JP2009185308A - HYDROGEN SEPARATING THIN FILM BY SIMULTANEOUS PLATING OF Pd-Ag, AND ITS MANUFACTURING METHOD - Google Patents

HYDROGEN SEPARATING THIN FILM BY SIMULTANEOUS PLATING OF Pd-Ag, AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2009185308A
JP2009185308A JP2008023181A JP2008023181A JP2009185308A JP 2009185308 A JP2009185308 A JP 2009185308A JP 2008023181 A JP2008023181 A JP 2008023181A JP 2008023181 A JP2008023181 A JP 2008023181A JP 2009185308 A JP2009185308 A JP 2009185308A
Authority
JP
Japan
Prior art keywords
silver
palladium
thin film
film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023181A
Other languages
Japanese (ja)
Other versions
JP5311536B2 (en
Inventor
Toshishige Suzuki
敏重 鈴木
Pacheco Tanaka Alfred
アルフレド・パチェコ・タナカ
Yoshito Wakui
喜人 和久井
Fujio Mizukami
富士夫 水上
Kenichi Noda
憲一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NGK Insulators Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Insulators Ltd
Priority to JP2008023181A priority Critical patent/JP5311536B2/en
Publication of JP2009185308A publication Critical patent/JP2009185308A/en
Application granted granted Critical
Publication of JP5311536B2 publication Critical patent/JP5311536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen separating thin film, wherein palladium and silver are uniformly film-deposited so as to have a predetermined composition by the electroless plating on a surface of a non-conductive base material, and rapidly alloyed by heating at ≤600°C when manufacturing a dense palladium-silver alloy film which is used for the hydrogen separating thin film. <P>SOLUTION: A method is provided for film-depositing palladium and silver at the predetermined composition ratio uniformly in the depth direction by controlling the deposition rate of both elements by continuously adding silver-containing aqueous solution at the predetermined flow rate in a process of performing the plating by immersing a porous base material with seed cores stuck thereto in a plating bath containing palladium and silver. The hydrogen separating thin film is manufactured by the method. A method is also provided for manufacturing the alloy film of palladium and silver to be used for the hydrogen separating film wherein palladium and silver are uniformly deposited on the surface of the non-conductive base material so as to have a predetermined composition by the electroless plating. The hydrogen separating thin film is manufactured by the method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素を速やかに、かつ選択的に透過して、水素を効率よく分離するためのパラジウム・銀合金からなる水素分離用薄膜、及び無電解メッキによりパラジウム(Pd)と銀(Ag)を一定の組成で均一に析出させてなる水素分離用薄膜を作製する方法に関するものであり、更に詳しくは、PdとAg含有メッキ溶液にAg溶液を一定速度で連続的に注入して両元素の析出を制御し、PdとAgを均一に無電解メッキすることにより、本来、酸化還元電位の違いにより析出速度の異なるPdとAgを、一定の組成比を維持しつつ同時に析出させて均一組成の、水素分離用薄膜を作製する方法、及び該方法によって作製した水素分離用薄膜に関するものである。本発明は、酸化還元電位の違いにより析出速度の異なるPdとAgを、組成比を維持しつつ、温和な加熱により短時間で均一なPd・Ag組成の合金薄膜を簡便に作製し、提供するものである。   The present invention relates to a hydrogen separation thin film made of a palladium / silver alloy for allowing hydrogen to pass through quickly and selectively to separate hydrogen efficiently, and palladium (Pd) and silver (Ag) by electroless plating. In particular, the present invention relates to a method for producing a thin film for hydrogen separation by uniformly depositing Pd and an Ag-containing plating solution at a constant rate. By controlling the deposition and uniformly electrolessly plating Pd and Ag, originally, Pd and Ag having different deposition rates due to the difference in oxidation-reduction potential are simultaneously deposited while maintaining a constant composition ratio. The present invention relates to a method for producing a thin film for hydrogen separation, and a thin film for hydrogen separation produced by the method. The present invention simply provides an alloy thin film having a uniform Pd / Ag composition in a short time by mild heating while maintaining the composition ratio of Pd and Ag having different deposition rates depending on the oxidation-reduction potential. Is.

クリーンなエネルギー源としての水素の確保は、来るべき“水素社会”への対応の観点から、極めて重要な課題である。水素の分離技術の中でも、膜分離技術は、膜内外の水素分圧を駆動力として連続的に水素を分離することができ、しかもエネルギー消費の少ない優れた分離方法として期待されている。水素の膜分離法における最も重要な技術的課題は、水素を選択的に大量に透過し、しかも耐久性に優れた分離膜材料を提供することである。このような観点から、これまで、水素の高効率分離を目指して、様々な水素選択透過膜が開発されてきた。   Securing hydrogen as a clean energy source is an extremely important issue from the perspective of responding to the coming “hydrogen society”. Among the hydrogen separation technologies, the membrane separation technology is expected as an excellent separation method that can continuously separate hydrogen by using the hydrogen partial pressure inside and outside the membrane as a driving force and that consumes less energy. The most important technical problem in the hydrogen membrane separation method is to provide a separation membrane material that selectively permeates hydrogen in a large amount and has excellent durability. From this point of view, various hydrogen permselective membranes have been developed with the aim of high-efficiency separation of hydrogen.

これらの中で、とりわけパラジウム薄膜は、水素分子が原子状に解離して緻密な膜を透過すると云った独特の透過機構により、優れた水素選択透過性と、単位面積当たりの高い水素透過量とを実現できることから、最も着目されてきたものである。しかし、パラジウム薄膜は、優れた透過性能を持つ反面、臨界温度.臨界圧力以下において、α相からβ相への結晶相の転移が起こり、それに起因して、欠陥やピンホールを生じ易いため、水素分離における使用温度と水素圧の範囲は限定されていた。   Among these, the palladium thin film, in particular, has excellent hydrogen selective permeability and high hydrogen permeation amount per unit area due to a unique permeation mechanism in which hydrogen molecules dissociate atomically and permeate through a dense membrane. Has been the focus of attention. However, while the palladium thin film has excellent transmission performance, it has a critical temperature. Below the critical pressure, the transition of the crystal phase from the α phase to the β phase occurs, and as a result, defects and pinholes are liable to occur, so the operating temperature and the hydrogen pressure range in hydrogen separation have been limited.

このような相転移に起因する水素脆性は、パラジウムと他の金属、とりわけ銀との合金化により緩和され、機械的強度が向上すること、しかも水素の透過速度が大きくなることなどの効果が得られることから、これまで、膜の高透過率と長寿命化を図ったパラジウムと他の金属との合金膜の作製方法が種々検討されている(非特許文献1参照)。   Such hydrogen embrittlement due to the phase transition is alleviated by alloying with palladium and other metals, especially silver, improving the mechanical strength and increasing the hydrogen permeation rate. Thus, various methods for producing alloy films of palladium and other metals that have achieved high transmittance and long life have been studied (see Non-Patent Document 1).

様々な金属薄膜の形成方法のうち、無電解メッキ法は、穏和な条件で実施可能であり特殊な装置を必要としない、外部電源が不要である、試料のサイズや形状を選ばない、一度に多数の試料のメッキが可能である、と云った優れた特徴を持つ簡便な方法である上、プラスチックやセラミックスなどの非導電性材料へのメッキが可能であり、従来、電子工業など、ハイテク産業において、活発に利用されている(非特許文献2参照)。   Among various metal thin film formation methods, the electroless plating method can be performed under mild conditions, does not require special equipment, does not require an external power supply, does not choose the size and shape of the sample, and at one time It is a simple method with excellent features such as being capable of plating a large number of samples, and it can be plated on non-conductive materials such as plastics and ceramics. Is actively used (see Non-Patent Document 2).

非導電性材料のメッキに際しては、基材の表面に、予め金属の種核を植え付ける必要があるが、無電解メッキにおいては、パラジウムが還元剤の酸化反応に対して触媒活性を示すので、種核金属としてパラジウムが多用されている。無電解メッキによるパラジウムと銀の複合膜の形成方法としては、パラジウムの種核が析出した基材の表面に、まず、パラジウムをメッキし、更に、電解メッキにより銀を析出させ、合金化する方法、がある。   When plating a non-conductive material, it is necessary to plant a metal seed nucleus in advance on the surface of the substrate. However, in electroless plating, since palladium exhibits catalytic activity for the oxidation reaction of the reducing agent, Palladium is frequently used as the core metal. As a method of forming a composite film of palladium and silver by electroless plating, the surface of the substrate on which palladium seed nuclei are deposited is first plated with palladium, and further silver is deposited by electrolytic plating to form an alloy. There is.

すなわち、基材の表面に、パラジウムをメッキした後、更に、メッキ液を銀を含む溶液に変えて、通常の電解メッキにより銀を析出させ、最終的に析出したPdとAg層を熱処理により合金化する方法が知られている(例えば、非特許文献3参照)。しかし、この方法は、操作が煩雑な上、金属が2層となるため、異種金属相互の原子拡散が遅く、均一な組成の合金薄膜形成には800℃以上の高温で、しかも長時間の加熱を必要とする。   That is, after plating palladium on the surface of the substrate, the plating solution is changed to a solution containing silver, silver is deposited by ordinary electrolytic plating, and finally the deposited Pd and Ag layers are alloyed by heat treatment. There is known a method of converting to a non-patent document 3 (for example, see Non-Patent Document 3). However, this method is complicated in operation and has two layers of metal, so that atomic diffusion between different metals is slow, and an alloy thin film having a uniform composition is formed at a high temperature of 800 ° C. or more for a long time. Need.

そこで、2種の金属を同時にメッキすることにより、両金属が混合して析出した薄膜を形成すれば、金属相互の原子拡散が容易となり、温和な熱処理条件で短時間に均一な合金膜形成が可能となると考えられる。このような想定の下、メッキ液中の金属イオンの混合比を変え、安定化のためのキレート試薬の種類と濃度を制御して、パラジウムと銀を同時に無電解メッキする方法が試みられている(例えば、非特許文献4、5参照)。また、銀とPdあるいはPt、Au、Rhとの混合水溶液から、置換メッキにより、銀よりも貴な金属を析出させることよる銀合金被膜の形成方法が知られている(特許文献1参照)。   Therefore, by simultaneously plating two kinds of metals to form a thin film in which both metals are mixed and deposited, atomic diffusion between the metals becomes easy, and a uniform alloy film can be formed in a short time under mild heat treatment conditions. It is considered possible. Under such assumptions, a method of simultaneously electrolessly plating palladium and silver by changing the mixing ratio of metal ions in the plating solution and controlling the type and concentration of the chelating reagent for stabilization has been attempted. (For example, refer nonpatent literatures 4 and 5.). In addition, a method for forming a silver alloy film is known in which a metal nobler than silver is precipitated by displacement plating from a mixed aqueous solution of silver and Pd or Pt, Au, and Rh (see Patent Document 1).

しかし、これらの従来の方法は、いずれもパラジウムと銀との混合溶液を用いてメッキするため、還元されやすい銀が優先して析出するという問題があり、このことから、1)析出膜の金属組成を正確に制御することが困難である、2)組成のムラが生じ易い、3)銀濃度が高い場合、銀が優先的にメッキ被膜を形成して、メッキの進行が阻害される、などの欠点があり、その結果、均一組成の合金膜を得ることは容易ではない。とりわけ、銀が優先的に析出し易いため、メッキを促進する触媒効果のあるパラジウムが隠蔽されやすく、その結果、メッキ膜形成が阻害される。このように、パラジウムと銀とが膜の深さ(厚さ)方向において、正確に均一な組成比となるように、これらの析出を制御したメッキ被膜の形成は、従来の方法では成し得ないと云うのが実情であった。   However, since these conventional methods are plated using a mixed solution of palladium and silver, there is a problem that silver that is easily reduced is preferentially precipitated. From this, 1) metal of the deposited film It is difficult to accurately control the composition, 2) composition unevenness is likely to occur, 3) when the silver concentration is high, silver preferentially forms a plating film, and the progress of plating is hindered, etc. As a result, it is not easy to obtain an alloy film having a uniform composition. In particular, since silver is likely to precipitate preferentially, palladium having a catalytic effect for promoting plating is easily concealed, and as a result, formation of a plating film is hindered. Thus, the conventional method can be used to form a plating film with controlled deposition so that palladium and silver have a precisely uniform composition ratio in the depth (thickness) direction of the film. The fact was that it was not.

特開2000−212763号公報JP 2000-212763 A S.N.Pagliieri,J.D.Way,Separation and Purification Methods、31巻、20頁、2002年S. N. Pagliieri, J. et al. D. Way, Separation and Purification Methods, 31, p. 20, p. 2002 Glenn Mallory, Juan Hajdu 編集 Electroless Plating,アメリカ表面処理協会、421頁、1990年Edited by Glenn Mallory, Juan Hajdu, Electroplating, American Surface Treatment Association, 421, 1990 K.Hou,R.Hughes、J.Membrane Science、214巻、43頁、2003年K. Hou, R.A. Hughes, J. et al. Membrane Science, 214, 43, 2003 Y.S.Cheng,K.L.Yeung,J.Membrane Science、158巻、127頁、1999年Y. S. Cheng, K.M. L. Yeung, J. et al. Membrane Science, 158, 127, 1999 J.Shu,B.P.A.Grandjean,E.Ghali,S.Kaliaguine、J.MembraneScience、77巻、181頁、1993年J. et al. Shu, B .; P. A. Grandjean, E .; Ghali, S .; Kaliaguine, J. et al. MembraneScience, 77, 181, 1993

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来の方法の問題点を解決することを可能とする新しい水素分離用薄膜及びその作製方法を開発することを目標として鋭意研究を積み重ねた結果、無電解メッキによりパラジウムと銀の合金薄膜を作製する方法において、析出し易い銀を徐々に供給することにより両元素の析出速度を制御することで、膜の深さ(厚さ)方向に一定の組成比を持つパラジウムと銀の均一メッキ被膜を成膜することに成功し、本発明を完成するに至った。   Under such circumstances, the present inventors have developed a new hydrogen separation thin film and a method for producing the same, which are capable of solving the problems of the conventional methods in view of the prior art. As a result of intensive research as a target, in the method of producing an alloy thin film of palladium and silver by electroless plating, the deposition rate of both elements is controlled by gradually supplying silver that is easy to precipitate, thereby reducing the depth of the film. The present inventors have succeeded in forming a uniform plating film of palladium and silver having a constant composition ratio in the thickness (thickness) direction, and completed the present invention.

本発明は、水素分離用薄膜として供するパラジウムと銀の合金膜について、非導電性基材の表面に、無電解メッキによってパラジウムと銀を一定の組成で、均一に析出させ、成膜させた水素分離用薄膜を提供することを目的とするものである。また、本発明は、パラジウムと銀とを含むメッキ浴に、一定の流速で連続的に銀含有水溶液を添加して行き、析出し易い銀を徐々に供給することで両元素の析出速度を制御し、膜の深さ方向(相対厚さ)に対して一定の組成比を持つパラジウムと銀の均一メッキ膜を作製する方法を提供することを目的とするものである。   The present invention relates to an alloy film of palladium and silver used as a thin film for hydrogen separation, in which palladium and silver are uniformly deposited with a constant composition on the surface of a non-conductive substrate by electroless plating. The object is to provide a thin film for separation. In addition, the present invention controls the deposition rate of both elements by adding a silver-containing aqueous solution continuously to a plating bath containing palladium and silver at a constant flow rate and gradually supplying silver that is easy to precipitate. The object of the present invention is to provide a method for producing a uniform plating film of palladium and silver having a constant composition ratio with respect to the depth direction (relative thickness) of the film.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)多孔質支持体表面に、無電解メッキによりパラジウムと銀を同時に析出させて作製したメッキ膜からなる水素分離用薄膜であって、該膜中のパラジウムと銀の両元素の組成比が前記メッキ膜の厚さ方向(相対厚さ)に対して一定の比率を維持していることを特徴とする水素分離用薄膜。
(2)前記メッキ膜中のパラジウムと銀の組成比が、パラジウムで±20%の範囲内で一定の比率を維持している、前記(1)に記載の水素分離用薄膜。
(3)前記メッキ膜のパラジウムと銀の比率が、1〜30重量%の範囲である、前記(1)又は(2)に記載の水素分離用薄膜。
(4)前記メッキ膜の厚さが、0.1μm以上10μm以下である、前記(1)から(3)のいずれか1項に記載の水素分離用薄膜。
(5)前記メッキ膜が、成膜後の熱処理によって合金化されている、前記(1)から(4)のいずれか1項に記載の水素分離用薄膜。
(6)多孔質支持体表面に、無電解メッキによりパラジウムと銀を同時に析出させたメッキ膜からなる水素分離用薄膜を作製する方法であって、パラジウムと銀ならびにこれらを安定化するキレート試薬を含むパラジウム、銀混合の初期メッキ溶液に対して、銀を含有する溶液を所定の速度で連続的に注入して、両元素を前記メッキ膜の厚さ方向(相対厚さ)に対して一定の組成比を維持しつつ同時に析出させることを特徴とする水素分離用薄膜の作製方法。
(7)前記銀を含有する溶液が、キレート試薬を含む、前記(6)に記載の水素分離用薄膜の作製方法。
(8)前記メッキ膜中のパラジウムと銀の組成比が、パラジウムで±20%の範囲内で一定の比率となるような速度で、前記銀を含有する溶液を連続的に注入する、前記(6)又は(7)に記載の水素分離用薄膜の作製方法。
(9)前記メッキ膜のパラジウムと銀の比率が、1〜30重量%の範囲の水素分離薄膜を作製する、前記(6)から(8)のいずれか1項に記載の水素分離用薄膜の作製方法。
(10)前記メッキ膜の厚さが、0.1μm以上10μm以下の水素分離薄膜を作製する、前記(6)から(9)のいずれか1項に記載の水素分離用薄膜の作製方法。
(11)前記メッキ膜を、成膜後に600℃以下の合金化温度での熱処理によって合金化する、前記(6)から(10)のいずれか1項に記載の水素分離用薄膜の作製方法。
(12)初期メッキ液として用いるパラジウムと銀の総濃度が、2mM〜20mMの範囲である、前記(6)から(11)のいずれか1項に記載の水素分離用薄膜の作製方法。
(13)連続的に注入して添加する銀の濃度が、1mM〜10mMの範囲である、前記(6)から(12)のいずれか1項に記載の水素分離用薄膜の作製方法。
(14)メッキ被膜面積100cm当たりに対して、連続的に注入して添加する銀を含有する溶液の添加速度が、毎分0.2〜1.0mlである、前記(6)から(13)のいずれか1項に記載の水素分離用薄膜の作製方法。
(15)初期メッキ溶液中に注入する銀の総量の3分の1までの量の銀をパラジウムと共存させ、残りの量の銀を連続的に注入して添加する、前記(6)から(14)のいずれか1項に記載の水素分離用薄膜の作製方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A hydrogen separation thin film comprising a plating film prepared by simultaneously depositing palladium and silver on the surface of a porous support by electroless plating, wherein the composition ratio of both elements of palladium and silver in the film is A thin film for hydrogen separation characterized by maintaining a constant ratio with respect to the thickness direction (relative thickness) of the plating film.
(2) The thin film for hydrogen separation according to (1), wherein the composition ratio of palladium to silver in the plating film maintains a constant ratio within a range of ± 20% with palladium.
(3) The thin film for hydrogen separation according to (1) or (2), wherein the ratio of palladium to silver in the plating film is in the range of 1 to 30% by weight.
(4) The thin film for hydrogen separation according to any one of (1) to (3), wherein a thickness of the plating film is 0.1 μm or more and 10 μm or less.
(5) The thin film for hydrogen separation according to any one of (1) to (4), wherein the plating film is alloyed by heat treatment after film formation.
(6) A method for producing a thin film for hydrogen separation comprising a plating film in which palladium and silver are simultaneously deposited by electroless plating on the surface of a porous support, comprising a chelating reagent that stabilizes palladium and silver Into the initial plating solution containing palladium and silver, a solution containing silver is continuously injected at a predetermined rate, and both elements are constant in the thickness direction (relative thickness) of the plating film. A method for producing a thin film for hydrogen separation, characterized by depositing simultaneously while maintaining a composition ratio.
(7) The method for producing a thin film for hydrogen separation according to (6), wherein the solution containing silver contains a chelating reagent.
(8) The solution containing silver is continuously injected at a rate such that the composition ratio of palladium to silver in the plating film is a constant ratio within a range of ± 20% with palladium. A method for producing a thin film for hydrogen separation as described in 6) or (7).
(9) The hydrogen separation thin film according to any one of (6) to (8), wherein a hydrogen separation thin film having a ratio of palladium to silver in the plating film in the range of 1 to 30% by weight is produced. Manufacturing method.
(10) The method for producing a hydrogen separation thin film according to any one of (6) to (9), wherein a hydrogen separation thin film having a thickness of the plating film of 0.1 μm to 10 μm is produced.
(11) The method for producing a thin film for hydrogen separation according to any one of (6) to (10), wherein the plating film is alloyed by heat treatment at an alloying temperature of 600 ° C. or less after the film formation.
(12) The method for producing a thin film for hydrogen separation according to any one of (6) to (11), wherein the total concentration of palladium and silver used as the initial plating solution is in the range of 2 mM to 20 mM.
(13) The method for producing a thin film for hydrogen separation according to any one of (6) to (12), wherein the concentration of silver to be continuously injected and added is in the range of 1 mM to 10 mM.
(14) From the above (6) to (13), the addition rate of the solution containing silver to be continuously injected and added per 100 cm 2 of the plated coating area is 0.2 to 1.0 ml per minute. The method for producing a thin film for hydrogen separation according to any one of the above.
(15) From the above (6), the amount of silver up to one third of the total amount of silver injected into the initial plating solution is coexisted with palladium, and the remaining amount of silver is continuously injected and added. The method for producing a thin film for hydrogen separation as described in any one of 14).

次に、本発明について更に詳細に説明する。
本発明は、多孔質支持体表面に、無電解メッキによりパラジウムと銀を同時に析出させて作製したメッキ膜からなる水素分離用薄膜であって、該膜中のパラジウムと銀の両元素の組成比が前記メッキ膜の厚さ方向(相対厚さ)に対して一定の比率を維持していることを特徴とするものである。本発明では、前記メッキ膜中のパラジウムと銀の組成比が、パラジウムで±20%の範囲内で一定の比率を維持していること、前記メッキ膜のパラジウムと銀の比率が、1〜30重量%の範囲であること、前記メッキ膜の厚さが、0.1μm以上10μm以下であること、を好ましい実施の態様としている。
Next, the present invention will be described in more detail.
The present invention is a hydrogen separation thin film comprising a plating film prepared by simultaneously depositing palladium and silver on the surface of a porous support by electroless plating, the composition ratio of both elements of palladium and silver in the film Is characterized by maintaining a constant ratio with respect to the thickness direction (relative thickness) of the plating film. In the present invention, the composition ratio of palladium to silver in the plating film is maintained at a constant ratio within a range of ± 20% with palladium, and the ratio of palladium to silver in the plating film is 1 to 30. It is a preferred embodiment that it is in the range of% by weight and the thickness of the plating film is 0.1 μm or more and 10 μm or less.

更に、本発明は、多孔質支持体表面に、無電解メッキによりパラジウムと銀を同時に析出させたメッキ膜からなる水素分離用薄膜を作製する方法であって、パラジウムと銀ならびにこれらを安定化するキレート試薬を含むパラジウム、銀混合の初期メッキ溶液に対して、銀を含有する溶液を所定の速度で連続的に注入して、両元素を前記メッキ膜の厚さ方向(相対厚さ)に対して一定の組成比を維持しつつ同時に析出させることを特徴とするものである。   Furthermore, the present invention is a method for producing a hydrogen separation thin film comprising a plating film in which palladium and silver are simultaneously deposited by electroless plating on the surface of a porous support, and stabilizes palladium and silver and these. A silver-containing solution is continuously injected at a predetermined rate into a palladium / silver mixed initial plating solution containing a chelating reagent, and both elements are in the thickness direction (relative thickness) of the plating film. In addition, it is characterized in that precipitation is performed simultaneously while maintaining a constant composition ratio.

本発明の上述の課題は、無電解メッキを行う方法において、パラジウムと銀含有メッキ水溶液と、銀単独の銀含有メッキ水溶液の2溶液を調製し、パラジウムと銀含有メッキ水溶液に、一定濃度の銀含有水溶液を、所定の流速で連続的に添加して供給することにより解決することができることが分かった。すなわち、本発明では、チューブ状あるいは板状などの適宜の形状の多孔質支持体(多孔質基材)表面に、パラジウムの種核を付与して活性化した後、錯形成剤と還元剤を含むパラジウムと銀の混合メッキ水溶液に浸し、この中に錯形成剤を含む銀含有溶液を所定の流速で連続的に注入しながら無電解メッキを行うことで、パラジウムと銀の析出速度を制御し、両元素を均一の組成比で析出させることが重要である。   The above-mentioned problem of the present invention is to prepare two solutions of palladium and silver-containing plating aqueous solution and silver-containing silver-containing plating aqueous solution in the method of performing electroless plating, and to add palladium and silver-containing plating aqueous solution to a certain concentration of silver It was found that the solution can be solved by continuously adding and supplying the aqueous solution at a predetermined flow rate. That is, in the present invention, a palladium seed nucleus is activated on the surface of a porous support (porous substrate) having an appropriate shape such as a tube or a plate, and then a complexing agent and a reducing agent are added. The deposition rate of palladium and silver is controlled by performing electroless plating while continuously injecting a silver-containing solution containing a complexing agent at a predetermined flow rate into the mixed plating aqueous solution of palladium and silver. It is important to deposit both elements at a uniform composition ratio.

本発明方法において、被膜を形成する基材として用いられる多孔質支持体の多孔質材料については、多孔体であれば特に制限はないが、耐熱性の観点から、好ましくはセラミックや金属が挙げられる。セラミックの例としては、アルミナ、シリカ、ジルコニア、及びイットリアやセリアの添加で安定化したジルコニアなどの酸化物セラミックが挙げられる。金属の例としては、多孔質のステンレスや合金が挙げられる。また、多孔質基材の形態としては、チューブ状、板状などが挙げられ、これらは、水素透過膜や反応膜の支持体として利用される。   In the method of the present invention, the porous material of the porous support used as the base material for forming the film is not particularly limited as long as it is a porous material, but from the viewpoint of heat resistance, preferably a ceramic or a metal is used. . Examples of ceramics include alumina, silica, zirconia, and oxide ceramics such as zirconia stabilized by the addition of yttria or ceria. Examples of the metal include porous stainless steel and alloys. Examples of the form of the porous substrate include a tube shape and a plate shape, and these are used as a support for a hydrogen permeable membrane or a reaction membrane.

セラミックなどの非導電性素材へのメッキでは、導電性と触媒性を兼ね備えたパラジウムが種核として不可欠である。パラジウムと銀を同時にメッキする場合、金属パラジウムの微細な種核を均一に析出、分布させることが重要である。それには、多孔質基材の表面にパラジウム錯体を均一に保持させた後、例えば、塩化スズないしヒドラジンを用いて還元する公知の方法(例えば、非特許文献2参照)により達成される。   In plating on non-conductive materials such as ceramics, palladium that is both conductive and catalytic is indispensable as a seed nucleus. When plating palladium and silver simultaneously, it is important to deposit and distribute fine seed nuclei of metallic palladium uniformly. This is achieved by a known method (for example, see Non-Patent Document 2) in which the palladium complex is uniformly held on the surface of the porous substrate and then reduced using, for example, tin chloride or hydrazine.

本発明方法においては、先ず、非導電性多孔質基材の表面に、金属パラジウムからなる、通常、20ナノメートル以下の極めて微細な種核を均一に析出、分布させる。それには、非導電性多孔質基材の表面に、パラジウム錯体を均一に保持させた後、還元する方法によることが好ましい。この基材の表面へのパラジウム錯体の保持方法としては、非導電性多孔質基材、好ましくはアルミナなどの非導電性多孔質セラミック基材に、パラジウムを含浸させ、あるいは、吸着させた後、乾燥する方法が好ましい。   In the method of the present invention, first, extremely fine seed nuclei made of metallic palladium, usually 20 nanometers or less, are uniformly deposited and distributed on the surface of the non-conductive porous substrate. For this purpose, it is preferable to use a method in which the palladium complex is uniformly held on the surface of the non-conductive porous substrate and then reduced. As a method for retaining the palladium complex on the surface of the base material, after impregnating or adsorbing palladium on a nonconductive porous base material, preferably a nonconductive porous ceramic base material such as alumina, A method of drying is preferred.

パラジウム含有溶液におけるパラジウム化合物の例としては、好ましくは酢酸パラジウム、塩化パラジウム、[PdCl2−、[Pd(acac)](acac=アセチルアセトナートイオン)が挙げられる。また、溶媒としては、パラジウム化合物を溶解し易いものであれば特に制限はないが、[PdCl2−のように、電荷を持つ錯イオンの場合には、水などの極性溶媒が、また、[Pd(acac)]、酢酸パラジウムなどの中性錯体では、アセトニトリル、クロロホルムなどの有機溶媒が挙げられる。 Preferred examples of the palladium compound in the palladium-containing solution include palladium acetate, palladium chloride, [PdCl 4 ] 2− , [Pd (acac) 2 ] (acac = acetylacetonate ion). The solvent is not particularly limited as long as it easily dissolves the palladium compound, but in the case of complex ions having a charge such as [PdCl 4 ] 2− , a polar solvent such as water, , [Pd (acac) 2 ], and neutral complexes such as palladium acetate include organic solvents such as acetonitrile and chloroform.

パラジウム錯体の濃度は、パラジウムに換算して0.1〜5質量%の範囲が望ましい。セラミック基材をパラジウム錯体溶液に浸した後、これを取り出し、乾燥により、溶媒が蒸発し除去され、パラジウム錯体が上記基板に保持される。   The concentration of the palladium complex is preferably in the range of 0.1 to 5% by mass in terms of palladium. After immersing the ceramic base material in the palladium complex solution, the ceramic base material is taken out and dried, whereby the solvent is evaporated and removed, and the palladium complex is held on the substrate.

還元方法については、特に制限されないが、還元剤としては、グルコースや蟻酸などのアルデヒド基を有する化合物、水素化ホウ素化合物、ヒドラジンなどの水溶液を用いることが好ましい。ヒドラジンは、還元力が強いことと、反応生成物が窒素のみであり、系外に排除できる点で特に有利である。   The reducing method is not particularly limited, but as the reducing agent, it is preferable to use an aqueous solution of a compound having an aldehyde group such as glucose or formic acid, a borohydride compound, or hydrazine. Hydrazine is particularly advantageous in that it has a strong reducing power and the reaction product is only nitrogen and can be excluded from the system.

このようにして、多孔質基材へのパラジウム錯体の保持、及び還元処理を繰り返すことにより、非導電性多孔質基材の表面に均一に分布したごく微細なパラジウム微粒子が種核として形成される。均一で高密度の種核生成のために、本操作は、少なくとも2回以上繰り返すことが望ましい。本発明において、パラジウムと銀の両元素の組成比が膜の深さ(厚さ)方向(相対厚さ)に対して一定の比率を維持しているとは、膜の深さ方向で完全に一定と云うわけではなく、ほぼ一定の比率を維持していることを意味する。   In this way, by holding the palladium complex on the porous substrate and repeating the reduction treatment, very fine palladium fine particles uniformly distributed on the surface of the non-conductive porous substrate are formed as seed nuclei. . In order to generate a uniform and high-density seed nucleus, it is desirable to repeat this operation at least twice. In the present invention, the fact that the composition ratio of both elements of palladium and silver maintains a constant ratio with respect to the depth (thickness) direction (relative thickness) of the film is completely in the depth direction of the film. It does not mean that it is constant, but it means that a substantially constant ratio is maintained.

本発明方法においては、このようにして得られたごく微細な種核を表面に均一に分布させた多孔質基材を、錯形成剤を含むパラジウムと銀との混合メッキ液に浸し、更に、銀含有溶液を所定の速度で添加しながら無電解メッキする。析出する銀の含有量は、銀の濃度と添加速度により制御される。この混合メッキ液は、通常、パラジウム塩、銀塩、これらを安定に溶存させる錯形成剤、還元剤を含有する。   In the method of the present invention, the porous substrate obtained by uniformly distributing the very fine seed nuclei thus obtained on the surface is immersed in a mixed plating solution of palladium and silver containing a complexing agent, Electroless plating is performed while adding the silver-containing solution at a predetermined rate. The silver content to be precipitated is controlled by the silver concentration and the addition rate. This mixed plating solution usually contains a palladium salt, a silver salt, a complexing agent that dissolves them stably, and a reducing agent.

混合メッキ液に用いられるパラジウム塩の例としては、酢酸パラジウム、塩化パラジウム、硫酸パラジウムなどが、また、銀塩の例としては、硝酸銀、硫酸銀、酢酸銀などがそれぞれ挙げられる。また、錯形成剤の例としては、好ましくはアンモニアとキレート剤との組合せ、特にアンモニアとEDTAとの組合せ、が好適である。キレート剤としては、EDTAの他、NTA(ニトリロトリ酢酸)や、クエン酸、酒石酸などの脂肪族オキシ酸などが挙げられる。   Examples of the palladium salt used in the mixed plating solution include palladium acetate, palladium chloride, palladium sulfate and the like, and examples of the silver salt include silver nitrate, silver sulfate and silver acetate. As a complexing agent, a combination of ammonia and a chelating agent, particularly a combination of ammonia and EDTA is preferable. Examples of chelating agents include EDTA, NTA (nitrilotriacetic acid), and aliphatic oxyacids such as citric acid and tartaric acid.

メッキ液におけるパラジウム濃度は、通常、0.002〜0.02M、好ましくは0.05〜0.01Mを用いる。銀は、通常、パラジウムに対して1〜30重量%、好ましくは5〜25重量%の割合で用い、このうちの3分の1までの量は、パラジウム溶液と混合し、初期メッキ溶液とし、残りの3分の2をメッキ過程で連続供給する銀溶液に用いる。   The palladium concentration in the plating solution is usually 0.002 to 0.02M, preferably 0.05 to 0.01M. Silver is usually used in a proportion of 1 to 30% by weight, preferably 5 to 25% by weight with respect to palladium, and up to one third of this amount is mixed with a palladium solution to form an initial plating solution, The remaining two thirds are used for the silver solution that is continuously supplied during the plating process.

初期メッキ液として用いるパラジウムと銀の総濃度は、通常、0.002〜0.02Mである。錯形成剤は、通常、EDTAが0.05〜0.1M、アンモニアが5〜10Mの濃度が選ばれ、溶媒は、通常、水を用いる。Pd2+とAgは、酸化還元電位の違いのため、両元素の析出し易さが異なるが、メッキの進行過程で銀溶液を連続供給することにより両金属の析出量比が一定に保たれ、均一な同時メッキを達成することが可能となる。 The total concentration of palladium and silver used as the initial plating solution is usually 0.002 to 0.02M. The complexing agent is usually selected to have a concentration of EDTA of 0.05 to 0.1 M and ammonia of 5 to 10 M, and the solvent is usually water. Pd 2+ and Ag + have different redox potentials, so the easiness of precipitation of both elements differs. However, by continuously supplying a silver solution during the plating process, the deposition amount ratio of both metals is kept constant. It is possible to achieve uniform simultaneous plating.

無電解メッキの際のメッキ液の温度は、通常、室温から90℃の範囲であるが、一定以上の反応速度を維持し、しかもアンモニアの蒸散や薬剤の分解を少なくする観点から、40〜80℃、中でも50〜70℃の範囲が好ましい。メッキ時間は、メッキ液温度や膜厚にもよるが、3〜5時間でメッキ液中の90%のパラジウムと銀が析出し、5〜8時間で両者はほぼ定量的に析出する。メッキ操作中は、メッキ液の濃度ムラが生じないために、十分に撹拌することが望ましい。   The temperature of the plating solution at the time of electroless plating is usually in the range of room temperature to 90 ° C., but 40 to 80 from the viewpoint of maintaining a reaction rate of a certain level and reducing ammonia transpiration and chemical decomposition. The range of 50 ° C to 70 ° C is preferable. Although the plating time depends on the plating solution temperature and film thickness, 90% palladium and silver in the plating solution are deposited in 3 to 5 hours, and both are almost quantitatively deposited in 5 to 8 hours. During the plating operation, it is desirable to sufficiently stir in order to prevent unevenness in the concentration of the plating solution.

パラジウム、銀混合メッキ溶液に、銀を含有する溶液を連続的に注入する際には、ほぼ一定速度で行うことが好ましい。具体的には、メッキ被膜面積100cm当たりに対して添加する銀溶液の添加速度は、銀濃度0.001〜0.02M、好ましくは0.005〜0.01Mの溶液を用いて、通常、毎分0.2〜1.0mlとすることが好ましい。 When the solution containing silver is continuously injected into the palladium / silver mixed plating solution, it is preferably performed at a substantially constant rate. Specifically, the addition rate of the silver solution to be added per 100 cm 2 of the plated coating area is usually 0.001 to 0.02M, preferably 0.005 to 0.01M. It is preferably 0.2 to 1.0 ml per minute.

これにより、析出によって消費された銀成分を補充することで、パラジウムと銀を一定の組成比で析出させることができる。また、メッキ溶液を安定化させるために、注入に使用する銀を含有する溶液は、キレート試薬によって安定化されていることが好ましい。以上のような条件下で成膜を行うことにより、パラジウムと銀を一定組成で均一に析出したメッキ膜を作製することが可能となる。   Thereby, palladium and silver can be made to precipitate by a fixed composition ratio by supplementing the silver component consumed by precipitation. Further, in order to stabilize the plating solution, the solution containing silver used for injection is preferably stabilized by a chelating reagent. By performing film formation under the above conditions, a plated film in which palladium and silver are uniformly deposited with a constant composition can be produced.

本発明により得られるパラジウムと銀を一定組成で均一に析出したメッキ膜は、予め両元素が混合して析出しているため、合金化が速やかであり、公知の方法、例えば、電気炉内において、約600℃での加熱により容易に合金化が達成され、膜の深さ(厚さ)方向に均一な組成比のパラジウム・銀合金からなる水素分離膜が得られる。なお、このような温和な熱処理条件で合金化を行うためには、膜厚方向における水素分離膜中のパラジウムの組成比の変化が、±20%の範囲内であることが好ましい。   The plating film obtained by uniformly depositing palladium and silver obtained by the present invention in a uniform composition is precipitating by mixing both elements in advance, so that alloying is rapid, and in a known method, for example, in an electric furnace Alloying is easily achieved by heating at about 600 ° C., and a hydrogen separation membrane made of a palladium / silver alloy having a uniform composition ratio in the depth (thickness) direction of the membrane is obtained. In order to perform alloying under such mild heat treatment conditions, it is preferable that the change in the composition ratio of palladium in the hydrogen separation membrane in the film thickness direction is within a range of ± 20%.

水素分離膜の厚みは、0.1〜10μmであることが好ましい。水素分離膜の厚みが0.1μm未満であると、水素分離膜に欠陥が生じ易くなることがあり、10μm超であると、水素分離膜による水素の透過速度が低下し、分離効率が低下することがある。また、パラジウムと銀の比率は1〜30重量%の範囲であることが好ましい。このような組成範囲とすることにより、水素透過速度の低下を抑制しつつ、水素脆化を抑制することができる。   The thickness of the hydrogen separation membrane is preferably 0.1 to 10 μm. If the thickness of the hydrogen separation membrane is less than 0.1 μm, defects may easily occur in the hydrogen separation membrane, and if it exceeds 10 μm, the hydrogen permeation rate through the hydrogen separation membrane decreases and the separation efficiency decreases. Sometimes. The ratio of palladium to silver is preferably in the range of 1 to 30% by weight. By setting it as such a composition range, hydrogen embrittlement can be suppressed, suppressing the fall of a hydrogen permeation rate.

本発明方法においては、非導電性多孔質セラミック基材に、パラジウム錯体溶液を含浸させて乾燥し、該基材の表面に、パラジウム錯体を均一に保持させた後、還元して、該基材の表面に、パラジウム種核を均一に高濃度で析出、分布させ、次いで、アンモニアとEDTAを錯形成剤として含むパラジウムと銀の混合メッキ液に浸し、更に、メッキの進行過程において、銀水溶液を一定流速で添加しながらで無電解メッキすることが好ましい。この際に用いられる還元剤としては、例えば、ヒドラジンが好ましい。   In the method of the present invention, a non-conductive porous ceramic base material is impregnated with a palladium complex solution and dried. After the palladium complex is uniformly held on the surface of the base material, the base material is reduced and the base material is reduced. The palladium seed nuclei are uniformly deposited and distributed on the surface of the substrate, and then immersed in a mixed plating solution of palladium and silver containing ammonia and EDTA as a complexing agent. Electroless plating is preferably performed while adding at a constant flow rate. As the reducing agent used in this case, for example, hydrazine is preferable.

本発明方法における無電解メッキの工程の特徴は、1)パラジウムと銀の混合メッキ液を初期メッキ液として用いること、2)メッキ過程において、銀溶液を連続添加すること、である。初期メッキ液としては、パラジウムと銀の混合液とアンモニアとEDTAとを組み合わせた錯形成剤を用いることが好ましい。この際、メッキ液として用いるパラジウムと銀の総濃度は、2mMから20mMの範囲が望ましい。また、添加する銀の量は、初期メッキ液中の2倍の銀を用いることが好適である。   The characteristics of the electroless plating process in the method of the present invention are 1) using a mixed plating solution of palladium and silver as an initial plating solution, and 2) continuously adding a silver solution in the plating process. As the initial plating solution, it is preferable to use a complexing agent in which a mixed solution of palladium and silver, ammonia and EDTA are combined. At this time, the total concentration of palladium and silver used as the plating solution is preferably in the range of 2 mM to 20 mM. Further, it is preferable to use twice as much silver as the initial plating solution as the amount of silver to be added.

更には、パラジウム塩の含有割合(Pd/Ag)が10〜100重量%、銀の含有比率が10%以上である場合、アンモニア濃度が4M、かつEDTA濃度が0.1M以上、中でもアンモニア濃度が4〜10M、かつEDTA濃度が0.1〜0.2Mであることが好ましい。また、添加する銀の濃度は、0.01M以上が望ましい。メッキ過程において、加える銀の添加速度は、100cmのメッキ面積を基準にした場合、1分間に0.1〜1.0mlが望ましい。 Furthermore, when the content ratio of palladium salt (Pd / Ag) is 10 to 100% by weight and the silver content ratio is 10% or more, the ammonia concentration is 4M and the EDTA concentration is 0.1M or more. It is preferable that it is 4-10M and EDTA density | concentration is 0.1-0.2M. The concentration of silver to be added is preferably 0.01M or more. In the plating process, the addition rate of silver to be added is preferably 0.1 to 1.0 ml per minute when the plating area is 100 cm 2 .

従来、パラジウムと銀との混合溶液を用いてメッキ被膜を形成することは知られているが、銀が優先的にメッキ被膜を形成することから、メッキ被膜の金属組成を正確に制御することが困難であり、組成のムラが生じ易く、均一な組成のメッキ膜を作製することは困難であった。これに対して、本発明は、パラジウムと銀とを含む初期メッキ液に、銀を含有するメッキ液を一定の速度で連続的に添加、供給することにより、パラジウムと銀を一定の組成比で、均一に析出させメッキ被膜を形成することを可能とし、それにより、水素分離用薄膜として好適に使用することが可能な水素分離用薄膜を作製し、提供することを実現したものである。   Conventionally, it is known that a plating film is formed using a mixed solution of palladium and silver. However, since silver forms a plating film preferentially, the metal composition of the plating film can be accurately controlled. It was difficult, and compositional irregularities were likely to occur, and it was difficult to produce a plating film having a uniform composition. On the other hand, the present invention continuously adds and supplies a silver-containing plating solution at a constant rate to an initial plating solution containing palladium and silver, thereby providing palladium and silver at a constant composition ratio. Thus, it is possible to form a plating film by depositing uniformly, thereby producing and providing a thin film for hydrogen separation that can be suitably used as a thin film for hydrogen separation.

本発明により、次のような効果が奏される。
(1)本発明方法によれば、多孔質基材の表面に、無電解メッキによってパラジウムと銀を、膜の深さ(厚さ)方向に一定組成で均一に析出した複合膜を形成することができる。
(2)該複合膜は、パラジウムと銀の混合メッキ液に多孔質基材を浸してメッキを行う過程で、錯形成剤、還元剤の濃度を制御すること、ならびに銀水溶液を一定流量で連続添加することにより作製することができる。
(3)本発明により、膜の深さ(厚さ)方向のPd、Ag組成が略均一な薄膜が形成され、温和で短時間の熱処理により略均一な組成の水素分離用Pd・Ag合金薄膜を作製し、提供することができる。
The present invention has the following effects.
(1) According to the method of the present invention, a composite film in which palladium and silver are uniformly deposited with a constant composition in the depth (thickness) direction of the film by electroless plating is formed on the surface of the porous substrate. Can do.
(2) The composite film is a process in which a porous base material is immersed in a mixed plating solution of palladium and silver, and in the process of plating, the concentration of the complexing agent and the reducing agent is controlled, and the aqueous silver solution is continuously supplied at a constant flow rate. It can produce by adding.
(3) According to the present invention, a thin film having a substantially uniform Pd and Ag composition in the depth (thickness) direction of the film is formed, and a Pd / Ag alloy thin film for hydrogen separation having a substantially uniform composition by mild and short-time heat treatment Can be made and provided.

次に、実施例により本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples.

(製造例1)
膜基材として、αアルミナ製多孔質チューブ(内径8.5mm、外径10mm、多孔質部分80mm)を用い、該チューブを、15分間、酢酸パラジウムの0.6%クロロホルム溶液30mlに浸した。これを、風乾した後に、2Mヒドラジンを含む0.2Mアンモニア水溶液に15秒間浸し、パラジウム種核を多孔質チューブの表面に析出させた。表面が微細なパラジウム粒子の析出により黒色に変化したチューブを、水で洗浄し、110℃で乾燥した。この操作を5回繰り返した。
(Production Example 1)
As a membrane substrate, an α-alumina porous tube (inner diameter 8.5 mm, outer diameter 10 mm, porous portion 80 mm) was used, and the tube was immersed in 30 ml of a 0.6% chloroform solution of palladium acetate for 15 minutes. This was air-dried and then immersed in a 0.2M aqueous ammonia solution containing 2M hydrazine for 15 seconds to deposit palladium seed nuclei on the surface of the porous tube. The tube whose surface turned black due to the precipitation of fine palladium particles was washed with water and dried at 110 ° C. This operation was repeated 5 times.

(製造例2)
膜基材として、イットリア安定化ジルコニア(YSZ)(内径10mm、外形11mm、多孔質部分110mm)を用い、該チューブを、15分間、酢酸パラジウムの0.6%クロロホルム溶液30mlに浸した。これを、風乾した後に、2Mヒドラジンを含む0.2Mアンモニア水溶液に15秒間浸し、パラジウム種核を多孔質チューブの表面に析出させた。表面が微細なパラジウム粒子の析出により黒色に変化したチューブを、水で洗浄し、110℃で乾燥した。この操作を5回繰り返した。
(Production Example 2)
Yttria-stabilized zirconia (YSZ) (inner diameter: 10 mm, outer diameter: 11 mm, porous portion: 110 mm) was used as a membrane substrate, and the tube was immersed in 30 ml of a 0.6% chloroform solution of palladium acetate for 15 minutes. This was air-dried and then immersed in a 0.2M aqueous ammonia solution containing 2M hydrazine for 15 seconds to deposit palladium seed nuclei on the surface of the porous tube. The tube whose surface turned black due to the precipitation of fine palladium particles was washed with water and dried at 110 ° C. This operation was repeated 5 times.

本実施例では、上記製造例1に記載した外径10mmのアルミナチューブを基材として、無電解メッキによりPd20Ag80(重量比率)の膜を製膜した。初期メッキ液として、0.012Mのパラジウム、0.15MのEDTA、4Mのアンモニアを含む溶液160mlに、0.01Mの銀、0.15MのEDTA、5Mのアンモニアを含む溶液15mlを混合し、60℃に加熱した後、1Mヒドラジンを3.2mlを加え、良く撹拌して、65℃に加温した。 In this example, a Pd 20 Ag 80 (weight ratio) film was formed by electroless plating using the alumina tube having an outer diameter of 10 mm described in Production Example 1 as a base material. As an initial plating solution, 160 ml of a solution containing 0.012 M palladium, 0.15 M EDTA, 4 M ammonia is mixed with 15 ml of a solution containing 0.01 M silver, 0.15 M EDTA, 5 M ammonia, After heating to ° C, 3.2 ml of 1M hydrazine was added, stirred well and warmed to 65 ° C.

この中に、製造例1で作製したパラジウム核種を付与したアルミナチューブを浸し、40分後に、0.01Mの銀、0.15MのEDTA、5Mのアンモニアの混合溶液を、一分間に0.16ml流速で4時間連続して添加した。加える銀溶液の総量は35mlであった。少量のメッキ液を適時にサンプリングし、パラジウムと銀の濃度を計測した。銀混合溶液38ml(4時間)を添加した時点で、メッキを終了し、チューブを取り出して、良く水洗した。   In this, the alumina tube provided with the palladium nuclide prepared in Production Example 1 was immersed, and after 40 minutes, a mixed solution of 0.01 M silver, 0.15 M EDTA, 5 M ammonia was added 0.16 ml per minute. The addition was continued for 4 hours at a flow rate. The total amount of silver solution added was 35 ml. A small amount of plating solution was sampled in a timely manner to measure the concentration of palladium and silver. When 38 ml (4 hours) of the silver mixed solution was added, the plating was finished, and the tube was taken out and washed thoroughly with water.

これにより、パラジウムを重量比80%、銀を重量比20%で含有する薄膜が形成された。図1に、パラジウムと銀それぞれの析出割合/メッキ時間を示す。時間の経過に従って、両元素が一定の組成割合で析出することが認められる。図2に、膜の深さ(相対厚さ)方向におけるパラジウムと銀それぞれの析出割合を示す。○はパラジウム、●は銀を表す。本発明による連続注入法により、膜の深さ方向におけるパラジウムと銀の濃度分布は、かなり一定していることが分かる。図3に、チューブ断面の電子顕微鏡写真ならびにパラジウムと銀の分布状態により両元素が均一に分布している様子を示す。   As a result, a thin film containing palladium in a weight ratio of 80% and silver in a weight ratio of 20% was formed. FIG. 1 shows the deposition ratio / plating time of palladium and silver. It is recognized that both elements are deposited at a constant composition ratio as time passes. FIG. 2 shows the precipitation ratios of palladium and silver in the depth (relative thickness) direction of the film. ○ represents palladium, and ● represents silver. It can be seen that the concentration distribution of palladium and silver in the depth direction of the film is fairly constant by the continuous injection method according to the present invention. FIG. 3 shows an electron micrograph of the tube cross section and a state in which both elements are uniformly distributed according to the distribution state of palladium and silver.

本実施例では、上記製造例2に記載した外径10mmのイットリア安定化ジルコニア(YSZ)を基材とし、Pd84Ag16の膜を製膜した。0.012Mのパラジウム、0.15MのEDTA、4Mのアンモニア、15mMのヒドラジンを含む溶液250mlに、0.01Mの銀、0.15MのEDTA、5Mのアンモニアを含む溶液22mlを混合した初期メッキ液を、良く撹拌して、60℃に加温し、1Mヒドラジンを4.5ml加えた。この中に、製造例2で作製したパラジウム核種を付与したYSZチューブを浸し、30分後に、0.01Mの銀、15MのEDTA、5Mのアンモニアの混合溶液を、一分間に0.17mlの流速で4時間連続して添加した。 In this example, a film of Pd 84 Ag 16 was formed using yttria-stabilized zirconia (YSZ) having an outer diameter of 10 mm described in Production Example 2 as a base material. Initial plating solution obtained by mixing 250 ml of a solution containing 0.012M palladium, 0.15M EDTA, 4M ammonia, and 15 mM hydrazine with 22 ml of a solution containing 0.01M silver, 0.15M EDTA, and 5M ammonia. The mixture was warmed to 60 ° C. and 4.5 ml of 1M hydrazine was added. Into this, the YSZ tube provided with the palladium nuclide prepared in Production Example 2 was immersed, and after 30 minutes, a mixed solution of 0.01 M silver, 15 M EDTA, and 5 M ammonia was added at a flow rate of 0.17 ml per minute. For 4 hours continuously.

添加する銀溶液の総量は、40mlであった。少量のメッキ液を適時にサンプリングし、パラジウムと銀の濃度を計測した。銀混合溶液40ml(4時間)を添加した時点で、メッキを終了し、チューブを取り出して、良く水洗した。これにより、パラジウムを重量比84%、銀を重量比16%で含有する薄膜が形成された。図4に、膜の深さ(相対厚さ)方向におけるパラジウムと銀それぞれの析出割合を示す。○はパラジウム、●は銀を表す。本発明による連続注入法により、膜の深さ方向におけるパラジウムと銀の濃度分布は、かなり一定していることが分かる。   The total amount of silver solution added was 40 ml. A small amount of plating solution was sampled in a timely manner to measure the concentration of palladium and silver. When 40 ml (4 hours) of the silver mixed solution was added, the plating was finished, and the tube was taken out and washed thoroughly with water. As a result, a thin film containing 84% by weight of palladium and 16% by weight of silver was formed. FIG. 4 shows the precipitation ratios of palladium and silver in the film depth (relative thickness) direction. ○ represents palladium, and ● represents silver. It can be seen that the concentration distribution of palladium and silver in the depth direction of the film is fairly constant by the continuous injection method according to the present invention.

本実施例では、製造例2に記載のイットリア安定化ジルコニア(YSZ)を基材とし、無電解メッキによりPd81Ag19(重量比率)の膜を製膜した。0.012Mのパラジウム、0.15MのEDTA、4Mのアンモニアを含む溶液250mlに、0.01Mの銀、0.15MのEDTA、5Mアンモニアを含む溶液22mlを混合した初期メッキ液を、良く撹拌して、60℃に加温し、1Mヒドラジンを4.5ml加えた。この中に、製造例1で作製したパラジウム核種を付与したチューブを浸し、30分後に、0.01Mの銀、15MのEDTA、5Mのアンモニアの混合溶液を、一分間に0.2ml流速で5時間連続して添加した。 In this example, a film of Pd 81 Ag 19 (weight ratio) was formed by electroless plating using yttria-stabilized zirconia (YSZ) described in Production Example 2 as a base material. Stir the initial plating solution, which is a mixture of 0.012M palladium, 0.15M EDTA, 4M ammonia in 250ml and 0.01M silver, 0.15M EDTA, 5M ammonia in 22ml solution. The mixture was heated to 60 ° C. and 4.5 ml of 1M hydrazine was added. Into this, the tube provided with the palladium nuclide prepared in Production Example 1 was immersed, and after 30 minutes, a mixed solution of 0.01 M silver, 15 M EDTA, and 5 M ammonia was added at a flow rate of 0.2 ml per minute. Added continuously over time.

添加する銀溶液の総量は、60mlであった。少量のメッキ液を適時にサンプリングし、パラジウムと銀の濃度を計測した。銀混合溶液60ml(5時間)を添加した時点で、メッキを終了し、チューブを取り出して、良く水洗した。これにより、パラジウムを重量比72%、銀を重量比28%で含有する薄膜が形成された。図5に、膜の深さ方向(相対厚さ)におけるパラジウムと銀それぞれの析出割合を示す。○はパラジウム、●は銀を表す。   The total amount of silver solution added was 60 ml. A small amount of plating solution was sampled in a timely manner to measure the concentration of palladium and silver. When 60 ml (5 hours) of the silver mixed solution was added, the plating was finished, and the tube was taken out and washed thoroughly with water. As a result, a thin film containing 72% by weight of palladium and 28% by weight of silver was formed. FIG. 5 shows the precipitation ratios of palladium and silver in the depth direction (relative thickness) of the film. ○ represents palladium, and ● represents silver.

上記実施例1に記載した無電解メッキ法により作製したPd80Ag20(重量比率)被覆多孔質アルミナチューブを、水素雰囲気下、600℃で加熱し、合金化を行った。合金化の過程をX線回折によりモニターした。加熱前に観測されたパラジウムならびに銀のピークは一時間の加熱で接近し、2時間の加熱で、合金の新規な回折ピークに変化した。図6に、X線回折パターンを示す。実線は加熱前、点線は1時間後、破線は2時間後の回折ピークを示す。 The Pd 80 Ag 20 (weight ratio) -coated porous alumina tube produced by the electroless plating method described in Example 1 was heated at 600 ° C. in a hydrogen atmosphere to perform alloying. The alloying process was monitored by X-ray diffraction. The palladium and silver peaks observed before heating approached with heating for an hour and changed to a new diffraction peak for the alloy after 2 hours of heating. FIG. 6 shows an X-ray diffraction pattern. The solid line shows the diffraction peak before heating, the dotted line shows the diffraction peak after 1 hour, and the broken line shows the diffraction peak after 2 hours.

上記実施例3に記載したPdとAgの同時無電解メッキにより作製したPd81Ag19膜を被膜したイットリア安定化ジルコニア(YSZ)チューブ、ならびにこれを実施例4により加熱・合金化した水素分離膜を用い、水素の透過試験を行った。すなわち、一端を閉じたチューブをガス導入口と排出口を持つシリンダーに固定し、環状電気炉内に設置した。300℃において、チューブの外側より水素を加圧下で送った。水素の圧力を変えて、膜を透過した気体を石けん膜流量計により測定した。図7に、水素の透過速度をy軸、膜内外のガス圧の差をx軸としてプロットした結果を示す。 An yttria-stabilized zirconia (YSZ) tube coated with a Pd 81 Ag 19 film prepared by simultaneous electroless plating of Pd and Ag described in Example 3 above, and a hydrogen separation membrane obtained by heating and alloying this tube according to Example 4 The hydrogen permeation test was conducted using That is, a tube with one end closed was fixed to a cylinder having a gas inlet and an outlet and installed in an annular electric furnace. At 300 ° C., hydrogen was sent under pressure from the outside of the tube. The gas that permeated through the membrane was measured with a soap film flow meter while changing the hydrogen pressure. FIG. 7 shows the results of plotting the hydrogen permeation rate as the y-axis and the difference in gas pressure inside and outside the membrane as the x-axis.

(比較例1)
比較のため、実施例1と同じアルミナチューブを基材とし、本発明の連続添加方法を用いずに、パラジウムと銀の混合メッキ溶液から両元素を被膜した。8mMのパラジウム,2mMの銀、4Mのアンモニア、0.15MのEDTA、15mMのヒドラジンを含むメッキ溶液206mlを、60℃に加温し、その中に、製造例1で作製したパラジウム核種を付与したアルミナチューブを浸し、8時間メッキを施した。これにより、パラジウムを重量比80%、銀を重量比20%で含有する薄膜が形成された。図8に、膜の深さ(相対厚さ)方向におけるパラジウムと銀それぞれの析出割合を示す。○はパラジウム、●は銀を表す。本発明の連続添加方法を用いないことにより、膜の深さ方向のPdとAgの組成が一定していないことが分かる。
(Comparative Example 1)
For comparison, the same alumina tube as in Example 1 was used as a base material, and both elements were coated from a mixed plating solution of palladium and silver without using the continuous addition method of the present invention. 206 ml of a plating solution containing 8 mM palladium, 2 mM silver, 4 M ammonia, 0.15 M EDTA, and 15 mM hydrazine was heated to 60 ° C., and the palladium nuclide prepared in Production Example 1 was given therein. The alumina tube was immersed and plated for 8 hours. Thereby, a thin film containing palladium in a weight ratio of 80% and silver in a weight ratio of 20% was formed. FIG. 8 shows the precipitation ratios of palladium and silver in the film depth (relative thickness) direction. ○ represents palladium, and ● represents silver. It can be seen that the composition of Pd and Ag in the depth direction of the film is not constant by not using the continuous addition method of the present invention.

以上詳述したように、本発明は、Pd−Agの同時メッキによる水素分離用薄膜及びその作製方法に係るものであり、本発明により、水素を速やかに、かつ選択的に透過して、水素を効率良く分離するためのパラジウム・銀合金からなる水素分離用薄膜及びその作製方法を提供することができる。本発明の方法により、膜の深さ(相対厚さ)方向のPd、Ag組成が一定である水素分離用Pd・Ag含有薄膜を作製することができる。本発明は、多孔質基材の表面に、無電解メッキによってパラジウムと銀を、膜の深さ(相対膜厚)方向に一定の組成で析出させた複合膜からなる水素分離用膜及びその作製方法を提供するものとして有用である。   As described above in detail, the present invention relates to a thin film for hydrogen separation by simultaneous plating of Pd—Ag and a method for producing the same. According to the present invention, hydrogen can be rapidly and selectively permeated to form hydrogen. It is possible to provide a hydrogen separation thin film made of a palladium / silver alloy and a method for manufacturing the same. By the method of the present invention, a Pd / Ag-containing thin film for hydrogen separation having a constant Pd and Ag composition in the depth (relative thickness) direction of the membrane can be produced. The present invention relates to a hydrogen separation membrane comprising a composite membrane in which palladium and silver are deposited on the surface of a porous substrate by electroless plating with a constant composition in the depth (relative film thickness) direction of the membrane, and production thereof Useful as a method.

実施例1により、パラジウムと銀を同時にメッキする際に、加えた全金属量に対してメッキされる金属の%を示す。○はパラジウム、●は銀を表す。Example 1 shows the percentage of metal plated relative to the total amount of metal added when plating palladium and silver simultaneously. ○ represents palladium, and ● represents silver. 実施例1により形成された金属薄膜の深さ方向におけるパラジウムと銀の分率を示す。○はパラジウム、●は銀を表す。The fraction of palladium and silver in the depth direction of the metal thin film formed by Example 1 is shown. ○ represents palladium, and ● represents silver. チューブ断面の電子顕微鏡写真ならびにEDX分析によるパラジウムと銀の分布状態を示す。The electron micrograph of a tube cross section and the distribution state of palladium and silver by EDX analysis are shown. 実施例2により形成された金属薄膜の深さ方向におけるパラジウムと銀の分率を示す。○はパラジウム、●は銀を表す。The fraction of palladium and silver in the depth direction of the metal thin film formed by Example 2 is shown. ○ represents palladium, and ● represents silver. 実施例3により形成された金属薄膜の深さ方向におけるパラジウムと銀の分率を示す。○はパラジウム、●は銀を表す。The fraction of palladium and silver in the depth direction of the metal thin film formed by Example 3 is shown. ○ represents palladium, and ● represents silver. 実施例4に示した加熱合金化過程における薄膜のX線回折パターンを示す。実線は加熱前、点線は1時間後、破線は2時間後の回折ピークを示す。The X-ray-diffraction pattern of the thin film in the heating alloying process shown in Example 4 is shown. The solid line shows the diffraction peak before heating, the dotted line shows the diffraction peak after 1 hour, and the broken line shows the diffraction peak after 2 hours. 実施例3に記載したPdとAgの同時無電解メッキにより作製した直後(加熱・合金化前)の水素分離膜の水素透過速度(▲)ならびに実施例4により加熱合金化した水素分離膜の水素透過速度(●)を表す。縦軸は水素透過速度、横軸は、水素分離膜内外の水素の差圧を示す。Hydrogen permeation rate (▲) of the hydrogen separation membrane immediately after (before heating and alloying) produced by simultaneous electroless plating of Pd and Ag described in Example 3 and hydrogen of the hydrogen separation membrane heat-alloyed according to Example 4 Represents the transmission speed (●). The vertical axis represents the hydrogen permeation rate, and the horizontal axis represents the hydrogen differential pressure inside and outside the hydrogen separation membrane. 比較例1に記載した製造方法により形成された薄膜の、膜の深さ方向におけるパラジウムと銀の分率を示す。○はパラジウム、●は銀を表す。The fraction of palladium and silver in the depth direction of the film of the thin film formed by the manufacturing method described in Comparative Example 1 is shown. ○ represents palladium, and ● represents silver.

Claims (15)

多孔質支持体表面に、無電解メッキによりパラジウムと銀を同時に析出させて作製したメッキ膜からなる水素分離用薄膜であって、該膜中のパラジウムと銀の両元素の組成比が前記メッキ膜の厚さ方向(相対厚さ)に対して一定の比率を維持していることを特徴とする水素分離用薄膜。   A thin film for hydrogen separation comprising a plating film prepared by simultaneously depositing palladium and silver on the surface of a porous support by electroless plating, wherein the composition ratio of both elements of palladium and silver in the film is the plating film A thin film for hydrogen separation characterized by maintaining a constant ratio with respect to the thickness direction (relative thickness). 前記メッキ膜中のパラジウムと銀の組成比が、パラジウムで±20%の範囲内で一定の比率を維持している、請求項1に記載の水素分離用薄膜。   The thin film for hydrogen separation according to claim 1, wherein a composition ratio of palladium to silver in the plating film maintains a constant ratio within a range of ± 20% with palladium. 前記メッキ膜のパラジウムと銀の比率が、1〜30重量%の範囲である、請求項1又は2に記載の水素分離用薄膜。   The thin film for hydrogen separation according to claim 1 or 2, wherein a ratio of palladium to silver in the plating film is in the range of 1 to 30% by weight. 前記メッキ膜の厚さが、0.1μm以上10μm以下である、請求項1から3のいずれか1項に記載の水素分離用薄膜。   The thin film for hydrogen separation according to any one of claims 1 to 3, wherein the plating film has a thickness of 0.1 µm or more and 10 µm or less. 前記メッキ膜が、成膜後の熱処理によって合金化されている、請求項1から4のいずれか1項に記載の水素分離用薄膜。   The thin film for hydrogen separation according to any one of claims 1 to 4, wherein the plating film is alloyed by a heat treatment after the film formation. 多孔質支持体表面に、無電解メッキによりパラジウムと銀を同時に析出させたメッキ膜からなる水素分離用薄膜を作製する方法であって、パラジウムと銀ならびにこれらを安定化するキレート試薬を含むパラジウム、銀混合の初期メッキ溶液に対して、銀を含有する溶液を所定の速度で連続的に注入して、両元素を前記メッキ膜の厚さ方向(相対厚さ)に対して一定の組成比を維持しつつ同時に析出させることを特徴とする水素分離用薄膜の作製方法。   A method for producing a thin film for hydrogen separation comprising a plating film in which palladium and silver are simultaneously deposited by electroless plating on the surface of a porous support, comprising palladium, silver and a chelating reagent that stabilizes the palladium, The silver-containing initial plating solution is continuously injected with a solution containing silver at a predetermined rate, so that both elements have a constant composition ratio in the thickness direction (relative thickness) of the plating film. A method for producing a thin film for hydrogen separation, wherein the film is deposited simultaneously while maintaining. 前記銀を含有する溶液が、キレート試薬を含む、請求項6に記載の水素分離用薄膜の作製方法。   The method for producing a thin film for hydrogen separation according to claim 6, wherein the solution containing silver contains a chelating reagent. 前記メッキ膜中のパラジウムと銀の組成比が、パラジウムで±20%の範囲内で一定の比率となるような速度で、前記銀を含有する溶液を連続的に注入する、請求項6又は7に記載の水素分離用薄膜の作製方法。   The solution containing silver is continuously injected at a rate such that the composition ratio of palladium to silver in the plating film is a constant ratio within a range of ± 20% of palladium. A method for producing a thin film for hydrogen separation described in 1. 前記メッキ膜のパラジウムと銀の比率が、1〜30重量%の範囲の水素分離薄膜を作製する、請求項6から8のいずれか1項に記載の水素分離用薄膜の作製方法。   The method for producing a thin film for hydrogen separation according to any one of claims 6 to 8, wherein a hydrogen separation thin film having a ratio of palladium to silver in the plating film in the range of 1 to 30% by weight is produced. 前記メッキ膜の厚さが、0.1μm以上10μm以下の水素分離薄膜を作製する、請求項6から9のいずれか1項に記載の水素分離用薄膜の作製方法。   The method for producing a hydrogen separation thin film according to any one of claims 6 to 9, wherein a hydrogen separation thin film having a thickness of the plating film of 0.1 µm to 10 µm is produced. 前記メッキ膜を、成膜後に600℃以下の合金化温度での熱処理によって合金化する、請求項6から10のいずれか1項に記載の水素分離用薄膜の作製方法。   The method for producing a thin film for hydrogen separation according to any one of claims 6 to 10, wherein the plated film is alloyed by heat treatment at an alloying temperature of 600 ° C or lower after the film formation. 初期メッキ液として用いるパラジウムと銀の総濃度が、2mM〜20mMの範囲である、請求項6から11のいずれか1項に記載の水素分離用薄膜の作製方法。   The method for producing a thin film for hydrogen separation according to any one of claims 6 to 11, wherein the total concentration of palladium and silver used as the initial plating solution is in the range of 2 mM to 20 mM. 連続的に注入して添加する銀の濃度が、1mM〜10mMの範囲である、請求項6から12のいずれか1項に記載の水素分離用薄膜の作製方法。   The method for producing a thin film for hydrogen separation according to any one of claims 6 to 12, wherein the concentration of silver added by continuously injecting is in the range of 1 mM to 10 mM. メッキ被膜面積100cm当たりに対して、連続的に注入して添加する銀を含有する溶液の添加速度が、毎分0.2〜1.0mlである、請求項6から13のいずれか1項に記載の水素分離用薄膜の作製方法。 The addition rate of the solution containing silver added by continuously injecting and adding per 100 cm 2 of the plating coating area is 0.2 to 1.0 ml per minute. A method for producing a thin film for hydrogen separation described in 1. 初期メッキ溶液中に注入する銀の総量の3分の1までの量の銀をパラジウムと共存させ、残りの量の銀を連続的に注入して添加する、請求項6から14のいずれか1項に記載の水素分離用薄膜の作製方法。   The amount of silver up to 1/3 of the total amount of silver injected into the initial plating solution coexists with palladium, and the remaining amount of silver is continuously injected and added. A method for producing a thin film for hydrogen separation as described in the item.
JP2008023181A 2008-02-01 2008-02-01 Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag Active JP5311536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023181A JP5311536B2 (en) 2008-02-01 2008-02-01 Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023181A JP5311536B2 (en) 2008-02-01 2008-02-01 Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag

Publications (2)

Publication Number Publication Date
JP2009185308A true JP2009185308A (en) 2009-08-20
JP5311536B2 JP5311536B2 (en) 2013-10-09

Family

ID=41068835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023181A Active JP5311536B2 (en) 2008-02-01 2008-02-01 Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag

Country Status (1)

Country Link
JP (1) JP5311536B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540892A (en) * 2010-08-30 2013-11-07 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド A new seeding method for the deposition of selective thin film layers.
JP2014076433A (en) * 2012-10-11 2014-05-01 National Institute Of Advanced Industrial & Technology Method for manufacturing catalytic reaction tube and catalytic reaction tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287781A (en) * 1990-04-03 1991-12-18 Ebara Corp Production of pd-ag alloy plating film by electroless plating and electroless plating bath used therefor
JP2000212763A (en) * 1999-01-19 2000-08-02 Shipley Far East Ltd Silver alloy plating bath and formation of silver alloy coating film using it
JP2005054226A (en) * 2003-08-01 2005-03-03 National Institute Of Advanced Industrial & Technology Simultaneous film deposition method of palladium and silver by electroless plating of non-conductive porous base material
JP2006083446A (en) * 2004-09-17 2006-03-30 Okuno Chem Ind Co Ltd Electroless palladium-silver alloy plating liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287781A (en) * 1990-04-03 1991-12-18 Ebara Corp Production of pd-ag alloy plating film by electroless plating and electroless plating bath used therefor
JP2000212763A (en) * 1999-01-19 2000-08-02 Shipley Far East Ltd Silver alloy plating bath and formation of silver alloy coating film using it
JP2005054226A (en) * 2003-08-01 2005-03-03 National Institute Of Advanced Industrial & Technology Simultaneous film deposition method of palladium and silver by electroless plating of non-conductive porous base material
JP2006083446A (en) * 2004-09-17 2006-03-30 Okuno Chem Ind Co Ltd Electroless palladium-silver alloy plating liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540892A (en) * 2010-08-30 2013-11-07 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド A new seeding method for the deposition of selective thin film layers.
JP2014076433A (en) * 2012-10-11 2014-05-01 National Institute Of Advanced Industrial & Technology Method for manufacturing catalytic reaction tube and catalytic reaction tube

Also Published As

Publication number Publication date
JP5311536B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP4955067B2 (en) Gas separation membrane comprising a substrate having a layer of coated inorganic oxide particles and an overlayer of a gas selective material, and its manufacture and use
US8721773B2 (en) Method for preparing a palladium-gold alloy gas separation membrane system
Li et al. Preparation of Pd/ceramic composite membrane 1. Improvement of the conventional preparation technique
JP2008296212A (en) Porous catalyst structure and method for producing the same
JP4753180B2 (en) Hydrogen separation material and method for producing the same
Braun et al. Optimization and characterization of electroless co-deposited PdRu membranes: Effect of the plating variables on morphology
US9156007B2 (en) Seeding method for deposit of thin selective membrane layers
US8876949B2 (en) Method of preparing a palladium-silver alloy gas separation membrane system
JP5311536B2 (en) Method for producing thin film for hydrogen separation by simultaneous plating of Pd-Ag
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
Wei et al. Effects of Sn residue on the high temperature stability of the H2-permeable palladium membranes prepared by electroless plating on Al2O3 substrate after SnCl2–PdCl2 process: A case study
JP2007229616A (en) Hydrogen separation complex and its manufacturing method
KR101777361B1 (en) Electroless plating method of tubular or cylinder-type membrane and plating device therefor
WO2011122414A1 (en) Porous filter, production method for same, hydrogen separation membrane with porous filter as support body, defect sealing method and hydrogen separation method
US20140170328A1 (en) Electroless plating of ruthenium and ruthenium-plated products
JP2005054226A (en) Simultaneous film deposition method of palladium and silver by electroless plating of non-conductive porous base material
KR102102992B1 (en) Plating method using ceramic powder fluidization
Twidwell Recipes for electroless plating of palladium and palladium alloy membranes
JP2015147208A (en) Manufacturing method of hydrogen separation membrane
JP2006218402A (en) Method for manufacturing hydrogen separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250