JP2009186377A - Bench performance testing device - Google Patents

Bench performance testing device Download PDF

Info

Publication number
JP2009186377A
JP2009186377A JP2008028067A JP2008028067A JP2009186377A JP 2009186377 A JP2009186377 A JP 2009186377A JP 2008028067 A JP2008028067 A JP 2008028067A JP 2008028067 A JP2008028067 A JP 2008028067A JP 2009186377 A JP2009186377 A JP 2009186377A
Authority
JP
Japan
Prior art keywords
clutch
vehicle speed
throttle valve
motorcycle
bench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008028067A
Other languages
Japanese (ja)
Inventor
Tadamitsu Iwamoto
忠満 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2008028067A priority Critical patent/JP2009186377A/en
Publication of JP2009186377A publication Critical patent/JP2009186377A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bench performance testing device that performs shifting operation, related to travel of a motorcycle using all gears and acquires test data of high reliability with the actual travel. <P>SOLUTION: This bench performance testing device 1 tests the performance of the engine 2 for the motorcycle, having a clutch 3, a transmission 4, and a throttle valve 5. The bench performance testing device includes a dynamometer 9 for charging the load on the engine 2 for the motorcycle; a clutch operation motor 63 for operating the clutch 3; a shift operation motor 64 for operating the transmission 4; a throttle operation motor 65 for operating the throttle valve 5; a storage device 8 storing driving data 80, related to the operation with the clutch 3, transmission 4; and throttle valve 5 by a rider during the actual travel, and a controller 7 for controlling the clutch operation motor 63, shift operation motor 64, and throttle operation motor 65 based on the driving data 80. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は自動二輪車のエンジンを試験するベンチ性能試験装置に関する。   The present invention relates to a bench performance test apparatus for testing an engine of a motorcycle.

従来より、パワーユニット単体の試験を行うためのベンチ性能試験装置として、下記特許文献1に記載されたベンチ性能試験装置が知られている。   2. Description of the Related Art Conventionally, a bench performance test apparatus described in Patent Document 1 is known as a bench performance test apparatus for testing a power unit alone.

前記特許文献1における従来のベンチ性能試験装置は、車両のトランスミッションを含んだエンジンから駆動輪までの機械の作動負荷を数値化し、当該数値化された負荷をベンチ性能試験装置上のダイナモに与えることを特長としている。
特許第3918435号公報
The conventional bench performance test apparatus in Patent Document 1 quantifies the operating load of a machine from an engine including a vehicle transmission to a drive wheel, and applies the quantified load to a dynamo on the bench performance test apparatus. It features.
Japanese Patent No. 3918435

前記の特許文献1における従来技術は、実際にシフトチェンジを行うものではない。そのため、試験で使用したギア以外のギアを使った場合の運転について、信頼性の高い試験データが得ることはできないと考えられる。また、数値シミュレーションに用いる車両諸元、走行抵抗、エンジンマップ等の所要項目を設定するには、莫大な量のデータ収集が必要である。   The prior art in Patent Document 1 does not actually perform a shift change. For this reason, it is considered that reliable test data cannot be obtained for the operation using a gear other than the gear used in the test. Further, in order to set required items such as vehicle specifications, running resistance, and engine map used for numerical simulation, it is necessary to collect a huge amount of data.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、自動二輪車の走行に関わる全てのギアを用いた変速操作を行い、また、実際の走行に即した信頼性の高い試験データが得られるベンチ性能試験装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to perform a speed change operation using all the gears related to the traveling of the motorcycle, and to have reliability in conformity with the actual traveling. An object of the present invention is to provide a bench performance test apparatus capable of obtaining high test data.

本発明におけるベンチ性能試験装置は、クラッチとトランスミッションとスロットル弁とを備えた自動二輪車用エンジンの性能を試験するベンチ性能試験装置であって、前記自動二輪車用エンジンに負荷を与えるダイナモメータと、前記クラッチを操作するクラッチ操作モータと、前記トランスミッションを操作するシフト操作モータと、前記スロットル弁を操作するスロットル操作モータと、実走行時のライダーによる前記クラッチと、前記トランスミッションと、前記スロットル弁との操作に関する運転データを記憶した記憶装置と、前記運転データに基づいて、前記クラッチ操作モータと、前記シフト操作モータと、前記スロットル操作モータとを制御する制御装置と、を備える。   A bench performance test apparatus according to the present invention is a bench performance test apparatus for testing the performance of a motorcycle engine including a clutch, a transmission, and a throttle valve, the dynamometer for applying a load to the motorcycle engine, Operation of a clutch operation motor for operating a clutch, a shift operation motor for operating the transmission, a throttle operation motor for operating the throttle valve, the clutch by the rider during actual traveling, the transmission, and the throttle valve And a control device that controls the clutch operation motor, the shift operation motor, and the throttle operation motor based on the operation data.

前記において、クラッチとトランスミッションとスロットル弁とは、自動二輪車用エンジンに組み込まれる実機のものを使用する。そのため、前記クラッチと前記トランスミッションと前記スロットル弁5とを備えた状態での自動二輪車用エンジンの性能を試験することができ、全てのギアを用いた試験を行うことができる。   In the above description, the actual clutch incorporated in the motorcycle engine is used as the clutch, transmission, and throttle valve. Therefore, the performance of the motorcycle engine with the clutch, the transmission, and the throttle valve 5 can be tested, and a test using all gears can be performed.

以上のように、本発明におけるベンチ性能試験装置によれば、自動二輪車の走行に関わる全てのギアを用いた変速操作を行い、また、実際の走行に即した信頼性の高い試験データを得ることができる。   As described above, according to the bench performance test apparatus of the present invention, the gear shifting operation using all the gears related to the traveling of the motorcycle is performed, and highly reliable test data in accordance with the actual traveling is obtained. Can do.

図1は、本実施形態に係るベンチ性能試験装置1を示すブロック図である。ベンチ性能試験装置1は、自動二輪車用エンジン(以下、単にエンジンと呼ぶ)2の性能を試験する装置である。ベンチ性能試験装置1は、クラッチ3とトランスミッション4とスロットル弁5とダイナモメータ9とを備えている。なお、ダイナモメータ9は、エンジン2に負荷を与える装置である。また、ベンチ性能試験装置1は、クラッチ3を操作するクラッチ操作モータ63と、トランスミッション4を操作するシフト操作モータ64と、スロットル弁5を操作するスロットル操作モータ65とを備えている。また、ベンチ性能試験装置1は、実走行時のライダーによるクラッチ3、トランスミッション4、およびスロットル弁5の操作に関する運転データ80を記憶した記憶装置8を備えている。ベンチ性能試験装置1は、さらに、記憶装置8に記憶されている運転データ80に基づき、クラッチ操作モータ63とシフト操作モータ64とスロットル操作モータ65とを制御するコントロールユニット7を備えている。   FIG. 1 is a block diagram showing a bench performance test apparatus 1 according to this embodiment. The bench performance test apparatus 1 is an apparatus for testing the performance of a motorcycle engine (hereinafter simply referred to as an engine) 2. The bench performance test apparatus 1 includes a clutch 3, a transmission 4, a throttle valve 5, and a dynamometer 9. The dynamometer 9 is a device that applies a load to the engine 2. The bench performance test apparatus 1 includes a clutch operation motor 63 that operates the clutch 3, a shift operation motor 64 that operates the transmission 4, and a throttle operation motor 65 that operates the throttle valve 5. Further, the bench performance test apparatus 1 includes a storage device 8 that stores operation data 80 relating to the operation of the clutch 3, the transmission 4, and the throttle valve 5 by the rider during actual traveling. The bench performance test apparatus 1 further includes a control unit 7 that controls the clutch operation motor 63, the shift operation motor 64, and the throttle operation motor 65 based on the operation data 80 stored in the storage device 8.

本実施形態のベンチ性能試験装置1は、実際にトランスミッション4内の全てのギアを用いた変速操作を行い、自動二輪車の実機の走行状態に即したエンジン2の性能と特性を測定する。すなわち、ベンチ性能試験装置1は、エンジン2単体ではなく、クラッチ3、トランスミッション4、およびスロットル弁5が組み立てられた状態のエンジン2の性能を試験する。そのため、クラッチ3、トランスミッション4、およびスロットル弁5は、実際の自動二輪車の機構に即した構造でエンジン2に組み付けられる。なお、エンジン2、クラッチ3、トランスミッション4、およびスロットル弁5を合わせて、パワーユニット20と呼ぶ。また、エンジン2の種類は限定されないが、以下ではエンジン2はガソリンエンジンとする。   The bench performance test apparatus 1 of the present embodiment actually performs a shifting operation using all the gears in the transmission 4 and measures the performance and characteristics of the engine 2 in accordance with the running state of the actual motorcycle. That is, the bench performance test apparatus 1 tests the performance of the engine 2 in a state where the clutch 3, the transmission 4, and the throttle valve 5 are assembled, not the engine 2 alone. Therefore, the clutch 3, the transmission 4, and the throttle valve 5 are assembled to the engine 2 with a structure that matches the actual motorcycle mechanism. The engine 2, the clutch 3, the transmission 4, and the throttle valve 5 are collectively referred to as a power unit 20. Moreover, although the kind of engine 2 is not limited, the engine 2 is a gasoline engine below.

図1に示すように、アクセルグリップ66の操作により、スロットル弁5の開閉が行われる。このアクセルグリップ66は、スロットル操作モータ65により操作され、スロットル弁5の開閉を行う。ここでは、スロットル弁5とアクセルグリップ66とは、アクセルワイヤ67を介して連結されている。そのため、スロットル操作モータ65は、アクセルワイヤ67を介してスロットル弁5の開度量を調整する。なお、スロットル操作モータ65は、スロットル弁5を直接操作してもよい。スロットル弁5の開閉により、エンジン2の駆動状態が変化する。このアクセルグリップ66は、このエンジン2が搭載される自動二輪車に用いられるものを使用することにしている。   As shown in FIG. 1, the throttle valve 5 is opened and closed by operating the accelerator grip 66. The accelerator grip 66 is operated by a throttle operation motor 65 to open and close the throttle valve 5. Here, the throttle valve 5 and the accelerator grip 66 are connected via an accelerator wire 67. Therefore, the throttle operation motor 65 adjusts the opening amount of the throttle valve 5 via the accelerator wire 67. The throttle operation motor 65 may directly operate the throttle valve 5. The driving state of the engine 2 is changed by opening / closing the throttle valve 5. As the accelerator grip 66, one used for a motorcycle on which the engine 2 is mounted is used.

また、シフト操作モータ64は、トランスミッション4のシフト操作時において、トランスミッション4を操作する。クラッチ操作モータ63は、トランスミッション4のシフト操作時において、クラッチ3を操作する。クラッチ操作モータ63と、シフト操作モータ64と、スロットル操作モータ65とを合わせて、操作ユニット6と呼ぶ。   The shift operation motor 64 operates the transmission 4 when the transmission 4 is shifted. The clutch operation motor 63 operates the clutch 3 when the transmission 4 is shifted. The clutch operation motor 63, the shift operation motor 64, and the throttle operation motor 65 are collectively referred to as an operation unit 6.

ダイナモメータ9は、内部で負荷を発生させ、シャフト12を介して、エンジン2へ負荷を与える装置である。シャフト12は、カップリング14,15を軸継手とし、パワーユニット20とダイナモメータ9とをつなぐ。また、性能値検出部13が、カップリング14とカップリング15とに挟まれる構造で、パワーユニット20とダイナモメータ9との間に備えられる。   The dynamometer 9 is a device that generates a load inside and applies the load to the engine 2 via the shaft 12. The shaft 12 has couplings 14 and 15 as shaft couplings, and connects the power unit 20 and the dynamometer 9. The performance value detection unit 13 is sandwiched between the coupling 14 and the coupling 15 and is provided between the power unit 20 and the dynamometer 9.

性能値検出部13は、エンジン2の駆動トルクと回転数とを含むパワーユニット20の性能を測定する手段である。また、性能値検出部13は、パワーユニット20に係る、実機としての自動二輪車の車速を測定する。   The performance value detector 13 is means for measuring the performance of the power unit 20 including the driving torque and the rotational speed of the engine 2. In addition, the performance value detection unit 13 measures the vehicle speed of the motorcycle as the actual machine related to the power unit 20.

また、図1に示すように、ベンチ性能試験装置1は、ダイナモコントローラ91を備える。ダイナモコントローラ91は、性能値検出部13より、少なくとも駆動トルク100および車速101を入力し、少なくとも走行抵抗値のうち、空気抵抗値102と、車両質量に起因する質量負荷抵抗(以下、フライホイル抵抗と称する)値103とを算出する。空気抵抗値102とフライホイル抵抗値103とは、自動二輪車が走行時に受ける走行抵抗の値である。フライホイル抵抗には、転がり抵抗と勾配抵抗と加速抵抗とが含まれる。空気抵抗は、自動二輪車が走行時に受ける風圧の抵抗力である。フライホイル抵抗は、自動二輪車の加減速時または登坂走行時、タイヤと路面およびタイヤからエンジンまでの摩擦抵抗として発生する抵抗力である。ダイナモコントローラ91は、自動二輪車1に生じる抵抗と等しい負荷を発生させるようにダイナモメータ9を制御する。具体的には、ダイナモコントローラ91は、算出した空気抵抗値102と、フライホイル抵抗値103との合計が、性能値検出部13より測定されるエンジン2の駆動トルク100と一致するように、ダイナモメータ9に対しフィードバック制御を行う。以下、空気抵抗値102とフライホイル抵抗値103との合計値より、駆動トルク100と一致する値に補正した値を目標負荷104と呼ぶ。   As shown in FIG. 1, the bench performance test apparatus 1 includes a dynamo controller 91. The dynamo controller 91 receives at least the driving torque 100 and the vehicle speed 101 from the performance value detection unit 13, and at least the running resistance value includes an air resistance value 102 and a mass load resistance due to vehicle mass (hereinafter, flywheel resistance). Value 103). The air resistance value 102 and the flywheel resistance value 103 are values of running resistance that the motorcycle receives during running. The flywheel resistance includes rolling resistance, gradient resistance, and acceleration resistance. The air resistance is a resistance force of wind pressure that the motorcycle receives during traveling. The flywheel resistance is a resistance force that is generated as a frictional resistance from the tire to the road surface and from the tire to the engine during acceleration / deceleration or climbing on the motorcycle. The dynamo controller 91 controls the dynamometer 9 so as to generate a load equal to the resistance generated in the motorcycle 1. Specifically, the dynamo controller 91 is configured so that the sum of the calculated air resistance value 102 and the flywheel resistance value 103 matches the driving torque 100 of the engine 2 measured by the performance value detection unit 13. Feedback control is performed on the meter 9. Hereinafter, a value obtained by correcting the sum of the air resistance value 102 and the flywheel resistance value 103 to a value that matches the driving torque 100 is referred to as a target load 104.

記憶装置8は、MC走行データ81と、操作系運転データ82と、異常判定データ83と、を含む運転データ80を記憶した装置である。また、記憶装置8は、自動二輪車の各車種における車両諸元を記憶することができる。   The storage device 8 is a device that stores operation data 80 including MC traveling data 81, operation system operation data 82, and abnormality determination data 83. Further, the storage device 8 can store vehicle specifications for each type of motorcycle.

MC走行データ81は、実際に自動二輪車が走行すると仮定する場合におけるテストコースの状態と、前記自動二輪車の運転操作に関するクラッチ、トランスミッション、スロットルの操作を設定したデータである。MC走行データ81には、複数の走行パターンが含まれる。走行パターンには、走行パターンごとにテストコースにおける各地点での勾配と所定の車速、シフト段数、ブレーキ位置とブレーキ荷重と、実際に自動二輪車を操作すると仮定するライダーのクラッチ操作、シフト操作、スロットル操作に関して、それぞれ操作量、操作速度、操作荷重、どの地点(時間)で操作を行うかの操作タイミング、とをパラメータとして設定している。各走行パターンに設定される所定の車速が、目標車速Vとしてベンチ性能試験装置1において制御目標となる。図6に示すように、所定の車速は、任意の走行パターン(図6では走行パターン8aである)において、テストコースでの各地点によって設定される。ただし、目標車速Vは、走行時における各時間での所定の車速が設定されていても良い。 The MC traveling data 81 is data in which the state of the test course when it is assumed that the motorcycle actually travels and the operation of the clutch, transmission, and throttle related to the driving operation of the motorcycle are set. The MC traveling data 81 includes a plurality of traveling patterns. The driving patterns include the gradient at each point on the test course, the predetermined vehicle speed, the number of shift stages, the brake position and the brake load, and the rider's clutch operation, shift operation, throttle, which are assumed to actually operate the motorcycle. Regarding the operation, the operation amount, the operation speed, the operation load, and the operation timing at which the operation (operation time) is performed are set as parameters. A predetermined vehicle speed set for each travel pattern is a control target in the bench performance test apparatus 1 as the target vehicle speed V 0 . As shown in FIG. 6, the predetermined vehicle speed is set by each point on the test course in an arbitrary traveling pattern (the traveling pattern 8a in FIG. 6). However, the target vehicle speed V 0 may be set to a predetermined vehicle speed at each time during traveling.

操作系運転データ82は、MC走行データ81に基づいて設定され、クラッチ3とトランスミッション4とスロットル弁5との制御に関するデータである。クラッチ3、トランスミッション4、およびスロットル弁5の作動は、操作系運転データ82に基づいて制御される。操作系運転データ82は、試験時に自動二輪車の異なる車種を選択することができるように、車種ごとのクラッチ3、トランスミッション4、スロットル弁5の特性が設定される。また、操作系運転データ82は、後述するように、スロットル弁5の操作に関するハンチング防止や、制御遅れ等の補正を行うようなパラメータが設定されている。   The operation system operation data 82 is set based on the MC travel data 81 and is data related to control of the clutch 3, the transmission 4, and the throttle valve 5. The operations of the clutch 3, the transmission 4, and the throttle valve 5 are controlled based on the operation system operation data 82. In the operation system operation data 82, characteristics of the clutch 3, the transmission 4, and the throttle valve 5 for each vehicle type are set so that different types of motorcycles can be selected during the test. In addition, as will be described later, the operating system operation data 82 is set with parameters for preventing hunting related to the operation of the throttle valve 5 and correcting control delays.

実機としての自動二輪車におけるトランスミッションのシフト位置とシフト動作(シフトアップまたはシフトダウン)タイミングは、走行パターンごとに設定されるとともに、各走行パターン内において、任意の走行距離または時間により設定されている。また、シフト動作タイミングにおいて、シフト動作の組み合わせは、実機を運転すると仮定するライダーのトランスミッションのシフト操作を含む、一連の操作に即して設定されている。   The shift position and shift operation (shift-up or shift-down) timing of a transmission in a motorcycle as an actual machine are set for each travel pattern, and are set by an arbitrary travel distance or time in each travel pattern. Further, at the shift operation timing, the combination of the shift operations is set in accordance with a series of operations including a shift operation of the rider's transmission assuming that the actual machine is operated.

ここでいうシフト動作における一連の操作とは、例として図5(a)に示すように、前記自動二輪車の加速時において、
1.スロットル弁5の開度を絞る。
2.クラッチ3を遮断する。
3.シフト操作を行う。
4.クラッチ3を接続する。
5.スロットル弁5の開度を開ける。
の操作である。また、図5(b)には、自動二輪車の減速時におけるシフト動作の一連の操作手順の一つの例を示す。前記1から5の順序は一例であり、実機を運転すると仮定するライダーの技量等に基づいて、操作の手順、操作速度、操作量、操作荷重、操作タイミングは異なっている。すなわち、MC走行データ81は、実機を運転すると仮定するライダーのシフト動作の一連の操作が、複数設定されている。
As shown in FIG. 5 (a) as an example, a series of operations in the shift operation referred to here is when accelerating the motorcycle.
1. The opening of the throttle valve 5 is reduced.
2. The clutch 3 is disconnected.
3. Perform a shift operation.
4). The clutch 3 is connected.
5. Open the opening of the throttle valve 5.
Operation. FIG. 5 (b) shows an example of a series of operating procedures for the shift operation when the motorcycle is decelerated. The order of 1 to 5 is an example, and the operation procedure, the operation speed, the operation amount, the operation load, and the operation timing are different based on the skill of the rider assumed to drive the actual machine. That is, the MC traveling data 81 is set with a plurality of operations of a rider's shift operation assuming that the actual machine is operated.

また、異常判定データ83は、操作系運転データ82に基づくデータであって、ベンチ性能試験装置1における異常判定が可能なように設定したデータである。ベンチ性能試験装置1に係る異常判定については、後に詳述する。異常判定データ83によって、後述する異常検出装置10は、少なくともクラッチ3、トランスミッション4、スロットル弁5に掛かる負荷とクラッチ3、トランスミッション4、スロットル弁5の操作量と操作タイミングとに関する異常を判別する。   The abnormality determination data 83 is data based on the operation system operation data 82 and is set so that abnormality determination can be performed in the bench performance test apparatus 1. The abnormality determination related to the bench performance test apparatus 1 will be described in detail later. Based on the abnormality determination data 83, the abnormality detection device 10 to be described later determines an abnormality relating to at least the load applied to the clutch 3, the transmission 4, and the throttle valve 5, the operation amount of the clutch 3, the transmission 4, and the throttle valve 5, and the operation timing.

以下、ダイナモコントローラ91における目標負荷104の設定順序を、図に基づいて説明する。図2に示すとおり、ステップS11において、ダイナモコントローラ91は、性能値検出部13より車速101を入力し、現在の車速Vを読み取る。 Hereinafter, the setting order of the target load 104 in the dynamo controller 91 will be described with reference to the drawings. As shown in FIG. 2, in step S <b> 11, the dynamo controller 91 inputs the vehicle speed 101 from the performance value detection unit 13 and reads the current vehicle speed V i .

ステップS12aにおいて、空気抵抗値102と、フライホイル抵抗値103のうちの転がり抵抗値103aおよび勾配抵抗値103cとが算出される。   In step S12a, the air resistance value 102 and the rolling resistance value 103a and the gradient resistance value 103c of the flywheel resistance value 103 are calculated.

転がり抵抗値103aは、任意の車種における自動二輪車の車両重量Mを含んだ必要諸元により、一義的に算出される。一方、勾配抵抗値103cは、走行パターンに設定されたテストコースの所定の勾配と任意の車種における自動二輪車の車両重量Mを含んだ必要諸元により、一義的に算出される。勾配抵抗値103cは、所定のテストコースの勾配角度が零である場合は零である。任意の車種における自動二輪車の諸元は、記憶装置8に操作系運転データ82として記憶されている。   The rolling resistance value 103a is uniquely calculated based on necessary specifications including the vehicle weight M of the motorcycle in an arbitrary vehicle type. On the other hand, the gradient resistance value 103c is uniquely calculated from necessary specifications including a predetermined gradient of the test course set in the traveling pattern and the vehicle weight M of the motorcycle in an arbitrary vehicle type. The gradient resistance value 103c is zero when the gradient angle of the predetermined test course is zero. The specifications of the motorcycle in an arbitrary vehicle type are stored as operation system operation data 82 in the storage device 8.

空気抵抗は、自動二輪車が走行時に受ける風圧の抵抗力である。空気抵抗値102は、車速Vの平方倍により算出される。すなわち、空気抵抗をD、抵抗係数をC、空気密度をρ、車速をV、車体水平面投影面積をSとすると、D=C・ρV・S/2で求められる。 The air resistance is a resistance force of wind pressure that the motorcycle receives during traveling. Air resistance 102 is calculated by the square multiplication of the vehicle speed V i. That is, D = C · ρV 2 · S / 2, where D is the air resistance, C is the resistance coefficient, ρ is the air density, V is the vehicle speed, and S is the horizontal projection area of the vehicle body.

ステップS12b0において、ダイナモコントローラ91は、車速変化(車速Vと車速Vの変化前の車速Vi−1との差(VΔi=V−Vi−1))を読み取る。ステップS12bにおいて車速変化がある場合は、ステップS12b1に進む。一方、ステップS12b0において車速変化がない場合は、ステップS13へ進む。 In step S12b0, dynamo controller 91 reads the vehicle speed change (a difference between the vehicle speed V i-1 before the change of the vehicle speed V i and the vehicle speed V i (V Δi = V i -V i-1)). If there is a change in the vehicle speed in step S12b, the process proceeds to step S12b1. On the other hand, if the vehicle speed does not change in step S12b0, the process proceeds to step S13.

前記車速変化は、予め所定の変化量を設定しておき、変化に要した時間にて所定の変化量とする。あるいは、前記車速変化は、予め所定の時間を設定し、所定の時間内での車速変化を読み取ることにしても良い。   For the vehicle speed change, a predetermined change amount is set in advance, and the predetermined change amount is determined by the time required for the change. Alternatively, the vehicle speed change may be set in advance for a predetermined time, and the vehicle speed change within the predetermined time may be read.

ステップS12b1は、ステップS12b0にて読み取った前記車速変化に基づき、加速度(α)を算出する。加速度(α)は、車速Vと車速Vの変化前の車速Vi−1との差V−Vi−1を、車速変化の時間差(Δt)で除した値とする。 In step S12b1, acceleration (α i ) is calculated based on the vehicle speed change read in step S12b0. Acceleration (alpha i) is the difference V i -V i-1 between the vehicle speed V i-1 before the change of the vehicle speed V i and the vehicle speed V i, a value obtained by dividing the time difference of the vehicle speed change (Delta] t).

ステップS12b2にて、加速抵抗値103bを算出する。加速抵抗値103bは、加速度(α)と、自動二輪車の当該走行時における慣性質量(M)との乗算(M・α)で算出される。 In step S12b2, an acceleration resistance value 103b is calculated. The acceleration resistance value 103b is calculated by multiplying (M i · α i ) by the acceleration (α i ) and the inertial mass (M i ) when the motorcycle is traveling.

ステップS13において、空気抵抗値102とフライホイル抵抗値103との合計が算出される。フライホイル抵抗値103は、転がり抵抗値103aと加速抵抗値103bと勾配抵抗値103cとの積算である。図1に示すように、ダイナモコントローラ91は、前記合計と、ステップS11において性能値検出部13より入力した駆動トルク100との差より前記合計の補正を行い、目標負荷104を算出する。ダイナモメータ9は、目標負荷104の値を基に、エンジン2へ負荷を与える。   In step S13, the sum of the air resistance value 102 and the flywheel resistance value 103 is calculated. The flywheel resistance value 103 is an integration of the rolling resistance value 103a, the acceleration resistance value 103b, and the gradient resistance value 103c. As shown in FIG. 1, the dynamo controller 91 corrects the sum based on the difference between the sum and the driving torque 100 input from the performance value detection unit 13 in step S <b> 11, and calculates a target load 104. The dynamometer 9 applies a load to the engine 2 based on the value of the target load 104.

ここで、ステップS12aと、ステップS12b0、ステップS12b1、およびステップS12b2を包括したステップS12bとは、並行して行われても良い。   Here, step S12a and step S12b including step S12b0, step S12b1, and step S12b2 may be performed in parallel.

図1に示すように、コントロールユニット7は、クラッチ3における現在のクラッチ接続量107を検出する。同様に、コントロールユニット7は、トランスミッション4における現在のシフト位置108と、アクセルグリップ66における現在のグリップ操作量109とを検出する。コントロールユニット7は、記憶装置8より入力される各走行パターンでの所定の車速に応じ、操作ユニット6を制御する。   As shown in FIG. 1, the control unit 7 detects the current clutch engagement amount 107 in the clutch 3. Similarly, the control unit 7 detects the current shift position 108 in the transmission 4 and the current grip operation amount 109 in the accelerator grip 66. The control unit 7 controls the operation unit 6 according to a predetermined vehicle speed in each traveling pattern input from the storage device 8.

前述したように、各走行パターンには、走行パターンごとにテストコースにおける各地点での所定の車速が設定されている(図6参照)。前記所定に設定された車速を目標車速Vと呼ぶ。コントロールユニット7に対して走行パターン8aが入力されている場合、コントロールユニット7は、性能値検出部13より入力される車速101が、常に走行パターン8aに設定される所定の車速、つまり目標車速V0aに追従するように、スロットル操作モータ65を制御する。 As described above, in each traveling pattern, a predetermined vehicle speed at each point on the test course is set for each traveling pattern (see FIG. 6). The set vehicle speed to the predetermined referred to as the target vehicle speed V 0. When the traveling pattern 8a is input to the control unit 7, the control unit 7 determines that the vehicle speed 101 input from the performance value detection unit 13 is a predetermined vehicle speed that is always set to the traveling pattern 8a, that is, the target vehicle speed V. The throttle operation motor 65 is controlled so as to follow 0a .

図3は、任意の走行パターンに沿った、コントロールユニット7におけるシフト動作の制御を示している。まず、ステップS1において、性能値検出部13において測定される車速101が、コントロールユニット7に入力される。コントロールユニット7は、車速Vを読み取る。 FIG. 3 shows control of the shift operation in the control unit 7 along an arbitrary traveling pattern. First, in step S <b> 1, the vehicle speed 101 measured by the performance value detection unit 13 is input to the control unit 7. Control unit 7 reads the vehicle speed V i.

ステップS2において、トランスミッション4より、シフト位置108がコントロールユニット7に入力される。したがって、コントロールユニット7は、現在のトランスミッション4におけるシフト位置Pを読み取る(図1参照)。ここで、ステップS1とステップS2とは、並行して行われても良い。また、ステップS1とステップS2とは、図3に示す順序とは、入れ替わっていても良い。   In step S <b> 2, the shift position 108 is input to the control unit 7 from the transmission 4. Therefore, the control unit 7 reads the current shift position P in the transmission 4 (see FIG. 1). Here, step S1 and step S2 may be performed in parallel. Further, step S1 and step S2 may be interchanged with the order shown in FIG.

コントロールユニット7は、車速101を入力し、実機としての自動二輪車の走行状態における加減速の状態を認識した際は、次に行うべきシフト動作を、走行パターンに設定される加減速後の車速(V+ΔV)におけるシフト位置P´を判断する。この状態がステップS3である。つまり、ステップS3では、コントロールユニット7は、加減速後のシフト位置P´が、走行パターンの設定したシフト位置となるように判断する制御である。例として、図6に示すように、現在2速で走行している場合において、車速101がVG23と一致する時点で、2速から3速にシフトチェンジのシフト動作を行うものと判断する制御である。 When the control unit 7 receives the vehicle speed 101 and recognizes the acceleration / deceleration state in the running state of the motorcycle as the actual machine, the control unit 7 determines the next shift operation to be performed after the acceleration / deceleration vehicle speed (set in the running pattern ( The shift position P ′ at V i + ΔV i ) is determined. This state is step S3. That is, in step S3, the control unit 7 performs control to determine that the shift position P ′ after acceleration / deceleration is the shift position set by the travel pattern. As an example, as shown in FIG. 6, when the vehicle is currently traveling at the second speed, it is determined that the shift operation of the shift change is performed from the second speed to the third speed when the vehicle speed 101 coincides with VG23. It is.

ステップS4aは、ステップS3において、加減速前後でシフト動作を必要としない場合である。ステップS4aでは、コントロールユニット7は、シフト動作へつながる制御は行わない。また、ステップS3において、加減速前後でシフト動作を必要とする場合は、コントロールユニット7は、シフトアップまたはシフトダウンの動作へつながる制御を行う。ステップS4bがシフトアップであり、ステップS4cがシフトダウンである。   Step S4a is a case where no shift operation is required before and after acceleration / deceleration in step S3. In step S4a, the control unit 7 does not perform control leading to the shift operation. In step S3, when a shift operation is required before and after acceleration / deceleration, the control unit 7 performs control leading to a shift-up or shift-down operation. Step S4b is upshift, and step S4c is downshift.

コントロールユニット7のシフト動作へつながる制御は、図1に示すとおりである。コントロールユニット7は、クラッチ操作信号110をクラッチ操作モータ63に対して出力する。同様に、コントロールユニット7は、シフト操作信号111をシフト操作モータ64に対して出力し、コントロールユニット7は、アクセル開度信号112をスロットル操作モータ65に対して出力する。   The control leading to the shift operation of the control unit 7 is as shown in FIG. The control unit 7 outputs a clutch operation signal 110 to the clutch operation motor 63. Similarly, the control unit 7 outputs a shift operation signal 111 to the shift operation motor 64, and the control unit 7 outputs an accelerator opening signal 112 to the throttle operation motor 65.

以上のように、コントロールユニット7は、記憶装置8より与えられる走行パターンにおける目標車速Vおよびシフト位置と、性能値検出部13より入力される車速101とに基づき、操作ユニット6の制御を行う。 As described above, the control unit 7 controls the operation unit 6 based on the target vehicle speed V 0 and the shift position in the travel pattern given from the storage device 8 and the vehicle speed 101 input from the performance value detection unit 13. .

図4は、コントロールユニット7における、スロットル弁5の制御を表す。ステップS21において、コントロールユニット7は、記憶装置8より入力される、任意の走行パラメータに基づく目標車速Vを読み取る。 FIG. 4 shows control of the throttle valve 5 in the control unit 7. In step S <b> 21, the control unit 7 reads the target vehicle speed V 0 based on an arbitrary travel parameter input from the storage device 8.

ステップS22において、コントロールユニット7は、ダイナモコントローラ91より車速101を入力し、現在の車速Vを読み取る。ここで、ステップS21とステップS22とは、並行して行われても良い。また、ステップS21とステップS22とは、図4に示す順序とは、入れ替わっていても良い。 In step S22, the control unit 7 receives the vehicle speed 101 from dynamo controller 91 reads the current vehicle speed V i. Here, step S21 and step S22 may be performed in parallel. Moreover, step S21 and step S22 may be replaced with the order shown in FIG.

ステップS23では、ステップS21において読み取った目標車速Vと、ステップS22において読み取った現在の車速Vとを比較する。 In step S23, it is compared with the target vehicle speed V 0 read in the step S21, the current vehicle speed V i read in step S22.

ステップS23において、目標車速Vと現在の車速Vとが一致している場合(V=V)は、ステップS24aへ進む。ステップS24aにおいて、コントロールユニット7は、スロットル弁5の開度を一定とする制御を行う。また、目標車速Vと現在の車速Vとが不一致の場合、コントロールユニット7は、スロットル弁5の開度を調整する制御を行う。ステップS24bは、目標車速Vに対して現在の車速Vが高い場合である。そのため、コントロールユニット7は、スロットル弁5の開度を閉じる制御を行う。ステップS24cは、目標車速Vに対して現在の車速Vが低い場合である。そのため、コントロールユニット7は、スロットル弁5の開度を開く制御を行う。 In step S23, if the target vehicle speed V 0 and the current vehicle speed V i is coincident (V 0 = V i), the process proceeds to step S24a. In step S24a, the control unit 7 performs control to keep the opening degree of the throttle valve 5 constant. Further, when the target vehicle speed V 0 and the current vehicle speed V i do not match, the control unit 7 performs control to adjust the opening degree of the throttle valve 5. Step S24b is when a high current vehicle speed V i with respect to the target vehicle speed V 0. Therefore, the control unit 7 performs control to close the opening degree of the throttle valve 5. Step S24c is when a low current vehicle speed V i with respect to the target speed V 0. Therefore, the control unit 7 performs control to open the opening degree of the throttle valve 5.

以上のように、コントロールユニット7は、性能値検出部13より入力される車速Vが、目標車速V0に追従するように、スロットル弁5に対し、フィードバック制御を行う。   As described above, the control unit 7 performs feedback control on the throttle valve 5 so that the vehicle speed V input from the performance value detection unit 13 follows the target vehicle speed V0.

前記スロットル弁5の開度の制御において、実際に現在の車速Vを目標車速Vに合わせようとすると、アクセルのONとOFFとを繰り返す、いわゆるハンチング現象が発生する。そのため、本実施形態においては、前記ハンチング現象の対策としてアクセル開度ゲインThgを設定する。このアクセル開度ゲインThgは、自動二輪車の車種ごとに設定されるものである。したがって、アクセル開度ゲインThgは、操作系運転データ82のスロットル操作に関する操作速度、操作量、操作タイミングのデータの一部である。コントロールユニット7は、操作系運転データ82に関するパラメータとして、記憶装置8よりアクセル開度ゲインThgを入力する。 In the control of the opening degree of the throttle valve 5, when actually trying align the current vehicle speed V i to the target vehicle speed V 0, repeating the accelerator ON and OFF, so-called hunting phenomenon occurs. Therefore, in this embodiment, the accelerator opening gain Thg is set as a countermeasure for the hunting phenomenon. This accelerator opening gain Thg is set for each type of motorcycle. Therefore, the accelerator opening gain Thg is a part of the operation speed, operation amount, and operation timing data regarding the throttle operation of the operation system operation data 82. The control unit 7 inputs an accelerator opening gain Thg from the storage device 8 as a parameter relating to the operation system operation data 82.

アクセル開度ゲインThgは、以下のように、任意の自動二輪車の車種ごとに設定される。
アクセル開度ゲインThg =スロットル開度(全閉−全開)/最大車速 ・・(1)
The accelerator opening gain Thg is set for each type of motorcycle as described below.
Accelerator opening gain Thg = Throttle opening (fully closed-fully open) / maximum vehicle speed (1)

前記(1)式において、最大車速は、車種ごとに異なる性能値であり、実験より求められる。スロットル開度は、スロットル弁5の全開時と全閉時との角度(deg)差である。   In the above equation (1), the maximum vehicle speed is a performance value that differs for each vehicle type, and is obtained from experiments. The throttle opening is an angle (deg) difference between when the throttle valve 5 is fully opened and when it is fully closed.

コントロールユニット7が、アクセル開度THを算出する際には、以下のように加速度(α)、エンジンレスポンス定数を関数として用いる。アクセル開度THは、アクセルグリップ66の回転操作量を制御する値である。
加速度(α) =(V−Vi+1)/Δt ・・・・(2)
エンジンレスポンス定数 = β ・・・・・・・・・・・・・(3)
When the control unit 7 calculates the accelerator opening TH, the acceleration (α) and the engine response constant are used as functions as follows. The accelerator opening TH is a value that controls the amount of rotation operation of the accelerator grip 66.
Acceleration (α) = (V i −V i + 1 ) / Δt (2)
Engine response constant = β (3)

前記(2)式において、加速度(α)は、性能値検出部13より入力される車速101に基づき、コントロールユニット7において算出される。また、前記(3)式のエンジンレスポンス定数βは、実験より求められる実験定数であり、加速度αと同次元である。   In the equation (2), the acceleration (α) is calculated by the control unit 7 based on the vehicle speed 101 input from the performance value detector 13. In addition, the engine response constant β in the equation (3) is an experimental constant obtained from an experiment and has the same dimension as the acceleration α.

前記(1)式、(2)式、および(3)式より、アクセル開度THは、以下(4)式にて表される。
アクセル開度TH = V × Thg × α/β ・・・・・・・(4)
From the expressions (1), (2), and (3), the accelerator opening TH is expressed by the following expression (4).
Accelerator opening TH = V i × Thg × α / β (4)

ここで、エンジンレスポンス定数βは、加速度αと同次元である。そのため、アクセル開度THの次元は、(deg)で表される。また、アクセル開度THの次元は、アクセル開度THがコントロールユニット7にて算出される際、操作ユニット6の制御を行う際は、電圧値(V)または抵抗値(Ω)が用いられる。   Here, the engine response constant β is the same dimension as the acceleration α. Therefore, the dimension of the accelerator opening TH is expressed by (deg). Further, as the dimension of the accelerator opening TH, the voltage value (V) or the resistance value (Ω) is used when the accelerator opening TH is calculated by the control unit 7 and when the operation unit 6 is controlled.

前記(4)式のアクセル開度THを用いて、コントロールユニット7は、アクセルグリップ66を制御する。コントロールユニット7は、車速101が目標車速Vに追従するように、アクセル開度THに基づき、アクセル開度信号112をスロットル操作モータ65に出力する。図1に示すように、スロットル操作モータ65は、アクセル開度信号112に基づき、アクセルグリップ66を操作する。アクセルグリップ66の回転操作により、スロットル弁5が開閉し、車速101が変化する。 The control unit 7 controls the accelerator grip 66 using the accelerator opening TH of the expression (4). Control unit 7 is, as the vehicle speed 101 follows the target vehicle speed V 0, based on the accelerator opening TH, and outputs an accelerator opening signal 112 to the throttle operation motor 65. As shown in FIG. 1, the throttle operation motor 65 operates the accelerator grip 66 based on the accelerator opening signal 112. By rotating the accelerator grip 66, the throttle valve 5 opens and closes, and the vehicle speed 101 changes.

以下に、ベンチ性能試験装置1における動作不良を含んだ異常を検出し、ベンチ性能試験装置1の故障を防止する異常検出手段10について説明する。   Below, the abnormality detection means 10 which detects the abnormality including the malfunction in the bench performance test apparatus 1 and prevents the failure of the bench performance test apparatus 1 will be described.

異常検出手段10は、図1に示すように、エンジン2、クラッチ3、トランスミッション4、スロットル弁5、クラッチ操作モータ63、シフト操作モータ64、およびスロットル操作モータ65の少なくとも一つの異常を検出する。なお、図1において、異常検出手段10は、コントロールユニット7と別体としている。しかし、異常検出手段10は、コントロールユニット7の一部として、コントロールユニット7と一体であっても良い。   As shown in FIG. 1, the abnormality detection means 10 detects at least one abnormality of the engine 2, the clutch 3, the transmission 4, the throttle valve 5, the clutch operation motor 63, the shift operation motor 64, and the throttle operation motor 65. In FIG. 1, the abnormality detection means 10 is separate from the control unit 7. However, the abnormality detection means 10 may be integrated with the control unit 7 as a part of the control unit 7.

ここでの異常とは、異常判定データ83に基づいて異常検出手段10が判別するパワーユニット20を含むベンチ性能試験装置1の動作不良である。また、前記異常は、パワーユニット20の故障、エンジン2の異常回転、エンジン2の油温および油圧の過上昇、自動二輪車の過大車速等が含まれる。異常検出手段10が判別する動作不良は、コントロールユニット7より出力する各信号110、111、112に対し、パワーユニット20において動作が完了していないような場合に発生する異常負荷である。すなわち、前記動作不良は、クラッチ3、トランスミッション4、スロットル弁5の各操作の操作タイミングのずれが含まれる。例として、トランスミッション4においてシフトチェンジの際のギア噛み合いに支障があり、ギア同士が衝突しているような場合は、パワーユニット20において、異常な負荷が発生している。また、前記操作タイミングのずれがクラッチ3、トランスミッション4、スロットル弁5において発生する場合は、パワーユニット20において動作が完了せず、結果として異常な負荷が発生することになる。また、試験中にアクセルワイヤ67が劣化し断線している場合は、スロットル操作モータ65の駆動に対して、スロットル弁5ではアクセルワイヤ67からの負荷が掛からないことになる。   The abnormality here is an operation failure of the bench performance test apparatus 1 including the power unit 20 determined by the abnormality detection means 10 based on the abnormality determination data 83. The abnormalities include failure of the power unit 20, abnormal rotation of the engine 2, excessive increase in oil temperature and hydraulic pressure of the engine 2, excessive vehicle speed of the motorcycle, and the like. The malfunction detected by the abnormality detection means 10 is an abnormal load that occurs when the operation in the power unit 20 is not completed for each of the signals 110, 111, and 112 output from the control unit 7. That is, the malfunction includes a shift in operation timing of each operation of the clutch 3, the transmission 4, and the throttle valve 5. As an example, when there is a problem with the gear meshing at the time of shift change in the transmission 4 and the gears collide with each other, an abnormal load is generated in the power unit 20. Further, when the deviation of the operation timing occurs in the clutch 3, the transmission 4, and the throttle valve 5, the operation in the power unit 20 is not completed, and as a result, an abnormal load is generated. When the accelerator wire 67 is deteriorated and disconnected during the test, the throttle valve 5 is not loaded with the load from the accelerator wire 67 when the throttle operating motor 65 is driven.

異常検出手段10は、前記異常が検出されると、コントロールユニット7またはダイナモコントローラ91に対して、異常信号106を出力する。異常信号106を入力したコントロールユニット7は、操作ユニット6に対して、作動を停止させる制御を行うことができる。また、ダイナモコントローラ91は、ダイナモメータ9に対して、作動を停止させる制御を行うことができる。したがって、パワーユニット20またはダイナモメータ9は、単独で停止することができる。また、異常検出手段10は、異常判定データ83を基にして、パワーユニット20を含むベンチ性能試験装置1の前記動作不良を検出する。これにより、コントロールユニット7は、操作ユニット6に対し、動作のやり直しや修正を行うような制御として、各信号110、111、112を出力する。   When the abnormality is detected, the abnormality detection means 10 outputs an abnormality signal 106 to the control unit 7 or the dynamo controller 91. The control unit 7 that has input the abnormal signal 106 can perform control to stop the operation of the operation unit 6. The dynamo controller 91 can control the dynamometer 9 to stop its operation. Therefore, the power unit 20 or the dynamometer 9 can be stopped independently. Further, the abnormality detection means 10 detects the malfunction of the bench performance test apparatus 1 including the power unit 20 based on the abnormality determination data 83. As a result, the control unit 7 outputs the signals 110, 111, and 112 to the operation unit 6 as control for re-performing and correcting operations.

(作用および効果)
本実施形態において、ベンチ性能試験装置1は、クラッチ3とトランスミッション4とスロットル弁5とを、エンジン2に組み込まれる実機のものを使用している。そのため、クラッチ3とトランスミッション4とスロットル弁5とを備えた状態でのエンジン2の性能を試験することができ、全てのギアを用いた試験を行うことができる。したがって、自動二輪車の実走行状態をベンチ台上で実施できる。また、実走行における走行パターンが記憶装置8に運転データ80として設定される。したがって、実機としての自動二輪車の運転操作に即した、信頼性の高い試験データを得ることができる。
(Function and effect)
In the present embodiment, the bench performance test apparatus 1 uses an actual machine in which the clutch 3, the transmission 4, and the throttle valve 5 are incorporated in the engine 2. Therefore, the performance of the engine 2 with the clutch 3, the transmission 4, and the throttle valve 5 can be tested, and a test using all gears can be performed. Therefore, the actual running state of the motorcycle can be carried out on the bench. In addition, a travel pattern in actual travel is set as operation data 80 in the storage device 8. Therefore, it is possible to obtain highly reliable test data in accordance with the driving operation of the motorcycle as an actual machine.

本実施形態において、性能値検出部13にて測定した車速101に基づき、ダイナモコントローラ91は、走行抵抗値102とフライホイル抵抗値103とを算出する。ダイナモコントローラ91は、算出した走行抵抗値102とフライホイル抵抗値103と駆動トルク100とに基づき、ダイナモメータ9を制御する。そのため、ダイナモメータ9は、実機としての自動二輪車の走行状態に即した適切な負荷をエンジン2に与えることができる。したがって、ベンチ性能試験装置1は、実機としての自動二輪車の走行状態に即した試験が可能であり、信頼性の高い試験データを得ることができる。   In the present embodiment, the dynamo controller 91 calculates a running resistance value 102 and a flywheel resistance value 103 based on the vehicle speed 101 measured by the performance value detection unit 13. The dynamo controller 91 controls the dynamometer 9 based on the calculated running resistance value 102, flywheel resistance value 103, and driving torque 100. Therefore, the dynamometer 9 can apply an appropriate load to the engine 2 in accordance with the running state of the motorcycle as an actual machine. Therefore, the bench performance test apparatus 1 can perform a test in accordance with the running state of the motorcycle as an actual machine, and can obtain highly reliable test data.

本実施形態において、記憶装置8は、運転データ80として複数の走行パターンを記憶している。コントロールユニット7は、複数の走行パターンのうち、選択されたいずれか一つの走行パターンに基づいて制御を行う。ベンチ性能試験装置1は、記憶装置8が複数の走行パターンのデータを記憶していることにより、複数の異なった走行パターンでの試験が可能となる。したがって、ベンチ性能試験装置1は、実機としての自動二輪車の走行状態に即した試験が可能であり、信頼性の高い試験データを得ることができる。   In the present embodiment, the storage device 8 stores a plurality of travel patterns as the operation data 80. The control unit 7 performs control based on any one of the plurality of travel patterns selected. The bench performance test apparatus 1 can perform tests with a plurality of different traveling patterns because the storage device 8 stores data of a plurality of traveling patterns. Therefore, the bench performance test apparatus 1 can perform a test in accordance with the running state of the motorcycle as an actual machine, and can obtain highly reliable test data.

本実施形態において、コントロールユニット7は、性能値検出部13より入力される車速Vが、記憶装置8に記憶されている走行パターンの目標車速Vと一致するように、スロットル弁5のフィードバック制御を行う。したがって、ベンチ性能試験装置1は、複数の走行パターンにおける車速の変化に基づいた、実機としての自動二輪車の走行状態に即した試験が可能であり、信頼性の高い試験データを得ることができる。 In the present embodiment, the control unit 7 feeds back the throttle valve 5 so that the vehicle speed V i input from the performance value detector 13 matches the target vehicle speed V 0 of the travel pattern stored in the storage device 8. Take control. Therefore, the bench performance test apparatus 1 can perform a test in accordance with the running state of the motorcycle as an actual machine based on changes in the vehicle speed in a plurality of running patterns, and can obtain highly reliable test data.

本実施形態において、コントロールユニット7は、アクセル開度ゲインThgを用いて、スロットル弁5を制御する。アクセル開度ゲインThgは、自動二輪車の車種ごとに異なる定数である。アクセル開度ゲインThgを用いることにより、異なる複数の車種を試験することが容易になる。異なる車種を試験する場合、アクセル開度ゲインThgのみの変更により、コントロールユニット7は、アクセルグリップ66の制御が可能である。したがって、ベンチ性能試験装置1は、異なる複数の車種を容易に試験することができる。また、ベンチ性能試験装置1は、車速の変化に基づいた、実機としての自動二輪車の走行状態に即した試験が可能であり、信頼性の高い試験データを得ることができる。   In the present embodiment, the control unit 7 controls the throttle valve 5 using the accelerator opening gain Thg. The accelerator opening gain Thg is a constant that varies depending on the type of motorcycle. By using the accelerator opening gain Thg, it becomes easy to test a plurality of different vehicle types. When testing different vehicle types, the control unit 7 can control the accelerator grip 66 by changing only the accelerator opening gain Thg. Therefore, the bench performance test apparatus 1 can easily test a plurality of different vehicle types. Further, the bench performance test apparatus 1 can perform a test in accordance with the running state of a motorcycle as an actual machine based on a change in the vehicle speed, and can obtain highly reliable test data.

本実施形態において、ベンチ性能試験装置1は、異常検出手段10を備える。異常検出手段10は、エンジン2、クラッチ3、トランスミッション4、スロットル弁5、クラッチ操作モータ63、シフト操作モータ64、およびスロットル操作モータ65の少なくとも一つの異常を検出する。異常検出手段10は、前記検出した異常に基づき、コントロールユニット7またはダイナモコントローラ91に対して、異常信号106を出力する。異常信号106を入力したコントロールユニット7は、操作ユニット6に対して、作動修正または再作動をさせる制御を行う。また、異常信号106を入力したコントロールユニット7は、操作ユニット6に対して、作動を停止させる制御を行うことができる。一方、ダイナモコントローラ91は、ダイナモメータ9に対して、作動を停止させる制御を行うことができる。したがって、パワーユニット20またはダイナモメータ9は、単独で停止することができる。そのため、パワーユニット20またはダイナモメータ9は、機械的に外部より強制停止を行うような、他の手段を備える必要がない。また、異常検出手段10は、パワーユニット20の動作不良を検出することで、ベンチ性能試験装置1に係る装置の故障を防止している。   In the present embodiment, the bench performance test apparatus 1 includes an abnormality detection means 10. The abnormality detection unit 10 detects at least one abnormality of the engine 2, the clutch 3, the transmission 4, the throttle valve 5, the clutch operation motor 63, the shift operation motor 64, and the throttle operation motor 65. The abnormality detection means 10 outputs an abnormality signal 106 to the control unit 7 or the dynamo controller 91 based on the detected abnormality. The control unit 7 that has input the abnormal signal 106 performs control to correct or restart the operation unit 6. In addition, the control unit 7 that has input the abnormal signal 106 can perform control to stop the operation of the operation unit 6. On the other hand, the dynamo controller 91 can control the dynamometer 9 to stop its operation. Therefore, the power unit 20 or the dynamometer 9 can be stopped independently. Therefore, the power unit 20 or the dynamometer 9 does not need to include other means that mechanically perform a forced stop from the outside. In addition, the abnormality detection unit 10 detects a malfunction of the power unit 20 to prevent a failure of the apparatus related to the bench performance test apparatus 1.

《変形例》
本実施形態では、エンジン2として、内燃機関を用いることにしている。しかし、エンジン2の代わりにモータを用いることにしても良い。また、エンジン2として、内燃機関とモータとのハイブリッド式エンジンを用いても良い。
<Modification>
In the present embodiment, an internal combustion engine is used as the engine 2. However, a motor may be used instead of the engine 2. Further, as the engine 2, a hybrid engine of an internal combustion engine and a motor may be used.

本実施形態において、コントロールユニット7が入力する車速101は、性能値検出部13より入力されることにしているが、これは、ダイナモコントローラ91より入力されることであっても良い。   In the present embodiment, the vehicle speed 101 input by the control unit 7 is input from the performance value detection unit 13, but this may be input from the dynamo controller 91.

本実施形態において、ダイナモコントローラ91は、性能値検出部13と別体にしているが、これは、性能値検出部13と一体であっても良い。つまり、性能値検出部13内部に、ダイナモコントローラ91のような電算的手段を組み込ませることにしても良い。   In the present embodiment, the dynamo controller 91 is separate from the performance value detection unit 13, but may be integrated with the performance value detection unit 13. That is, a computer means such as the dynamo controller 91 may be incorporated in the performance value detection unit 13.

本実施形態において、ダイナモコントローラ91と、性能値検出部13とは、ダイナモメータ9と別体にしているが、これは、ダイナモメータ9と一体であっても良い。つまり、ダイナモメータ9の内部に、予め、性能値検出部13のような自動二輪車用エンジン2の駆動トルクと回転数を測定する機構を設けておくことにしても良い。また、ダイナモメータ9の内部に、ダイナモコントローラ91のような電算的手段を組み込ませることにしても良い。   In this embodiment, the dynamo controller 91 and the performance value detection unit 13 are separated from the dynamometer 9, but may be integrated with the dynamometer 9. That is, a mechanism for measuring the driving torque and the rotational speed of the motorcycle engine 2 such as the performance value detector 13 may be provided in the dynamometer 9 in advance. Further, a computer means such as the dynamo controller 91 may be incorporated in the dynamometer 9.

本実施形態において、スロットル弁5の開度調整は、アクセルグリップ66に接続されるアクセルワイヤ67を介して行われる。しかし、アクセルグリップ66とスロットル弁との間の接続は、アクセルワイヤ67に限定されない。例えば、油圧機構の作動でスロットル弁5の開度の調整を行うような構成にしても良い。   In the present embodiment, the opening adjustment of the throttle valve 5 is performed via an accelerator wire 67 connected to the accelerator grip 66. However, the connection between the accelerator grip 66 and the throttle valve is not limited to the accelerator wire 67. For example, the opening of the throttle valve 5 may be adjusted by operating the hydraulic mechanism.

本発明は自動二輪車のエンジンを試験するベンチ性能試験装置に関して有用である。   The present invention is useful for a bench performance test apparatus for testing a motorcycle engine.

ベンチ性能試験装置を示す概略構成図である。It is a schematic block diagram which shows a bench performance test apparatus. ダイナモコントローラにおける目標負荷の算出を示すフローチャートである。It is a flowchart which shows calculation of the target load in a dynamo controller. コントロールユニットにおけるシフト操作の制御を示すフローチャートである。It is a flowchart which shows control of the shift operation in a control unit. コントロールユニットにおけるスロットル弁開度の制御を示すフローチャートである。It is a flowchart which shows control of the throttle valve opening degree in a control unit. コントロールユニットにおけるシフト操作速度の制御を示す概略図である。It is the schematic which shows control of the shift operation speed in a control unit. 任意の走行パターンにおける所定の目標車速とシフトチェンジタイミングの車速とを示す図である。It is a figure which shows the predetermined target vehicle speed and the vehicle speed of a shift change timing in arbitrary driving | running | working patterns.

符号の説明Explanation of symbols

1 ベンチ性能試験装置
2 自動二輪車用エンジン
3 クラッチ
4 トランスミッション
5 スロットル弁
6 操作ユニット
7 コントロールユニット(制御装置)
8 記憶装置
9 ダイナモメータ
10 異常検出手段
12 シャフト
13 性能値検出部(性能値検出手段)
20 パワーユニット
63 クラッチ操作モータ
64 シフト操作モータ
65 スロットル操作モータ
66 アクセルグリップ
67 アクセルワイヤ
91 ダイナモコントローラ
100 駆動トルク
101 車速
102 空気抵抗値
103 フライホイル抵抗値
103a 転がり抵抗値
103b 加速抵抗値
103c 勾配抵抗値
104 目標負荷
106 異常信号
107 クラッチ接続量
108 シフト位置
109 グリップ操作量
110 クラッチ操作信号
111 シフト操作信号
112 アクセル開度信号
1 Bench Performance Test Device 2 Motorcycle Engine 3 Clutch 4 Transmission 5 Throttle Valve 6 Operation Unit 7 Control Unit (Control Device)
8 Storage Device 9 Dynamometer 10 Abnormality Detection Unit 12 Shaft 13 Performance Value Detection Unit (Performance Value Detection Unit)
20 power unit 63 clutch operating motor 64 shift operating motor 65 throttle operating motor 66 accelerator grip 67 accelerator wire 91 dynamo controller 100 driving torque 101 vehicle speed 102 air resistance value 103 flywheel resistance value 103a rolling resistance value 103b acceleration resistance value 103c gradient resistance value 104 Target load 106 Abnormal signal 107 Clutch engagement amount 108 Shift position 109 Grip operation amount 110 Clutch operation signal 111 Shift operation signal 112 Accelerator opening signal

Claims (6)

クラッチとトランスミッションとスロットル弁とを備えた自動二輪車用エンジンの性能を試験するベンチ性能試験装置であって、
前記自動二輪車用エンジンに負荷を与えるダイナモメータと、
前記クラッチを操作するクラッチ操作モータと、
前記トランスミッションを操作するシフト操作モータと、
前記スロットル弁を操作するスロットル操作モータと、
実走行時のライダーによる前記クラッチと、前記トランスミッションと、前記スロットル弁との操作に関する運転データを記憶した記憶装置と、
前記運転データに基づいて、前記クラッチ操作モータと、前記シフト操作モータと、前記スロットル操作モータとを制御する制御装置と、
を備えるベンチ性能試験装置。
A bench performance testing device for testing the performance of a motorcycle engine having a clutch, a transmission, and a throttle valve,
A dynamometer for applying a load to the motorcycle engine;
A clutch operating motor for operating the clutch;
A shift operation motor for operating the transmission;
A throttle operating motor for operating the throttle valve;
A storage device storing operation data related to operation of the clutch, transmission, and throttle valve by the rider during actual driving;
A control device for controlling the clutch operation motor, the shift operation motor, and the throttle operation motor based on the operation data;
Bench performance testing device with
請求項1に記載のベンチ性能試験装置において、
少なくとも前記自動二輪車用エンジンの駆動トルクと車速とを測定する性能値検出手段と
前記車速に基づき、少なくとも前記自動二輪車の走行抵抗値とフライホイル抵抗値とを算出し、前記走行抵抗値と前記フライホイル抵抗値と駆動トルクとに基づき、前記ダイナモメータを制御するダイナモコントローラと
をさらに備えるベンチ性能試験装置。
The bench performance test apparatus according to claim 1,
A performance value detecting means for measuring at least a driving torque and a vehicle speed of the motorcycle engine; at least a running resistance value and a flywheel resistance value of the motorcycle are calculated based on the vehicle speed; and the running resistance value and the flywheel A bench performance test apparatus further comprising a dynamo controller for controlling the dynamometer based on a wheel resistance value and a driving torque.
請求項1に記載のベンチ性能試験装置において、
前記運転データには、複数の走行パターンのデータが含まれ、
前記制御装置は、前記複数の走行パターンのうち、選択されたいずれか一つの走行パターンに基づいて制御を行う、ベンチ性能試験装置。
The bench performance test apparatus according to claim 1,
The driving data includes data of a plurality of driving patterns,
The said control apparatus is a bench performance test apparatus which controls based on any one driving | running pattern selected among these several driving | running patterns.
請求項3に記載のベンチ性能試験装置において、
少なくとも前記自動二輪車用エンジンの駆動トルクと車速とを測定する性能値検出手段をさらに備え、
前記制御装置は、前記性能値検出手段にて測定される車速が、前記記憶装置に記憶されている運転データの車速と一致するように、前記スロットル操作モータに対し、フィードバック制御を行う、ベンチ性能試験装置。
The bench performance test apparatus according to claim 3,
A performance value detecting means for measuring at least the driving torque and the vehicle speed of the motorcycle engine;
Bench performance, wherein the control device performs feedback control on the throttle operating motor so that the vehicle speed measured by the performance value detecting means matches the vehicle speed of the operation data stored in the storage device. Test equipment.
請求項1に記載のベンチ性能試験装置において、
前記自動二輪車用エンジンの前記スロットル弁を開閉するアクセルグリップをさらに備え、
前記スロットル操作モータは、前記アクセルグリップを操作することによって前記スロットル弁を操作するように構成され、
前記制御装置は、自動二輪車のスロットル弁の最大開度と最大車速とに基づき自動二輪車の種類ごとに設定されるアクセル開度ゲインを用いて、スロットル弁を制御する、ベンチ性能試験装置。
The bench performance test apparatus according to claim 1,
An accelerator grip for opening and closing the throttle valve of the motorcycle engine;
The throttle operation motor is configured to operate the throttle valve by operating the accelerator grip,
The control apparatus is a bench performance test apparatus that controls a throttle valve using an accelerator opening gain set for each type of motorcycle based on a maximum opening and a maximum vehicle speed of the throttle valve of the motorcycle.
請求項1に記載のベンチ性能試験装置において、
前記自動二輪車用エンジン、前記クラッチ、前記トランスミッション、前記スロットル弁、前記クラッチ操作モータ、前記シフト操作モータ、および前記スロットル操作モータの少なくとも一つの異常を検出し、前記コントロールユニットまたは前記ダイナモコントローラに対して、異常信号を出力する異常検出手段
をさらに備えるベンチ性能試験装置。
The bench performance test apparatus according to claim 1,
An abnormality of at least one of the engine for the motorcycle, the clutch, the transmission, the throttle valve, the clutch operation motor, the shift operation motor, and the throttle operation motor is detected, and the control unit or the dynamo controller is detected. A bench performance test apparatus further comprising an abnormality detection means for outputting an abnormality signal.
JP2008028067A 2008-02-07 2008-02-07 Bench performance testing device Pending JP2009186377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028067A JP2009186377A (en) 2008-02-07 2008-02-07 Bench performance testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028067A JP2009186377A (en) 2008-02-07 2008-02-07 Bench performance testing device

Publications (1)

Publication Number Publication Date
JP2009186377A true JP2009186377A (en) 2009-08-20

Family

ID=41069761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028067A Pending JP2009186377A (en) 2008-02-07 2008-02-07 Bench performance testing device

Country Status (1)

Country Link
JP (1) JP2009186377A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159966A (en) * 2013-02-19 2014-09-04 Hino Motors Ltd Engine simulation test method
JP2014174026A (en) * 2013-03-11 2014-09-22 Hino Motors Ltd Engine simulation test method
CN105890904A (en) * 2014-12-12 2016-08-24 广西大学 Load transformation control method of servo motor test platform
CN112051057A (en) * 2020-08-25 2020-12-08 安徽江淮汽车集团股份有限公司 Clutch monomer durability test method, device, equipment and storage medium
CN112345239A (en) * 2020-11-30 2021-02-09 贵州凯星液力传动机械有限公司 Test system of P2 hybrid power automatic transmission
CN114509257A (en) * 2021-12-27 2022-05-17 东风汽车集团股份有限公司 Testing device and evaluation method for ablation resistance of clutch
CN114577490A (en) * 2022-01-18 2022-06-03 潍柴动力股份有限公司 Power assembly rack parameter detection method, device and system
JP7408342B2 (en) 2019-10-17 2024-01-05 株式会社堀場製作所 Test system, test method and test program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159966A (en) * 2013-02-19 2014-09-04 Hino Motors Ltd Engine simulation test method
JP2014174026A (en) * 2013-03-11 2014-09-22 Hino Motors Ltd Engine simulation test method
CN105890904A (en) * 2014-12-12 2016-08-24 广西大学 Load transformation control method of servo motor test platform
CN105890904B (en) * 2014-12-12 2018-04-03 广西大学 A kind of servomotor testing platform load conversion control method
JP7408342B2 (en) 2019-10-17 2024-01-05 株式会社堀場製作所 Test system, test method and test program
CN112051057A (en) * 2020-08-25 2020-12-08 安徽江淮汽车集团股份有限公司 Clutch monomer durability test method, device, equipment and storage medium
CN112051057B (en) * 2020-08-25 2021-07-13 安徽江淮汽车集团股份有限公司 Clutch monomer durability test method, device, equipment and storage medium
CN112345239A (en) * 2020-11-30 2021-02-09 贵州凯星液力传动机械有限公司 Test system of P2 hybrid power automatic transmission
CN114509257A (en) * 2021-12-27 2022-05-17 东风汽车集团股份有限公司 Testing device and evaluation method for ablation resistance of clutch
CN114509257B (en) * 2021-12-27 2023-08-15 东风汽车集团股份有限公司 Testing device and evaluating method for anti-ablation performance of clutch
CN114577490A (en) * 2022-01-18 2022-06-03 潍柴动力股份有限公司 Power assembly rack parameter detection method, device and system

Similar Documents

Publication Publication Date Title
JP2009186377A (en) Bench performance testing device
JP5409770B2 (en) Driving method for hybrid drive device of automobile, hybrid drive device, and control device for hybrid drive device
US6991584B2 (en) Control of powertrain smoothness using output torque sensing and input torque control
US8364368B2 (en) Acceleration control apparatus for vehicle
US6634218B1 (en) Engine testing apparatus
WO2012124684A1 (en) Engine testing apparatus, and engine testing method
KR960010678B1 (en) Simulated engine characteristic control system
CN104653660B (en) Moment of torsion evaluation method for transmission clutch
US20090167227A1 (en) Method and control device for monitoring and limiting the torque in a drive train of a road motor vehicle
US9047365B2 (en) Method and device for monitoring the satisfactory functioning of at least one first and a second component of a vehicle drive train
US20170268961A1 (en) Display control device for vehicle
JP2009068929A (en) Method for including drive force property of vehicle speed control
US7703436B2 (en) Control device of internal combustion engine
JP2006242592A (en) Testing device of power transmission system, and its control method
JP2003014007A (en) Operating and/or control method for slipping of clutch and device
JP4621953B2 (en) Method of operating a vehicle and vehicle
JP2007163306A (en) Automatic drive controller in vehicle tester
JP2022543799A (en) Inspection table and method of performing an inspection operation on the inspection table
JPH10184872A (en) Device and method for controlling automatic transmission
KR20200113527A (en) Preventing method of incorrect learning of clutch torque of transmission of vehicle
US11745743B2 (en) Method for operating a motor vehicle, control device, and motor vehicle
JP5126044B2 (en) Vehicle control device
JP2004225903A (en) Method and device for setting contact pressure between two components transmitting frictional engagement torque of driving system
KR102098117B1 (en) A method for estimating a gradient of a roal on which a vehicle whit dct is traveling
JP5227261B2 (en) Automatic transmission parameter identification device and identification program