JP2009188497A - Radio communication system - Google Patents

Radio communication system Download PDF

Info

Publication number
JP2009188497A
JP2009188497A JP2008023691A JP2008023691A JP2009188497A JP 2009188497 A JP2009188497 A JP 2009188497A JP 2008023691 A JP2008023691 A JP 2008023691A JP 2008023691 A JP2008023691 A JP 2008023691A JP 2009188497 A JP2009188497 A JP 2009188497A
Authority
JP
Japan
Prior art keywords
wireless communication
tdd
fdd
frequency
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008023691A
Other languages
Japanese (ja)
Inventor
Nobuyasu Yamaguchi
順靖 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008023691A priority Critical patent/JP2009188497A/en
Publication of JP2009188497A publication Critical patent/JP2009188497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio communication system for eliminating defects in TDD radio communication which is inefficient in long distance communication, and preventing a coverage from being deteriorated due to propagation loss. <P>SOLUTION: This radio communication system is equipped with a mobile station, and a base station to perform TDD (Time Division Duplex) radio communication TS-1 - N at a first frequency and perform FDD (Frequency Division Duplex)radio communication TSU-1 - N at a second frequency different from the first frequency, between the base station and the mobile station. The FDD Radio communication TSU-1 - N, TSD-1 - N is performed in the guard time GT section of the TDD radio communication. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の周波数帯で無線通信を行うマルチバンドの無線通信システムに関するものであり、特に、FDD(Frequency Division Duplex)方式と、TDD(Time Division Duplex)方式とを混在させたハイブリッド・デュープレックス方式の無線通信システムに関するものである。   The present invention relates to a multiband wireless communication system that performs wireless communication in a plurality of frequency bands, and in particular, a hybrid duplex in which an FDD (Frequency Division Duplex) method and a TDD (Time Division Duplex) method are mixed. The present invention relates to a wireless communication system.

従来の第3世代移動通信システム(IMT−2000)よりも格段に高速なデータ通信サービスを提供する、いわゆる第4世代移動通信システム(IMT−Advanced)を2010年頃に標準化することを目指して検討が行われている。非特許文献1に記載されているように、IMT−Advancedでは、移動環境で100Mbps、ホットスポットや準静止環境で1Gbpsという通信速度の実現と、10bps/Hzという周波数利用率の達成とを目標としている。   A study is underway to standardize the so-called fourth generation mobile communication system (IMT-Advanced), which provides a data communication service much faster than the conventional third generation mobile communication system (IMT-2000) around 2010. Has been done. As described in Non-Patent Document 1, IMT-Advanced aims to achieve a communication speed of 100 Mbps in a mobile environment and 1 Gbps in a hot spot or quasi-static environment, and to achieve a frequency utilization rate of 10 bps / Hz. Yes.

基地局と移動局の無線通信システムに用いられるデュープレックス方式の無線通信には、FDD方式の無線通信と、TDD方式の無線通信がある。FDD方式の無線通信では、上り/下りの信号を互いに異なる周波数(ペアバンド)で送信する必要がある。一方、TDD方式の無線通信では、上り/下りの信号を時分割し、上り/下りの信号を同一周波数で送信するため、ペアバンドは不要である。後者のTDD方式では、上り・下りリンクの送受スロットの割当率を変えることで、それぞれのリンクに応じたスロット割当を柔軟に実現できる。   Duplex wireless communication used in a wireless communication system between a base station and a mobile station includes FDD wireless communication and TDD wireless communication. In FDD wireless communication, it is necessary to transmit uplink / downlink signals at different frequencies (pair bands). On the other hand, in TDD wireless communication, uplink / downlink signals are time-divided, and uplink / downlink signals are transmitted at the same frequency, so a pair band is unnecessary. In the latter TDD scheme, slot allocation according to each link can be flexibly realized by changing the allocation ratio of uplink and downlink transmission / reception slots.

上述の通信システムで求められている1Gbpsの通信速度、10bps/Hzの周波数利用効率を達成するためには、所要周波数帯域幅が100MHzとなることが必要である。また、同システムのリアルタイム型およびノンリアルタイム型のトラヒックデータはいずれもパケット信号として伝送され、さらに、トラヒックは上り・下りリンクで必ずしも対称となるわけではない。そのため、次世代の無線通信システムの無線通信には、FDD方式よりも、スロット割当を柔軟に実現できるTDD方式が適当であると考えられる。   In order to achieve the communication speed of 1 Gbps required in the above communication system and the frequency utilization efficiency of 10 bps / Hz, the required frequency bandwidth needs to be 100 MHz. In addition, both real-time and non-real-time traffic data of the system are transmitted as packet signals, and the traffic is not necessarily symmetrical between the uplink and the downlink. For this reason, it is considered that the TDD scheme capable of flexibly realizing slot allocation is more appropriate than the FDD scheme for wireless communication in the next generation wireless communication system.

また、上述の所要周波数帯域幅の収容には、IMT−2000用の周波数とは別に、IMT−Advanced用の周波数を追加する必要がある。追加する周波数は、移動通信用途を考慮すると5〜6GHz以下の周波数帯の周波数が適当である。IMT−Advancedでは、3.4〜4.2GHz、4.4〜4.9GHzの利用が想定されている。   Further, in order to accommodate the required frequency bandwidth described above, it is necessary to add an IMT-Advanced frequency separately from the IMT-2000 frequency. The frequency to be added is suitably a frequency in a frequency band of 5 to 6 GHz or less in consideration of mobile communication applications. In IMT-Advanced, the use of 3.4 to 4.2 GHz and 4.4 to 4.9 GHz is assumed.

次世代の携帯電話システムでは、いつでもどこでもネットワークに接続できる広い場所率(カバレッジ、有効範囲)と、低速から超高速に至る多様なサービスへの対応が期待される。この問題を解決するため、例えば、3G/4G,無線LANなどの異なる無線システムを連携させる非特許文献2に記載のシステムや、FDD方式とTDD方式とを選択する特許文献1に記載のマルチモード通信装置が検討されている。   The next-generation mobile phone system is expected to support a wide range of locations (coverage, effective range) that can be connected to the network anytime and anywhere, and various services ranging from low speed to super high speed. In order to solve this problem, for example, a system described in Non-Patent Document 2 that links different wireless systems such as 3G / 4G and wireless LAN, or a multimode described in Patent Document 1 that selects an FDD method and a TDD method. Communication devices are being considered.

Y.Kim et.al.,"Beyond 3G:Vision,Requirements,and Enabling Technologies",IEEE Commun.Mag.,vol.41,pp.120-124,Mar.2003.Y. Kim et.al., "Beyond 3G: Vision, Requirements, and Enabling Technologies", IEEE Commun. Mag., Vol. 41, pp. 120-124, Mar. 2003. H.Hrada,M.Kuroda,H.Morikawa,H.Wakana,F.Adachi,"The Overview of the New Generation Mobile Communication System and the Role of Software Defined Radio Technology",IEICE Trans.Commun.,vol.E86-B,No.12,pp.3374-3384,Dec.2003.H.Hrada, M.Kuroda, H.Morikawa, H.Wakana, F.Adachi, "The Overview of the New Generation Mobile Communication System and the Role of Software Defined Radio Technology", IEICE Trans.Commun., Vol.E86- B, No. 12, pp. 3374-3384, Dec. 2003. 特開2002−368725号公報JP 2002-368725 A

上述したように、IMT−Advancedのデュープレックス方式では、TDD方式が適当である。上り/下りの信号を時分割して同一周波数で送信するTDD方式では、基地局と移動局間の伝送遅延により生じる上り/下りの干渉を防ぐため、スロット間にガードタイムを挿入する必要がある。しかしながら、このガードタイムの長さはセル半径に依存するため、基地局と移動局との間の距離が大きい場合には、ガードタイムが長くなり、TDD方式はFDD方式と比べて非効率となるという問題があった。   As described above, the TDD method is appropriate for the IMT-Advanced duplex method. In the TDD scheme in which uplink / downlink signals are time-divided and transmitted at the same frequency, it is necessary to insert a guard time between slots in order to prevent uplink / downlink interference caused by transmission delay between the base station and the mobile station. . However, since the length of the guard time depends on the cell radius, when the distance between the base station and the mobile station is large, the guard time becomes long and the TDD scheme becomes inefficient compared to the FDD scheme. There was a problem.

また、伝搬損失は、周波数のおよそ2.6乗に比例して増加する。そのため、3GHz以上のマイクロ波帯の利用を想定しているIMT−Advancedの伝搬距離は、800Hz〜2GHz帯を使って通信を行うIMT−2000の伝搬距離よりも短くなる。その結果、IMT−Advancedでは、場所率の劣化が著しいという問題があった。   Further, the propagation loss increases in proportion to approximately the 2.6th power of the frequency. For this reason, the propagation distance of IMT-Advanced that assumes the use of a microwave band of 3 GHz or more is shorter than the propagation distance of IMT-2000 that performs communication using the 800 Hz to 2 GHz band. As a result, IMT-Advanced has a problem in that the location rate is significantly deteriorated.

本発明は、上記のような問題点を解決するためになされたものであり、長距離通信では非効率となるTDD方式の無線通信の欠点を改善するとともに、超高速伝送を行っても広い場所率で通信可能な無線通信システムを提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The present invention improves the shortcomings of TDD wireless communication, which is inefficient in long-distance communication, and can be used in a wide area even when performing ultrahigh-speed transmission. An object is to provide a wireless communication system capable of communicating at a rate.

本発明の係る無線通信システムは、移動局と、前記移動局との間で、第1の周波数でTDD(Time Division Duplex)方式の無線通信を行い、前記第1の周波数と異なる第2の周波数でFDD(Frequency Division Duplex)方式の無線通信を行う基地局とを備える。そして、前記TDD方式の無線通信のガードタイム区間において、前記FDD方式の無線通信を行う。   The wireless communication system according to the present invention performs TDD (Time Division Duplex) wireless communication at a first frequency between a mobile station and the mobile station, and a second frequency different from the first frequency. And a base station that performs FDD (Frequency Division Duplex) wireless communication. Then, the FDD wireless communication is performed in the guard time interval of the TDD wireless communication.

本発明の通信システムによれば、TDD方式のガードタイム区間にFDD方式の無線通信を行うため、長距離通信では非効率となるTDD方式の欠点を改善することができる。   According to the communication system of the present invention, since FDD wireless communication is performed in the TDD guard time interval, it is possible to improve the disadvantages of the TDD method, which is inefficient in long-distance communication.

<実施の形態1>
図1は、本実施の形態に係る無線通信システムの構成を示す図である。図1に示すように、本実施の形態に係る無線通信システムは、移動局1A,1Bと、基地局2とを備える。
<Embodiment 1>
FIG. 1 is a diagram showing a configuration of a wireless communication system according to the present embodiment. As shown in FIG. 1, the radio communication system according to the present embodiment includes mobile stations 1A and 1B and a base station 2.

図2は、本実施の形態に係る基地局2の構成を示すブロック図である。図2に示すように、基地局2は、アンテナ10と、TDD送受信部20と、TDD/FDD送受信タイミング制御部40と、FDD送受信部50とを備える。本実施の形態に係る基地局2は、移動局1A,1Bとの間で、TDD送受信部20により、第1の周波数fHでTDD方式の無線通信を行い、FDD送受信部50により、第1の周波数fHと異なる第2の周波数fL1,fL2でFDD方式の無線通信を行う。 FIG. 2 is a block diagram showing a configuration of base station 2 according to the present embodiment. As shown in FIG. 2, the base station 2 includes an antenna 10, a TDD transmission / reception unit 20, a TDD / FDD transmission / reception timing control unit 40, and an FDD transmission / reception unit 50. The base station 2 according to the present embodiment performs TDD wireless communication with the mobile stations 1A and 1B at the first frequency f H using the TDD transmission / reception unit 20, and the FDD transmission / reception unit 50 performs first communication. FDD wireless communication is performed at second frequencies f L1 and f L2 that are different from the frequency f H.

本実施の形態に係るTDD送受信部20は、RFフィルタ21と、切り替えスイッチ22,26と、RF増幅器23と、受信側周波数変換器24と、A/D変換器25と、局部発振器(LO)27と、送信側パワー増幅器28と、送信側周波数変換器29と、D/A変換器30と、ベースバンド部31とを備える。TDD送受信部20は、切り替えスイッチ22,26により、RX(受信)およびTX(送信)モードを選択的に切替える。また、TDD送受信部20は、RXモードおよびTXモードのいずれも、局部発振器27の第1の周波数fHを用いる。 The TDD transmission / reception unit 20 according to the present embodiment includes an RF filter 21, changeover switches 22 and 26, an RF amplifier 23, a reception-side frequency converter 24, an A / D converter 25, and a local oscillator (LO). 27, a transmission side power amplifier 28, a transmission side frequency converter 29, a D / A converter 30, and a baseband unit 31. The TDD transmission / reception unit 20 selectively switches between RX (reception) and TX (transmission) modes using the changeover switches 22 and 26. Further, the TDD transceiver 20 uses the first frequency f H of the local oscillator 27 in both the RX mode and the TX mode.

このTDD送受信部20は、移動局1A,1Bと、アンテナ10を介して、第1の周波数fHでTDD方式の無線通信を行う。本実施の形態に係る無線通信システムでは、TDD方式の無線通信による超高速伝送を想定している。そこで、本実施の形態では、TDD方式の無線通信に用いる第1の周波数fHは、広い周波数帯に属し、かつ、その周波数帯は高周波数からなるものとする。一般に、無線通信に使用する周波数が高くなるほど、場所率の劣化は大きくなる。そのため、図1に示すように、基地局2は、主に、基地局2に近い移動局1AとTDD方式の無線通信を行うことになる。このように、本実施の形態に係る第1の周波数fHは、超高速伝送を達成するのに十分な周波数帯域に属するが、伝搬損失による場所率の劣化が大きいものとする。 The TDD reception unit 20 performs the mobile station 1A, and 1B, via the antenna 10, the radio communication TDD mode at a first frequency f H. The radio communication system according to the present embodiment assumes ultra-high-speed transmission by TDD radio communication. Therefore, in the present embodiment, it is assumed that the first frequency f H used for TDD wireless communication belongs to a wide frequency band, and the frequency band includes a high frequency. In general, the higher the frequency used for wireless communication, the greater the degradation of the location rate. Therefore, as shown in FIG. 1, the base station 2 mainly performs TDD wireless communication with the mobile station 1A close to the base station 2. As described above, it is assumed that the first frequency f H according to the present embodiment belongs to a frequency band sufficient to achieve ultrahigh-speed transmission, but the location rate is greatly deteriorated due to propagation loss.

本実施の形態に係るFDD送受信部50は、受信側RFフィルタ51と、受信側RF増幅器52と、受信側周波数変換器53と、受信側局部発振器(LO)54と、A/D変換器55と、送信側RFフィルタ56と、送信側パワー増幅器57と、送信側周波数変換器58と、送信側局部発振器(LO)59と、D/A変換器60と、ベースバンド部61とを備える。FDD送受信部50は、RXおよびTXモードを切替えることなく両者を並行して行う。また、FDD送受信部50は、RXモードでは、受信側局部発振器54の第2の周波数fL1を用い、TXモードでは、送信側局部発振器59の第2の周波数fL2(≠fL1)を用いる。 The FDD transceiver 50 according to the present embodiment includes a reception-side RF filter 51, a reception-side RF amplifier 52, a reception-side frequency converter 53, a reception-side local oscillator (LO) 54, and an A / D converter 55. A transmission side RF filter 56, a transmission side power amplifier 57, a transmission side frequency converter 58, a transmission side local oscillator (LO) 59, a D / A converter 60, and a baseband unit 61. The FDD transceiver unit 50 performs both in parallel without switching between the RX and TX modes. Further, the FDD transceiver 50 uses the second frequency f L1 of the reception-side local oscillator 54 in the RX mode, and uses the second frequency f L2 (≠ f L1 ) of the transmission-side local oscillator 59 in the TX mode. .

このFDD送受信部50は、移動局1A,1Bと、アンテナ10を介して、第2の周波数fL1,fL2でFDD方式の無線通信を行う。FDD方式の無線通信に用いる第2の周波数fL1,fL2は、TDD方式の無線通信に用いる第1の周波数fHと異なる。また、FDD方式の無線通信に用いる第2の周波数fL1,fL2は、狭い周波数帯に属し、かつ、その周波数帯は低周波数からなる。本実施の形態では、FDD方式の無線通信に用いる第2の周波数fL1,fL2は、TDD方式の無線通信に用いる第1の周波数fHよりも低周波数であり、場所率の劣化が小さいものとする。こうして、図1に示すように、基地局2は、基地局2から遠く離れた移動局1BとFDD方式の無線通信を行うことが可能になる。 The FDD transceiver 50 performs FDD wireless communication with the mobile stations 1A and 1B via the antenna 10 at the second frequencies f L1 and f L2 . The second frequencies f L1 and f L2 used for the FDD wireless communication are different from the first frequencies f H used for the TDD wireless communication. The second frequencies f L1 and f L2 used for FDD wireless communication belong to a narrow frequency band, and the frequency band is a low frequency. In the present embodiment, the second frequencies f L1 and f L2 used for the FDD wireless communication are lower than the first frequency f H used for the TDD wireless communication, and the degradation of the location rate is small. Shall. In this way, as shown in FIG. 1, the base station 2 can perform FDD wireless communication with the mobile station 1 </ b> B far from the base station 2.

TDD/FDD送受信タイミング制御部40は、TDD送受信部20の送受信と、FDD送受信部50との送受信とのタイミング制御を行う。本実施の形態では、TDD/FDD送受信タイミング制御部40は、TDD方式とFDD方式とのタイムスロットをコントロールする。基地局2は、このTDD/FDD送受信タイミング制御部40の制御により、ハイブリッド・デュープレックス方式の無線通信を行う。図3は、TDD/FDD送受信タイミング制御部40のコントロールを説明する図である。なお、この図では、N個のタイムスロットをまとめたものを、フレームと定義している。   The TDD / FDD transmission / reception timing control unit 40 performs timing control between transmission / reception of the TDD transmission / reception unit 20 and transmission / reception with the FDD transmission / reception unit 50. In the present embodiment, the TDD / FDD transmission / reception timing control unit 40 controls time slots of the TDD scheme and the FDD scheme. The base station 2 performs hybrid duplex wireless communication under the control of the TDD / FDD transmission / reception timing control unit 40. FIG. 3 is a diagram for explaining the control of the TDD / FDD transmission / reception timing control unit 40. In this figure, a group of N time slots is defined as a frame.

従来のTDD方式の無線通信では、移動局1A,1Bと基地局2との間の伝送遅延により生じる上り/下りの干渉を防ぐため、TDD方式の隣り合うスロットTS−1〜N同士の間に、TDD方式の無線通信を停止するガードタイムGTを挿入している。しかしながら、このガードタイムGTの長さはセル半径に依存し、移動局1A,1Bと基地局2との間の距離が大きい場合には、ガードタイムGTが長くなり、TDD方式はFDD方式に比べて非効率となるという問題があった。   In conventional TDD wireless communication, in order to prevent uplink / downlink interference caused by a transmission delay between the mobile stations 1A, 1B and the base station 2, between adjacent slots TS-1 to N of the TDD scheme. The guard time GT for stopping the TDD wireless communication is inserted. However, the length of the guard time GT depends on the cell radius, and when the distance between the mobile stations 1A and 1B and the base station 2 is large, the guard time GT becomes long, and the TDD scheme is compared with the FDD scheme. There was a problem of inefficiency.

それに対し、本実施の形態に係る無線通信システムでは、各ガードタイムGT区間において、FDD方式の受信スロットTSU−1〜N、および、FDD方式の送信スロットTSD−1〜Nを挿入する。こうして、本実施の形態に係る無線通信システムでは、TDD/FDD送受信タイミング制御部40の制御により、TDD方式の無線通信のガードタイムGT区間において、FDD方式の無線通信を行う。   On the other hand, in the radio communication system according to the present embodiment, FDD reception slots TSU-1 to N and FDD transmission slots TSD-1 to N are inserted in each guard time GT interval. Thus, in the radio communication system according to the present embodiment, FDD radio communication is performed in the TDD radio communication guard time GT section under the control of the TDD / FDD transmission / reception timing control unit 40.

以上のように、本実施の形態に係る無線通信システムによれば、TDD方式の無線通信(TS−1〜N)のガードタイムGT区間において、FDD方式の無線通信(TSU−1〜N、TSD−1〜N)を行う。このように、ガードタイムGT区間を有効利用することにより、長距離通信では非効率となるTDD方式の欠点を改善することができる。なお、第1の周波数fHは、第2の周波数fL1,fL2と異なるため、互いに干渉することはない。 As described above, according to the radio communication system according to the present embodiment, in the guard time GT section of TDD radio communication (TS-1 to N), FDD radio communication (TSU-1 to N, TSD). -1 to N). As described above, by effectively using the guard time GT section, it is possible to improve the disadvantage of the TDD scheme that is inefficient in long-distance communication. Since the first frequency f H is different from the second frequencies f L1 and f L2 , they do not interfere with each other.

また、本実施形態では、FDD方式の無線通信に用いる第2の周波数fL1,fL2は、TDD方式の無線通信に用いる第1の周波数fHよりも場所率の劣化が小さい。そのため、本実施の形態に係る無線通信システムは、TDD方式の無線通信によって超高速伝送を行い、場所率が低下しても、広い場所率を有するFDD方式の無線通信も行うため、広い場所率で通信することができる。 Further, in the present embodiment, the second frequencies f L1 and f L2 used for FDD wireless communication are less degraded in the location rate than the first frequency f H used for TDD wireless communication. Therefore, the wireless communication system according to the present embodiment performs ultra-high-speed transmission by TDD wireless communication, and performs FDD wireless communication having a wide space ratio even when the space ratio decreases. You can communicate with.

<実施の形態2>
図4は、本実施の形態に係る基地局2の構成を示すブロック図である。以下、本実施の形態に係る無線通信システムの構成のうち、実施の形態1と同一の構成については、同一の符号を付すものとし、新たに説明しない構成については、実施の形態1と同じであるものとする。
<Embodiment 2>
FIG. 4 is a block diagram showing a configuration of base station 2 according to the present embodiment. Hereinafter, in the configuration of the radio communication system according to the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the components not newly described are the same as those in the first embodiment. It shall be.

図4に示すように、本実施の形態に係る基地局2は、実施の形態1と同様、アンテナ10と、TDD送受信部20と、TDD/FDD送受信タイミング制御部40と、FDD送受信部50とを備える。本実施の形態に係るTDD送受信部20およびFDD送受信部50の構成は、実施の形態1と同様である。これにより、基地局2は、第1の周波数fHでTDD方式の無線通信を行い、第1の周波数fHと異なる第2の周波数fL1,fL2でFDD方式の無線通信を行う。本実施の形態に係る基地局2は、以上の構成に加え、無線リソース制御部70と、品質推定部71とをさらに備える。 As shown in FIG. 4, the base station 2 according to the present embodiment is similar to the first embodiment in that the antenna 10, the TDD transmission / reception unit 20, the TDD / FDD transmission / reception timing control unit 40, and the FDD transmission / reception unit 50 Is provided. The configurations of TDD transmission / reception unit 20 and FDD transmission / reception unit 50 according to the present embodiment are the same as those of the first embodiment. Thus, the base station 2 performs radio communication TDD mode at a first frequency f H, performs wireless communication FDD scheme at a first frequency f H is different from the second frequency f L1, f L2. Base station 2 according to the present embodiment further includes radio resource control unit 70 and quality estimation unit 71 in addition to the above configuration.

本実施の形態に係る無線通信システムは、上述のTDD方式の無線通信により、データを移動局1A,1Bと送受信する。本実施の形態に係るデータは、パケットデータであるものとする。TDD送受信部20は、低速から超高速のデータ伝送(ベストエフォート型の伝送)を行う。そして、本実施の形態に係る無線通信システムは、上述のFDD方式の無線通信により、移動局1A,1Bと基地局2との無線通信を維持するための重要な情報を移動局1A,1Bと送受信する。ここで、移動局1A,1Bと基地局2との無線通信を維持するための重要な情報には、例えば、制御チャネルの情報が該当する。   The wireless communication system according to the present embodiment transmits / receives data to / from mobile stations 1A and 1B by the above-described TDD wireless communication. The data according to the present embodiment is assumed to be packet data. The TDD transmission / reception unit 20 performs data transmission (best effort transmission) from low speed to ultra high speed. The wireless communication system according to the present embodiment transmits important information for maintaining wireless communication between the mobile stations 1A and 1B and the base station 2 to the mobile stations 1A and 1B by the above-described FDD wireless communication. Send and receive. Here, for example, control channel information corresponds to important information for maintaining wireless communication between the mobile stations 1A and 1B and the base station 2.

FDD送受信部50は、広いカバレッジ特性を持つので、各移動局1A,1Bの品質推定を分担する。品質推定部71は、FDD送受信部50からの信号を受けて品質を推定し、その推定結果を無線リソース制御部70に入力する。ここでいう、品質とは、例えば、SNR(Signal to Noise Ratio)/PER(Packet Error Rate)/移動速度が該当する。本実施の形態に係る無線リソース制御部70は、品質推定部71の推定結果に応じて、送信すべきパケットデータを、TDD送受信部20またはFDD送受信部50に振り分ける。無線リソース制御部70は、通常はパケットデータをTDD送受信部20に振り分けるが、移動局1A,1Bからの信号の品質が低下した場合に限り、パケットデータをFDD送受信部50に振り分ける。そして、FDD送受信部50は、振り分けられたパケットデータを、自己が許容する最低データ伝送速度に低下させて移動局1A,1Bに送信する。   Since the FDD transmission / reception unit 50 has a wide coverage characteristic, the FDD transmission / reception unit 50 shares the quality estimation of the mobile stations 1A and 1B. The quality estimation unit 71 receives the signal from the FDD transmission / reception unit 50, estimates the quality, and inputs the estimation result to the radio resource control unit 70. The quality here refers to, for example, SNR (Signal to Noise Ratio) / PER (Packet Error Rate) / movement speed. The radio resource control unit 70 according to the present embodiment distributes packet data to be transmitted to the TDD transmission / reception unit 20 or the FDD transmission / reception unit 50 according to the estimation result of the quality estimation unit 71. The radio resource control unit 70 normally distributes the packet data to the TDD transmission / reception unit 20, but distributes the packet data to the FDD transmission / reception unit 50 only when the signal quality from the mobile stations 1A and 1B deteriorates. Then, the FDD transmitting / receiving unit 50 transmits the distributed packet data to the mobile stations 1A and 1B while reducing the packet data to the lowest data transmission rate allowed by itself.

図5は、本実施の形態に係る無線通信システムの動作を示す図である。基地局2は、FDD方式の無線通信の広いカバレッジ特性を持つ第2の周波数fL1,fL2を用いて、主として上述の無線通信を維持するための情報を移動局1A,1Bに伝送する。そして、基地局2は、オプションで、例えば、移動局1Bとの無線通信の品質が低下した場合に、ギャランティー型の低速のパケットデータ伝送、つまり、移動局1B向けの最低データ伝送速度が保証された伝送を行う。このように、本実施の形態に係る無線通信システムは、移動局1A,1Bとの無線通信の品質に応じて、FDD方式の無線通信により、上述の情報に加えて上述のデータの一部を送受信する。 FIG. 5 is a diagram illustrating an operation of the radio communication system according to the present embodiment. The base station 2 mainly transmits information for maintaining the above-described wireless communication to the mobile stations 1A and 1B using the second frequencies f L1 and f L2 having wide coverage characteristics of FDD wireless communication. Then, the base station 2 optionally guarantees a guarantee-type low-speed packet data transmission, that is, a minimum data transmission rate for the mobile station 1B, when the quality of wireless communication with the mobile station 1B deteriorates, for example. Transmission. As described above, the wireless communication system according to the present embodiment uses the FDD wireless communication in accordance with the quality of the wireless communication with the mobile stations 1A and 1B, in addition to the above information, a part of the above data. Send and receive.

以上のような本実施の形態に係る無線通信システムによれば、実施の形態1の効果に加え、ベストエフォート型の超高速のデータ伝送と、ギャランティー型の低速のデータ伝送を行うことができる。   According to the radio communication system according to the present embodiment as described above, in addition to the effects of the first embodiment, it is possible to perform best effort type ultra-high speed data transmission and guarantee type low speed data transmission. .

実施の形態1に係る無線通信システムの構成を示す図である。1 is a diagram showing a configuration of a radio communication system according to Embodiment 1. FIG. 実施の形態1に係る無線通信システムの基地局の構成を示すブロック図である。2 is a block diagram showing a configuration of a base station of the wireless communication system according to Embodiment 1. FIG. 実施の形態1に係る無線通信システムのタイムスロットコントロールを説明する図である。6 is a diagram for explaining time slot control of the wireless communication system according to Embodiment 1. FIG. 実施の形態2に係る無線通信システムの基地局の構成を示すブロック図である。6 is a block diagram showing a configuration of a base station of a radio communication system according to Embodiment 2. FIG. 実施の形態2に係る無線通信システムの構成を示す図である。6 is a diagram illustrating a configuration of a wireless communication system according to a second embodiment. FIG.

符号の説明Explanation of symbols

1A,1B 移動局、2 基地局、10 アンテナ、20 TDD送受信部、21 RFフィルタ、22,26 切り替えスイッチ、23 RF増幅器、24,53 受信側周波数変換器、25,55 A/D変換器、27 局部発振器、28 送信側パワー増幅器、29,58 送信側周波数変換器、30,60 D/A変換器、31,61 ベースバンド部、40 TDD/FDD送受信タイミング制御部、50 FDD送受信部、51 受信側RFフィルタ、52 受信側RF増幅器、54 受信側局部発振器、56 送信側RFフィルタ、57 送信側パワー増幅器、59 送信側局部発振器、70 無線リソース制御部、71 品質推定部、GT ガードタイム。   1A, 1B mobile station, 2 base station, 10 antenna, 20 TDD transceiver, 21 RF filter, 22, 26 changeover switch, 23 RF amplifier, 24, 53 reception side frequency converter, 25, 55 A / D converter, 27 Local oscillator, 28 Transmission side power amplifier, 29, 58 Transmission side frequency converter, 30, 60 D / A converter, 31, 61 Baseband unit, 40 TDD / FDD transmission / reception timing control unit, 50 FDD transmission / reception unit, 51 Reception side RF filter, 52 Reception side RF amplifier, 54 Reception side local oscillator, 56 Transmission side RF filter, 57 Transmission side power amplifier, 59 Transmission side local oscillator, 70 Radio resource control part, 71 Quality estimation part, GT guard time.

Claims (5)

移動局と、
前記移動局との間で、第1の周波数でTDD(Time Division Duplex)方式の無線通信を行い、前記第1の周波数と異なる第2の周波数でFDD(Frequency Division Duplex)方式の無線通信を行う基地局とを備え、
前記TDD方式の無線通信のガードタイム区間において、前記FDD方式の無線通信を行う、
無線通信システム。
A mobile station,
TDD (Time Division Duplex) wireless communication is performed with the mobile station at a first frequency, and FDD (Frequency Division Duplex) wireless communication is performed at a second frequency different from the first frequency. With a base station,
In the guard time interval of the TDD wireless communication, the FDD wireless communication is performed.
Wireless communication system.
前記FDD方式の無線通信に用いる前記第2の周波数は、前記TDD方式の無線通信に用いる前記第1の周波数よりも場所率(カバレッジ)の劣化が小さい、
請求項1に記載の無線通信システム。
The second frequency used for the FDD wireless communication has a smaller degradation of the location rate (coverage) than the first frequency used for the TDD wireless communication.
The wireless communication system according to claim 1.
前記TDD方式の無線通信により、データを前記移動局と送受信し、
前記FDD方式の無線通信により、前記移動局と前記基地局との無線通信を維持するための情報を前記移動局と送受信する、
請求項1または請求項2に記載の無線通信システム。
Sending and receiving data to and from the mobile station by the TDD wireless communication,
Transmitting and receiving information for maintaining wireless communication between the mobile station and the base station to and from the mobile station by the FDD wireless communication;
The radio | wireless communications system of Claim 1 or Claim 2.
前記移動局との無線通信の品質に応じて、前記FDD方式の無線通信により、前記情報に加えて前記データの一部を送受信する、
請求項3に記載の無線通信システム。
Depending on the quality of wireless communication with the mobile station, the FDD wireless communication transmits and receives part of the data in addition to the information.
The wireless communication system according to claim 3.
前記データはパケットデータを含む、
請求項3または請求項4に記載の無線通信システム。
The data includes packet data;
The radio | wireless communications system of Claim 3 or Claim 4.
JP2008023691A 2008-02-04 2008-02-04 Radio communication system Pending JP2009188497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023691A JP2009188497A (en) 2008-02-04 2008-02-04 Radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023691A JP2009188497A (en) 2008-02-04 2008-02-04 Radio communication system

Publications (1)

Publication Number Publication Date
JP2009188497A true JP2009188497A (en) 2009-08-20

Family

ID=41071362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023691A Pending JP2009188497A (en) 2008-02-04 2008-02-04 Radio communication system

Country Status (1)

Country Link
JP (1) JP2009188497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118841A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Base station device
JP2015506601A (en) * 2011-12-22 2015-03-02 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド Communication device and communication method for half duplex and full duplex
JP2015507870A (en) * 2011-12-22 2015-03-12 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド Communication device and communication method for half duplex and full duplex

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118841A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd Base station device
JP2015506601A (en) * 2011-12-22 2015-03-02 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド Communication device and communication method for half duplex and full duplex
JP2015507870A (en) * 2011-12-22 2015-03-12 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド Communication device and communication method for half duplex and full duplex

Similar Documents

Publication Publication Date Title
Gazestani et al. A survey on implementation and applications of full duplex wireless communications
US11005544B2 (en) Communication device and method for performing radio communication
US10264478B2 (en) Methods and apparatus to enhance reliability in millimeter wave wideband communications
US8842581B2 (en) Method, a device and a system for duplex communications
KR100960567B1 (en) Hybrid duplex apparatus and method for supporting low complexity terminal in wireless communication system
Wirth et al. LTE-advanced relaying for outdoor range extension
KR20100036943A (en) Mimo repeater apparatus, mimo handheld terminal apparatus, mimo wireless communication method
US20120099512A1 (en) Radio communication system, radio base station, and radio communication method
Mustaqim et al. LTE-Advanced: Requirements and technical challenges for 4G cellular network
US8964607B2 (en) Communication system, communication apparatus, and communication method
Asai 5G radio access network and its requirements on mobile optical network
US20060281493A1 (en) Wireless communications system
JP2009188497A (en) Radio communication system
US7693094B2 (en) Apparatus for bidirectional communication using auxiliary band in wireless communication system
CN106792776B (en) Beam processing method and base station
CN112671500A (en) Same frequency interference suppression method and corresponding communication terminal
Mastrosimone et al. A comparative analysis of mmWave vs LTE technology for 5G moving networks
KR20090122991A (en) User device, base station device, mobile communication system and communication control method
EP3873158A1 (en) Wireless communication for vehicle based node
Gupta et al. Subcarrier sharing scheme for overlay anc cooperative d2d communication in cellular networks
Khan et al. LTE advanced: Necessities and technological challenges for 4th generation mobile network
US20220110064A1 (en) Systems and methods for high power uplink transmission
Cai et al. Analysis and field trial on FDD NR based on 2.1 GHz
WO2021223599A1 (en) Uplink data transmission method and apparatus
US20240097756A1 (en) Front-end systems bypassing transmit band filter for antenna switching