JP2009186281A - Method and device for inspecting flaw of glass article - Google Patents

Method and device for inspecting flaw of glass article Download PDF

Info

Publication number
JP2009186281A
JP2009186281A JP2008025553A JP2008025553A JP2009186281A JP 2009186281 A JP2009186281 A JP 2009186281A JP 2008025553 A JP2008025553 A JP 2008025553A JP 2008025553 A JP2008025553 A JP 2008025553A JP 2009186281 A JP2009186281 A JP 2009186281A
Authority
JP
Japan
Prior art keywords
light
glass article
irradiated
glass
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008025553A
Other languages
Japanese (ja)
Other versions
JP5316836B2 (en
Inventor
Kazuya Noguchi
和也 野口
Yoshinori Hasegawa
義徳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008025553A priority Critical patent/JP5316836B2/en
Publication of JP2009186281A publication Critical patent/JP2009186281A/en
Application granted granted Critical
Publication of JP5316836B2 publication Critical patent/JP5316836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately inspect the presence of the flaw ranging over the whole periphery of a cylindrical or columnar glass article and to certainly shorten an inspection time by dispensing with the rotation of the glass article centering around its axis at the time of inspection of the flaw. <P>SOLUTION: A glass pipe 2 is irradiated with line light 3 from a floodlight projection part 4 so as to traverse the glass pipe 2, the reflected light from it out of the irradiated line light 3 is received by a light receiving part 5 and the presence of the flaw of the glass pipe 2 is inspected on the basis of a change in the receiving quantity of the reflected light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、円筒状又は円柱状をなすガラス物品の欠陥の有無を検査するための技術に関する。   The present invention relates to a technique for inspecting a glass article having a cylindrical or columnar shape for defects.

周知のように、円筒状のガラス管は、長尺なガラス元材を所定長さに切断することにより製作されるのが通例とされている。この長尺なガラス元材の成形には、溶融炉から引き出された溶融ガラスを長尺円筒状の耐火物(スリーブ)に巻き付けて高速に引いて管状に成形するダンナー法や、溶融炉から引き出された溶融ガラスを下方に流下させて引き伸ばして管状に成形するダウンドロー法など、溶融ガラスを引き伸ばして管状に成形する手法が利用されている。   As is well known, a cylindrical glass tube is usually manufactured by cutting a long glass base material into a predetermined length. The long glass base material is formed by winding the molten glass drawn from the melting furnace around a long cylindrical refractory (sleeve) and drawing it at a high speed into a tubular shape, or drawing from the melting furnace. A technique of drawing the molten glass into a tubular shape, such as a down draw method in which the molten glass is made to flow downward and drawn into a tubular shape, is used.

そのため、溶融工程(清澄工程)や成形工程で発生した泡は、溶融ガラスを引き伸ばしてガラス元材を成形する過程で、ガラス元材にその軸心方向(長手方向)に延伸された筋状の気泡となって形成される。そして、このような気泡を有するガラス元材を切断して製作されるガラス管は、当該気泡が欠陥となって不良品となる場合がある。   Therefore, the foam generated in the melting process (clarification process) and the molding process is a process in which the molten glass is stretched to form a glass base material, and the streaks are stretched in the axial direction (longitudinal direction) on the glass base material. Formed as bubbles. And the glass tube manufactured by cut | disconnecting the glass base material which has such a bubble may become a defect product because the said bubble becomes a defect.

また、溶融工程や成形工程で発生した異物(未溶解ブツや失透ブツ)を有するガラス元材を切断して製作されるガラス管は、当該異物が欠陥となって不良品となる場合がある。   In addition, glass tubes manufactured by cutting a glass base material having foreign matters (undissolved or devitrified beads) generated in the melting process or molding process may be defective due to the foreign matters. .

したがって、上述のような気泡や異物に起因する欠陥の有無を正確に検査し、問題となる欠陥のないガラス管を選別することが、高品位のガラス管を提供する上でも重要となる。特に、ガラス管が液晶ディスプレイのバックライト用として利用されるものである場合には、ガラス管に上述の欠陥が存在すると、画質の劣化等の問題を引き起こす要因となり得るため、欠陥の有無を正確に検査することがより一層重要となる。   Therefore, it is important to provide a high-quality glass tube by accurately inspecting the presence or absence of defects due to bubbles and foreign matters as described above and selecting a glass tube free from the problematic defect. In particular, when a glass tube is used for a backlight of a liquid crystal display, the presence of the defects described above can cause a problem such as deterioration of image quality if the above-described defects exist in the glass tube. It is even more important to conduct inspections.

そこで、下記の特許文献1には、円筒状のガラス管の表面に垂直にスポット状のレーザ光を照射し、このレーザ光がガラス物品の軸心に垂直な方向に散乱した散乱光を検出することにより、ガラス物品に含まれる気泡の有無を検出する手法が開示されている。   Therefore, in Patent Document 1 below, the surface of a cylindrical glass tube is irradiated with a spot-like laser beam and the scattered light scattered in the direction perpendicular to the axis of the glass article is detected. Thus, a technique for detecting the presence or absence of bubbles contained in a glass article is disclosed.

また、下記の特許文献2には、円筒状のガラス物品の表面に垂直にスポット状のレーザ光を照射し、その照射した光がガラス物品中で散乱した散乱光をスクリーンに映し出し、その映し出された像の形状により、ガラス物品に含まれる気泡や異物の有無を検出する手法が開示されている。   Further, in Patent Document 2 below, a laser beam in the form of a spot is irradiated perpendicularly to the surface of a cylindrical glass article, and the scattered light scattered in the glass article is projected on a screen and projected. Disclosed is a method for detecting the presence or absence of bubbles or foreign substances contained in a glass article based on the shape of the image.

そして、これら2つの手法は、ガラス物品の表面に垂直に光を照射した場合に、ガラス管に気泡が含まれていると、その気泡に照射されたレーザ光がガラス管の軸心に対して垂直な方向のみに散乱し、他方、ガラス管に異物が含まれていると、その異物に照射されたレーザ光が方向性を持たず一様に散乱するという知見に基づくものである。
特開平11−64231号公報 特開平11−258167号公報
And when these two methods irradiate light to the surface of a glass article perpendicularly, and a bubble is contained in a glass tube, the laser beam with which the bubble was irradiated with respect to the axis of a glass tube This is based on the knowledge that if the glass tube scatters only in the vertical direction and a foreign material is contained in the glass tube, the laser light applied to the foreign material scatters uniformly without directivity.
Japanese Patent Laid-Open No. 11-64231 JP-A-11-258167

ところで、上記の特許文献1,2のいずれに開示の手法も、ガラス管にスポット状の光を照射している関係上、ガラス管の内部に伝搬する光の経路が極僅かな領域に限られる。したがって、ガラス管の全周に亘って欠陥の有無を検査しようとすると、ガラス管をその軸心を中心として回転させ、スポット状の光をガラス管の周囲に走査する必要が生じる。   By the way, the method disclosed in any of the above Patent Documents 1 and 2 is limited to a region where the path of light propagating inside the glass tube is extremely small because the glass tube is irradiated with spot-like light. . Therefore, when it is attempted to inspect the presence or absence of a defect over the entire circumference of the glass tube, it is necessary to rotate the glass tube around its axis and scan spot-like light around the glass tube.

しかしながら、この場合には、ガラス管の回転に面倒且つ煩雑な作業が強いられる。特に、ガラス管を高速回転させて、ガラス管の全周に亘る欠陥検査を正確に行うことは困難となる。そのため、ガラス管をゆっくりと回転させて、ガラス管の周囲にスポット状の光を走査する必要が生じ、検査に長時間を要することになる。そして、近年ガラス管が短時間で大量に製作されるという実情を勘案すれば、ガラス管の欠陥検査に長時間を要するということは、結果としてガラス管の生産効率の低下を招くことになるため、実用上問題となる。   However, in this case, troublesome and complicated work is forced to rotate the glass tube. In particular, it is difficult to accurately perform defect inspection over the entire circumference of the glass tube by rotating the glass tube at a high speed. Therefore, it is necessary to rotate the glass tube slowly to scan the spot-like light around the glass tube, and a long time is required for the inspection. And considering the fact that glass tubes are manufactured in large quantities in a short time in recent years, it takes a long time to inspect glass tubes for defects, which results in a decrease in glass tube production efficiency. It becomes a problem in practical use.

なお、以上は、円筒状のガラス管の欠陥検査について説明したが、円柱状のガラス柱の欠陥検査を行う場合についても同様の問題が生じ得る。   In addition, although the above demonstrated the defect inspection of a cylindrical glass tube, the same problem may arise also when performing the defect inspection of a cylindrical glass column.

本発明は、上記事情に鑑みてなされたものであり、円筒状又は円柱状のガラス物品の全周に亘る欠陥の有無を正確に検査すると共に、その欠陥検査に際してガラス物品の軸心を中心とする回転を不要として、検査時間の短縮化を確実に図ることを技術的課題とする。   The present invention has been made in view of the above circumstances, accurately inspecting the presence or absence of defects over the entire circumference of a cylindrical or columnar glass article, and centering on the axis of the glass article during the defect inspection. The technical problem is to reliably reduce the inspection time by eliminating the need for rotation.

上記課題を解決するために創案された本発明に係るガラス物品の欠陥検査方法は、投光部から円筒状又は円柱状のガラス物品を横断するようにライン状の光を照射し、その照射した光のうち前記ガラス物品で反射した反射光を受光部で受光し、その受光光量の変化に基づいて前記ガラス物品の欠陥の有無を検査することに特徴づけられる。   The defect inspection method for a glass article according to the present invention, which was created in order to solve the above problems, irradiates the line-shaped light so as to traverse the cylindrical or columnar glass article from the light projecting portion, and the irradiation is performed. Of the light, reflected light reflected by the glass article is received by a light receiving unit, and the presence or absence of a defect in the glass article is inspected based on a change in the amount of received light.

このような方法によれば、投光部からガラス物品を横断するようにライン状の光が照射されることから、ガラス物品を回転させなくとも、ガラス物品の全周に亘って光が伝搬する。したがって、このように照射されたライン状の光のうち、ガラス物品で反射した反射光には、ガラス物品の全周に亘る欠陥の情報が含まれることになる。   According to such a method, since light in a line shape is irradiated so as to cross the glass article from the light projecting unit, the light propagates over the entire circumference of the glass article without rotating the glass article. . Therefore, of the line-shaped light irradiated in this way, the reflected light reflected by the glass article includes information on defects over the entire circumference of the glass article.

そして、ガラス物品に気泡による欠陥がある場合には、ガラス物品に欠陥がないときに生じる反射光に加え、ガラス物品のガラス部分と気泡(気体)との境界面で反射した反射光も生じる。そのため、気泡がある場合には受光部にこれら2つの反射光が受光されることとなり、受光部で受光される反射光の受光光量に変化が生じる。したがって、ガラス物品で反射した反射光の受光光量の変化に基づいて、気泡の有無を正確に検査することができる。   When the glass article has a defect due to air bubbles, in addition to the reflected light generated when there is no defect in the glass article, reflected light reflected at the interface between the glass portion of the glass article and the air bubbles (gas) is also generated. Therefore, when there is a bubble, these two reflected lights are received by the light receiving unit, and the received light amount of the reflected light received by the light receiving unit changes. Therefore, the presence or absence of bubbles can be accurately inspected based on the change in the amount of received light of the reflected light reflected by the glass article.

一方、ガラス物品に異物による欠陥がある場合には、ガラス物品に欠陥がないときに生じる反射光が異物で散乱して弱められ、受光部で受光される反射光の受光光量に変化が生じる。したがって、ガラス物品で反射した反射光の受光光量の変化に基づいて、異物の有無を正確に検査することができる。   On the other hand, when the glass article has a defect due to a foreign substance, the reflected light generated when the glass article has no defect is scattered and weakened by the foreign substance, and the received light amount of the reflected light received by the light receiving unit changes. Therefore, the presence or absence of foreign matter can be accurately inspected based on the change in the amount of received light of the reflected light reflected by the glass article.

上記の方法において、前記投光部から、前記ガラス物品の軸心と直交する平面上に沿ってライン状の光を照射することが好ましい。   In said method, it is preferable to irradiate a linear light from the said light projection part along the plane orthogonal to the axial center of the said glass article.

このようにすれば、投光部から照射されたライン状の光は、ガラス物品の軸心と直交する平面上に主として反射を来たすようになるので、受光部を投光部から照射されるライン状の光と同一平面内に配置することで、ガラス物品で反射した反射光を効率よく受光することが可能となる。すなわち、受光部で十分な光量の反射光を簡単に受光できるようになるので、検査精度の向上を図る上でも有利となる。   In this way, the line-shaped light emitted from the light projecting part mainly reflects on a plane orthogonal to the axis of the glass article, so that the light line is irradiated from the light projecting part. By arranging in the same plane as the shaped light, the reflected light reflected by the glass article can be received efficiently. That is, since a sufficient amount of reflected light can be easily received by the light receiving unit, it is advantageous in improving inspection accuracy.

上記の方法において、前記投光部から前記ガラス物品に対して照射したライン状の光のうち、前記ガラス物品中を直進する透過光の光路上を除外した位置に、前記受光部が配置されていることが好ましい。   In the above method, the light receiving unit is disposed at a position excluding an optical path of transmitted light that travels straight through the glass article out of the line-shaped light irradiated to the glass article from the light projecting unit. Preferably it is.

このようにすれば、ガラス物品中を直進する透過光が受光部で受光されなくなるため、ガラス物品で反射した反射光の受光光量の変化がより明瞭となり、欠陥の有無を正確に検出する上で有利となる。   In this way, since the transmitted light that travels straight through the glass article is not received by the light receiving unit, the change in the amount of received light of the reflected light reflected by the glass article becomes clearer, and the presence or absence of defects can be accurately detected. It will be advantageous.

上記の方法において、前記ガラス物品を軸心方向に移動させながら、前記投光部からライン状の光を照射することが好ましい。   In said method, it is preferable to irradiate a linear light from the said light projection part, moving the said glass article to an axial center direction.

このようにすれば、ライン状の光がガラス物品の軸心方向に走査されることから、ガラス物品全体の欠陥の有無を検査することが可能となる。加えて、ガラス物品の欠陥が気泡である場合には、その気泡の軸心方向の長さを測定することも可能となる。したがって、予め定められた長さ以上の気泡を有するガラス物品についてのみ、これを不良品として区別するということも可能となる。ガラス物品の用途にもよるが、通常は1mm未満の長さの気泡であれば欠陥と見なす必要がない場合も多く、このように気泡の軸心方向長さをも測定できるという点は実用上極めて有利となる。なお、この場合にも既述の理由からガラス物品をその軸心を中心として回転させる必要がないので、ガラス物品が溶融ガラスに連続する長尺なガラス元材である場合についても、例えばその冷却固化された部分にライン状の光を照射するようにすることで、欠陥の有無を順次検査することが可能となる。   In this way, since the line-shaped light is scanned in the axial direction of the glass article, it is possible to inspect the entire glass article for defects. In addition, when the defect of the glass article is a bubble, the length of the bubble in the axial direction can be measured. Therefore, it is possible to distinguish only a glass article having bubbles of a predetermined length or more as a defective product. Although it depends on the application of the glass article, there are many cases where it is not necessary to regard the defect as long as it is a bubble with a length of less than 1 mm, and it is practically possible to measure the axial length of the bubble in this way. This is extremely advantageous. In this case, since it is not necessary to rotate the glass article around its axis for the reasons already described, the glass article is a long glass base material continuous with the molten glass. By irradiating the solidified portion with line-shaped light, it is possible to sequentially inspect for the presence or absence of defects.

上記の方法において、前記投光部を複数配置して、前記ガラス物品に対して異なる方向からライン状の光を照射することが好ましい。   In the above method, it is preferable to arrange a plurality of the light projecting portions and irradiate the glass article with linear light from different directions.

このようにすれば、ガラス物品に対して異なる方向からライン状の光が照射されることになるので、仮に特定の一方向から光を照射したときに欠陥による受光光量の変化が小さい場合であっても、他の方向から照射した光によって欠陥による受光光量の顕著な変化を得ることができる。そのため、ガラス物品に含まれる欠陥を見逃す割合を低減し、より正確な欠陥検査を実現することが可能となる。   In this way, since the glass article is irradiated with line-shaped light from different directions, the change in the amount of received light due to a defect is small when light is irradiated from a specific direction. However, a significant change in the amount of received light due to the defect can be obtained by the light irradiated from other directions. Therefore, it is possible to reduce the rate of overlooking defects contained in the glass article and realize more accurate defect inspection.

上記の方法において、前記ガラス物品の検出すべき欠陥が気泡である場合には、前記受光部で反射光の受光光量の強度分布を検出し、その検出した受光光量の強度分布の変化に基づいて前記ガラス物品に含まれる気泡の有無を検査することが好ましい。   In the above method, when the defect to be detected of the glass article is a bubble, the light receiving unit detects the intensity distribution of the received light amount of the reflected light, and based on the detected change in the intensity distribution of the received light amount It is preferable to inspect the presence or absence of bubbles contained in the glass article.

既述のように気泡に光が照射されると、ガラス物品のガラス部分と、気泡との境界面で反射が生じる。このように気泡で反射した反射光は、ガラス物品に欠陥がない場合にも生じる反射光が受光される位置に比して僅かにずれた位置で受光される場合が多い。また、仮に、気泡で反射した反射光が受光される位置と、ガラス物品に欠陥がない場合にも生じる反射光が受光される位置とが重なっている場合でも、反射光が重なっている部分については受光光量が増加する。したがって、受光部で受光された反射光の受光光量の強度分布を検出すれば、ガラス物品に含まれる気泡の有無を正確に検査することが可能となる。   As described above, when light is irradiated to the bubbles, reflection occurs at the interface between the glass portion of the glass article and the bubbles. In many cases, the reflected light reflected by the bubbles is received at a position slightly deviated from the position at which the reflected light generated even when the glass article has no defect. In addition, even if the position where the reflected light reflected by the bubble is received and the position where the reflected light generated even when there is no defect in the glass article overlap, the portion where the reflected light overlaps Increases the amount of received light. Therefore, if the intensity distribution of the received light amount of the reflected light received by the light receiving unit is detected, the presence or absence of bubbles contained in the glass article can be accurately inspected.

上記の方法において、前記ガラス物品の検出すべき欠陥が異物である場合には、前記受光部のうち、前記投光部から照射されるライン状の光の前記ガラス物品の軸心方向に対応した方向の受光可能範囲を、前記投光部から照射されるライン状の光の前記ガラス物品の軸心方向の厚みに応じて制限し、前記受光部で受光した反射光の受光光量の減少量に基づいて前記ガラス物品に含まれる異物の有無を検査することが好ましい。   In the above method, when the defect to be detected of the glass article is a foreign object, the line-shaped light irradiated from the light projecting unit of the light receiving unit corresponds to the axial direction of the glass article. The range in which light can be received is limited in accordance with the thickness of the glass article in the axial direction of the line-shaped light irradiated from the light projecting unit, and the amount of received light of the reflected light received by the light receiving unit is reduced. It is preferable to inspect for the presence or absence of foreign matter contained in the glass article.

既述のように異物に光が照射されると、当該異物で光が散乱し弱められる。したがって、ガラス物品に欠陥がない場合にも生じる反射光が、ガラス物品中で異物に再度照射されると、異物に照射された部分に対応した反射光は散乱により弱められる。このとき、異物で散乱した光は四方に拡散して広がる。したがって、受光部のうち、投光部から照射されるライン状の光のガラス物品の軸心方向に対応した方向の受光可能範囲を、投光部から照射されるライン状の光のガラス物品の軸心方向の厚みに応じて制限することにより、異物によって拡散された反射光の一部が受光部で受光されなくなる。その結果、異物による反射光の受光光量の変化をより明瞭に検出することが可能となるため、異物の有無を正確に検査する上で有利となる。   As described above, when light is irradiated to a foreign material, the light is scattered and weakened by the foreign material. Therefore, when the reflected light generated even when the glass article has no defect is irradiated again on the foreign matter in the glass article, the reflected light corresponding to the portion irradiated with the foreign matter is weakened by scattering. At this time, the light scattered by the foreign matter diffuses and spreads in all directions. Therefore, among the light receiving parts, the light receiving range in the direction corresponding to the axial direction of the line-shaped light glass article irradiated from the light projecting part is the same as that of the line-shaped light glass article irradiated from the light projecting part. By limiting according to the thickness in the axial direction, a part of the reflected light diffused by the foreign matter is not received by the light receiving unit. As a result, it is possible to more clearly detect a change in the amount of reflected light due to the foreign matter, which is advantageous for accurately inspecting the presence or absence of the foreign matter.

上記課題を解決するために創案された本発明に係るガラス物品の検査装置は、円筒状又は円柱状のガラス物品を横断するようにライン状の光を照射する投光部と、該投光部から照射された光のうち前記ガラス物品で反射した反射光を受光する受光部と、該受光部で受光された反射光の受光光量の変化に基づいて前記ガラス物品の欠陥の有無を判断する判断部とを備えていることに特徴づけられる。   An inspection apparatus for a glass article according to the present invention, which was created to solve the above-described problems, includes a light projecting section that irradiates line-shaped light so as to cross a cylindrical or columnar glass article, and the light projecting section. A light receiving unit that receives reflected light reflected by the glass article among the light emitted from the light source, and a determination that determines whether there is a defect in the glass article based on a change in the amount of received light of the reflected light received by the light receiving unit It is characterized by having a department.

このような構成によれば、既に述べた段落[0014]〜[0016]に記載の作用効果を同様に享受することができる。   According to such a configuration, the effects described in the paragraphs [0014] to [0016] already described can be similarly enjoyed.

以上のように、本発明に係るガラス物品の検査方法および検査装置によれば、ガラス物品を横断するようにライン状の光が照射するようにしているので、ガラス物品をその軸心を中心として回転させなくとも、ガラス物品の全周に亘る欠陥の有無を検査することができる。したがって、ガラス物品の回転に要する時間を省略することができるので、検査時間の大幅な短縮化を図ることが可能となる。また、このように照射されたライン状の光のうち、ガラス物品で反射した反射光には、ガラス物品の全周に亘る欠陥の情報が含まれることになるから、その反射光を受光して受光光量の変化を検出すれば、ガラス物品の全周に亘る欠陥の有無を正確に検査することが可能となる。   As described above, according to the inspection method and the inspection apparatus for glass articles according to the present invention, since the line-shaped light is irradiated so as to cross the glass article, the glass article is centered on its axis. Even if it is not rotated, the presence or absence of defects over the entire circumference of the glass article can be inspected. Therefore, since the time required for the rotation of the glass article can be omitted, the inspection time can be greatly shortened. Of the line-shaped light irradiated in this way, the reflected light reflected by the glass article contains information on defects over the entire circumference of the glass article. If a change in the amount of received light is detected, it is possible to accurately inspect for the presence or absence of defects over the entire circumference of the glass article.

以下、本発明の実施形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の第1実施形態に係る欠陥検査装置を示す斜視図である。この欠陥検査装置1は、円筒状のガラス管2を横断するようにライン状の光(ライン光)3を照射する投光部4と、投光部4から照射されたライン光3のうちガラス管2で反射した反射光を受光する受光部5と、受光部5で受光された反射光の受光光量の変化に基づいてガラス管2の欠陥の有無を判断する判断部6とを備えている。   FIG. 1 is a perspective view showing a defect inspection apparatus according to the first embodiment of the present invention. The defect inspection apparatus 1 includes a light projecting unit 4 that irradiates a line-shaped light (line light) 3 so as to cross a cylindrical glass tube 2, and glass out of the line light 3 irradiated from the light projecting unit 4. A light receiving unit 5 that receives the reflected light reflected by the tube 2 and a determination unit 6 that determines the presence or absence of a defect in the glass tube 2 based on a change in the amount of received light of the reflected light received by the light receiving unit 5 are provided. .

詳述すると、投光部4は、ガラス管2の軸心と直交する平面上に沿ってライン光3を照射するように配置されたライン光源から構成されている。すなわち、図示のようにXをガラス管2の軸心とし、Y,Zを軸心Xと直交する平面内であって且つ互いに直交する軸とした場合に、投光部4は、例えば、軸Zの方向にガラス管2の外径よりも幅広のライン光3を、軸Yの方向(ガラス管2の軸心Xに対して直交する方向)からガラス管2に照射するようになっている。これは、ガラス管2に照射されたライン光3が、ガラス管2の表面で軸心Xの方向に屈折するのを防止するためである。すなわち、ガラス管2で反射した反射光が、軸心Xと直交する平面内に主として広がるようにするためである。そして、このように照射されるライン光3は、ガラス管2の外径よりも幅広であるため、ガラス管2を横断するように照射される。   More specifically, the light projecting unit 4 is composed of a line light source arranged so as to irradiate the line light 3 along a plane orthogonal to the axis of the glass tube 2. That is, when X is an axis of the glass tube 2 and Y and Z are axes in a plane orthogonal to the axis X and orthogonal to each other as shown in the figure, the light projecting unit 4 is, for example, an axis The glass tube 2 is irradiated with line light 3 wider than the outer diameter of the glass tube 2 in the Z direction from the direction of the axis Y (direction perpendicular to the axis X of the glass tube 2). . This is to prevent the line light 3 irradiated to the glass tube 2 from being refracted in the direction of the axis X on the surface of the glass tube 2. That is, the reflected light reflected by the glass tube 2 is mainly spread in a plane orthogonal to the axis X. The line light 3 irradiated in this way is wider than the outer diameter of the glass tube 2, so that it is irradiated so as to cross the glass tube 2.

受光部5は、投光部4から照射されるライン光3と同一平面内に配置されており、ガラス管2で反射して軸心Xと直交する平面内に広がる反射光を受光するようになっている。このようにライン光3と同一平面内に配置された受光部5は、図2に示すように、投光部4からガラス管2に対して照射されたライン光3のうち、ガラス管2中を直進する透過光の光路上を除外した位置に配置されている。具体的には、投光部4から照射されるライン光3の光軸中心L1と、受光部5で受光される反射光の光軸中心L2とが、ガラス管2の軸心Xで交差するようになっており、この両光軸L1、L2のなす角θが、100°〜150°の範囲内に設定されている。これは、受光部5にガラス管2中を直進する透過光が受光されるのを防止して、ガラス管2で反射した反射光の受光光量の変化を検出しやすくするためである。   The light receiving unit 5 is arranged in the same plane as the line light 3 irradiated from the light projecting unit 4 so as to receive reflected light that is reflected by the glass tube 2 and spreads in a plane orthogonal to the axis X. It has become. As shown in FIG. 2, the light receiving unit 5 arranged in the same plane as the line light 3 in the glass tube 2 out of the line light 3 irradiated to the glass tube 2 from the light projecting unit 4. Is disposed at a position excluding the optical path of transmitted light that travels straight through. Specifically, the optical axis center L1 of the line light 3 irradiated from the light projecting unit 4 and the optical axis center L2 of the reflected light received by the light receiving unit 5 intersect at the axis X of the glass tube 2. The angle θ formed by both optical axes L1 and L2 is set within a range of 100 ° to 150 °. This is to prevent the light receiving unit 5 from receiving the transmitted light that travels straight through the glass tube 2 and to easily detect the change in the amount of received light reflected by the glass tube 2.

さらに、受光部5はラインセンサで構成されており、その受光面内における反射光の受光光量の強度分布を検出可能となっている。そして、判断部6は、受光された受光光量の変化、すなわち、この実施形態では受光光量の強度分布の変化に基づいてガラス管2の欠陥の有無を判断するようになっている。   Further, the light receiving unit 5 is constituted by a line sensor, and can detect the intensity distribution of the amount of received light of the reflected light within the light receiving surface. And the judgment part 6 judges the presence or absence of the defect of the glass tube 2 based on the change of the received light received light quantity, ie, the change of the intensity distribution of received light quantity in this embodiment.

次に、以上のように構成された第1実施形態に係る欠陥検査装置1を使用したガラス管2の欠陥検査方法について説明する。なお、以下では、ガラス管2は、ダンナー法等により成形された長尺なガラス元材を所定長さに切断して製作されたもので、検査すべき欠陥が軸方向に延伸された筋状の気泡である場合を例にとって説明する。   Next, a defect inspection method for the glass tube 2 using the defect inspection apparatus 1 according to the first embodiment configured as described above will be described. In the following, the glass tube 2 is manufactured by cutting a long glass base material formed by the Danner method or the like into a predetermined length, and the defect to be inspected is a streak shape extending in the axial direction. An example of the case of bubbles will be described.

まず、図2に示すように、投光部4からガラス管2に対してライン光3を照射すると、ライン光3は、ガラス管2中を横断するように伝搬する。ガラス管2に気泡等の欠陥がない場合には、照射されたライン光3は、ガラス管2の外表面と内表面とで反射し、反射光を生じさせる。そして、この反射光を、投光部4から照射されるライン光3の光軸中心L1に対して上述のように角度をなして配置された受光部5で受光し、その受光光量を検出すると、例えば、受光部5側の外表面のA点付近、受光部5側の内表面のB点付近、受光部5と反対側の内表面のC点付近、および受光部5と反対側の外表面のD点付近で反射した反射光に対応したピークが、図3に示すように4つ(A〜D)検出される。なお、A点は、投光部4から照射されるライン光3のガラス管2の外表面への入射角と、反射角が同一となる点である。B〜D点は、反射光が受光部6に向かう間においてガラス管2の内外表面で屈折するため多少ずれるものの、A点と基本的に同じである。したがって、A〜D点は、光軸中心L1と光軸中心L2のなす角θの2等分線L3と、ガラス管2の内外表面との交点となる。   First, as shown in FIG. 2, when the line light 3 is irradiated from the light projecting unit 4 to the glass tube 2, the line light 3 propagates so as to cross the glass tube 2. When the glass tube 2 has no defects such as bubbles, the irradiated line light 3 is reflected by the outer surface and the inner surface of the glass tube 2 to generate reflected light. Then, when the reflected light is received by the light receiving unit 5 arranged at an angle as described above with respect to the optical axis center L1 of the line light 3 irradiated from the light projecting unit 4, and the received light amount is detected. For example, near the point A on the outer surface on the light receiving unit 5 side, near the point B on the inner surface on the light receiving unit 5 side, near the point C on the inner surface on the opposite side to the light receiving unit 5, and outside on the side opposite to the light receiving unit 5 Four peaks (A to D) corresponding to the reflected light reflected near the point D on the surface are detected as shown in FIG. In addition, A point is a point from which the incident angle to the outer surface of the glass tube 2 of the line light 3 irradiated from the light projection part 4 and a reflection angle become the same. The points B to D are basically the same as the point A although the reflected light is refracted on the inner and outer surfaces of the glass tube 2 while the reflected light travels toward the light receiving unit 6 and is slightly shifted. Therefore, the points A to D are intersections between the bisector L3 of the angle θ formed by the optical axis center L1 and the optical axis center L2 and the inner and outer surfaces of the glass tube 2.

一方、ガラス管2に気泡がある場合には、上述のような4つのピークA〜Dを有する反射光の受光光量の強度分布(以下、基準強度分布という)に、図4に示すように、ガラス管2のガラス部分と気泡との境界面で反射した反射光によるピークEが加わって検出される。   On the other hand, when there are bubbles in the glass tube 2, as shown in FIG. 4, the intensity distribution (hereinafter referred to as a reference intensity distribution) of the received light amount of the reflected light having the four peaks A to D as described above, A peak E due to the reflected light reflected at the boundary surface between the glass portion of the glass tube 2 and the bubble is added and detected.

したがって、ガラス管2に気泡がある場合には、受光部5で検出される強度分布が、気泡等の欠陥がない場合の基準強度分布から変化を来たす。そのため、判断部6で基準強度分布と、新たに検出された強度分布とを比較することにより、気泡の有無を正確に検査することが可能となる。   Therefore, when there are bubbles in the glass tube 2, the intensity distribution detected by the light receiving unit 5 changes from the reference intensity distribution when there is no defect such as bubbles. Therefore, the presence / absence of bubbles can be accurately inspected by comparing the reference intensity distribution with the newly detected intensity distribution by the determination unit 6.

この際、投光部4からガラス管2を横断するようにライン光3を照射していることから、ガラス管2で反射した反射光にはガラス管2の全周に亘る欠陥の情報が含まれることになる。したがって、ガラス管2を回転させなくとも、ガラス管2の全周に亘る気泡の有無を検査することが可能となるため、ガラス管2の回転動作に要する時間を省略し、検査時間の短縮化を確実に図ることができる。また、ガラス管2を回転させずに気泡の有無を検査できるため、ダンナー法やダウンドロー法等の管引き成形ライン上で連続して検査が可能となる。   At this time, since the line light 3 is irradiated from the light projecting unit 4 so as to cross the glass tube 2, the reflected light reflected by the glass tube 2 includes information on defects over the entire circumference of the glass tube 2. Will be. Accordingly, since it is possible to inspect the presence or absence of bubbles over the entire circumference of the glass tube 2 without rotating the glass tube 2, the time required for the rotation operation of the glass tube 2 is omitted, and the inspection time is shortened. Can be achieved reliably. In addition, since the presence or absence of bubbles can be inspected without rotating the glass tube 2, it is possible to continuously inspect on a tube drawing line such as the Dunner method or the down draw method.

なお、上述のような欠陥検査方法において、気泡の検出精度をより向上させる観点からは、投光部4をガラス管2の周方向に複数配置(例えば、周方向に120°ずつずらして3つ配置)して、ガラス管2に対して異なる方向からライン光3を照射することが好ましい。これは、ガラス管2に対して異なる方向からライン光3を照射すれば、仮に特定の一方向からライン光3を照射したときに気泡による受光光量の強度分布の変化が小さい場合であっても、他の方向から照射したライン光3によって気泡による受光光量の強度分布に顕著な変化を生じさせることができるためである。   In the defect inspection method as described above, from the viewpoint of further improving the bubble detection accuracy, a plurality of light projecting portions 4 are arranged in the circumferential direction of the glass tube 2 (for example, three by shifting 120 ° in the circumferential direction). It is preferable to irradiate the line light 3 from different directions with respect to the glass tube 2. If the line light 3 is irradiated to the glass tube 2 from different directions, even if the line light 3 is irradiated from one specific direction, even if the change in the intensity distribution of the received light amount due to the bubbles is small This is because the line light 3 irradiated from other directions can cause a remarkable change in the intensity distribution of the amount of received light due to the bubbles.

さらに、この場合には、複数の投光部4をガラス管2の軸心Xを中心として螺旋状に配置するなどして、個々の投光部4をガラス管2の軸心X方向および周方向にずらして配置することが好ましい。これにより、全ての投光部4からガラス管2に対して同時に光を照射した場合でも、一の投光部4から照射されたライン光3が、他の投光部4から照射されたライン光3と干渉するという事態を抑制できる。そのため、複数のライン光3の相互干渉による検査精度の低減を防止しつつ、検査時間の短縮化をより確実に図ることが可能となる。   Further, in this case, the plurality of light projecting portions 4 are arranged in a spiral shape with the axis X of the glass tube 2 as the center, and the individual light projecting portions 4 are arranged in the direction of the axis X of the glass tube 2 and in the periphery. It is preferable to dispose in the direction. Thereby, even when light is simultaneously irradiated from all the light projecting units 4 to the glass tube 2, the line light 3 irradiated from one light projecting unit 4 is a line irradiated from the other light projecting unit 4. The situation of interference with the light 3 can be suppressed. Therefore, it is possible to more reliably reduce the inspection time while preventing the inspection accuracy from being reduced due to the mutual interference of the plurality of line lights 3.

また、ガラス管2を軸心Xの方向に移動させながら上述の欠陥検査方法を実行してもよい。このようにすれば、ガラス管2全体に含まれる気泡の有無を検査することができる。加えて、軸心Xの方向における気泡の長さを測定することもできるため、予め定められた長さ(例えば1mm)以上の気泡を有するガラス管2についてのみ、これを不良品として区別することも可能となる。   Further, the defect inspection method described above may be executed while moving the glass tube 2 in the direction of the axis X. In this way, the presence or absence of bubbles contained in the entire glass tube 2 can be inspected. In addition, since the length of the bubble in the direction of the axis X can also be measured, only the glass tube 2 having bubbles of a predetermined length (for example, 1 mm) or more is distinguished as a defective product. Is also possible.

この場合には、図5に示すように、ガラス管2を、直線上に断続的に配列された複数のローラ7上に載置して軸心Xの方向に搬送すると共に、このローラ7間の隙間に対をなす投光部4と受光部5を配置することが好ましい。これにより、投光部4からガラス管2に照射されるライン光3や、受光部5で受光されるガラス管2で反射した反射光が、ローラ7によって遮断されるという事態を防止することができる。なお、図示例では、ガラス管2を搬送するローラ7には、軸心Xと直交する方向へのガラス管2の移動を規制するように、V溝等の位置規制溝7aが形成されている。また、複数の投光部4がガラス管2の軸心Xを中心として螺旋状に配置されており、個々の投光部4の光軸中心L1に対してそれぞれの受光部5の光軸中心L2が所定角度(100°〜150°)をなすように配置されている。   In this case, as shown in FIG. 5, the glass tube 2 is placed on a plurality of rollers 7 arranged intermittently on a straight line and conveyed in the direction of the axis X. It is preferable to arrange the light projecting unit 4 and the light receiving unit 5 that make a pair in the gap. This prevents a situation in which the line light 3 irradiated from the light projecting unit 4 to the glass tube 2 and the reflected light reflected by the glass tube 2 received by the light receiving unit 5 are blocked by the roller 7. it can. In the illustrated example, the roller 7 that transports the glass tube 2 is formed with a position regulating groove 7a such as a V-groove so as to regulate the movement of the glass tube 2 in the direction orthogonal to the axis X. . A plurality of light projecting sections 4 are arranged in a spiral shape with the axis X of the glass tube 2 as the center, and the optical axis centers of the respective light receiving sections 5 with respect to the optical axis centers L1 of the individual light projecting sections 4. It arrange | positions so that L2 may make a predetermined angle (100 degrees-150 degrees).

図6は、本発明の第2実施形態に係る欠陥検査装置を示す平面図である。この第2実施形態に係る欠陥検査装置1が、上述の第1実施形態に係る欠陥検査装置1と相違するところは、ガラス管2の欠陥となる異物の有無を検査するように構成されている点にある。   FIG. 6 is a plan view showing a defect inspection apparatus according to the second embodiment of the present invention. The difference between the defect inspection apparatus 1 according to the second embodiment and the defect inspection apparatus 1 according to the first embodiment described above is configured to inspect for the presence or absence of a foreign substance that becomes a defect in the glass tube 2. In the point.

詳述すると、第2実施形態に係る欠陥検査装置1では、図7(a)に示す受光部5の受光面5aの一部が、同図(b)に示すように、マスク8,8によって塞がれており、投光部4から照射されるライン光の厚み方向(軸心Xの方向)の受光可能範囲が、ライン光3の厚みに応じた範囲に制限されている。すなわち、投光部4から照射されるライン光3と同一平面内に広がる反射光が軸心Xの方向に拡散されると、その拡散された部分については、受光部5の受光面5aに入射しないようになっている。なお、本実施形態で使用する受光部5としては、その受光面5a全体で受光した反射光の受光光量の総和を検出できるものであればよい。   More specifically, in the defect inspection apparatus 1 according to the second embodiment, a part of the light receiving surface 5a of the light receiving unit 5 shown in FIG. 7A is formed by the masks 8 and 8 as shown in FIG. The light receiving range in the thickness direction (direction of the axis X) of the line light irradiated from the light projecting unit 4 is limited to a range corresponding to the thickness of the line light 3. That is, when the reflected light spreading in the same plane as the line light 3 irradiated from the light projecting unit 4 is diffused in the direction of the axis X, the diffused portion is incident on the light receiving surface 5a of the light receiving unit 5. It is supposed not to. In addition, as the light-receiving part 5 used by this embodiment, what can detect the sum total of the light-receiving amount of the reflected light received by the whole light-receiving surface 5a should just be detected.

そして、ガラス管2に欠陥がない場合にも生じる反射光が、異物に再度照射されると、異物に照射された部分に対応した反射光は散乱により弱められる。このとき、異物で散乱した光は四方に拡散する。   And when the reflected light which arises also when there is no defect in the glass tube 2 is again irradiated to a foreign material, the reflected light corresponding to the part irradiated to the foreign material is weakened by scattering. At this time, the light scattered by the foreign matter diffuses in all directions.

そのため、ガラス管2に異物がない場合には、図8に示すように、投光部4から照射されたライン光3と同一平面内に広がる反射光(図中のRで示す像を映し出す光)は、マスク8,8の隙間を通過して、受光部5の受光面5aに入射する。一方、ガラス管2に異物がある場合には、図9に示すように、投光部4から照射されたライン光3と同一平面内に広がる反射光(図中のRで示す像を映し出す光)は、軸心Xの方向に拡散して広がり、その拡散された部分の反射光はマスク8,8によって遮断される。したがって、受光部5の受光可能範囲を上述のように制限することにより、異物がある場合には、受光光量が大きく低下する。そのため、異物による反射光の受光光量の減少量を検出しやすくなり、結果として異物の有無を正確に検出することが可能となる。   Therefore, when there is no foreign object in the glass tube 2, as shown in FIG. 8, the reflected light (light which projects the image shown by R in a figure) which spreads in the same plane as the line light 3 irradiated from the light projection part 4 is shown. ) Passes through the gap between the masks 8 and 8 and enters the light receiving surface 5 a of the light receiving unit 5. On the other hand, when there is a foreign substance in the glass tube 2, as shown in FIG. 9, reflected light that spreads in the same plane as the line light 3 irradiated from the light projecting unit 4 (light that displays an image indicated by R in the figure). ) Diffuses and spreads in the direction of the axis X, and the reflected light of the diffused portion is blocked by the masks 8 and 8. Therefore, by limiting the light receiving range of the light receiving unit 5 as described above, the amount of received light is greatly reduced when there is a foreign object. Therefore, it becomes easy to detect the amount of decrease in the amount of light received by the foreign object, and as a result, the presence or absence of the foreign object can be accurately detected.

なお、この実施形態では、投光部4から照射されるライン光3の光軸中心L1と、受光部5で受光される反射光の光軸中心L2とのなす角θは、100°〜170°の範囲内に設定される。   In this embodiment, the angle θ between the optical axis center L1 of the line light 3 irradiated from the light projecting unit 4 and the optical axis center L2 of the reflected light received by the light receiving unit 5 is 100 ° to 170. Set within the range of °.

また、これら以外の点については、上記の第1実施形態と同様の構成を採用することができる。すなわち、図5に示したように、投光部4を複数配置して、ガラス管2に対して異なる方向からライン状の光3を照射するようにしてもよいし、ガラス管2を軸心Xの方向に搬送しながら、投光部4からライン状の光を照射するようにしてもよい。   Moreover, about the point other than these, the structure similar to said 1st Embodiment is employable. That is, as shown in FIG. 5, a plurality of light projecting portions 4 may be arranged so that the line-shaped light 3 is irradiated to the glass tube 2 from different directions. You may make it irradiate a linear light from the light projection part 4, conveying in the X direction.

本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施することができる。例えば、上記の実施形態では、ガラス物品として円管状のガラス管2を例示して説明したが、ガラス物品が、円柱状のガラス柱や、これらガラス管やガラス柱の元となる長尺なガラス元材である場合でも同様にして欠陥の有無を検査することができる。   The present invention is not limited to the above embodiment, and can be implemented in various forms without departing from the gist of the present invention. For example, in the above-described embodiment, the circular glass tube 2 is exemplified as the glass article. However, the glass article is a columnar glass column, or a long glass serving as a base of the glass tube or the glass column. Even in the case of the original material, the presence or absence of defects can be inspected in the same manner.

本発明の第1実施形態に係る欠陥検出装置を示す斜視図である。1 is a perspective view showing a defect detection device according to a first embodiment of the present invention. 図1に示す欠陥検出装置をガラス管の軸心方向から見た平面図である。It is the top view which looked at the defect detection apparatus shown in FIG. 1 from the axial center direction of the glass tube. ガラス管に気泡がない状態で、図1に示す受光部で受光される反射光の強度分布の一例を示すグラフである。It is a graph which shows an example of intensity distribution of the reflected light received with the light-receiving part shown in FIG. 1 in the state in which there is no bubble in a glass tube. ガラス管に気泡がある状態で、図1に示す受光部で受光される反射光の強度分布の一例を示すグラフである。It is a graph which shows an example of intensity distribution of the reflected light received with the light-receiving part shown in FIG. 1 in the state with a bubble in a glass tube. 第1実施形態に係る欠陥検出装置の変形例を示す平面図である。It is a top view which shows the modification of the defect detection apparatus which concerns on 1st Embodiment. 本発明の第2実施形態に係る欠陥検出装置を示す平面図である。It is a top view which shows the defect detection apparatus which concerns on 2nd Embodiment of this invention. (a)は、図6の受光部の受光面を示す正面図であって、(b)はその受光部の受光面にマスクをした状態を示す正面図である。(A) is a front view which shows the light-receiving surface of the light-receiving part of FIG. 6, (b) is a front view which shows the state which masked the light-receiving surface of the light-receiving part. ガラス管に異物がない状態で、図7(b)に示す受光部に入射する反射光の状態を示す正面図である。It is a front view which shows the state of the reflected light which injects into the light-receiving part shown in FIG.7 (b) in the state in which there is no foreign material in a glass tube. ガラス管に異物がある状態で、図7(b)に示す受光部に入射する反射光の状態を示す正面図である。It is a front view which shows the state of the reflected light which injects into the light-receiving part shown in FIG.7 (b) in the state with a foreign material in a glass tube.

符号の説明Explanation of symbols

1 欠陥検査装置
2 ガラス管
3 ライン光
4 投光部
5 受光部
5a 受光面
6 判断部
7 ローラ
7a 位置規制溝
8 マスク
L1 照射されるライン光の光軸中心
L2 反射光の光軸中心
DESCRIPTION OF SYMBOLS 1 Defect inspection apparatus 2 Glass tube 3 Line light 4 Light-projecting part 5 Light-receiving part 5a Light-receiving surface 6 Judgment part 7 Roller 7a Position control groove 8 Mask L1 Optical axis center L2 of irradiated line light Optical axis center of reflected light

Claims (8)

投光部から円筒状又は円柱状のガラス物品を横断するようにライン状の光を照射し、その照射した光のうち前記ガラス物品で反射した反射光を受光部で受光し、その受光光量の変化に基づいて前記ガラス物品の欠陥の有無を検査するガラス物品の欠陥検査方法。   A line-shaped light is irradiated from the light projecting unit so as to cross the cylindrical or columnar glass article, and the reflected light reflected by the glass article among the irradiated light is received by the light receiving unit. A method for inspecting a defect of a glass article, wherein the presence or absence of a defect in the glass article is inspected based on a change. 前記投光部から、前記ガラス物品の軸心と直交する平面上に沿ってライン状の光を照射する請求項1に記載のガラス物品の欠陥検査方法。   The glass article defect inspection method according to claim 1, wherein the light projection unit irradiates a line-shaped light along a plane orthogonal to the axis of the glass article. 前記投光部から前記ガラス物品に対して照射したライン状の光のうち、前記ガラス物品中を直進する透過光の光路上を除外した位置に、前記受光部が配置されている請求項1又は2に記載のガラス物品の欠陥検査方法。   The light receiving unit is disposed at a position excluding an optical path of transmitted light that travels straight through the glass article out of line-shaped light irradiated to the glass article from the light projecting unit. 3. A method for inspecting defects of a glass article according to 2. 前記ガラス物品を軸心方向に移動させながら、前記投光部からライン状の光を照射する請求項1〜3のいずれか一項に記載のガラス物品の欠陥検査方法。   The defect inspection method for a glass article according to any one of claims 1 to 3, wherein linear light is irradiated from the light projecting unit while moving the glass article in an axial direction. 前記投光部を複数配置して、前記ガラス物品に対して異なる方向からライン状の光を照射する請求項1〜4のいずれか一項に記載のガラス物品の欠陥検査方法。   The defect inspection method for a glass article according to any one of claims 1 to 4, wherein a plurality of the light projecting portions are arranged to irradiate the glass article with linear light from different directions. 前記ガラス物品の検出すべき欠陥が気泡であって、前記受光部で反射光の受光光量の強度分布を検出し、その検出した受光光量の強度分布の変化に基づいて前記ガラス物品に含まれる気泡の有無を検査する請求項1〜5のいずれか一項に記載のガラス物品の欠陥検査方法。   The defect to be detected of the glass article is a bubble, the intensity distribution of the received light quantity of the reflected light is detected by the light receiving unit, and the bubble contained in the glass article based on the detected change in the intensity distribution of the received light quantity The glass article defect inspection method according to claim 1, wherein the presence or absence of the glass article is inspected. 前記ガラス物品の検出すべき欠陥が異物であって、前記受光部のうち、前記投光部から照射されるライン状の光の前記ガラス物品の軸心方向に対応した方向の受光可能範囲を、前記投光部から照射されるライン状の光の前記ガラス物品の軸心方向の厚みに応じて制限し、前記受光部で受光した反射光の受光光量の減少量に基づいて前記ガラス物品に含まれる異物の有無を検査する請求項1〜5のいずれか一項に記載のガラス物品の欠陥検査方法。   The defect to be detected of the glass article is a foreign substance, and among the light receiving parts, a light receivable range in a direction corresponding to the axial direction of the glass article of line light irradiated from the light projecting part, The line-shaped light irradiated from the light projecting unit is limited according to the thickness in the axial direction of the glass article, and is included in the glass article based on the amount of light received by the light-receiving unit that is received. The method for inspecting a defect of a glass article according to any one of claims 1 to 5, wherein the presence or absence of a foreign object is inspected. 円筒状又は円柱状のガラス物品を横断するようにライン状の光を照射する投光部と、該投光部から照射された光のうち前記ガラス物品で反射した反射光を受光する受光部と、該受光部で受光された反射光の受光光量の変化に基づいて前記ガラス物品の欠陥の有無を判断する判断部とを備えたガラス物品の欠陥検査装置。   A light projecting unit that irradiates line-shaped light so as to cross a cylindrical or columnar glass article, and a light receiving unit that receives reflected light reflected by the glass article out of the light emitted from the light projecting unit; A glass article defect inspection apparatus comprising: a determination unit that determines the presence or absence of a defect in the glass article based on a change in the amount of received light of the reflected light received by the light receiving unit.
JP2008025553A 2008-02-05 2008-02-05 Defect inspection method and defect inspection apparatus for glass article Expired - Fee Related JP5316836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025553A JP5316836B2 (en) 2008-02-05 2008-02-05 Defect inspection method and defect inspection apparatus for glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025553A JP5316836B2 (en) 2008-02-05 2008-02-05 Defect inspection method and defect inspection apparatus for glass article

Publications (2)

Publication Number Publication Date
JP2009186281A true JP2009186281A (en) 2009-08-20
JP5316836B2 JP5316836B2 (en) 2013-10-16

Family

ID=41069680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025553A Expired - Fee Related JP5316836B2 (en) 2008-02-05 2008-02-05 Defect inspection method and defect inspection apparatus for glass article

Country Status (1)

Country Link
JP (1) JP5316836B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668354B1 (en) * 2010-07-20 2011-04-13 トリオ・セラミックス株式会社 Transparent tube bubble detection device and bubble detection method
KR101159009B1 (en) 2010-09-07 2012-06-21 아주대학교산학협력단 Zirconium tube testing apparatus and tube testing method the same
US10337977B1 (en) 2016-11-22 2019-07-02 Corning Incorporated Systems and methods for glass particle detection
US20210239624A1 (en) * 2018-05-08 2021-08-05 Marposs Societa' Per Azioni Method for checking an object made of transparent material and corresponding checking system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310778B2 (en) * 1980-01-31 1988-03-09 Anritsu Corp
JPS6331048B2 (en) * 1980-12-20 1988-06-22 Anritsu Corp
JPH0460448A (en) * 1990-06-28 1992-02-26 Mitsubishi Rayon Co Ltd Inspecting apparatus of defect of transparent cylindrical body
JPH06331557A (en) * 1993-05-24 1994-12-02 Sumitomo Electric Ind Ltd Method and apparatus for measurement of abnormal point linear body as well as method and apparatus for manufacture of linear body
JPH09292305A (en) * 1996-04-25 1997-11-11 Furukawa Electric Co Ltd:The Apparatus for detecting defect of translucent long body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310778B2 (en) * 1980-01-31 1988-03-09 Anritsu Corp
JPS6331048B2 (en) * 1980-12-20 1988-06-22 Anritsu Corp
JPH0460448A (en) * 1990-06-28 1992-02-26 Mitsubishi Rayon Co Ltd Inspecting apparatus of defect of transparent cylindrical body
JPH06331557A (en) * 1993-05-24 1994-12-02 Sumitomo Electric Ind Ltd Method and apparatus for measurement of abnormal point linear body as well as method and apparatus for manufacture of linear body
JPH09292305A (en) * 1996-04-25 1997-11-11 Furukawa Electric Co Ltd:The Apparatus for detecting defect of translucent long body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668354B1 (en) * 2010-07-20 2011-04-13 トリオ・セラミックス株式会社 Transparent tube bubble detection device and bubble detection method
WO2012011438A1 (en) * 2010-07-20 2012-01-26 日本電気硝子株式会社 Device and method for detecting bubble in transparent tube
JP2012026762A (en) * 2010-07-20 2012-02-09 Torio Ceramics Kk Bubble detector and bubble detection method of transparent tube
KR101159009B1 (en) 2010-09-07 2012-06-21 아주대학교산학협력단 Zirconium tube testing apparatus and tube testing method the same
US10337977B1 (en) 2016-11-22 2019-07-02 Corning Incorporated Systems and methods for glass particle detection
US20210239624A1 (en) * 2018-05-08 2021-08-05 Marposs Societa' Per Azioni Method for checking an object made of transparent material and corresponding checking system
US11448602B2 (en) * 2018-05-08 2022-09-20 Marposs Societa' Per Azioni Method for checking an object made of transparent material and corresponding checking system

Also Published As

Publication number Publication date
JP5316836B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US20170355635A1 (en) Feedback-controlled laser cutting of flexible glass substrates
JP5316836B2 (en) Defect inspection method and defect inspection apparatus for glass article
JP2006105976A (en) Foreign object detecting method in display panel manufacturing process
JP2008076113A (en) Surface flaw detection method and surface flaw inspection device
WO2012011438A1 (en) Device and method for detecting bubble in transparent tube
JP2008216148A (en) Defect inspection apparatus and illumination device
JP2007292770A (en) Optical sensor for detecting point shaped, linear shaped or laminar defects at plane surface area
JP5083055B2 (en) Tube inspection device and inspection system
US3925049A (en) Flat glass inspection system and method
JP2008286791A (en) Surface defect inspection method and apparatus
JP4930948B2 (en) Shaft body conveying device and outer diameter inspection device for large diameter portion of shaft body using the same
CN113614047B (en) Method for treating adhesive tape
JP2001242090A (en) Surface inspection device
JP2020085587A (en) Glass plate manufacturing method and glass plate manufacturing device
JP2013246106A (en) Conveyance unit, conveyance device, and inspection apparatus
JP2011053202A (en) Method and apparatus for inspecting defect in outer surface of glass tube
JPH11258167A (en) Method and apparatus for inspection of defect in glass tube
JP2004198205A (en) Defect inspection method of glass tube for vessels
TWI589859B (en) Surface inspection apparatus and method, and solution casting method and equipment
JPH02103453A (en) Transparent-container checking apparatus
JPS6310778B2 (en)
JP2006153545A (en) Laser scanning type outside diameter measuring device of identical section in steel material
JPH1164231A (en) Method and apparatus for detecting bubble streak of glass tube
JP2010014599A (en) Apparatus and system for visual inspection of transparent tube
JP2008175653A (en) Substrate inspecting device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees