port for supplying an absorption liquid to the flow path, an absorption liquid extraction port for taking out the absorption liquid that has absorbed the specific component gas in the gas to be separated through the membrane, and the remainder from the container An absorption part having a gas outlet for discharging gas to the outside;
A second container, a liquid-permeable porous membrane disposed in the second container and in contact with the absorbent taken out of the first container, and an absorbent along one surface of the porous membrane An absorption liquid supply port for supplying the absorption liquid taken out from the first container to the flow path, and a space for forming a reduced pressure space in the second container from the absorption liquid side through the porous membrane A pressure reducing device, and a dissipating part provided at a subsequent stage of the absorbing part,
The specific component gas in the absorption liquid supplied to the second container is diffused into the reduced pressure space by injecting the absorption liquid supplied to the second container to the reduced pressure space through the micropores of the porous membrane. A gas separation device that recovers from the gas outlet of the decompression device.
前記吸収部のガス透過性膜はガス透過性非多孔質膜又は疎水性多孔質膜である請求項3に記載のガス分離装置。   The gas separation device according to claim 3, wherein the gas permeable membrane of the absorption part is a gas permeable non-porous membrane or a hydrophobic porous membrane.
JP2008032060A 2008-02-13 2008-02-13 Gas separation method and gas separation device Pending JP2009189929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032060A JP2009189929A (en) 2008-02-13 2008-02-13 Gas separation method and gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032060A JP2009189929A (en) 2008-02-13 2008-02-13 Gas separation method and gas separation device

Publications (1)

Publication Number Publication Date
JP2009189929A true JP2009189929A (en) 2009-08-27

Family

ID=41072445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032060A Pending JP2009189929A (en) 2008-02-13 2008-02-13 Gas separation method and gas separation device

Country Status (1)

Country Link
JP (1) JP2009189929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987441A (en) * 2011-12-12 2014-08-13 日本瑞环株式会社 Gas-liquid contact device, distillation device, and heat exchange device
JP2019063720A (en) * 2017-09-29 2019-04-25 株式会社Ihi Gas recovery apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987441A (en) * 2011-12-12 2014-08-13 日本瑞环株式会社 Gas-liquid contact device, distillation device, and heat exchange device
JP2019063720A (en) * 2017-09-29 2019-04-25 株式会社Ihi Gas recovery apparatus

Similar Documents

Publication Publication Date Title
US8398743B2 (en) Methods and systems for reducing carbon dioxide in combustion flue gases
Lin et al. Absorption of carbon dioxide by the absorbent composed of piperazine and 2-amino-2-methyl-1-propanol in PVDF membrane contactor
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
Lin et al. Absorption of carbon dioxide by mixed piperazine–alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor
AU2014238156B2 (en) Method and apparatus for desorption using microporous membrane operated in wetted mode
AU2009225587B2 (en) A system and method for enhanced removal of CO2 from a mixed gas stream
CA2886708A1 (en) Intensification of biocatalytic gas absorption
Niknam et al. Experimental and modeling study of CO2 absorption by L-Proline promoted potassium carbonate using hollow fiber membrane contactor
Lin et al. Determination of mass transfer resistance during absorption of carbon dioxide by mixed absorbents in PVDF and PP membrane contactor
KR101590728B1 (en) System and method for removing harmful substance
KR101862769B1 (en) High purity methane gas purification apparatus and method from the biogas
KR101191085B1 (en) Apparatus and method of solvent scrubbing co2 capture system
JP2008200589A (en) Method and apparatus for separation of gas
Lee et al. Integrated membrane contactor absorber/regeneration column process for CO2 capture with large scale module at various operating conditions
WO2012078778A1 (en) Integrated system for acid gas removal
JP2009189929A (en) Gas separation method and gas separation device
JP2008104953A (en) Gas separation method and gas separator
KR102041160B1 (en) Continuous Flue gas Desulfurization System
JP2012210600A (en) Gas separator
JP4357882B2 (en) Gas separation method and apparatus
KR20120117097A (en) Membrane vacuum stripping process for the energy reduction in co2 desorption process using composite type non-porous membrane
JP2019205966A (en) Method for separation of carbon dioxide (co2) membrane
JP2005329348A (en) Immersion type co2 separation apparatus
JPH0699018A (en) Membrane type polar gas separation device
KR102374527B1 (en) Flue Gas Treatment Device Using Flooding in Scrubber Equipped with Packing