JP2009184913A - Recovering method of glass material - Google Patents

Recovering method of glass material Download PDF

Info

Publication number
JP2009184913A
JP2009184913A JP2009037627A JP2009037627A JP2009184913A JP 2009184913 A JP2009184913 A JP 2009184913A JP 2009037627 A JP2009037627 A JP 2009037627A JP 2009037627 A JP2009037627 A JP 2009037627A JP 2009184913 A JP2009184913 A JP 2009184913A
Authority
JP
Japan
Prior art keywords
glass material
silicon oxide
solution
glass
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009037627A
Other languages
Japanese (ja)
Other versions
JP5042252B2 (en
Inventor
Tetsuya Honma
哲哉 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Institute of Technology
Original Assignee
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute of Technology filed Critical Shibaura Institute of Technology
Priority to JP2009037627A priority Critical patent/JP5042252B2/en
Publication of JP2009184913A publication Critical patent/JP2009184913A/en
Application granted granted Critical
Publication of JP5042252B2 publication Critical patent/JP5042252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Silicon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover a glass material in order to recycle a glass resource by eliminating metallic impurities, etc., from the glass material. <P>SOLUTION: By using a dissolution bath, a glass material is dissolved in a fluorine ion-containing solution until silicon oxide reaches to saturation, thus forming an aqueous hydrosilicofluoric acid solution in a saturated state. Simultaneously, heat during the dissolution of silicon oxide is recovered, and by using an additive dissolution bath, at least one kind selected from aluminum, potassium, barium, nickel, zinc, copper, and compounds of these, boric acid, a magnesium compound, and water is added to the aqueous hydrosilicofluoric acid solution in a saturated state in order to change H<SB>2</SB>SiF<SB>6</SB>in the aqueous hydrosilicofluoric acid solution in the saturated state into a supersaturated state. Thus, an equilibrium reaction (3) in the reaction represented by the following formula is caused to transit to the right side of an equilibrium formula (3) to deposit silicon oxide with a high purity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガラス資源のリサイクルのために、ガラス材料から金属不純物等を除去してガラス材料を回収する方法に関する。   The present invention relates to a method for recovering a glass material by removing metal impurities and the like from the glass material in order to recycle the glass resource.

近年、ガラス材料は、ガラス容器や、集積回路などの電子部品などに多用されている。これらのガラス材料には、ガラス瓶などのようにそのまま再加工せずに再利用できるものもあるが、そのすべてがリサイクルされているわけではない。また生体に有害な金属不純物を含んでいるガラス材料も多く、これらの金属不純物を含むガラス材料を再利用するには再加工する必要がある。   In recent years, glass materials have been widely used for glass containers and electronic parts such as integrated circuits. Some of these glass materials can be reused without being reprocessed, such as glass bottles, but not all of them are recycled. In addition, many glass materials contain metal impurities that are harmful to living organisms, and it is necessary to rework glass materials containing these metal impurities in order to reuse them.

従来、この種のガラス材料の再加工には、熱によりガラスを溶解し、再び所望の形状に加工する方法がごく一般的にとられている。また、ガラス瓶などの回収には、金属製、あるいはプラスチック製の蓋、添付ラベルなどと分別する必要がある。このリサイクルを目的とした分別法としては、 例えば、特開平9-099250号公報(特許文献1)にあるように、ガラス瓶をまず破砕した後、鉄片を除去する。次に、再び破砕し寸法により分別収集している。また、特開平9-010750号公報(特許文献2)にあるように、ガラス瓶のラベルを除去・洗浄した後に、ガラス瓶の色を検出して分別し、粉砕するとともにガラス原料、金属、異物に分別している。   Conventionally, the reprocessing of this type of glass material is generally performed by melting glass with heat and processing it again into a desired shape. Further, for collecting glass bottles and the like, it is necessary to separate them from metal or plastic lids and attached labels. As a separation method for the purpose of recycling, for example, as disclosed in Japanese Patent Laid-Open No. 9-099250 (Patent Document 1), a glass bottle is first crushed and then an iron piece is removed. Next, it is crushed again and collected separately by size. Further, as disclosed in Japanese Patent Application Laid-Open No. 9-010750 (Patent Document 2), after removing and washing the label of the glass bottle, the color of the glass bottle is detected and separated, and pulverized and separated into glass raw material, metal and foreign matter Separated.

しかしながら、従来の熱溶解では、ガラス材料中に含まれる重金属などの不純物を除去して、再利用することは難しい。また、上述のように、ガラス瓶などの回収には、金属製、あるいはプラスチック製の蓋、添付ラベルなどと分別する必要があり、分別の手間・費用が多くかかってしまうという問題が依然として残る。また、従来のガラス瓶などは、その形状・用途などによっても分別する必要があった。さらに、分別しないで熱溶解する場合には、加熱のために多量のエネルギーを消費することや、金属、プラスチックともに熱溶解あるいは熱分解してしまうため、これらの酸化物や、熱分解物などがガラス材料に取り込まれてしまうという問題もある。   However, in conventional heat melting, it is difficult to remove and reuse impurities such as heavy metals contained in the glass material. Further, as described above, collection of glass bottles and the like requires separation from metal or plastic lids, attached labels, and the like, and there still remains a problem that it takes much time and cost for separation. In addition, conventional glass bottles and the like have to be sorted according to their shapes and uses. In addition, when heat melting without separation, a large amount of energy is consumed for heating, and both metals and plastics are thermally dissolved or decomposed. There is also a problem of being taken into the glass material.

一方、半導体工場などでは、酸化シリコン薄膜をエッチングする際に、多量のフッ化水素酸水溶液が使用されているが、これらフッ化水素酸水溶液の廃液を処理するためのコストや手間がかかるという問題がある。なお、電子材料分野では、特開平9-010750号公報(特許文献3)、特開昭 61-281047号公報(特許文献4)、あるいは、1988年8月(第136巻、8号、ページ2013-2016)に発行されているジャーナルオブエレクトロケミカルソサエティー(Journal of Electrochemical Society,Vol.135,No.8,pp.2013-2016)(非特許文献1)にあるように、ケイフッ化水素酸(H2SiF6)水溶液をホウ酸(H3BO3)水溶液やアルミニウム(Al)などを添加することによって過飽和状態を保持しながら酸化シリコン薄膜を形成する方法がある。この方法は、以下の式(1)から式(3)で示される化学反応式によって説明されている。 On the other hand, a large amount of hydrofluoric acid aqueous solution is used when etching a silicon oxide thin film in a semiconductor factory or the like, but there is a problem that it takes cost and labor to process the waste liquid of these hydrofluoric acid aqueous solutions. There is. In the field of electronic materials, JP-A-9-010750 (Patent Document 3), JP-A-61-281047 (Patent Document 4), or August 1988 (Vol. 136, No. 8, Page 2013) -2016), as described in Journal of Electrochemical Society (Vol.135, No.8, pp.2013-2016) (Non-Patent Document 1). There is a method in which a silicon oxide thin film is formed while maintaining a supersaturated state by adding a boric acid (H 3 BO 3 ) aqueous solution or aluminum (Al) to the H 2 SiF 6 ) aqueous solution. This method is explained by the chemical reaction formulas shown by the following formulas (1) to (3).

式(1)と式(2)は、ケイフッ化水素酸水溶液中に残留しているフッ化水素酸(HF)を消費させ、その結果、ケイフッ化水素酸水溶液を過飽和状態にするための反応式であり、それぞれ、ホウ酸、アルミニウムを添加したときの反応を示している。式(3)は、ケイフッ化水素酸の水溶液中での化学平衡式であるが、ホウ酸やアルミニウムの添加により、フッ化水素 (HF) が消費されることによって、式(3)の化学平衡が右に移行し、その結果、酸化シリコン(SiO2) が析出する。あるいは、水の添加により化学平衡を右に移行させることができ、その結果、同様に酸化シリコン(SiO2) が析出する。また、式(3)で示すように、ガラス材料をフッ化水素酸や、飽和状態にないケイフッ化水素酸に溶解せしめるときに発熱反応が起こることがわかる。 Equations (1) and (2) are reaction formulas for consuming hydrofluoric acid (HF) remaining in the hydrosilicofluoric acid aqueous solution and, as a result, bringing the hydrosilicofluoric acid aqueous solution into a supersaturated state. These show the reactions when boric acid and aluminum are added, respectively. Equation (3) is a chemical equilibrium formula in an aqueous solution of silicofluoric acid, but the chemical equilibrium of formula (3) is obtained by the consumption of hydrogen fluoride (HF) by the addition of boric acid or aluminum. As a result, silicon oxide (SiO 2 ) is deposited. Alternatively, the chemical equilibrium can be shifted to the right by adding water, and as a result, silicon oxide (SiO 2 ) is similarly deposited. Further, as shown by the formula (3), it can be seen that an exothermic reaction occurs when the glass material is dissolved in hydrofluoric acid or silicohydrofluoric acid which is not saturated.

特開平9-099250号公報Japanese Patent Laid-Open No. 9-099250 特開平9-010750号公報JP 9-010750 A 特開平9-010750号公報JP 9-010750 A 特開昭 61-281047号公報Japanese Unexamined Patent Publication No. Sho 61-281047

Journal of Electrochemical Society,Vol.135,No.8,pp.2013-2016Journal of Electrochemical Society, Vol.135, No.8, pp.2013-2016

本発明の目的は、上記の問題点を解消し、低消費エネルギーで、金属、金属酸化物などの不純物を含まないガラス材料を低コストで回収する方法とを提供することにある。また、反応時に発生する熱を暖房設備などの熱機関に積極的に利用することを目的とするものである。さらに半導体工場などで酸化シリコン薄膜のエッチング時に多量に使用され、廃棄されるフッ化水素酸水溶液を含む廃液の有効利用を図ることをも目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a method for recovering a glass material containing low impurities and free of impurities such as metals and metal oxides at low cost. Another object of the present invention is to actively use heat generated during the reaction in a heat engine such as a heating facility. Another object of the present invention is to effectively use a waste liquid containing a hydrofluoric acid aqueous solution which is used and discarded in a large amount when etching a silicon oxide thin film in a semiconductor factory or the like.

本発明のガラスの回収方法は、ガラス溶解槽を用いて、金属および/または金属酸化物を不純物として含む酸化シリコンを主成分とするガラス材料を、酸化シリコンが飽和になるまで、フッ素イオンを含む溶液に溶解し飽和状態のケイフッ化水素酸水溶液を形成させると共に、酸化シリコンが溶解する際の熱を回収し、
添加剤溶解槽を用いて、前記飽和状態のケイフッ化水素酸水溶液に、アルミニウム、カリウム、バリウム、ニッケル、亜鉛、銅、およびこれらの化合物、ホウ酸、マグネシウム化合物、水から選択される少なくとも一種を添加して、前記飽和状態のケイフッ化水素酸水溶液中のH2SiF6を過飽和状態にして、
該反応における下記式で表される平衡反応(3)
The glass recovery method of the present invention uses a glass melting tank to contain a glass material mainly composed of silicon oxide containing metal and / or metal oxide as impurities until the silicon oxide is saturated. It dissolves in the solution to form a saturated silicohydrofluoric acid aqueous solution and recovers heat when silicon oxide dissolves,
Using an additive dissolution tank, the saturated hydrosilicofluoric acid solution contains at least one selected from aluminum, potassium, barium, nickel, zinc, copper, and their compounds, boric acid, magnesium compounds, and water. To add H 2 SiF 6 in the saturated hydrofluoric acid aqueous solution to a supersaturated state,
Equilibrium reaction (3) represented by the following formula in the reaction

に示す該平衡状態を、上記平衡式(3)を右に移行させて高純度の酸化シリコンを析出させることを特徴としている。
本発明においては、前記ガラス材料が溶解した溶液に、電界を印加しながら酸化シリコンを析出せしめることが好ましい。また、前記フッ素イオンを含む溶液が、フッ化水素酸水溶液、飽和状態にないケイフッ化水素酸水溶液またはこれらの混合物であることが好ましい。さらに酸化シリコンを析出せしめた後、得られた酸化シリコンを、不活性ガス、還元性ガス、水蒸気、不活性ガスと還元性ガスとの混合ガス、不活性ガスと水蒸気との混合ガスから選択される何れかの雰囲気中で熱処理することが好ましい。
The equilibrium state shown in (1) is characterized in that the equilibrium equation (3) is shifted to the right to deposit high-purity silicon oxide.
In the present invention, it is preferable to deposit silicon oxide while applying an electric field to the solution in which the glass material is dissolved. Moreover, it is preferable that the solution containing the fluorine ions is a hydrofluoric acid aqueous solution, a silicohydrofluoric acid aqueous solution that is not saturated, or a mixture thereof. Further, after depositing silicon oxide, the obtained silicon oxide is selected from inert gas, reducing gas, water vapor, mixed gas of inert gas and reducing gas, mixed gas of inert gas and water vapor. It is preferable to perform the heat treatment in any atmosphere.

このような本発明は資源の有効利用を図ることを目的とするものであり、したがって、前記酸化シリコンを主成分とするガラス材料が、廃棄ガラスであることが好ましく、前記フッ素イオンを含む溶液が、工業的には廃棄処理されている廃液、特に酸化シリコン薄膜をエッチングする際に使用するフッ化水素酸水溶液の廃液であることが好ましい。   Such an object of the present invention is to effectively use resources, and therefore the glass material mainly composed of silicon oxide is preferably waste glass, and the solution containing the fluorine ions Industrially, it is preferable to use a waste liquid which has been disposed of, particularly a hydrofluoric acid aqueous solution used for etching a silicon oxide thin film.

本発明のガラス材料の回収方法を実施するためのシステムは、酸化シリコンを主成分とするガラス材料を、フッ素イオンを含む溶液に溶解し飽和状態のケイフッ化水素酸水溶液を形成せしめるためのガラス溶解槽と、前記の飽和状態のケイフッ化水素酸水溶液を過飽和状態にするための添加剤を溶解せしめるための添加剤溶解槽と、該添加剤を添加せしめるための添加装置と、ガラス材料を析出・沈殿せしめるための析出・沈殿槽と、反応熱を回収せしめるための水浴槽と、温水を循環せしめるためのポンプと、フッ素イオンを含む溶液を供給するためのポンプと、廃液回収のためのポンプとから成ることを特徴としている。   A system for carrying out the glass material recovery method of the present invention is a glass dissolution for dissolving a glass material mainly composed of silicon oxide in a solution containing fluorine ions to form a saturated hydrofluoric acid aqueous solution. A tank, an additive dissolution tank for dissolving an additive for bringing the saturated aqueous solution of hydrofluoric acid into a supersaturated state, an addition device for adding the additive, and a glass material A precipitation / precipitation tank for precipitating, a water bath for collecting reaction heat, a pump for circulating hot water, a pump for supplying a solution containing fluorine ions, and a pump for collecting waste liquid It is characterized by comprising.

この回収システムにおいては、前記ガラス溶解槽が、攪拌装置を備えてなるものであってもよい。また前記析出・沈殿槽が、電界を印加せしめるための電極を備えていてもよい。さらに、前記添加剤溶解槽と、析出・沈殿槽との間に、ケイフッ化水素酸水溶液を循環せしめるための循環ポンプと、ゴミを除去せしめるためのフィルタとを設けてもよい。   In this collection system, the glass dissolution tank may be provided with a stirring device. The precipitation / precipitation tank may include an electrode for applying an electric field. Furthermore, a circulation pump for circulating a hydrosilicofluoric acid aqueous solution and a filter for removing dust may be provided between the additive dissolution tank and the precipitation / precipitation tank.

本発明を用いることにより、比較的簡単に、そのままで再利用可能なガラス材料と、体に有害な金属などの不純物を含有するガラス材料とを同時に処理できるので、ガラス材料を主成分とするものであれば、形状・用途などは問わず、かつ、室温程度の温度でも金属不純物を除去してガラス材料を再利用できるという利点がある。室温程度の温度でガラス材料の再生が可能となるため、エネルギー消費量を低く抑えることができる。   By using the present invention, a glass material that can be reused as it is and a glass material that contains impurities such as metals harmful to the body can be processed at the same time. Then, there is an advantage that the glass material can be reused by removing metal impurities even at a temperature of about room temperature regardless of the shape and use. Since the glass material can be regenerated at a temperature of about room temperature, energy consumption can be kept low.

また、プラスチックや紙、あるいはこれらから成る添付ラベルはケイフッ化水素酸水溶液あるいはフッ化水素酸水溶液には溶解しにくいこと、金属がフッ化水素酸と反応し固定化されることから、ガラス瓶と、金属製、あるいはプラスチック製の蓋、添付ラベルなどと分別する必要が無くなるという利点があり、分別による手間・費用が省けるという効果がある。一方、半導体分野で大量に使用されているフッ化水素酸(HF)水溶液を回収し、本発明の目的で利用すれば、この廃液を処理するためのコストや手間が低減できるという利点もある。   In addition, plastic and paper, or attached labels made of these, are difficult to dissolve in silicohydrofluoric acid aqueous solution or hydrofluoric acid aqueous solution, and the metal reacts with hydrofluoric acid to be immobilized. There is an advantage that it is not necessary to separate from a metal or plastic lid, an attached label, etc., and there is an effect that labor and cost by separation can be saved. On the other hand, if a hydrofluoric acid (HF) aqueous solution used in a large amount in the semiconductor field is recovered and used for the purpose of the present invention, there is an advantage that the cost and labor for treating this waste liquid can be reduced.

またガラス材料が溶解したフッ素イオン含有溶液を過飽和にするための添加剤としてアルミニウムを用いる場合には、近年、リサイクルの対象でもあるが、多用されているアルミニウム缶を利用することができる。これにより、さらにコストの低減が図れる。なお、アルミニウム缶は種々の印刷がされているが、そのままフッ素イオン含有溶液に投入しても何ら問題はない。   In addition, when aluminum is used as an additive for supersaturating a fluorine ion-containing solution in which a glass material is dissolved, a widely used aluminum can can be used in recent years. As a result, the cost can be further reduced. In addition, although aluminum can is printed in various ways, there is no problem even if it is put into a fluorine ion-containing solution as it is.

さらに、ガラス材料をフッ素イオンを含む溶液に溶解せしめるときに生じる反応熱を回収し、工場やオフィスの暖房装置などの熱機関に利用できるという副次的な利点も有している。また、この反応熱により、ガラス材料の溶解速度が高まり、より短時間で回収可能となる。   Furthermore, there is a secondary advantage that reaction heat generated when the glass material is dissolved in a solution containing fluorine ions can be recovered and used for a heat engine such as a heating device in a factory or office. In addition, the reaction heat increases the melting rate of the glass material and enables recovery in a shorter time.

本発明のガラス材料の回収システムの概略図である。It is the schematic of the collection | recovery system of the glass material of this invention. フッ化水素酸水溶液にガラスを溶解したときの溶液温度の変化(参考例1)を示す図である。It is a figure which shows the change (reference example 1) of solution temperature when glass is melt | dissolved in hydrofluoric acid aqueous solution.

以下、本発明に係るガラス材料の回収方法ついてさらに具体的に説明する。本発明に係るガラス材料の回収方法は、酸化シリコンを主成分とするガラス材料を、フッ素イオンを含む溶液に溶解し、飽和状態、過飽和状態を経て、ガラス材料が溶解した溶液から酸化シリコンを析出せしめるものである。   Hereinafter, the glass material recovery method according to the present invention will be described more specifically. In the glass material recovery method according to the present invention, a glass material mainly composed of silicon oxide is dissolved in a solution containing fluorine ions, and after passing through a saturated state and a supersaturated state, silicon oxide is precipitated from the solution in which the glass material is dissolved. It is what you want to do.

原料であるガラス材料は、酸化シリコン(SiO2)を主成分とする限り、形状、用途を問わないが、資源の有 効利用の観点から、ガラス廃棄物を用いることが好ましい。このようなガラス廃棄物としては、たとえばガラス容器、ガラス窓等が用いられる。これらのガラス 廃棄物は、酸化シリコンに加え、ガラスの特性の改善あるいは着色のために、種々の金属、金属酸化物等の不純物を含むことがあるが、本発明においては、酸化シリコンのみを選択的に回収できるため、これらの不純物を含むガラス廃棄物も原料として用いることができる。また、ガラス容器では、金属製やプラスチック製の蓋、あるいは紙やプラスチック製の添付ラベルが付属しているものも原料として使用できる。紙やプラスチック製の不純物は、後述するフッ素イオンを含む 溶液に溶解し難いので、容易に分離できる。また金属または金属酸化物等の不純物については、酸化シリコンの析出時に分離することができる。 The glass material, which is a raw material, may be of any shape and use as long as silicon oxide (SiO 2 ) is the main component, but glass waste is preferably used from the viewpoint of effective utilization of resources. As such glass waste, a glass container, a glass window, etc. are used, for example. In addition to silicon oxide, these glass wastes may contain impurities such as various metals and metal oxides for the purpose of improving glass properties or coloring. In the present invention, only silicon oxide is selected. Therefore, glass waste containing these impurities can also be used as a raw material. As the glass container, a metal or plastic lid or a paper or plastic attached label attached can be used as a raw material. Paper and plastic impurities can be easily separated because they are difficult to dissolve in a solution containing fluorine ions, which will be described later. Further, impurities such as metals or metal oxides can be separated when silicon oxide is deposited.

これらのガラス材料は、そのまま用いることもできるが、またフッ素イオンを含む溶液への溶解を促進するために、粒子状あるいは粉末状に粉砕して用いることが好ましい。フッ素イオンを含む溶液としては、酸化シリコンを溶解する性質を有するものであれば特に制限されることなく種々のフッ素イオン含有溶液が用いられる。しかし、酸化シリコンの溶解性を考えると、フッ素イオン含有水溶液を用いることが好ましい。このようなフッ素イオン含有水溶液としては、フッ化水素酸水溶液、飽和状態にないケイフッ化水素酸水溶液またはこれらの混合物が好ましく用いられる。本発明においては、これらのフッ素イオン含有水溶液の純度は特に問題とはならないので、たとえば、半導体分野、特に酸化シリコン薄膜のエッチング時に多量に使用され、廃棄されるフッ化水素 酸水溶液を含む廃液を用いることができる。   These glass materials can be used as they are, but are preferably used after being pulverized into particles or powders in order to promote dissolution in a solution containing fluorine ions. The solution containing fluorine ions is not particularly limited as long as it has a property of dissolving silicon oxide, and various fluorine ion-containing solutions are used. However, considering the solubility of silicon oxide, it is preferable to use a fluorine ion-containing aqueous solution. As such a fluorine ion-containing aqueous solution, a hydrofluoric acid aqueous solution, a silicohydrofluoric acid aqueous solution not saturated, or a mixture thereof is preferably used. In the present invention, the purity of these fluorine ion-containing aqueous solutions is not particularly a problem. For example, a waste solution containing a hydrofluoric acid aqueous solution that is used and discarded in large quantities when etching a silicon oxide thin film, for example, in the semiconductor field. Can be used.

本発明では、上記したガラス廃棄物のようなガラス材料を、フッ素イオン含有溶液に溶解する。ガラス材料の使用量は、その組成などにより様々であり、またフッ素イオン含有溶液の使用量も、その純度等により様々である。いずれにせよ、酸化シリコンが飽和するまで、ガラス材料をフッ素イオ ン含有溶液に溶解させる。   In the present invention, a glass material such as the above glass waste is dissolved in a fluoride ion-containing solution. The amount of the glass material used varies depending on its composition and the like, and the amount of the fluorine ion-containing solution varies depending on its purity and the like. In any case, the glass material is dissolved in the fluorine ion-containing solution until the silicon oxide is saturated.

なお、酸化シリコンの溶解は発熱反応であり、溶液温度の上昇に伴いガラス材料の溶解速度が高まるため、より短時間で酸化シリコンの回収が可能になる。また、この再の反応熱を回収し、工場やオフィスの暖房装置などの熱機関に利用できるという副次的な利点も有している。本発明では、ガラス材料をフッ素イオンを含む溶液に溶解し、飽和状態とした後、過飽和状態を経て、溶液から酸化シリコンを析出させる。   Note that the dissolution of silicon oxide is an exothermic reaction, and the dissolution rate of the glass material increases as the solution temperature increases, so that the silicon oxide can be recovered in a shorter time. Further, it has a secondary advantage that the regenerated reaction heat can be recovered and used for a heat engine such as a heating device in a factory or office. In the present invention, after a glass material is dissolved in a solution containing fluorine ions and saturated, silicon oxide is deposited from the solution through a supersaturated state.

過飽和状態の達成は、温度制御によって行ってもよいし、また添加剤の添加により行ってもよい。過飽和状態にするための添加剤としては、たとえばアルミニウム、カルシウム、バリウム、ニッケル、亜鉛、銅などの金属、およびこれら金属の化合物、ホウ酸、マグネシウム化合物、水などが、1種単独で、または2種以上を組合わせて用いられる。これらの中でも、特にアルミニウム金属、ホウ酸、水が好ましく用いられる。アルミニウム金属としては、飲料容器として多量に製造、廃棄されているアルミ缶を用いることができるので、資源の有効利用の観点からも特に好ましい。   The achievement of the supersaturated state may be performed by temperature control or by addition of an additive. Examples of the additive for making the supersaturated state include metals such as aluminum, calcium, barium, nickel, zinc, copper, and compounds of these metals, boric acid, magnesium compounds, water, etc. Used in combination with more than seeds. Among these, aluminum metal, boric acid, and water are particularly preferably used. As the aluminum metal, aluminum cans that are produced and discarded in large quantities as beverage containers can be used, which is particularly preferable from the viewpoint of effective use of resources.

このような添加剤の使用量は、その種類、溶液温度等に応じ適宜に設定される。添加剤としてホウ酸(H3BO3)あるいはアルミニウム金属を用いると、以下の反応式により飽和溶液中のフッ化水素が消費される。 The amount of such additives used is appropriately set according to the type, solution temperature, and the like. When boric acid (H 3 BO 3 ) or aluminum metal is used as an additive, hydrogen fluoride in the saturated solution is consumed by the following reaction formula.

この結果、下記式(3)の平衡が右に移行し、過飽和状態を経て酸化シリコン(SiO2)が析出する。 As a result, the balance of the following formula (3) shifts to the right, and silicon oxide (SiO 2 ) precipitates through a supersaturated state.

また、本発明においては、溶液に電界を印加しながら、酸化シリコン(SiO2)の析出を行うことが好ましい。具体的には、溶液の下部に正極が、溶液の上部に負極が位置するようにそれぞれの電極を設置し、電界を印加する。電極としては、金属イオンが溶出しない電極が好ましく用いられ、たとえば炭素電極あるいはテフロン樹脂で被覆したアルミニウム電極が用いられる。 In the present invention, it is preferable to deposit silicon oxide (SiO 2 ) while applying an electric field to the solution. Specifically, each electrode is placed so that the positive electrode is located at the bottom of the solution and the negative electrode is located at the top of the solution, and an electric field is applied. As the electrode, an electrode from which metal ions do not elute is preferably used. For example, a carbon electrode or an aluminum electrode coated with Teflon resin is used.

ガラス材料中の不純物の多くは、金属あるいは金属化合物であるが、上記のように電界を印加しながら酸化シリコン(SiO2)を析出させると、過飽和のケイフッ化水素酸水溶液中に溶解している金属カチオンが溶液上部の負電位に引き寄せられるために、析出する酸化シリコン中に金属カチオンが取り込まれ難くなり、金属あるいは金属化合物の量が少ない、純度の高い酸化シリコンが得られる。 Most of the impurities in the glass material are metals or metal compounds, but when silicon oxide (SiO 2 ) is deposited while applying an electric field as described above, it is dissolved in the supersaturated hydrofluoric acid solution. Since the metal cation is attracted to the negative potential at the upper part of the solution, the metal cation is hardly taken into the deposited silicon oxide, and a high-purity silicon oxide with a small amount of metal or metal compound is obtained.

なお、析出する酸化シリコンは、ゲル状であっても粒子状であってもよく、また、シリコン基板などの基材上に薄膜として析出させ、回収してもよい。かくして得られる酸化シリコンは、上記(3)式で示されるように、酸化シリコンのみを選択的に析出させたものであるので、不純物含量が少なく、さまざまなガラス製品の原料として使用できる。また、電界を印加しながら析出させた酸化シリコンにおいては、金属由来の不純物がさらに低減されるので、各種電子部品、光学材料の原料としても使用できる。   The deposited silicon oxide may be in the form of a gel or particles, and may be deposited and recovered as a thin film on a base material such as a silicon substrate. Since the silicon oxide obtained in this way is obtained by selectively depositing only silicon oxide as shown by the above formula (3), it has a small impurity content and can be used as a raw material for various glass products. In addition, in silicon oxide deposited while applying an electric field, metal-derived impurities are further reduced, so that it can be used as a raw material for various electronic components and optical materials.

なお、得られる酸化シリコンには、アニオン由来の不純物、特に微量のフッ素等が含まれることがある。このようなフッ素は、得られた酸化シリコンを、不活性ガス、還元性ガス、水蒸気、不活性ガスと還元性ガスとの混合ガス、不活性ガスと水蒸気との混合ガスから選択される何れかの雰囲気中 で熱処理することで除去できる。   Note that the silicon oxide obtained may contain impurities derived from anions, particularly trace amounts of fluorine. Such fluorine is obtained by selecting the obtained silicon oxide from an inert gas, a reducing gas, water vapor, a mixed gas of an inert gas and a reducing gas, or a mixed gas of an inert gas and water vapor. It can be removed by heat treatment in the atmosphere.

不活性ガスとしては、窒素、アルゴン、ヘリウムなどが用いられ、還元性ガスとしては、水素ガスなどが用いられる。熱処理温度は、採用する雰囲気によりさまざまであるが、一般的には300℃以上、好ましくは500℃以上、さらに好ましくは800〜1200℃、特に好ましくは850〜1000℃程度が適当である。   Nitrogen, argon, helium or the like is used as the inert gas, and hydrogen gas or the like is used as the reducing gas. The heat treatment temperature varies depending on the atmosphere to be employed, but is generally 300 ° C. or higher, preferably 500 ° C. or higher, more preferably 800 to 1200 ° C., particularly preferably about 850 to 1000 ° C.

次に本発明で使用するガラス材料の回収方法について、図1に示した回収システムの例を参照しながら説明する。
本発明に係るガラス材料の回収方法は、酸化シリコンを主成分とするガラス材料を、フッ素イオンを含む溶液に溶解し飽和状態のケイフッ化水素酸水溶液を形成せしめるためのガラス溶解槽1と、前記の飽和状態のケイフッ化水素酸水溶液を過飽和状態にするための添加剤を溶解せしめるための添加剤溶解槽2と、該添加剤を添加せしめるための添加装置7と、ガラス材料を析出・沈殿せしめるための析出・沈殿槽3と、反応熱を回収せしめるための水浴槽12と、温水を循環せしめるためのポンプ13と、フッ素イオンを含む溶液を供給するためのポンプ14と、廃液回収のためのポンプ15とから成るシステムを利用することができる。
Next, a glass material recovery method used in the present invention will be described with reference to the example of the recovery system shown in FIG.
The glass material recovery method according to the present invention includes a glass dissolution tank 1 for dissolving a glass material mainly composed of silicon oxide in a solution containing fluorine ions to form a saturated hydrofluoric acid aqueous solution, An additive dissolution tank 2 for dissolving an additive for bringing the saturated hydrosilicofluoric acid aqueous solution into a supersaturated state, an adding device 7 for adding the additive, and a glass material to be precipitated and precipitated A precipitation / precipitation tank 3, a water bath 12 for recovering reaction heat, a pump 13 for circulating hot water, a pump 14 for supplying a solution containing fluorine ions, and a waste liquid recovery A system comprising the pump 15 can be used.

原料である酸化シリコンを主成分とするガラス材料、フッ素イオンを含む溶液、および添加剤等は、上記と同様のものが用いられる。水浴槽12は、反応熱の有効利用を図ることを目的としたものであり、水浴槽12中の温水をポンプ13で抜き出し、熱機関に送ることで反応熱をエネルギーとして有効利用できる。   The same materials as described above are used for the glass material mainly composed of silicon oxide as a raw material, the solution containing fluorine ions, the additive, and the like. The water tub 12 is intended to effectively use the reaction heat, and the hot water in the water tub 12 is extracted by the pump 13 and sent to the heat engine so that the reaction heat can be effectively used as energy.

廃液には、フッ化水素酸、および金属カチオン等が含まれる。これを適宜に処理することで、フッ化水素酸、金属の回収を行ってもよい。得られるフッ化水素酸は、フッ素イオンを含む溶液として、ガラス溶解槽1に供給してもよい。本発明の回収システムにおいては、前記ガラス溶解槽1が、攪拌装置6を備えてなるものであってもよい。攪拌装置6を設けることで、ガラス材料の溶解を促進できる。   The waste liquid contains hydrofluoric acid, metal cations, and the like. You may collect | recover hydrofluoric acid and a metal by processing this suitably. The obtained hydrofluoric acid may be supplied to the glass dissolution tank 1 as a solution containing fluorine ions. In the collection system of the present invention, the glass melting tank 1 may include a stirring device 6. By providing the stirring device 6, melting of the glass material can be promoted.

また前記析出・沈殿槽3が、電界を印加せしめるための電極4,5を備えていてもよい。電極材料としては、上述したように、炭素電 極、テフロン被覆したアルミニウム電極等が好ましく用いられる。また電極は、析出・沈殿槽3の下部に正極が、析出・沈殿槽3の上部に負極が位置するように設置される。さらに、前記添加剤溶解槽2と、析出・沈殿槽3との間に、ケイフッ化水素酸水溶液を循環せしめるための循環ポンプ10と、ゴミを除去せしめるためのフィルタ11とを設けてもよい。フィルタ11によって、原料中に含まれる紙、プラスチック等の難溶性不純物をゴミとして除去できる。   The precipitation / sedimentation tank 3 may be provided with electrodes 4 and 5 for applying an electric field. As described above, a carbon electrode, a Teflon-coated aluminum electrode, or the like is preferably used as the electrode material. In addition, the electrode is installed such that the positive electrode is positioned below the precipitation / precipitation tank 3 and the negative electrode is positioned above the precipitation / precipitation tank 3. Furthermore, a circulation pump 10 for circulating a hydrosilicofluoric acid aqueous solution and a filter 11 for removing dust may be provided between the additive dissolution tank 2 and the precipitation / precipitation tank 3. The filter 11 can remove hardly soluble impurities such as paper and plastic contained in the raw material as dust.

なお、図1に示したガラス材料の回収システムは、基本的な機能を備えたものであり、その目的を達成するために、付加的な機器・設備、例えばガラス材料の破砕・粉末化装置、気化したフッ化水素酸の回収装置、回収後のガラス材料の熱処理装置などと合体したものであっても良い。また、析出したSiO2はゲル又は粒子として回収しても良く、基材上に析出させても良い。また、その他の回収装置やSiO2ゲル又は粒子、SiO2薄膜が形成された基材の洗浄装置などを付加してもよい。さらに、図1ではガラス溶解槽1と添加剤溶解槽2とを同一の水浴槽12内に設置しており、析出・沈殿槽3は水浴には設置していないが、これらは、添加剤の溶解度を高めるために添加剤溶解槽2を加熱し、その結果、析出・沈殿槽3に至るケイフッ化水素酸水溶液の過飽和度をより高め、SiO2の析出速度を高めるためである。ガラス材料溶解槽1と添加剤溶解槽2とは、それぞれ独立の水浴槽を用いても良い。 The glass material recovery system shown in FIG. 1 has a basic function, and in order to achieve the purpose, additional equipment / equipment such as a glass material crushing / pulverizing apparatus, It may be combined with a recovery device for vaporized hydrofluoric acid, a heat treatment device for the recovered glass material, and the like. The precipitated SiO 2 may be recovered as a gel or particle, or may be deposited on a substrate. Also, other recovery apparatus or SiO 2 gel or particles, it may be added such as cleaning device group SiO 2 thin film was formed material. Further, in FIG. 1, the glass dissolution tank 1 and the additive dissolution tank 2 are installed in the same water bath 12, and the precipitation / precipitation tank 3 is not installed in the water bath. This is because the additive dissolution tank 2 is heated in order to increase the solubility, and as a result, the supersaturation degree of the hydrofluoric acid aqueous solution reaching the precipitation / precipitation tank 3 is further increased, and the deposition rate of SiO 2 is increased. The glass material dissolution tank 1 and the additive dissolution tank 2 may use independent water baths.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、以下の実施例において、SiO2ゲルの析出のために用いた過飽和状態のケイフッ化水素酸水溶液と、SiO2ゲル中に含まれる金属不純物元素の定量は、誘導プラズマ質量分析(Inductively Coupled Plasma Mass Spectroscopy)法により行った。この分析方法は、ppbレベル以下の分析を行うために、本実施例のように多量の金属不純物を含む場合には、希釈してサンプリングを行う必要がある。本実施例では、この過飽和水溶液を濃度50%の半導体用フッ化水素酸水溶液で1000倍に希釈してサンプリングを行い、分析値を1000倍して原液の不純物濃度を算出した。また、析出させたSiO2ゲルも同様にフッ化水素酸水溶液で約5倍に希釈して分析した後、元のSiO2ゲル中の不純物濃度に換算した。なお、希釈に用いたフッ化水素酸水溶液中の金属不純物濃度は、本実施例で分析を行った元素について、全て0.1ppb以下である。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
In the following examples, a hydrosilicofluoric acid solution supersaturated state used for the SiO 2 gel precipitation, Determination of metal impurity elements contained in the SiO 2 in the gel, the induction plasma mass spectrometer (Inductively Coupled Plasma (Mass Spectroscopy) method. In this analysis method, in order to perform analysis below the ppb level, when a large amount of metal impurities is included as in this embodiment, it is necessary to dilute and perform sampling. In this example, this supersaturated aqueous solution was diluted 1000 times with a 50% semiconductor hydrofluoric acid aqueous solution for sampling, and the analysis value was multiplied by 1000 to calculate the impurity concentration of the stock solution. Similarly, the precipitated SiO 2 gel was diluted with a hydrofluoric acid aqueous solution about 5 times and analyzed, and then converted into the impurity concentration in the original SiO 2 gel. In addition, the metal impurity concentration in the hydrofluoric acid aqueous solution used for the dilution is 0.1 ppb or less for all elements analyzed in this example.

〔参考例1〕
まず、この参考例1においては、ケイフッ化水素酸水溶液に各種の金属酸化物を添加し、SiO2を析出させたときの金属不純物の除去性能を調べた。
濃度約40%(約3.8mol/リットル)の工業用ケイフッ化水素酸水溶液100cc(H2SiF6として54.7g)に水酸化クロム(Cr2O3)、酸化第二鉄(Fe2O3)、水酸化アルミニウム{Al(OH)3}、酸化アンチモン(Sb2O3)、水酸化銅{Cu(OH)2}、酸化鉛(PbO)、酸化チタン(TiO2)、酸化亜鉛(ZnO)の粉末を、それぞれ約0.005mol/リットルの濃度なるようにマイクロ天秤で秤量して添加し攪拌した。
[Reference Example 1]
First, in Reference Example 1, various metal oxides were added to an aqueous silicofluoric acid solution, and the removal performance of metal impurities when SiO 2 was precipitated was examined.
Concentration of about 40% (about 3.8mol / L) industrial hydrofluoric acid solution 100cc (54.7g as H 2 SiF 6 ), chromium hydroxide (Cr 2 O 3 ), ferric oxide (Fe 2 O 3 ) , Aluminum hydroxide {Al (OH) 3 }, Antimony oxide (Sb 2 O 3 ), Copper hydroxide {Cu (OH) 2 }, Lead oxide (PbO), Titanium oxide (TiO 2 ), Zinc oxide (ZnO) Were weighed with a microbalance to a concentration of about 0.005 mol / liter, and stirred.

この後、酸化シリコン粉末10gを添加し24時間充分に攪拌・溶解させ、各種の金属酸化物を含んだ飽和状態のケイフッ化水素酸水溶液を形成した。この溶液は金属酸化物を含んだガラス材料をケイフッ化水素酸水溶液又はフッ化水素酸水溶液に溶解したときの状態を擬似的に形成したものである。   Thereafter, 10 g of silicon oxide powder was added and sufficiently stirred and dissolved for 24 hours to form a saturated hydrofluoric acid aqueous solution containing various metal oxides. This solution is a pseudo-formation of a state in which a glass material containing a metal oxide is dissolved in an aqueous silicofluoric acid solution or an aqueous hydrofluoric acid solution.

形成した飽和状態のケイフッ化水素酸水溶液を23℃の温度に保ち、過飽和状態にするための添加剤として濃度約0.1mol/リットルのホウ酸(H3BO3)水溶液を20cc添加した。ホウ酸水溶液を添加して数秒後から綿状のゲルが形成され始めた。この状態で48時間放置し、ゲル状のSiO2を析出させた。形成したSiO2ゲルは純水で充分洗浄した。 The formed saturated hydrosilicofluoric acid aqueous solution was maintained at a temperature of 23 ° C., and 20 cc of a boric acid (H 3 BO 3 ) aqueous solution having a concentration of about 0.1 mol / liter was added as an additive for bringing the supersaturated state. A few minutes after adding the boric acid aqueous solution, a cotton-like gel started to form. In this state, the mixture was left for 48 hours to precipitate gel-like SiO 2 . The formed SiO 2 gel was thoroughly washed with pure water.

SiO2ゲルの析出のために用いた過飽和状態のケイフッ化水素酸水溶液と、SiO2ゲル中に含まれる金属不純物元素を上記の方法により定量した。分析結果を表1に示す。過飽和のケイフッ化水素酸水溶液中の金属不純物濃度に比べて、SiO2ゲル中に含まれる金属不純物濃度は、すべて減少しており、ほとんどの金属不純物が除去された。 And hydrosilicofluoric acid solution supersaturated state used for the SiO 2 gel deposition, a metallic impurity element contained in the SiO 2 in the gel was quantified by the method described above. The analysis results are shown in Table 1. Compared to the metal impurity concentration in the supersaturated hydrofluoric acid aqueous solution, the metal impurity concentration contained in the SiO 2 gel was all decreased, and most metal impurities were removed.

〔実施例1〕
実施例1では、実際にガラス瓶を粉末状に粉砕したものをフッ化水素酸水溶液に溶解して飽和水溶液を調製した。まず、49%の濃度のフッ化水素 酸水溶液100ccに25gの粉砕したガラス粉末を溶解し、24時間攪拌したものをケイフッ化水素酸の飽和水溶液とした。ガラスの添加量は、従来技術の説明で述べた化学反応式(3):
[Example 1]
In Example 1, a saturated aqueous solution was prepared by dissolving a glass bottle actually pulverized into a powdered hydrofluoric acid solution. First, 25 g of crushed glass powder was dissolved in 100 cc of a hydrofluoric acid aqueous solution with a concentration of 49% and stirred for 24 hours to obtain a saturated aqueous solution of hydrofluoric acid. The amount of glass added is the chemical reaction formula (3) described in the description of the prior art:

を基に計算した結果(245g/リットル)を考慮した。続いて、この飽和状態のケイフッ化水素酸水溶液を過飽和にするための添加剤として参考例1と同様に濃度約0.1mol/リットルのホウ酸(H3BO3)水溶液20ccを温度23℃に保たれた飽和状態のケイフッ化水素酸水溶液に添加した。ホウ酸水溶液を添加してから数秒後には綿状のゲルが形成され始めた。この状態で、24時間放置し、参考例1と同様にSiO2ゲルを形成した。形成したSiO2ゲルと、SiO2ゲル形成に用いた過飽和状態のケイフッ化水素酸水溶液に含まれる金属不純物元素を定量した。結果を表2に示す。参考例1と同様に、過飽和のケイフッ化水素酸水溶液中の金属不純物濃度に比べて、SiO2ゲル中に含まれる金属不純物濃度は減少し、ほとんどの金属不純物が除去された。 The calculation result (245 g / liter) was taken into account. Subsequently, 20 cc of an aqueous solution of boric acid (H 3 BO 3 ) having a concentration of about 0.1 mol / liter is maintained at a temperature of 23 ° C. as an additive for supersaturating this saturated hydrofluoric acid solution. It was added to the saturated aqueous solution of hydrosilicofluoric acid. A few seconds after adding the boric acid aqueous solution, a cotton-like gel started to form. In this state, it was allowed to stand for 24 hours, and a SiO 2 gel was formed in the same manner as in Reference Example 1. The formed SiO 2 gel and the metal impurity elements contained in the supersaturated hydrofluoric acid solution used for forming the SiO 2 gel were quantified. The results are shown in Table 2. Similar to the reference example 1, the metal impurity concentration contained in the SiO 2 gel decreased compared to the metal impurity concentration in the supersaturated hydrofluoric acid aqueous solution, and most of the metal impurities were removed.

また参考例1では、フッ化水素酸水溶液にガラス粉末を溶解するときの溶液の温度変化も調べた。結果を図2に示す。溶液温度は、約20分間で49.8℃に達しており、ガラスを連続的に添加すれば、この温度を保持することができる。ここで、フッ化水素酸水溶液(49%)の比熱c:0.78 cal/g・℃、比重d:1.195g/cc、温度変化量t(℃):t2−t1= 35.3℃(t2= 49.8,t1= 14.5)、液量m = 100(cc)を用いると、発熱量H = mcdtより、H ≒ 3.29kcalとなり、仕事量に換算すれば、1.382x104Jとなる。最高温度49.8℃に達するまでの時間が20分間であるので1秒間の仕事量は11.52J/sとなり、電力に換算すると11.52Wとなる。これがフッ化水素酸水溶液100cc当たりであるので、1リットル当たりでは、10倍の115.2Wの電力が得られることになる。この発生した反応熱を回収すれば、暖房システムなどに適用可能である。   In Reference Example 1, the temperature change of the solution when the glass powder was dissolved in the hydrofluoric acid aqueous solution was also examined. The results are shown in FIG. The solution temperature reaches 49.8 ° C. in about 20 minutes, and this temperature can be maintained by continuously adding glass. Here, specific heat of hydrofluoric acid aqueous solution (49%) c: 0.78 cal / g · ° C., specific gravity d: 1.195 g / cc, temperature change t (° C.): t 2 −t 1 = 35.3 ° C. (t 2 = 49.8, When t1 = 14.5) and the liquid volume m = 100 (cc) is used, the heat generation amount H = mcdt, H≈3.29 kcal, which is 1.382 × 104 J in terms of work volume. Since the time to reach the maximum temperature of 49.8 ° C. is 20 minutes, the work amount per second is 11.52 J / s, which is 11.52 W in terms of electric power. Since this is per 100 cc of hydrofluoric acid aqueous solution, 105.2 times as much power as 115.2 W can be obtained per liter. If the generated reaction heat is recovered, it can be applied to a heating system or the like.

この計算では、ケイフッ化水素酸水溶液の比熱が不明であるために、フッ化水素酸水溶液として計算した。溶解途中にケイフッ化水素酸 に変化することは考慮されていないため、正確な値ではないが、少なくても初期状態ではフッ化水素酸の濃度はケイフッ化水素酸の濃度よりも高いので、ある程度は信頼できる値である。   In this calculation, since the specific heat of the silicohydrofluoric acid aqueous solution is unknown, it was calculated as a hydrofluoric acid aqueous solution. Since it is not considered to change to silicohydrofluoric acid during dissolution, it is not an accurate value, but at least in the initial state the concentration of hydrofluoric acid is higher than the concentration of silicofluoric acid. Is a reliable value.

〔実施例2〕
本発明で回収されるSiO2には、数%のフッ素が含まれており、用途によっては、このフッ素を除去する必要がある。本実施例では、実施例1で述べた方法で形成したSiO2ゲルからフッ素を除去する目的で、水素ガス雰囲気で熱処理する場合について述べる。
まず、SiO2ゲルを合成石英製容器に入れ、窒素ガス雰囲気中で自然乾燥させた後、これを温度約900℃に保たれた電気炉に水素ガスと窒素ガスとの流量比を1:10として混合ガスを連続的に流し、この電気炉内に合成石英製容器(乾燥SiO2ゲル入り)を入炉し60分間の熱処理を行った。SiO2ゲルに含有していたフッ素の濃度は約0.01%に減少した。
[Example 2]
The SiO 2 recovered in the present invention contains several percent of fluorine, and it is necessary to remove this fluorine depending on the application. In this example, a case where heat treatment is performed in a hydrogen gas atmosphere for the purpose of removing fluorine from the SiO 2 gel formed by the method described in Example 1 will be described.
First, SiO 2 gel is put in a synthetic quartz container and naturally dried in a nitrogen gas atmosphere. Then, the flow rate ratio of hydrogen gas and nitrogen gas is set to 1:10 in an electric furnace maintained at a temperature of about 900 ° C. Then, a mixed gas was continuously flowed, and a synthetic quartz container (containing dry SiO 2 gel) was placed in the electric furnace, and heat treatment was performed for 60 minutes. The fluorine concentration contained in the SiO 2 gel was reduced to about 0.01%.

〔実施例3〕
実施例3では、参考例1、実施例1および実施例2の知見を基にして、図1に示すようなガラス材料の金属不純物除去システムを組み立てた。
本システムは、酸化シリコンを主成分とし、金属、及び/又は、金属酸化物を不純物として含むガラス材料を溶解し飽和状態のケイフッ化水素酸水溶液を形成せしめるためのガラス溶解槽1と、前記の飽和状態のケイフッ化水素酸水溶液を過飽和状態にするための添加剤を溶解せしめるための添加剤溶解槽2と、再びガラス材料を析出・沈殿せしめるための析出・沈殿槽3と、電界を印加せしめるための正電極4、および負電極5と、前記、飽和状態のケイフッ化水素酸水溶液を攪拌するための攪拌装置6と、添加剤を添加せしめるための添加装置7と、ケイフッ化水素酸水溶液を循環せしめるための循環ポンプ8、9、10と、フィルタ11と、反応熱を回収せしめるための水浴槽12と、温水を循環せしめるためのポンプ13と、フッ化水素酸水溶液、又は飽和状態にないケイフッ化水素酸水溶液を供給するためのポンプ14と、廃液回収のためのポンプ15とから成っている。
Example 3
In Example 3, based on the knowledge of Reference Example 1, Example 1, and Example 2, a glass material metal impurity removal system as shown in FIG. 1 was assembled.
The system includes a glass dissolution tank 1 for melting a glass material containing silicon oxide as a main component and containing a metal and / or metal oxide as an impurity to form a saturated hydrofluoric acid aqueous solution, An electric field is applied to an additive dissolution tank 2 for dissolving an additive for bringing a saturated hydrofluoric acid aqueous solution into a supersaturated state, a precipitation / precipitation tank 3 for precipitating / precipitating a glass material again, and A positive electrode 4 and a negative electrode 5 for mixing, a stirring device 6 for stirring the saturated hydrofluoric acid aqueous solution, an adding device 7 for adding an additive, and a hydrosilicofluoric acid aqueous solution. Circulation pumps 8, 9, 10 for circulating, filter 11, water bath 12 for collecting reaction heat, pump 13 for circulating hot water, fluorination Periodate aqueous solution, or a pump 14 for feeding the free silicic hydrofluoric acid solution saturated, consist pump 15. for waste collection.

また電界を印加せしめるための電極として、テフロン樹脂で被服されたアルミニウム電極を用いた。正電極4を析出・沈殿槽の下部に設置し、負電極5を溶液表面近傍に設置した。電極間隔を15cmとし、正負電極間に50Vの直流電圧を印加した。参考例1と同様にSiO2ゲルを析出させ、参考例1と同様の金属不純物濃度を分析したところ、すべての金属不純物濃度が0.05ppm以下であった。 In addition, an aluminum electrode coated with a Teflon resin was used as an electrode for applying an electric field. The positive electrode 4 was installed in the lower part of the precipitation / precipitation tank, and the negative electrode 5 was installed in the vicinity of the solution surface. The electrode spacing was 15 cm, and a DC voltage of 50 V was applied between the positive and negative electrodes. SiO 2 gel was precipitated in the same manner as in Reference Example 1 and analyzed for the same metal impurity concentration as in Reference Example 1. As a result, all metal impurity concentrations were 0.05 ppm or less.

本発明によれば、比較的簡単に、そのままで再利用可能なガラス材料と、体に有害な金属などの不純物を含有するガラス材料とを同時に処理できるので、ガラス材料を主成分とするものであれば、形状・用途などは問わず、かつ、室温程度の温度でも金属不純物を除去してガラス材料を再利用で きるという利点がある。室温程度の温度でガラス材料の再生が可能となるため、エネルギー消費量を低く抑えることができる。   According to the present invention, a glass material that can be reused as it is and a glass material containing impurities such as metals harmful to the body can be processed at the same time. If there is, there is an advantage that the glass material can be reused by removing metal impurities even at a temperature of about room temperature regardless of the shape and application. Since the glass material can be regenerated at a temperature of about room temperature, energy consumption can be kept low.

1・・・ガラス材料溶解槽
2・・・添加剤溶解槽
3・・・析出・沈殿槽
4・・・正電極
5・・・負電極
6・・・攪拌装置
7・・・添加剤添加装置
8,9,10・・・循環ポンプ
11・・・フィルタ
12・・・水浴槽
13・・・温水循環ポンプ
14・・・給液ポンプ
15・・・廃液回収ポンプ
DESCRIPTION OF SYMBOLS 1 ... Glass material dissolution tank 2 ... Additive dissolution tank 3 ... Deposition / precipitation tank 4 ... Positive electrode 5 ... Negative electrode 6 ... Stirrer 7 ... Additive addition apparatus 8, 9, 10 ... circulation pump 11 ... filter 12 ... water bath 13 ... warm water circulation pump 14 ... feed pump 15 ... waste liquid recovery pump

Claims (8)

ガラス溶解槽を用いて、金属および/または金属酸化物を不純物として含む酸化シリコンを主成分とするガラス材料を、酸化シリコンが飽和になるまで、フッ素イオンを含む溶液に溶解し飽和状態のケイフッ化水素酸水溶液を形成させると共に、酸化シリコンが溶解する際の熱を回収し、
添加剤溶解槽を用いて、前記飽和状態のケイフッ化水素酸水溶液に、アルミニウム、カリウム、バリウム、ニッケル、亜鉛、銅、およびこれらの化合物、ホウ酸、マグネシウム化合物、水から選択される少なくとも一種を添加して、前記飽和状態のケイフッ化水素酸水溶液中のH2SiF6を過飽和状態にして、
該反応における下記式で表される平衡反応(3)
に示す該平衡状態を、上記平衡式(3)を右に移行させて高純度の酸化シリコンを析出させることを特徴とするガラス材料の回収方法。
Using a glass dissolution vessel, a glass material mainly composed of silicon oxide containing metal and / or metal oxide as an impurity is dissolved in a solution containing fluorine ions until the silicon oxide is saturated, and the silicofluorination is saturated. While forming an aqueous hydrogen acid solution, recovering heat when silicon oxide dissolves,
Using an additive dissolution tank, the saturated hydrosilicofluoric acid solution contains at least one selected from aluminum, potassium, barium, nickel, zinc, copper, and their compounds, boric acid, magnesium compounds, and water. To add H 2 SiF 6 in the saturated hydrofluoric acid aqueous solution to a supersaturated state,
Equilibrium reaction (3) represented by the following formula in the reaction
The method of recovering a glass material is characterized in that the equilibrium state shown in (3) is shifted to the right from the equilibrium equation (3) to deposit high-purity silicon oxide.
上記酸化シリコンが溶解する際にガラス溶解槽で発生した熱を回収して、該回収した熱で添加剤溶解槽を加熱して添加剤の溶解度を高め、酸化シリコンの析出・沈殿槽におけるケイフッ化水素酸水溶液の過飽和度をより高めて、SiO2の析出速度を高めることを特徴とする請求項1に記載のガラス材料の回収方法。 The heat generated in the glass dissolution tank when the silicon oxide is dissolved is recovered, and the additive dissolution tank is heated with the recovered heat to increase the solubility of the additive. The method for recovering a glass material according to claim 1, wherein the supersaturation degree of the aqueous hydrogen acid solution is further increased to increase the deposition rate of SiO 2 . 上記ガラス材料が溶解された溶液中の上部に負極、下部に正極を配置して、電解を印加しながら酸化シリコンを析出せしめることを特徴とする請求項1に記載のガラス材料の回収方法。   The method for recovering a glass material according to claim 1, wherein a negative electrode is disposed at an upper portion and a positive electrode is disposed at a lower portion in the solution in which the glass material is dissolved, and silicon oxide is deposited while applying electrolysis. 前記フッ素イオンを含む溶液が、フッ化水素酸水溶液、飽和状態にないケイフッ化水素酸水溶液またはこれらの混合物、あるいは、これらの廃液であることを特徴とする請求項1に記載のガラス材料の回収方法。   The glass material recovery according to claim 1, wherein the solution containing fluorine ions is a hydrofluoric acid aqueous solution, a hydrosilicofluoric acid aqueous solution that is not saturated, a mixture thereof, or a waste solution thereof. Method. 酸化シリコンを析出せしめた後、得られた酸化シリコンを、不活性ガスと還元ガスとの混合ガス、または、不活性ガスと水蒸気との混合ガスの何れかの雰囲気中で熱処理することを特徴とする請求項1に記載のガラス材料の回収方法。   After depositing silicon oxide, the obtained silicon oxide is heat-treated in an atmosphere of either a mixed gas of an inert gas and a reducing gas or a mixed gas of an inert gas and water vapor. The method for recovering a glass material according to claim 1. 前記の酸化シリコンを主成分とするガラス材料が、金属および/または金属酸化物を不純物として含むことを特徴とする請求項1に記載のガラス材料の回収方法。   The glass material recovery method according to claim 1, wherein the glass material containing silicon oxide as a main component contains a metal and / or a metal oxide as an impurity. 酸化シリコンを主成分とするガラス材料が、廃棄ガラスであることを特徴とする請求項1に記載のガラス材料の回収方法。   The glass material recovery method according to claim 1, wherein the glass material containing silicon oxide as a main component is waste glass. 前記フッ素イオンを含む溶液が、主に酸化シリコン薄膜をエッチングする際に使用するフッ化水素酸水溶液の廃液であることを特徴とする請求項1に記載のガラス材料の回収方法。   2. The method for recovering a glass material according to claim 1, wherein the solution containing fluorine ions is a waste liquid of an aqueous hydrofluoric acid solution used mainly for etching a silicon oxide thin film.
JP2009037627A 2009-02-20 2009-02-20 Glass material recovery method Expired - Fee Related JP5042252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037627A JP5042252B2 (en) 2009-02-20 2009-02-20 Glass material recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037627A JP5042252B2 (en) 2009-02-20 2009-02-20 Glass material recovery method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14840499A Division JP4330698B2 (en) 1999-05-27 1999-05-27 Glass material recovery system

Publications (2)

Publication Number Publication Date
JP2009184913A true JP2009184913A (en) 2009-08-20
JP5042252B2 JP5042252B2 (en) 2012-10-03

Family

ID=41068543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037627A Expired - Fee Related JP5042252B2 (en) 2009-02-20 2009-02-20 Glass material recovery method

Country Status (1)

Country Link
JP (1) JP5042252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045454A (en) * 2012-11-12 2015-04-28 톳토리 프리펙쳐 Method for separating heavy metals from glass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283810A (en) * 1986-02-05 1987-12-09 Nitto Chem Ind Co Ltd Production of high-purity silica
JPS648296A (en) * 1987-06-30 1989-01-12 Nippon Sheet Glass Co Ltd Production of silicon dioxide film
JPH03112806A (en) * 1989-09-26 1991-05-14 Nippon Sheet Glass Co Ltd Production of coating film of silicon dioxide and device therefor
JPH04310514A (en) * 1991-04-04 1992-11-02 Tokuyama Soda Co Ltd Production of silicon oxide-coated substrate
JPH0533169A (en) * 1991-07-26 1993-02-09 Toomen Constr Kk Method for treating and recovering waste etchant containing fluorine and ammonia compound
JPH0769617A (en) * 1993-06-29 1995-03-14 Nitto Chem Ind Co Ltd High purity spherical silica and production thereof
JPH07165412A (en) * 1993-12-13 1995-06-27 Ebara Corp Production of silicon dioxide film
JPH07232915A (en) * 1992-07-21 1995-09-05 Nomura Micro Sci Co Ltd Method for recovering fluorine in waste water
JPH09208216A (en) * 1996-02-01 1997-08-12 Mitsubishi Chem Corp High purity synthetic quartz glass powder, production thereof and high purity synthetic quartz glass formed body using the powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283810A (en) * 1986-02-05 1987-12-09 Nitto Chem Ind Co Ltd Production of high-purity silica
JPS648296A (en) * 1987-06-30 1989-01-12 Nippon Sheet Glass Co Ltd Production of silicon dioxide film
JPH03112806A (en) * 1989-09-26 1991-05-14 Nippon Sheet Glass Co Ltd Production of coating film of silicon dioxide and device therefor
JPH04310514A (en) * 1991-04-04 1992-11-02 Tokuyama Soda Co Ltd Production of silicon oxide-coated substrate
JPH0533169A (en) * 1991-07-26 1993-02-09 Toomen Constr Kk Method for treating and recovering waste etchant containing fluorine and ammonia compound
JPH07232915A (en) * 1992-07-21 1995-09-05 Nomura Micro Sci Co Ltd Method for recovering fluorine in waste water
JPH0769617A (en) * 1993-06-29 1995-03-14 Nitto Chem Ind Co Ltd High purity spherical silica and production thereof
JPH07165412A (en) * 1993-12-13 1995-06-27 Ebara Corp Production of silicon dioxide film
JPH09208216A (en) * 1996-02-01 1997-08-12 Mitsubishi Chem Corp High purity synthetic quartz glass powder, production thereof and high purity synthetic quartz glass formed body using the powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045454A (en) * 2012-11-12 2015-04-28 톳토리 프리펙쳐 Method for separating heavy metals from glass
KR101677931B1 (en) * 2012-11-12 2016-11-21 톳토리 프리펙쳐 Method for separating heavy metals from glass

Also Published As

Publication number Publication date
JP5042252B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5403814B2 (en) How to recycle useful metals
CN105112674B (en) A kind of waste printed circuit board Whote-wet method recovery process
WO2008056125A1 (en) Lead recycling
CN107827089A (en) Method for separating and recovering tellurium dioxide in cuprous telluride compound waste
CN105293454B (en) A kind of method that spent solder stripper prepares dust technology, spongy tin and aluminium polychlorid
Lisbona et al. Treatment of spent pot-lining with aluminum anodizing wastewaters: selective precipitation of aluminum and fluoride as an aluminum hydroxyfluoride hydrate product
Wang et al. An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag
JPWO2010004925A1 (en) Method for recovering silicon, titanium and fluorine
KR20150046336A (en) Method for recovering indium-tin alloy from ito target scrap and methods for producing indium oxide-tin oxide powder and ito target
CN102583422A (en) Cyclic preparation method for producing titanium boride by taking potassium-based titanium boron villiaumite mixture as intermediate raw material and synchronously producing potassium cryolite
CN106756126A (en) The process of Ti recovery in a kind of germanic waste liquid from low concentration
CN102795654A (en) Method for recovering nitric acid and copper sulfate pentahydrate from circuit board cutting-hanging liquid waste
JP4330698B2 (en) Glass material recovery system
CN107400904A (en) The preparation method of copper electrolyte removing impurities agent and the method for copper electrolyte removing impurities
JP5042252B2 (en) Glass material recovery method
CN106319563A (en) Electrolytic copper and method for producing electrolytic copper from concentrated nitric acid copper-containing wastewater
Kumar et al. Hydrometallurgical recycling of lithium-titanate anode batteries: Leaching kinetics and mechanisms, and life cycle impact assessment
JP4595048B2 (en) Aqueous solution for pickling, method for producing the same and resource recovery method
CN102765843A (en) Harmless and recycling treatment method of secondary zinc oxide powder alkaline-washing and dechlorinating water
EP1995353A1 (en) METHOD OF REMOVING/CONCENTRATING METAL-FOG-FORMING METAL PRESENT IN MOLTEN SALT, APPARATUS THEREFOR, AND PROCESS AND APPARATUS FOR PRODUCING Ti OR Ti ALLOY BY USE OF THEM
Illés et al. The production of high-purity gallium from waste LEDs by combining sulfuric acid digestion, cation-exchange and electrowinning
KR20200040064A (en) Aluminium recovery method from aluminium dross
US20070041883A1 (en) Process for hydrometallurgical treatment of electric arc furnace dust
CN112126791A (en) Method for recycling high-purity copper from metal waste
CN106241882B (en) A kind of method of spent solder stripper resource

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees