JP2009184252A - Polypropylene film for metal vapor deposition and metallized polypropylene film - Google Patents

Polypropylene film for metal vapor deposition and metallized polypropylene film Download PDF

Info

Publication number
JP2009184252A
JP2009184252A JP2008027313A JP2008027313A JP2009184252A JP 2009184252 A JP2009184252 A JP 2009184252A JP 2008027313 A JP2008027313 A JP 2008027313A JP 2008027313 A JP2008027313 A JP 2008027313A JP 2009184252 A JP2009184252 A JP 2009184252A
Authority
JP
Japan
Prior art keywords
layer
film
vapor deposition
resin
metal vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027313A
Other languages
Japanese (ja)
Inventor
Naoya Esumi
直哉 江角
Kazuto Kuwabara
和人 桑原
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008027313A priority Critical patent/JP2009184252A/en
Publication of JP2009184252A publication Critical patent/JP2009184252A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tenacious polypropylene film for metal vapor deposition which shows superior adhesive properties with a metal vapor deposited layer during metal vapor deposition and outstanding surface cleavage resistance and material rupture resistance, and a metallized polypropylene film using the polypropylene film for metal vapor deposition. <P>SOLUTION: This polypropylene film for metal vapor deposition is structured of at least, two layers, i.e. a polypropylene resin laywr (A) and a polyolefin-based resin layer (B) containing a propylene-based copolymer with 149 to 159°C melt point. The element composition ratio (O/C) of oxygen (O) and carbon (C) in the surface of the polyolefin resin layer (B) is 0.2 to 0.4, and the coefficient of plane orientation (Fn) represented by formula (1) Fn=(MDn+TDn)/2-ZDn is 0.013 to 0.020 for the polypropylene resin layer (A) and 0.005 to 0.012 for the polyolefin-based resin layer (B). MDn is the index of refraction, in the MD (longer) direction, of the film; TDn is the index of refraction, in the TD (width) direction. of the film; and ZDn is the index of refraction, in the ZD (thickness) direction, of the film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、包装用、工業用に用いられるポリプロピレンフイルムに関するものであり、特に金属蒸着を施した際に金属蒸着層との接着性に優れ、かつ抗表面劈開性、抗材破性に優れる強靱な金属蒸着用ポリプロピレンフイルムおよび金属化ポリプロピレンフイルムに関するものである。   The present invention relates to a polypropylene film used for packaging and industrial purposes, and particularly has excellent adhesion to a metal vapor deposition layer when metal vapor deposition is performed, and is excellent in anti-surface cleaving property and anti-material fracture resistance. The present invention relates to a polypropylene film for metal deposition and a metallized polypropylene film.

二軸配向ポリプロピレンフィルム(以下OPP)は、軽量であり、かつ機械特性にも優れることから、包装用途、工業用途に好ましく用いられる。具体的には、スナック・菓子類の食品包装袋、医薬品の包装袋、液体容器のラベル包装用途、粘着テープ等の基材フイルムが例示される。   A biaxially oriented polypropylene film (hereinafter referred to as OPP) is lightweight and excellent in mechanical properties, and thus is preferably used for packaging applications and industrial applications. Specific examples include food packaging bags for snacks and confectionery, packaging bags for pharmaceuticals, label packaging for liquid containers, and base film such as adhesive tape.

そして、OPPの水蒸気・酸素等のバリアー性を向上したり、意匠性を付与するためにアルミニウム、亜鉛、ニッケル、錫等の金属薄膜がOPPの表面に設けられ使用される。特にスナック・餅菓子類では吸湿・酸化により内容物の品質が劣化するために金属及び/または金属酸化物をOPP表面に設けて包装袋のガスバリア性を高めたり、ボトル類のラベル包装用として意匠性を高めるために金属蒸着層を設けて使用される。   And in order to improve barrier properties, such as water vapor | steam and oxygen of OPP, or to give designability, metal thin films, such as aluminum, zinc, nickel, and tin, are provided in the surface of OPP, and are used. Especially for snacks and confectionery, the quality of the contents deteriorates due to moisture absorption and oxidation, so metal and / or metal oxide is provided on the OPP surface to increase the gas barrier property of the packaging bag, and it is designed for label packaging of bottles In order to improve the property, a metal vapor deposition layer is provided and used.

このような用途においては、OPPと蒸着層との接着性が重要であるが、ポリプロピレンはその構成要素が基本的には炭素、水素のみからなるために、表面エネルギーが小さく、金属層との密着性は弱く容易に剥離してしまう。   In such applications, adhesion between the OPP and the vapor deposition layer is important, but since polypropylene is basically composed of only carbon and hydrogen, the surface energy is small and the adhesion to the metal layer is low. It is weak and easily peels off.

このため、OPP表面に、コロナ放電処理、プラズマ処理、火炎処理、及びこれらの組み合わせ等の表面処理により、酸素及び/または窒素を導入することで、表面エネルギーを高め、接着性を向上する技術が用いられる。これら処理により導入された官能基はXPSで観測すると、炭素原子に結合した基として、カルボキシル基、カルボニル基、アミノ基等に帰属する酸素、窒素が観測される。   For this reason, there is a technology for increasing surface energy and improving adhesiveness by introducing oxygen and / or nitrogen into the OPP surface by surface treatment such as corona discharge treatment, plasma treatment, flame treatment, and combinations thereof. Used. When the functional groups introduced by these treatments are observed by XPS, oxygen and nitrogen belonging to a carboxyl group, a carbonyl group, an amino group, etc. are observed as a group bonded to a carbon atom.

このような表面処理により、接着性は向上することができるが、必ずしも充分ではなく、更に接着性を向上する方法として、該表面処理を施す面のポリプロピレンの結晶性を低下させる方法が例示される。具体的にはポリプロピレンの立体規則性を低下させる、エチレン、ブテン−1、ヘキセン−1、3メチルブテン−1等のαオレフインを共重合させた共重合ポリプロピレン(以下低結晶性ポリプロピレン)をコアとなるポリプロピレン樹脂層の表面に積層しておき、該低結晶性ポリプロピレンの表面に該表面処理を施す方法である(特許文献1〜3)。   Although such surface treatment can improve the adhesiveness, it is not always sufficient, and as a method for further improving the adhesiveness, there is exemplified a method for reducing the crystallinity of polypropylene on the surface to be subjected to the surface treatment. . Specifically, the core is a copolymerized polypropylene (hereinafter, low crystalline polypropylene) obtained by copolymerizing α-olefin such as ethylene, butene-1, hexene-1, and 3methylbutene-1, which lowers the stereoregularity of polypropylene. It is a method of laminating on the surface of a polypropylene resin layer and applying the surface treatment to the surface of the low crystalline polypropylene (Patent Documents 1 to 3).

しかしながら、単に低結晶性ポリプロピレンをコアとなるポリプロピレン樹脂層に積層しただけでは、金属蒸着をした際に受ける熱のために該低結晶性ポリプロピレン層の表面が粗面化して光沢度が低下したり、該金属蒸着フイルムを含むラミネートフイルムを作成した際に、該低結晶性ポリプロピレン層を基点として該ラミネートフイルムが材破(劈開)する問題を有していた。
特開2005−263896号公報(特許請求の範囲、請求項2) 特開平6−287747号公報(特許請求の範囲、請求項1) 特開平7−266516号公報(特許請求の範囲、請求項1)
However, if the low crystalline polypropylene is simply laminated on the polypropylene resin layer as the core, the surface of the low crystalline polypropylene layer is roughened due to the heat received during metal deposition, and the glossiness decreases. When the laminate film containing the metal vapor-deposited film is produced, there is a problem that the laminate film breaks (cleaves) with the low crystalline polypropylene layer as a starting point.
Japanese Patent Laying-Open No. 2005-263896 (Claims, Claim 2) JP-A-6-287747 (Claims, Claim 1) JP-A-7-266516 (Claims, Claim 1)

本発明は、かかる従来技術の背景に鑑みなされたもので、金属蒸着を施した際に金属蒸着層との接着性に優れ、かつ抗表面劈開性、抗材破性に優れる強靱な金属蒸着用ポリプロピレンフイルムおよび金属化ポリプロピレンフイルムを提供することを目的とする。   The present invention has been made in view of the background of such a conventional technique, and is excellent in adhesion to a metal vapor deposition layer when metal vapor deposition is performed, and is used for tough metal vapor deposition having excellent anti-surface cleaving property and anti-material breakability. It is an object to provide a polypropylene film and a metallized polypropylene film.

本発明は、上記目的を達成するために、次のような手段を提案するものである。   The present invention proposes the following means in order to achieve the above object.

(1)ポリプロピレン樹脂層(A)、および融点が149〜159℃であるプロピレン系共重合体を含むポリオレフイン系樹脂層(B)の少なくとも2層構成を有し、該ポリオレフイン樹脂層(B)の表面の酸素(O)と炭素(C)の元素組成比(O/C)が0.2〜0.4であり、次式(1)で表される面配向係数(Fn)がポリプロピレン樹脂層(A)において0.013〜0.020、ポリオレフィン系樹脂層(B)において0.005〜0.012である金属蒸着用ポリプロピレンフイルム。   (1) It has at least two layers of a polypropylene resin layer (A) and a polyolefin resin layer (B) containing a propylene copolymer having a melting point of 149 to 159 ° C., and the polyolefin resin layer (B) The elemental composition ratio (O / C) of oxygen (O) and carbon (C) on the surface is 0.2 to 0.4, and the plane orientation coefficient (Fn) represented by the following formula (1) is a polypropylene resin layer. (A) 0.013-0.020 in a polyolefin resin layer (B), and a polypropylene film for metal vapor deposition which is 0.005-0.012.

Fn=(MDn+TDn)/2−ZDn・・・式(1)
MDn:フィルムのMD(長手)方向の屈折率
TDn:フィルムのTD(幅)方向の屈折率
ZDn:フィルムのZD(厚み)方向の屈折率
(2)ポリオレフイン系樹脂層(B)に含まれる有機及び/又は無機のフィラーの合計量が300〜1,500ppm(質量基準)である、上記(1)に記載の金属蒸着用ポリプロピレンフイルム。
Fn = (MDn + TDn) / 2−ZDn (1)
MDn: refractive index in the MD (longitudinal) direction of the film
TDn: refractive index in the TD (width) direction of the film
ZDn: refractive index in the ZD (thickness) direction of the film (2) The total amount of organic and / or inorganic fillers contained in the polyolefin resin layer (B) is 300 to 1,500 ppm (mass basis) ( The polypropylene film for metal vapor deposition as described in 1).

(3)ポリオレフイン系樹脂層(B)が、冷キシレン可溶部を1〜10質量%含み、かつ該冷キシレン可溶部の質量平均分子量が10,000以上である、上記(1)または(2)に記載の金属蒸着用ポリプロピレンフイルム。   (3) The polyolefin resin layer (B) contains 1 to 10% by mass of a cold xylene soluble part, and the mass average molecular weight of the cold xylene soluble part is 10,000 or more. The polypropylene film for metal vapor deposition as described in 2).

(4)厚みが40〜75μmである、上記(1)〜(3)のいずれかに記載の金属蒸着用ポリプロピレンフイルム。   (4) The polypropylene film for metal vapor deposition according to any one of (1) to (3), wherein the thickness is 40 to 75 μm.

(5)上記(1)〜(4)のいずれかに記載の金属蒸着用ポリプロピレンフイルムのポリオレフイン系樹脂層(B)の表面に金属蒸着層が設けられてなり、該金属蒸着層の厚みが100〜800オングストロームである金属化ポリプロピレンフイルム。   (5) A metal vapor deposition layer is provided on the surface of the polyolefin resin layer (B) of the polypropylene film for metal vapor deposition according to any one of (1) to (4), and the thickness of the metal vapor deposition layer is 100. Metalized polypropylene film that is ~ 800 angstroms.

本発明のフイルムは、包装用途、工業用途として用いることで、以下の効果を奏するものである。   The film of the present invention has the following effects when used for packaging and industrial purposes.

(1)金属蒸着を施した際に金属蒸着層との接着性、光沢度に優れる。   (1) When metal deposition is performed, the adhesion to the metal deposition layer and the glossiness are excellent.

(2)抗表面劈開性、抗材破性に優れるため、耐久性の高いラミネートフイルムを構成することができる。   (2) Since the surface cleaving property and the anti-material breakability are excellent, a highly durable laminate film can be constituted.

本発明の金属蒸着用ポリプロピレンフイルム(以下、単に本発明のポリプロピレンフィルムまたは本発明フィルムということがある)およびこれを用いた金属化ポリプロピレンフイルムについて、以下に説明する。   The polypropylene film for metal vapor deposition of the present invention (hereinafter sometimes simply referred to as the polypropylene film of the present invention or the film of the present invention) and the metallized polypropylene film using the same will be described below.

本発明のポリプロピレンフイルムは、ポリプロピレン樹脂層(A)とポリプロピレン系共重合体を含むポリオレフイン系樹脂層(B)との少なくとも2層構成を有する(なお、以下においては、上記のポリプロピレン樹脂層(A)を層(A)または樹脂層(A)、ポリオレフイン系樹脂層(B)を層(B)または樹脂層(B)ということがある)。   The polypropylene film of the present invention has at least a two-layer structure of a polypropylene resin layer (A) and a polyolefin resin layer (B) containing a polypropylene copolymer (in the following, the polypropylene resin layer (A ) May be referred to as layer (A) or resin layer (A), and polyolefin resin layer (B) may be referred to as layer (B) or resin layer (B)).

層(A)を構成するポリプロピレン樹脂は、本発明フイルムの基層を成すものであり、優れた機械特性、耐熱性を付与するために、該樹脂の融点は155〜170℃であることが好ましく、より好ましくは158〜165℃である。また、該樹脂はプロピレンのみからなるホモポリマーであっても、エチレン、α−オレフインのいずれかから選ばれた、オレフイン類とプロピレンとの共重合体であってもよい。この中で特に好ましいポリプロピレン樹脂としては、構成単位としてプロピレンとブテン−1とを含む共重合体であって、ポリブテン−1を0.1〜5質量%含有する共重合体であることが好ましく、特に好ましくはポリブテン−1が0.5〜3質量%であることが好ましい。ポリブテン−1が0.1質量%を下回ると本発明フイルムの2軸延伸工程で厚み斑が大きくなり、蒸着加工工程でタルミ等を生じ、クーリングキャンとの密着性が劣り蒸着面の白濁等の問題を生じる可能性がある。一方、ポリブテン−1が5質量%を超えるとフイルムの剛性・耐熱性が低下して加工時に問題を生じる可能性がある。なお、共重合体中のポリブテン−1の組成比を、上記の通り質量%(含有量)の形で表している。測定方法等については後述する。   The polypropylene resin constituting the layer (A) constitutes the base layer of the film of the present invention, and in order to impart excellent mechanical properties and heat resistance, the resin preferably has a melting point of 155 to 170 ° C. More preferably, it is 158-165 degreeC. Further, the resin may be a homopolymer composed only of propylene, or may be a copolymer of olefins and propylene selected from either ethylene or α-olefin. Among these, a particularly preferable polypropylene resin is a copolymer containing propylene and butene-1 as structural units, and is preferably a copolymer containing 0.1 to 5% by mass of polybutene-1. It is particularly preferable that polybutene-1 is 0.5 to 3% by mass. If polybutene-1 is less than 0.1% by mass, the thickness unevenness will increase in the biaxial stretching process of the film of the present invention, causing tarmi, etc. in the vapor deposition process, resulting in poor adhesion to the cooling can, such as cloudiness on the vapor deposition surface. May cause problems. On the other hand, if the polybutene-1 exceeds 5% by mass, the rigidity and heat resistance of the film is lowered, which may cause a problem during processing. In addition, the composition ratio of polybutene-1 in the copolymer is expressed in the form of mass% (content) as described above. The measuring method will be described later.

該層(A)には、ポリプロピレン樹脂の劣化を防止するために公知の熱安定剤、酸化防止剤等を含有せしめることができ、更に触媒残査として残留する塩素を中和するためにステアリン酸カルシウム、エルカ酸カルシウム等の金属石鹸、ハイドロタルサイト類を塩素捕獲剤として含有せしめることができる。特に塩素捕獲剤としてはハイドロタルサイト類に例示される無機塩を含有せしめるとフイルム中の異物発生を低減できるので好ましい。   The layer (A) can contain a known heat stabilizer, antioxidant, etc. to prevent deterioration of the polypropylene resin, and calcium stearate to neutralize residual chlorine as a catalyst residue. Further, metal soap such as calcium erucate and hydrotalcite can be contained as a chlorine scavenger. In particular, it is preferable to add an inorganic salt exemplified by hydrotalcites as the chlorine scavenger because it can reduce the generation of foreign matter in the film.

また、フイルムの滑り性を良好にし、加工適性を向上する目的で、その粒子径が0.5〜5μmの酸化珪素、炭酸カルシウム、酸化アルミニウム、酸化チタン等の無機粒子、ポリメチルメタアクリレート、ベンゾグアナミン、ポリスチレン等の架橋樹脂粒子等を含有せしめることができる。含有量としては300〜3,000ppm(質量基準)であると滑り性を良好として透明性を損なうことが少ないので好ましく、特に好ましくは500〜2,000ppm(質量基準)である。   In addition, for the purpose of improving the slipperiness of the film and improving processability, inorganic particles such as silicon oxide, calcium carbonate, aluminum oxide and titanium oxide having a particle size of 0.5 to 5 μm, polymethyl methacrylate, benzoguanamine Further, crosslinked resin particles such as polystyrene can be contained. The content is preferably from 300 to 3,000 ppm (mass basis), since good slip properties are obtained and transparency is hardly impaired, and particularly preferably from 500 to 2,000 ppm (mass basis).

また、該層(A)の面配向係数(Fn)は0.013〜0.020であることが重要であり、好ましくは0.013〜0.016である。面配向係数(Fn)が0.013未満であると、フイルムの剛性・耐熱性が低下して加工時に問題を生じる恐れがある。一方、面配向係数(Fn)が0.020を超えると、フィルムの製造時に配向が高すぎるために延伸性に劣り、フィルム破れを頻発させ、生産性が低下する恐れや、層(B)/層(A)の面配向度差が大きいためにセロハンテープ剥離テスト等でフィルム表面に衝撃を与えた際に、層(B)/層(A)で劈開が発生する恐れがある。   Moreover, it is important that the plane orientation coefficient (Fn) of the layer (A) is 0.013 to 0.020, and preferably 0.013 to 0.016. If the plane orientation coefficient (Fn) is less than 0.013, the rigidity and heat resistance of the film may be reduced, which may cause problems during processing. On the other hand, when the plane orientation coefficient (Fn) exceeds 0.020, since the orientation is too high during the production of the film, the stretchability is inferior, the film breaks frequently, the productivity may decrease, and the layer (B) / Since the difference in the degree of plane orientation of the layer (A) is large, cleavage may occur in the layer (B) / layer (A) when an impact is applied to the film surface by a cellophane tape peeling test or the like.

該層(A)の面配向係数(Fn)はフィルム延伸工程における該層(A)にかかる熱量でコントロールできる。該層(A)にかかる熱量が多いと該層(A)の面配向係数(Fn)が下がり、該層(A)にかかる熱量が少ないと該層(A)の面配向係数(Fn)が上がるため、該層(A)の面配向係数(Fn)をこの範囲にするためには、フィルム延伸工程の温度条件を適宜調整すればよい。   The plane orientation coefficient (Fn) of the layer (A) can be controlled by the amount of heat applied to the layer (A) in the film stretching step. When the amount of heat applied to the layer (A) is large, the plane orientation coefficient (Fn) of the layer (A) decreases, and when the amount of heat applied to the layer (A) is small, the surface orientation coefficient (Fn) of the layer (A) is decreased. In order to increase the plane orientation coefficient (Fn) of the layer (A) within this range, the temperature condition of the film stretching process may be adjusted as appropriate.

なお、上記において面配向係数(Fn)は、次式(1)で表される値である。   In the above, the plane orientation coefficient (Fn) is a value represented by the following formula (1).

Fn=(MDn+TDn)/2−ZDn・・・式(1)
MDn:フィルムのMD(長手)方向の屈折率
TDn:フィルムのTD(幅)方向の屈折率
ZDn:フィルムのZD(厚み)方向の屈折率
次いでプロピレン系共重合体を含む層(ポリオレフィン系樹脂層(B))について説明する。
Fn = (MDn + TDn) / 2−ZDn (1)
MDn: refractive index in the MD (longitudinal) direction of the film
TDn: refractive index in the TD (width) direction of the film
ZDn: refractive index in the ZD (thickness) direction of the film Next, a layer containing a propylene-based copolymer (polyolefin-based resin layer (B)) will be described.

該層(B)を構成するプロピレン系共重合体は、融点が149〜159℃であることが重要であり、好ましくは151〜156℃である。融点が149℃未満であると本発明フイルムの2軸延伸工程でフィルム表面が粗面化することにより、表面平滑性が損なわれて蒸着した際に光沢度が低下する恐れがある。一方融点が159℃を超えると金属化層(金属蒸着層)との接着性が低下する恐れがある。このような融点を有するポリプロピレン系樹脂を得るために、プロピレンにエチレン、ブテン−1、ペンテン−1、ヘキセン−1、4メチルペンテン−1等のαオレフインから選ばれた少なくとも一種のコモノマー成分を総量で0.5〜4質量%をランダムに共重合する方法が好ましく、特に共重合量は2〜4質量%であることが好ましい。また、コモノマーとしては、エチレン、ブテン−1の少なくともいずれかであると経済性に優れるので好ましい。   It is important that the propylene-based copolymer constituting the layer (B) has a melting point of 149 to 159 ° C, preferably 151 to 156 ° C. When the melting point is less than 149 ° C., the film surface is roughened in the biaxial stretching step of the film of the present invention, so that the surface smoothness is impaired and the glossiness may be lowered when vapor deposition is performed. On the other hand, if the melting point exceeds 159 ° C., the adhesion with the metallized layer (metal vapor deposition layer) may be reduced. In order to obtain a polypropylene resin having such a melting point, the total amount of propylene is at least one comonomer component selected from α-olefins such as ethylene, butene-1, pentene-1, hexene-1, and 4-methylpentene-1. A method of randomly copolymerizing 0.5 to 4% by mass is preferable, and the copolymerization amount is particularly preferably 2 to 4% by mass. The comonomer is preferably at least one of ethylene and butene-1 because it is excellent in economic efficiency.

また、該層(B)の面配向係数(Fn)(上記した層(A)で述べた式(1)により算出する)は0.005〜0.012であることが重要であり、好ましくは0.008〜0.011である。面配向係数(Fn)が0.012を超えると、層(B)は強靱性に劣り、セロハンテープ剥離テスト等でフィルム表面に衝撃を与えた際に、層(B)内あるいは層(B)/層(A)の界面で劈開が発生する恐れがある。また、Fnが0.005を下回ると金属蒸着を施した際に該表面が粗面化する等白化現象を起こし、金属蒸着面の光沢度が低下する恐れがある。   Further, it is important that the plane orientation coefficient (Fn) of the layer (B) (calculated by the formula (1) described in the above layer (A)) is 0.005 to 0.012, preferably 0.008 to 0.011. When the plane orientation coefficient (Fn) exceeds 0.012, the layer (B) is inferior in toughness, and when an impact is applied to the film surface by a cellophane tape peel test or the like, the layer (B) or layer (B) / Cleavage may occur at the interface of layer (A). On the other hand, if Fn is less than 0.005, a whitening phenomenon such as roughening of the surface occurs when metal deposition is performed, and the glossiness of the metal deposition surface may be lowered.

該層(B)の面配向係数(Fn)はフィルム延伸工程における該層(B)にかかる熱量でコントロールできる。該層(B)にかかる熱量が多いと該層(B)の面配向係数(Fn)が下がり、該層(B)にかかる熱量が少ないと該層(B)の面配向係数(Fn)が上がるため、該層(B)の面配向係数(Fn)をこの範囲にするためには、フィルム延伸工程の温度条件を適宜調整すればよい。   The plane orientation coefficient (Fn) of the layer (B) can be controlled by the amount of heat applied to the layer (B) in the film stretching step. When the amount of heat applied to the layer (B) is large, the plane orientation coefficient (Fn) of the layer (B) decreases, and when the amount of heat applied to the layer (B) is small, the plane orientation coefficient (Fn) of the layer (B) is decreased. In order to increase the plane orientation coefficient (Fn) of the layer (B) within this range, the temperature condition of the film stretching step may be adjusted as appropriate.

当該層(B)には樹脂の安定性を付与するため公知の熱安定剤、酸化防止剤、塩素捕獲剤等を含有せしめることができる。塩素捕獲剤については前述の通り、ハイドロタルサイト類が異物の発生が少なく好ましく用いられる。また、滑り性を付与する目的で、有機及び/又は無機のフィラーを合計量で300〜1,500ppm(質量基準)含有せしめると好ましく、特に好ましくは800〜1,500ppm(質量基準)である。有機及び/又は無機のフィラー量が合計量で300ppm(質量基準)未満であると、フィルムの製造時のハンドリング性に劣り、生産性が低下する恐れがある。一方、有機及び/又は無機のフィラー量が合計量で1,500ppm(質量基準)を超えると、フィラー量が多いために層(B)は強靱性に劣り、セロハンテープ剥離テスト等でフィルム表面に衝撃を与えた際に、層(B)内で劈開が発生する恐れがある。   The layer (B) can contain a known heat stabilizer, antioxidant, chlorine scavenger and the like in order to impart resin stability. As described above, hydrotalcites are preferably used as the chlorine scavenger with little generation of foreign matters. In addition, for the purpose of imparting slipperiness, it is preferable to contain 300 to 1,500 ppm (mass basis) of organic and / or inorganic fillers, and particularly preferably 800 to 1,500 ppm (mass basis). If the total amount of the organic and / or inorganic filler is less than 300 ppm (mass basis), the handling property during production of the film is inferior, and the productivity may be lowered. On the other hand, when the total amount of organic and / or inorganic filler exceeds 1,500 ppm (mass basis), the layer (B) is inferior in toughness due to the large amount of filler, and the surface of the film is subjected to a cellophane tape peel test or the like. When an impact is applied, cleavage may occur in the layer (B).

また、該層(B)はフィルム強靱性を付与する目的で、冷キシレン可溶部を1〜10質量%含み、かつ該冷キシレン可溶部の質量平均分子量が10,000以上であると好ましく、含有量のより好ましい範囲は2〜5質量%である。該冷キシレン可溶部が1質量%未満であると、層(B)は強靱性に劣り、セロハンテープ剥離テスト等でフィルム表面に衝撃を与えた際に、層(B)内で劈開が発生する恐れがある。一方、10質量%を超えると、フィルム表面がべたつき、ブロッキングが発生する恐れがある。ここで、冷キシレン可溶部とは、ポリプロピレン樹脂等の試料を熱キシレンに完全溶解し、室温に冷却した際にキシレン中に溶解しているポリプロピレン系成分である。更に、該冷キシレン可溶部が少量のブテン−1をその構造中に有していると結晶性ポリプロピレン成分との相溶性が良好となり、強靱性が向上するので好ましい。このような構造とするためには、プロピレン系重合体に高分子量のアタクチックポリプロピレン樹脂を添加する方法が好ましく、具体的には、プロピレンホモポリマー、エチレンプロピレン共重合体、プロピレンブテン共重合体、エチレンプロピレンブテン共重合体等に、住友化学製“タフセレンT3512”(グレード名を入れる)を添加する方法が例示される。   Further, for the purpose of imparting film toughness, the layer (B) preferably contains 1 to 10% by mass of a cold xylene soluble part and the mass average molecular weight of the cold xylene soluble part is 10,000 or more. The more preferable range of the content is 2 to 5% by mass. When the cold xylene soluble part is less than 1% by mass, the layer (B) is inferior in toughness, and cleavage occurs in the layer (B) when an impact is applied to the film surface by a cellophane tape peel test or the like. There is a fear. On the other hand, if it exceeds 10% by mass, the film surface may become sticky and blocking may occur. Here, the cold xylene-soluble part is a polypropylene-based component in which a sample such as polypropylene resin is completely dissolved in hot xylene and dissolved in xylene when cooled to room temperature. Further, it is preferable that the cold xylene-soluble part has a small amount of butene-1 in the structure because the compatibility with the crystalline polypropylene component is improved and the toughness is improved. In order to obtain such a structure, a method of adding a high molecular weight atactic polypropylene resin to a propylene-based polymer is preferable. Specifically, a propylene homopolymer, an ethylene-propylene copolymer, a propylene-butene copolymer, An example is a method of adding “Tufselen T3512” (with grade name) made by Sumitomo Chemical to an ethylene propylene butene copolymer or the like.

次いで、該層(B)の表面の酸素(O)と炭素(C)の元素組成比(O/C)は0.2〜0.4であることが重要であり、更に好ましくは、0.22〜0.39である。また、更に窒素原子も存在していることが接着性を向上する上で好ましく、窒素(N)と炭素(C)の元素組成比(N/C)が0.01〜0.08であることが好ましく、さらに好ましくは0.02〜0.06である。   Next, it is important that the elemental composition ratio (O / C) of oxygen (O) and carbon (C) on the surface of the layer (B) is 0.2 to 0.4, and more preferably, 0.2. 22-0.39. Further, the presence of nitrogen atoms is also preferable for improving adhesion, and the elemental composition ratio (N / C) of nitrogen (N) to carbon (C) is 0.01 to 0.08. Is more preferable, and 0.02 to 0.06 is more preferable.

このように酸素原子及び/又は窒素原子が結合した結果として、該樹脂層表面にはカルボニル基、カルボキシル基、アミノ基、等の有極性基が形成され、表面エネルギーが上昇する。該表面エネルギーはいわゆる濡れ指数で評価した場合には、通常のポリプロピレンフイルムの表面が31mN/m程度であるのに対して、37〜56mN/m、好ましくは40〜56mN/m程度に高めることができる。   As a result of the bonding of oxygen atoms and / or nitrogen atoms in this way, polar groups such as carbonyl groups, carboxyl groups, amino groups and the like are formed on the surface of the resin layer, and the surface energy increases. When the surface energy is evaluated by a so-called wetting index, the surface of a normal polypropylene film is about 31 mN / m, whereas it is increased to 37 to 56 mN / m, preferably about 40 to 56 mN / m. it can.

このような酸素及び窒素原子を炭素原子と結合せしめる方法としては、コロナ放電処理、プラズマ処理、オゾン処理等が例示されるが、特にコロナ処理が経済性に優れるので好ましい。この場合、コロナ処理は通常の大気中でも可能であるが、前述の樹脂の劣化を防止するために不活性ガス雰囲気で処理することが好ましく、窒素ガス、炭酸ガス等のガスで空気を置換して処理することが好ましい。特に雰囲気の酸素濃度が5体積%を超えると酸化による樹脂の劣化が促進するため、5体積%以下に抑制することが好ましい。また、雰囲気ガスの好ましい組成としては窒素ガスを80〜97体積%、炭酸ガスを3〜20体積%とした組成であると蒸着金属との接着性が良好となるので好ましい。   Examples of a method for bonding such oxygen and nitrogen atoms to carbon atoms include corona discharge treatment, plasma treatment, ozone treatment, and the like, and corona treatment is particularly preferable because it is economical. In this case, the corona treatment can be performed in normal air, but it is preferable to treat in an inert gas atmosphere in order to prevent the deterioration of the resin, and the air is replaced with a gas such as nitrogen gas or carbon dioxide gas. It is preferable to process. In particular, when the oxygen concentration in the atmosphere exceeds 5% by volume, the deterioration of the resin due to oxidation is promoted. Further, as a preferable composition of the atmospheric gas, a composition in which nitrogen gas is 80 to 97% by volume and carbon dioxide gas is 3 to 20% by volume is preferable because adhesion to the deposited metal is improved.

本発明フイルムは上述の樹脂層(A)と樹脂層(B)との少なくとも2層を有しているが、樹脂層(B)を樹脂層(A)の両面に設けることも可能である。また、樹脂層(A)、樹脂層(B)と異なる、樹脂層(C)を設けて、樹脂層(B)/樹脂層(A)/樹脂層(C)の3層構成とすることも可能であり、その用途に応じて適宜層構成を選択することができる。具体的に、樹脂層(C)を設けた場合の該樹脂層(C)を構成としては、エチレンプロピレンブテン3元共重合体としてヒートシール層として活用する構成、エチレンプロピレンのブロック共重合体を用いてマット層として活用する構成等が例示される。   The film of the present invention has at least two layers of the resin layer (A) and the resin layer (B) described above, but the resin layer (B) can be provided on both surfaces of the resin layer (A). Also, a resin layer (C) different from the resin layer (A) and the resin layer (B) may be provided to form a three-layer structure of resin layer (B) / resin layer (A) / resin layer (C). It is possible, and a layer structure can be appropriately selected according to the use. Specifically, when the resin layer (C) is provided, the resin layer (C) is composed of an ethylene propylene butene terpolymer as a heat seal layer, an ethylene propylene block copolymer. The structure etc. which are used as a mat layer are exemplified.

樹脂層(B)は金属蒸着層との密着性を付与する機能を有し、層(B)の厚みは0.3μm以上あれば充分であるが、積層の均一性を考慮すると平均厚みとして、0.5〜2μmであることが好ましい。   The resin layer (B) has a function of imparting adhesion to the metal vapor-deposited layer, and it is sufficient if the thickness of the layer (B) is 0.3 μm or more, but considering the uniformity of the lamination, It is preferable that it is 0.5-2 micrometers.

また、本発明フイルムの厚みは、その用いられる用途に応じて適宜選択されるので特に限定されるものではないが、通常10〜100μmであり、特に包装用途では10〜25μmの範囲が好ましく用いられる。一方、ボトルのラベル用途においては、フイルムの腰が求められるために30μm以上の厚いフイルムが好ましく用いられ、特に好ましい厚みの範囲は40〜75μmである。   Further, the thickness of the film of the present invention is not particularly limited because it is appropriately selected depending on the use to be used, but is usually 10 to 100 μm, and in the packaging use, the range of 10 to 25 μm is preferably used. . On the other hand, in the use of a bottle label, a thick film having a thickness of 30 μm or more is preferably used since the waist of the film is required, and a particularly preferable thickness range is 40 to 75 μm.

次いで、本発明フイルムの製造方法について以下に説明するが、もちろん、これに限定されるものでは無い。   Next, the method for producing the film of the present invention will be described below, but the present invention is of course not limited thereto.

本発明フイルムは2軸延伸を施されていることが好ましい。2軸延伸が施されていないフイルムの場合、シート成型時に形成された球晶構造により透明性に劣ることがあり、また機械特性に劣ったフイルムとなりやすい。   The film of the present invention is preferably biaxially stretched. In the case of a film that has not been biaxially stretched, the film may be inferior in transparency due to the spherulite structure formed at the time of sheet molding, and tends to be inferior in mechanical properties.

2軸延伸方法としては、フラットダイ法に基づく逐次2軸延伸法、同時2軸延伸法、円形ダイ法に基づくチューブラー(バブル)法が例示されるが、フイルムの厚み均一性に優れるフラットダイ法が好ましく用いられる。   Examples of the biaxial stretching method include a sequential biaxial stretching method based on a flat die method, a simultaneous biaxial stretching method, and a tubular (bubble) method based on a circular die method, but a flat die excellent in film thickness uniformity. The method is preferably used.

以下逐次2軸延伸法による製造方法を説明する。   Hereinafter, the manufacturing method by the sequential biaxial stretching method will be described.

基層(層(A))を形成するポリプロピレン樹脂(A)と、層(B)を形成する、金属蒸着層の接着性を付与するポリプロピレン系樹脂(B)とをそれぞれ別の押出機に導き、溶融混練し均一な溶融体とする。次いでそれぞれの樹脂をポリマーフィルターを通過せしめ異物等を除去した後に、樹脂(A)と樹脂(B)とを積層体とならしめる合流装置にて樹脂(A)/樹脂(B)の積層シートを形成する。これら樹脂(A)と樹脂(B)はそれぞれ、前述のように本発明のフィルムの層(A)と層(B)を構成することになる。該合流装置はポリマー管同士を結合し口金に導いてシート成形する方法、フィードブロックにて合流させシート成形する方法、あるいはマルチマニホールドタイプの口金で結合する方法であってもいずれでも構わないが、マルチマニホールドタイプの口金よると樹脂を幅方向に拡幅した後に積層するために樹脂の積層比の均一性が優れるので好ましい。もちろん、該積層工程において、第3あるいはそれ以上の樹脂を準備しておき3層以上の層構成とすることもできる。   The polypropylene resin (A) for forming the base layer (layer (A)) and the polypropylene resin (B) for forming the layer (B) and imparting adhesion of the metal vapor deposition layer are led to different extruders, respectively. Melt and knead to make a uniform melt. Next, each resin is passed through a polymer filter to remove foreign matters and the like, and then a laminated sheet of resin (A) / resin (B) is formed with a merging device that combines resin (A) and resin (B) into a laminate. Form. These resin (A) and resin (B) constitute the layer (A) and the layer (B) of the film of the present invention as described above. The merging device may be either a method of joining polymer tubes and guiding them to a die to form a sheet, a method of merging with a feed block to form a sheet, or a method of joining with a multi-manifold type die, The multi-manifold type die is preferable because the uniformity of the resin lamination ratio is excellent because the resin is laminated after being widened in the width direction. Of course, in the laminating step, a third or more resins can be prepared to have a layer structure of three or more layers.

次いで上記のようにして得られた溶融シートを冷却ドラム上に導いて、エアー圧で密着させて冷却固化させる。この際に冷却を充分に行うことで引き続く延伸時の延伸張力を低減せしめ均一な延伸フイルムを得ることができる。冷却方法としては、シートを冷却ドラムに密着させた後に直ちに水槽に導いて冷却する方法、水を霧吹き状にして空気側のフイルム表面を冷却するする方法等の様々な冷却手段を講じることができる。特に2軸延伸後のフイルム厚みが50μmを超える場合には水冷等の冷却手段を講じると得られたフイルムの均一性、透明性が良好となるので好ましい。   Next, the molten sheet obtained as described above is guided onto a cooling drum, and is brought into close contact with air pressure to be cooled and solidified. By sufficiently cooling at this time, it is possible to reduce the stretching tension during the subsequent stretching and obtain a uniform stretched film. As a cooling method, various cooling means such as a method in which the sheet is brought into close contact with the cooling drum and immediately cooled to the water tank, and a method in which water is sprayed to cool the air-side film surface can be used. . In particular, when the film thickness after biaxial stretching exceeds 50 μm, it is preferable to take cooling means such as water cooling because the uniformity and transparency of the obtained film become good.

以上の方法により得られた未延伸シートは複数の加熱ロールに順次接触させフイルム温度を130〜160℃とした後に少なくとも1対の周速差が異なるロール間で長手方向に3〜6倍に延伸する。次いで、該一軸延伸フイルムの両端部をクリップで把持して、熱風オーブンに導いて150〜180℃に予熱して該クリップ間を広げ幅方向に7〜12倍に延伸し、引き続き幅方向に0〜10%のリラックスを許しながら熱固定する。   The unstretched sheet obtained by the above method is sequentially brought into contact with a plurality of heated rolls, and after the film temperature is set to 130 to 160 ° C., at least one pair of peripheral speed differences are stretched 3 to 6 times in the longitudinal direction. To do. Next, both ends of the uniaxially stretched film are gripped by clips, guided to a hot air oven, preheated to 150 to 180 ° C., spread between the clips, stretched 7 to 12 times in the width direction, and subsequently 0 in the width direction. Heat fix while allowing 10% relaxation.

以上により得られた2軸延伸フイルムの表面にコロナ放電処理を施し、クリップ把持部分をトリミングして巻き取る。コロナ放電処理については空気雰囲気で行ってもよいが、窒素ガス雰囲気下、又は窒素ガス/炭酸ガス雰囲気下で処理を施すと接着効果が向上するので好ましい。   The surface of the biaxially stretched film obtained as described above is subjected to corona discharge treatment, and the clip gripping portion is trimmed and wound up. The corona discharge treatment may be performed in an air atmosphere, but it is preferable to perform the treatment in a nitrogen gas atmosphere or a nitrogen gas / carbon dioxide atmosphere because the adhesion effect is improved.

本発明フイルムは以上の少なくとも層(A)/層(B)の少なくとも2層構成を有するフイルムの層(B)表面を金属蒸着受容面として使用するものである。   The film of the present invention uses the surface of the layer (B) of the film having at least two layers of the above layer (A) / layer (B) as a metal vapor deposition receiving surface.

この際に蒸着される金属種としては金属蒸気化ないしはクラスターイオン化して、真空中をとばすことができるものであれば特に限定されるものではなく、その目的に応じて適宜選択すればよい。例えば、アルミニウム、亜鉛、銅、ニッケル、クロム、錫、鉄、金、銀等が例示され、更にこれらの2元またはそれ以上を混合あるいは積層して蒸着することができる。また、これらの金属種はフイルム表面に金属層を形成する際に、あるいは金属層が形成された後に、その一部または全てが酸化されていてもよい。金属のみを蒸着した場合でも該金属蒸着膜のフイルム表面側もその反対側も金属酸化層が形成されるのが通常である。本発明フイルムにおいては形成される金属化層(金属蒸着層)の厚みは100〜800オングストロームであることが好ましい。金属化層の厚みが100オングストローム未満であると充分な表面光沢が得難くなる。一方、800オングストロームを超えると金属化層とフイルム層間のストレスが大きくなり、蒸着接着力が低下したり、経済性の点で不利になることがある。通常、充分な表面光沢度を得る目的であれば、該膜厚は300〜700オングストロームであればよい。   In this case, the metal species to be deposited is not particularly limited as long as it can be vaporized or cluster ionized and can be removed in a vacuum, and may be appropriately selected according to the purpose. For example, aluminum, zinc, copper, nickel, chromium, tin, iron, gold, silver and the like are exemplified, and these two or more may be mixed or laminated to be deposited. These metal species may be partially or wholly oxidized when the metal layer is formed on the film surface or after the metal layer is formed. Even when only metal is vapor-deposited, a metal oxide layer is usually formed on both the film surface side and the opposite side of the metal vapor-deposited film. In the film of the present invention, the thickness of the metallized layer (metal vapor deposition layer) formed is preferably 100 to 800 angstroms. When the thickness of the metallized layer is less than 100 angstroms, it is difficult to obtain a sufficient surface gloss. On the other hand, if it exceeds 800 angstroms, the stress between the metallized layer and the film layer increases, which may reduce the adhesion force of vapor deposition and may be disadvantageous in terms of economy. Usually, for the purpose of obtaining sufficient surface glossiness, the film thickness may be 300 to 700 angstroms.

また、本発明を包装用途あるいは工業用途に使用する場合は、該金属はアルミニウムであることが耐久性と経済性の点で優れている。   Moreover, when this invention is used for a packaging use or an industrial use, it is excellent in terms of durability and economy that the metal is aluminum.

アルミニウムを金属化層としてフイルム表面に形成するためには、通常、減圧雰囲気下でアルミニウムを加熱・蒸着せしめフイルム表面で凝着させる真空蒸着技術が用いられる。   In order to form aluminum on the film surface as a metallized layer, a vacuum vapor deposition technique is generally used in which aluminum is heated and vapor-deposited in a reduced-pressure atmosphere to adhere to the film surface.

真空蒸着法としては、ロール状に巻かれたフイルムを減圧槽内に設置して蒸着を行うバッチ式蒸着法、フイルムロールを大気中から多段に設置されたニップロール間を通過させながら次第に減圧して蒸着する連続式蒸着法等が例示されるが、以下バッチ式蒸着法について説明する。   The vacuum deposition method is a batch type deposition method in which a film wound in a roll is placed in a decompression tank for deposition, and the film roll is gradually decompressed while passing between nip rolls installed in multiple stages from the atmosphere. Examples of the continuous vapor deposition method for vapor deposition include the batch vapor deposition method.

バッチ式蒸着法では、蒸着加工を施すフイルムをロール状としたものを、真空蒸着装置内に設置して、10−2torr以下の減圧下で巻きだし、−10〜−40℃程度に冷却されたクーリングドラムに密着させながら、アルミニウム蒸発源から金属蒸気を発生せしめ、該クーリングドラム上にあるフイルム表面で凝着せしめ、別な巻き取り軸で巻き取る。 In the batch type vapor deposition method, a film to be vapor-deposited in a roll shape is placed in a vacuum vapor deposition apparatus, unwound under a reduced pressure of 10 −2 torr or less, and cooled to about −10 to −40 ° C. While being in close contact with the cooling drum, metal vapor is generated from an aluminum evaporation source, adhered on the surface of the film on the cooling drum, and wound on another winding shaft.

この際に単位時間の金属蒸発量と蒸着付着効率並びにフイルムの搬送速度で金属化層の厚みをコントロールすることができる。該金属蒸着前後で適宜、グロー処理等の表面処理を適宜組み合わせることができるし、他の金属及び/または金属酸化物・シリコーン化合物を連続して、あるいは混合して蒸着することも可能である。   At this time, the thickness of the metallized layer can be controlled by the amount of metal evaporation per unit time, the deposition adhesion efficiency, and the film transport speed. Surface treatment such as glow treatment can be appropriately combined before and after the metal deposition, and other metals and / or metal oxide / silicone compounds can be deposited continuously or mixed.

該金属蒸発源としては、導電性セラミックス製のボートに電流を流し加熱せしめ、そのボート上にワイアー状の金属を連続的にフィードするワイアーフィード方式、坩堝中に金属塊を投入して、該坩堝または金属そのものを誘導加熱または電子ビーム等で加熱蒸発させる方法等が例示される。求められる品位、コストに応じていずれの蒸発源をも随時選定することができる。   As the metal evaporation source, an electric current is passed through a boat made of conductive ceramics and heated, and a wire feed system in which a wire-like metal is continuously fed onto the boat. Alternatively, a method of evaporating the metal itself by induction heating or electron beam is exemplified. Any evaporation source can be selected at any time according to the required quality and cost.

こうして得られた本発明のフィルムはPETボトル、PPボトル、食缶等に粘着剤を介して貼り合わせ使用されるラベル用途、写真アルバムに使用されるカバー(保護)用途、工程紙として使用される離型用途等に好適に使用できる。また、金属蒸着を施した際に金属蒸着層との接着性に優れ、かつ抗表面劈開性、抗材破性に優れるため、金属蒸着が必要なボトルのラベル用途に特に好適に使用できる。   The film of the present invention thus obtained is used as a label used for bonding to an PET bottle, PP bottle, food can, etc. via an adhesive, used as a cover (protection) used in a photo album, and used as process paper. It can be suitably used for mold release applications. Moreover, since it is excellent in adhesiveness with a metal vapor deposition layer when it carries out metal vapor deposition, and is excellent in an anti-surface cleaving property and an anti-material fracture property, it can use especially suitably for the label use of the bottle which requires metal vapor deposition.

以下実施例に基づき、本発明フィルムの実施態様を説明するが、本実施例に限定されるものではない。   Hereinafter, embodiments of the film of the present invention will be described based on examples, but the present invention is not limited to these examples.

本発明における特性値の測定方法、並びに効果の評価方法は次のとおりである。   The characteristic value measurement method and the effect evaluation method in the present invention are as follows.

(1)ポリプロピレン系樹脂の共重合量
例えば以下のとおりである。
(1) Amount of copolymerization of polypropylene resin Examples are as follows.

(ブテン−1共重合量)
プロピレンとブテン−1との共重合体樹脂について、140℃での13C−NMR法による分析を行い、スペクトルを得た。分析条件は次の通りである。
(Butene-1 copolymerization amount)
The copolymer resin of propylene and butene-1 was analyzed by 13 C-NMR method at 140 ° C. to obtain a spectrum. The analysis conditions are as follows.

約0.3gの樹脂サンプル及び約5mlのo−ジクロロベンゼンをサンプル管に装入し140℃で溶解;10mmφプローブを使用;測定装置 日本電子社製GX−270(6.34T);13C観測周波数 67.94MHz;ロック溶媒 ベンゼン−d6;パルス幅 17μs(90°パルス);積算繰り返し時間 25s;測定温度 140℃;試料回転数 15Hz
<解析条件>
LBを5.0としてフーリエ変換を行い、ポリプロピレン(PP)のメチル炭素のピークを28.29ppm、ポリブテン−1のメチル炭素のピークを34.47ppmとした。Aliceソフト バージョン4.8(日本電子データム社製)を用いて、各ピークの面積積分値を求めた。ブテン−1の含有率は、PPのメチル炭素のピーク強度IPPとブテン−1のメチル炭素の強度Iを用い、下の計算式より求めた。
About 0.3 g of resin sample and about 5 ml of o-dichlorobenzene are charged into a sample tube and dissolved at 140 ° C .; a 10 mmφ probe is used; a measuring device GX-270 (6.34T) manufactured by JEOL Ltd .; 13 C observation Frequency 67.94 MHz; Rock solvent benzene-d6; Pulse width 17 μs (90 ° pulse); Integrated repetition time 25 s; Measurement temperature 140 ° C .; Sample rotation speed 15 Hz
<Analysis conditions>
Fourier transform was performed with LB as 5.0, and the methyl carbon peak of polypropylene (PP) was 28.29 ppm, and the methyl carbon peak of polybutene-1 was 34.47 ppm. The area integrated value of each peak was determined using Alice software version 4.8 (manufactured by JEOL Datum). Content of butene-1, using the intensity I B of methyl carbon peak intensity of PP in the methyl carbon I PP and butene-1 was determined from the equation below.

PB含有率(質量%)=I×56/(IPP×42+I×56)×100
(2)融点(℃)
セイコー社製RDC220示差走査熱量計を用いて、下記以下の条件で測定を行った。
PB content (mass%) = I B × 56 / (I PP × 42 + I B × 56) × 100
(2) Melting point (° C)
The measurement was performed under the following conditions using a Seiko RDC220 differential scanning calorimeter.

<試料の調整>
検体1〜5mgを測定用のアルミパンに封入する。尚、フイルムに金属蒸着等が施されている場合は適宜除去する。
<Sample preparation>
A sample of 1 to 5 mg is enclosed in an aluminum pan for measurement. In addition, when the metal vapor deposition etc. are given to the film, it removes suitably.

<測定>
以下の(a)→(b)→(c)のステップでフイルムを溶融・再結晶・再溶融させる。樹脂の融点は2nd Runで観測される融解ピークの内で最も高い融解ピーク温度を融点とした。n=3の平均値を求めた。
<Measurement>
The film is melted / recrystallized / remelted in the following steps (a) → (b) → (c). The melting point of the resin was defined as the highest melting peak temperature among melting peaks observed at 2nd Run. The average value of n = 3 was obtained.

(a)1st Run 30℃→280℃(昇温速度20℃/分)
(b)Tmc 280℃で5分保持後に20℃/分で 30℃まで冷却
(c)2nd Run 30℃→280℃(昇温速度20℃/分)
(3)溶融流動指数(MFR(g/10分))
ポリプロピレン樹脂の230℃におけるメルトフローレート
JIS K−7210(1999)に示されるポリプロピレン試験方法(230℃、21.18N)、ポリエチレン試験方法(190℃、21.18N)に準じて測定した。
(A) 1st Run 30 ° C. → 280 ° C. (temperature increase rate 20 ° C./min)
(B) Tmc held at 280 ° C. for 5 minutes and then cooled to 30 ° C. at 20 ° C./min. (C) 2nd Run 30 ° C. → 280 ° C. (temperature increase rate 20 ° C./min)
(3) Melt flow index (MFR (g / 10 min))
Melt flow rate of polypropylene resin at 230 ° C. Measurement was performed according to a polypropylene test method (230 ° C., 21.18 N) and a polyethylene test method (190 ° C., 21.18 N) shown in JIS K-7210 (1999).

(4)フイルム表面の炭素原子に対する酸素原子の割合(O/C)、および窒素原子の割合(N/C)
国際電気株式会社製のESCAスペクトロメーターES200型を用い、以下条件でフィルム表面を測定した。励起X線:Al Kα線(1486.6eV)、X線出力:10Kv 20mA、温度:20℃、運動エネルギー補正:中性炭素(−CH−)の運動エネルギーを1202.0eVに合わせた。得られたエネルギー値からC1sのピークとO1sのピーク面積の比を、O/Cとし、またC1sとN1sのピーク面積の比を、N/Cとした。
(4) Ratio of oxygen atoms to carbon atoms on the film surface (O / C), and ratio of nitrogen atoms (N / C)
The film surface was measured under the following conditions using ESCA spectrometer model ES200 manufactured by Kokusai Electric Co., Ltd. Excitation X-ray: Al Kα ray (1486.6 eV), X-ray output: 10 Kv 20 mA, temperature: 20 ° C., kinetic energy correction: the kinetic energy of neutral carbon (—CH 2 —) was adjusted to 1202.0 eV. From the obtained energy value, the ratio of the peak area of C1s and the peak area of O1s was O / C, and the ratio of the peak areas of C1s and N1s was N / C.

(5)濡れ指数(濡れ張力)
JIS K−6768(1999)に準じて測定した。
(5) Wetting index (wetting tension)
It measured according to JIS K-6768 (1999).

(6)フイルムの厚み構成および金属蒸着層の厚み
フィルムの断面を透過型電子顕微鏡(TEM)にて以下の条件で写真撮影し、フィルムの厚み構成および金属蒸着層の厚みを測定した。装置:日本電子(株)製JEM−1200EX、観察倍率:フイルムの厚み構成の場合1,000倍、金属蒸着層の厚みの場合40万倍、加速電圧:100kV
(7)グロス(光沢度)
JIS K−7105(1981)に準じ、スガ試験機株式会社製 デジタル変角光沢計UGV−5Dを用いて入射角60°受光角60°の条件で測定した5点のデータの平均値を光沢度とした。蒸着面のグロスは400%以上であることが望ましい。
(6) Thickness constitution of film and thickness of metal vapor deposition layer The cross section of the film was photographed with a transmission electron microscope (TEM) under the following conditions, and the thickness constitution of the film and the thickness of the metal vapor deposition layer were measured. Apparatus: JEM-1200EX manufactured by JEOL Ltd., Observation magnification: 1,000 times for film thickness configuration, 400,000 times for metal deposition layer thickness, acceleration voltage: 100 kV
(7) Gloss (Glossiness)
According to JIS K-7105 (1981), the average value of five data measured under the conditions of an incident angle of 60 ° and a light receiving angle of 60 ° using a digital variable angle gloss meter UGV-5D manufactured by Suga Test Instruments Co., Ltd. It was. The gloss of the vapor deposition surface is desirably 400% or more.

(8)蒸着密着力
金属アルミニウムをその厚みが500±50オングストローム(光学濃度(OD)換算2±0.2)となるようにフイルム表面(層(B)側の面)に蒸着したものをサンプルとした。該サンプルに日東電工(株)製ポリエステル粘着テープNO.31B を4.2mN/mmの圧力で貼付し、剥離した。
(8) Vapor deposition adhesion strength Sample of metal aluminum deposited on the film surface (layer (B) side) so that its thickness is 500 ± 50 angstroms (optical density (OD) conversion 2 ± 0.2) It was. Nitto Denko Co., Ltd. polyester adhesive tape NO. 31B was applied at a pressure of 4.2 mN / mm 2 and peeled off.

金属がフィルムに付着残存していた面積を求め、以下5段階の級別評価を行った。   The area in which the metal remained attached to the film was determined, and the following five grades were evaluated.

4級以上であれば問題なく使用できるが、2級以下では実用上問題を生じる。   If it is 4th grade or higher, it can be used without problems, but if it is 2nd grade or lower, practical problems arise.

5級:残存面積90%以上
4級:残存面積75%以上90%未満
3級:残存面積50%以上75%未満
2級:残存面積25%以上50%未満
1級:残存面積25%未満
(9)表面強靱性
上述の(8)蒸着密着力と同様の方法で得られたフィルムサンプルの状態を次の基準で判定した。
Grade 5: Residual area 90% or more Grade 4: Residual area 75% or more and less than 90% Grade 3: Residual area 50% or more and less than 75% Grade 2: Residual area 25% or more and less than 50% Grade 1: Residual area less than 25% ( 9) Surface toughness The state of the film sample obtained by the same method as the above-mentioned (8) vapor deposition adhesion was determined according to the following criteria.

○:表面劈開しなかった。       ○: The surface was not cleaved.

△:フィルムの一部で表面劈開する箇所がある。       Δ: A part of the film has a surface cleaved portion.

×:フィルムの全面で完全に表面劈開する。       X: The surface is completely cleaved over the entire surface of the film.

(10)面配向係数
面配向係数は、ナトリウムD線(波長589nm)を光源として、アッベ屈折計を用いて測定した。長手方向、幅方向、厚み方向の屈折率(MDn、TDn、ZDn)から得られる面配向係数Fn=(MDn+TDn)/2−ZDnを計算して求めた。測定はマウント液として、サリチル酸メチル溶液を用い、層(B)および層(C)それぞれの面配向係数を求めた。また層(A)の面配向係数については層(B)を剃刀で剥がして層(A)表面を露出させ、同様に測定した。
(10) Plane orientation coefficient The plane orientation coefficient was measured using an Abbe refractometer using sodium D line (wavelength 589 nm) as a light source. The plane orientation coefficient Fn = (MDn + TDn) / 2−ZDn obtained from the refractive indexes (MDn, TDn, ZDn) in the longitudinal direction, the width direction, and the thickness direction was obtained by calculation. For the measurement, a methyl salicylate solution was used as the mount solution, and the plane orientation coefficients of the layers (B) and (C) were determined. Further, the plane orientation coefficient of the layer (A) was measured in the same manner by peeling off the layer (B) with a razor to expose the surface of the layer (A).

(11)冷キシレン可溶部(CXS値)
ポリプロピレンフィルム試料0.5gを沸騰キシレン100mlに溶解して放冷後、2
0℃の恒温水槽で1時間再結晶化させた後のろ過液に溶解しているポリプロピレン系成分を液体クロマトグラフ法にて定量する(X(g))。
(11) Cold xylene soluble part (CXS value)
After dissolving 0.5 g of a polypropylene film sample in 100 ml of boiling xylene and allowing to cool, 2
The polypropylene component dissolved in the filtrate after recrystallization in a constant temperature water bath at 0 ° C. for 1 hour is quantified by liquid chromatography (X (g)).

試料0.5gの精量値(X0(g))を用いて以下の式で求める。   Using the precision value (X0 (g)) of 0.5 g of the sample, the following formula is used.

CXS値(質量%)=(X/X0)×100
(12)質量平均分子量
ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。
CXS value (mass%) = (X / X0) × 100
(12) Mass average molecular weight It calculated | required on the basis of monodisperse polystyrene using the gel permeation chromatography (GPC).

質量平均分子量(Mw)は分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。   The mass average molecular weight (Mw) is defined by the following equation by the number of molecules (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained through the molecular weight calibration curve.

質量平均分子量:Mw=Σ(Ni・Mi)/Σ(Ni・Mi)
なお、測定条件は次のようにした(< >内はメーカーを示す)。
Mass average molecular weight: Mw = Σ (Ni · Mi 2 ) / Σ (Ni · Mi)
The measurement conditions were as follows (<> indicates manufacturer).

装置: ゲル浸透クロマトグラフ GPC−150C <Waters>
検出器:示差屈折率検出器 RI 感度 32×、20% <Waters>
カラム:Shodex HT−806M(2)<昭和電工>
溶媒:1,2,4−トリクロロベンゼン(BHT 0.1w/v%添加)<Aldrich>
流速:1.0ml/min
温度:135℃
試料: 溶解条件 165±5℃×10分(攪拌)
濃度 0.20w/v%
濾過 メンブレンフィルター孔径0.45μm<昭和電工>
注入量:200μl
分子量校正:単分散ポリスチレン(東ソー)を検体と同一条件で測定して得られた分子量と保持時間との関係を用い、ポリプロピレンの分子量とした。ポリスチレン基準の相対値である
データ処理:(株)東レリサーチセンター製GPCデータ処理システムによった。
Apparatus: Gel permeation chromatograph GPC-150C <Waters>
Detector: Differential refractive index detector RI sensitivity 32 ×, 20% <Waters>
Column: Shodex HT-806M (2) <Showa Denko>
Solvent: 1,2,4-trichlorobenzene (BHT 0.1 w / v% added) <Aldrich>
Flow rate: 1.0 ml / min
Temperature: 135 ° C
Sample: Dissolution condition 165 ± 5 ° C. × 10 minutes (stirring)
Concentration 0.20w / v%
Filtration Membrane filter pore size 0.45μm <Showa Denko>
Injection volume: 200 μl
Molecular weight calibration: The molecular weight of polypropylene was determined using the relationship between molecular weight and retention time obtained by measuring monodisperse polystyrene (Tosoh) under the same conditions as the specimen. Data processing which is a relative value based on polystyrene: According to a GPC data processing system manufactured by Toray Research Center.

(13)フイルムの製膜方法
フイルム層構成としては、3層のポリプロピレン系樹脂層からなるフイルムを製膜して特性評価を行う。
(13) Film Formation Method As a film layer structure, a film made of three polypropylene resin layers is formed and the characteristics are evaluated.

層(A)としては表1に示す樹脂a1、a2、層(B)としては表1に示す樹脂b1〜b9、層(C)としては表1に示す樹脂cを準備した。   Resins a1 and a2 shown in Table 1 were prepared as the layer (A), resins b1 to b9 shown in Table 1 were prepared as the layer (B), and a resin c shown in Table 1 was prepared as the layer (C).

ブテン−1あるいはエチレンはポリプロピレンホモポリマーを重合する際に、第一段目のリアクターにブテン−1あるいはエチレンモノマーを導入し重合せしめポリプロピレン中に分散させた。   When butene-1 or ethylene was polymerized, the butene-1 or ethylene monomer was introduced into the first reactor and polymerized and dispersed in polypropylene.

また、該b1〜b9、cについてアンチブロッキング剤として水澤化学工業(株)製“シルトン”JC−20(シリカ粒子)を所定の含有量となるように添加した。   In addition, “silton” JC-20 (silica particles) manufactured by Mizusawa Chemical Industry Co., Ltd. was added as an antiblocking agent for b1 to b9 and c so as to have a predetermined content.

また、該b1〜b9、cについて非晶性ポリプロピレンとして住友化学(株)製「タフセレン」を2軸混練機で所定の含有量となるように練り込んだ。   Moreover, about the said b1-b9, c, the Sumitomo Chemical Co., Ltd. product "Tough selenium" was kneaded as a non-crystalline polypropylene so that it might become predetermined | prescribed content with a biaxial kneader.

これらの樹脂は、それぞれ単軸押出機3台(バレル径65mmφ:Ex1、30mmφ:Ex2、30mmφ:Ex3)を用いて溶融押出し、層(B)/層(A)/層(C)の3層のからなる樹脂シートを形成できるマルチマニホールドダイに導いてシート状に押出す。該ダイより吐出した溶融シートは25℃に設定した冷却ドラムにエアー圧で密着させ、更に該冷却ドラムのほぼ半周を水槽に水没させ、溶融シートを空気圧で冷却ドラムに押しつけながら水槽中に導いて冷却する。該水槽の水温は25℃に維持するように冷却水を循環させる。続いて該シートを6本の加熱ロール群で所定の温度に予熱した後に1対の周速差を設けたロール間で所定の倍率に長手方向に延伸した。次いで該延伸フィルムをクリップで把持して熱風オーブンに導いて所定の温度に予熱した後に幅方向に所定の倍率に延伸し、5%のリラックスをとって熱固定した。こうして得られた2軸延伸フイルムを空気中でコロナ放電処理し、エッジを取り除きロール状に巻き取った。尚、コロナ放電処理をする際の条件は、以下のように設定した。   Each of these resins was melt-extruded using three single-screw extruders (barrel diameter 65 mmφ: Ex1, 30 mmφ: Ex2, 30 mmφ: Ex3), and three layers of layer (B) / layer (A) / layer (C) A resin sheet consisting of the above is introduced into a multi-manifold die that can be formed and extruded into a sheet shape. The molten sheet discharged from the die is brought into close contact with a cooling drum set at 25 ° C. with air pressure, and further, substantially half of the cooling drum is submerged in the water tank, and the molten sheet is guided into the water tank while being pressed against the cooling drum with air pressure. Cooling. Cooling water is circulated so that the water temperature of the water tank is maintained at 25 ° C. Subsequently, the sheet was preheated to a predetermined temperature with a group of six heating rolls and then stretched in the longitudinal direction at a predetermined magnification between rolls provided with a pair of peripheral speed differences. Next, the stretched film was gripped with a clip, guided to a hot air oven, preheated to a predetermined temperature, stretched at a predetermined magnification in the width direction, and heat-fixed with 5% relaxation. The biaxially stretched film thus obtained was subjected to corona discharge treatment in air, the edges were removed, and the film was wound into a roll. The conditions for the corona discharge treatment were set as follows.

雰囲気:窒素ガス90体積%+炭酸ガス10体積%
フィルム温度:60℃
処理強度:23W/m/min
こうして得られた2軸延伸ポリプロピレンフイルムを坩堝式蒸着機にて金属アルミニウムを膜厚が500オングストロームを中心値として±50オングストロームとなるように蒸着して特性評価を行なった。
Atmosphere: 90% by volume of nitrogen gas + 10% by volume of carbon dioxide gas
Film temperature: 60 ° C
Processing intensity: 23 W / m 2 / min
The biaxially stretched polypropylene film thus obtained was subjected to characteristic evaluation by depositing metallic aluminum with a crucible type vapor deposition device so that the film thickness was ± 50 angstroms with a central value of 500 angstroms.

以下、実施、比較例に基づいて、本発明について説明する。   Hereinafter, the present invention will be described based on implementation and comparative examples.

(実施例1)
蒸着面側(層(B))の樹脂として樹脂b1、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.009、0.015、0.011、金属蒸着した際の密着力は4級で、表面光沢度は550%であった。
(Example 1)
Biaxial, using resin b1 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the obtained biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.009 and 0.015, respectively. 0.011, the adhesion strength when metal was deposited was grade 4, and the surface glossiness was 550%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力に優れており、蒸着外観、表面強靱性も良好であった。   The biaxially oriented polypropylene film thus obtained was excellent in metal vapor deposition adhesive force, and had good vapor deposition appearance and surface toughness.

(実施例2)
蒸着面側(層(B))の樹脂として樹脂b2、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。また、層(B)表面にコロナ放電処理を施す際の投入電力条件は実施例1と同じにし、雰囲気は窒素ガス:炭酸ガスの割合が容積比で9:1となるように設定した。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.25、(N/C)は0.04、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は5級で、表面光沢度は570%であった。
(Example 2)
Biaxially using resin b2 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. In addition, the input power conditions for performing the corona discharge treatment on the surface of the layer (B) were the same as those in Example 1, and the atmosphere was set so that the ratio of nitrogen gas: carbon dioxide gas was 9: 1 by volume ratio. (O / C) on the surface of the layer (B) of the obtained biaxially oriented polypropylene film is 0.25, (N / C) is 0.04, and the plane orientation of the layers (A), (B), (C) The coefficients were 0.010, 0.015, and 0.011, respectively. The adhesion strength when metal was deposited was grade 5, and the surface glossiness was 570%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力に極めて優れており、蒸着外観、表面強靱性も良好であった。   The biaxially oriented polypropylene film thus obtained was extremely excellent in metal vapor deposition adhesion, and had good vapor deposition appearance and surface toughness.

(実施例3)
蒸着面側(層(B))の樹脂として樹脂b2、コア層(層(A))として樹脂a2、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は4級で、表面光沢度は570%であった。
(Example 3)
Biaxially using resin b2 as the resin on the deposition surface side (layer (B)), resin a2 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.010 and 0.015, respectively. 0.011, the adhesion strength when metal was deposited was grade 4, and the surface glossiness was 570%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力に優れており、蒸着外観、表面強靱性も良好であった。   The biaxially oriented polypropylene film thus obtained was excellent in metal vapor deposition adhesive force, and had good vapor deposition appearance and surface toughness.

(実施例4)
蒸着面側(層(B))の樹脂として樹脂b3、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は4級で、表面光沢度は485%であった。
Example 4
Biaxially using resin b3 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.010 and 0.015, respectively. 0.011, the adhesion strength when metal was deposited was grade 4, and the surface glossiness was 485%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力に優れており、蒸着外観、表面強靱性も良好であった。   The biaxially oriented polypropylene film thus obtained was excellent in metal vapor deposition adhesive force, and had good vapor deposition appearance and surface toughness.

(実施例5)
蒸着面側(層(B))の樹脂として樹脂b4、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.008、0.015、0.011、金属蒸着した際の密着力は5級で、表面光沢度は400%であった。
(Example 5)
Biaxially using resin b4 as the resin on the vapor deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the vapor deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the obtained biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.008 and 0.015, respectively. 0.011. The adhesion strength when metal was deposited was grade 5, and the surface glossiness was 400%.

こうして得られた2軸配向ポリプロピレンフィルムは蒸着外観にやや劣るものの、金属蒸着接着力に優れており、表面強靱性も良好であった。   The biaxially oriented polypropylene film obtained in this way was slightly inferior in vapor deposition appearance, but was excellent in metal vapor deposition adhesion and good in surface toughness.

(実施例6)
蒸着面側(層(B))の樹脂として樹脂b5、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.011、0.015、0.011、金属蒸着した際の密着力は3級で、表面光沢度は580%であった。
(Example 6)
Biaxially using resin b5 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.011 and 0.015, respectively. , 0.011, the adhesion when the metal was deposited was grade 3, and the surface glossiness was 580%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力にやや劣るものの、蒸着外観、表面強靱性も良好であった。   Although the biaxially oriented polypropylene film thus obtained was slightly inferior to the metal vapor deposition adhesive force, the vapor deposition appearance and surface toughness were also good.

(実施例7)
蒸着面側(層(B))の樹脂として樹脂b1、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。また、層(B)表面にコロナ放電処理を施す際の雰囲気は実施例1と同様にして、処理電力を実施例1の0.9倍となるように設定し、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.2、層(A)、(B)、(C)の面配向係数はそれぞれ0.009、0.015、0.011、金属蒸着した際の密着力は3級で、表面光沢度は550%であった。
(Example 7)
Biaxial, using resin b1 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. In addition, the atmosphere when performing the corona discharge treatment on the surface of the layer (B) is set in the same manner as in Example 1 so that the processing power is 0.9 times that in Example 1, and the surface of the layer (B) is air. It was wound up after corona discharge treatment in an atmosphere. The (O / C) on the surface of the layer (B) of the obtained biaxially stretched polypropylene film is 0.2, and the plane orientation coefficients of the layers (A), (B), and (C) are 0.009 and 0.015, respectively. , 0.011, the adhesion when the metal was deposited was grade 3, and the surface gloss was 550%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力にやや劣るものの、蒸着外観、表面強靱性も良好であった。   Although the biaxially oriented polypropylene film thus obtained was slightly inferior to the metal vapor deposition adhesive force, the vapor deposition appearance and surface toughness were also good.

(実施例8)
蒸着面側(層(B))の樹脂として樹脂b1、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に142℃に予熱した後に4.8倍に延伸し、更に横方向に162℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.008、0.013、0.009、金属蒸着した際の密着力は4級で、表面光沢度は480%であった。
(Example 8)
Biaxial, using resin b1 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). In accordance with the method described above, the film was formed by preheating to 142 ° C. in the longitudinal direction and then stretching 4.8 times, and further preheating to 162 ° C. in the transverse direction and stretching 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the obtained biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.008 and 0.013, respectively. 0.009, the adhesion when the metal was deposited was grade 4, and the surface glossiness was 480%.

こうして得られた2軸配向ポリプロピレンフィルムは、蒸着時に熱シワを生じる部分があり、蒸着加工性、蒸着外観にやや劣るものの、金属蒸着接着力に優れており、表面強靱性も良好であった。   The biaxially oriented polypropylene film obtained in this manner had a portion that generates heat wrinkles during vapor deposition, and although it was somewhat inferior in vapor deposition workability and vapor deposition appearance, it was excellent in metal vapor deposition adhesion and had good surface toughness.

(実施例9)
蒸着面側(層(B))の樹脂として樹脂b1、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に138℃に予熱した後に4.8倍に延伸し、更に横方向に158℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.012、0.017、0.013、金属蒸着した際の密着力は4級で、表面光沢度は510%であった。
Example 9
Biaxial, using resin b1 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). In accordance with the above-mentioned method, the film-forming method was preheated to 138 ° C. in the longitudinal direction and then stretched 4.8 times, and further preheated to 158 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the obtained biaxially oriented polypropylene film (B) is 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) are 0.012 and 0.017, respectively. 0.013, adhesion strength when metal was deposited was grade 4, and surface glossiness was 510%.

こうして得られた2軸配向ポリプロピレンフィルムは、やや表面強靱性に劣るものの、金属蒸着接着力に優れており、蒸着外観も良好であった。   The biaxially oriented polypropylene film obtained in this way was slightly inferior in surface toughness, but was excellent in metal vapor deposition adhesion and good in vapor deposition appearance.

(実施例10)
蒸着面側(層(B))の樹脂として樹脂b6、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は4級で、表面光沢度は580%であった。
(Example 10)
Biaxially using resin b6 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) on the opposite side to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.010 and 0.015, respectively. 0.011, the adhesion strength when metal was deposited was grade 4, and the surface glossiness was 580%.

こうして得られた2軸配向ポリプロピレンフィルムは、生産時のハンドリング性にやや劣るものの、金属蒸着接着力に優れており、蒸着外観、表面強靱性も極めて良好であった。   Although the biaxially oriented polypropylene film thus obtained was slightly inferior in handling at the time of production, it was excellent in adhesion to metal vapor deposition and had very good vapor deposition appearance and surface toughness.

(実施例11)
蒸着面側(層(B))の樹脂として樹脂b7、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は4級で、表面光沢度は530%であった。
Example 11
Biaxially using resin b7 as the resin on the vapor deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the vapor deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.010 and 0.015, respectively. , 0.011, the adhesion when the metal was deposited was grade 4, and the surface glossiness was 530%.

こうして得られた2軸配向ポリプロピレンフィルムは、やや表面強靱性に劣るものの、金属蒸着接着力に優れており、蒸着外観も良好であった。   The biaxially oriented polypropylene film obtained in this way was slightly inferior in surface toughness, but was excellent in metal vapor deposition adhesion and good in vapor deposition appearance.

(実施例12)
蒸着面側(層(B))の樹脂として樹脂b8、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は4級で、表面光沢度は560%であった。
Example 12
Biaxially using resin b8 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) on the side opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.010 and 0.015, respectively. , 0.011, the adhesion strength when metal was deposited was grade 4, and the surface glossiness was 560%.

こうして得られた2軸配向ポリプロピレンフィルムは、やや表面強靱性に劣るものの、金属蒸着接着力に優れており、蒸着外観も良好であった。   The biaxially oriented polypropylene film obtained in this way was slightly inferior in surface toughness, but was excellent in metal vapor deposition adhesion and good in vapor deposition appearance.

(比較例1)
蒸着面側(層(B))の樹脂として樹脂b9、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.007、0.015、0.011、金属蒸着した際の密着力は5級で、表面光沢度は340%であった。
(Comparative Example 1)
Biaxially using resin b9 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the obtained biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.007 and 0.015, respectively. , 0.011, the adhesion when metal was deposited was grade 5, and the surface gloss was 340%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力に極めて優れており、表面強靱性も良好であるものの、表面光沢度が低く蒸着外観に劣り、実用に耐えないものであった。   The biaxially oriented polypropylene film thus obtained was extremely excellent in metal vapor deposition adhesive force and surface toughness, but had a low surface glossiness and poor vapor deposition appearance, and could not withstand practical use.

(比較例2)
蒸着面側(層(B))の樹脂として樹脂c、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.011、0.015、0.011、金属蒸着した際の密着力は2級で、表面光沢度は550%であった。
(Comparative Example 2)
Biaxially using resin c as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the resulting biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.011 and 0.015, respectively. 0.011, the adhesion strength when metal was deposited was second grade, and the surface glossiness was 550%.

こうして得られた2軸配向ポリプロピレンフィルムは、蒸着外観、表面強靱性は良好なものの、金属蒸着接着力に劣り、実用に耐えないものであった。   The biaxially oriented polypropylene film thus obtained had good vapor deposition appearance and surface toughness, but was inferior in metal vapor deposition adhesion and could not withstand practical use.

(比較例3)
蒸着面側(層(B))の樹脂として樹脂b2、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に140℃に予熱した後に4.8倍に延伸し、更に横方向に160℃に予熱して9倍に延伸した。
(Comparative Example 3)
Biaxially using resin b2 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). The film forming method was preheated to 140 ° C. in the longitudinal direction and stretched 4.8 times according to the above method, and further preheated to 160 ° C. in the transverse direction and stretched 9 times.

また、層(B)表面にコロナ放電処理を施す際の雰囲気は実施例1と同様にして、処理電力を実施例1の0.5倍となるように設定し、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.10、層(A)、(B)、(C)の面配向係数はそれぞれ0.010、0.015、0.011、金属蒸着した際の密着力は1級で、表面光沢度は540%であった。   The atmosphere when the corona discharge treatment is performed on the surface of the layer (B) is set in the same manner as in Example 1 so that the treatment power is 0.5 times that in Example 1, and the surface of the layer (B) is air. It was wound up after corona discharge treatment in an atmosphere. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (O / C) on the surface of the layer (B) of the obtained biaxially oriented polypropylene film is 0.10, and the plane orientation coefficients of the layers (A), (B), and (C) are 0.010 and 0.015, respectively. 0.011, the adhesion strength when metal was deposited was first grade, and the surface glossiness was 540%.

こうして得られた2軸配向ポリプロピレンフィルムは、蒸着外観、表面強靱性は良好なものの、金属蒸着接着力に劣り、実用に耐えないものであった。   The biaxially oriented polypropylene film thus obtained had good vapor deposition appearance and surface toughness, but was inferior in metal vapor deposition adhesion and could not withstand practical use.

(比較例4)
蒸着面側(層(B))の樹脂として樹脂b1、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に145℃に予熱した後に4.8倍に延伸し、更に横方向に165℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.007、0.012、0.008、金属蒸着した際の密着力は4級で、表面光沢度は380%であった。
(Comparative Example 4)
Biaxial, using resin b1 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). In accordance with the above-mentioned method, the film-forming method was preheated to 145 ° C in the longitudinal direction and then stretched 4.8 times, and further preheated to 165 ° C in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (B / C) surface (O / C) of the obtained biaxially stretched polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.007 and 0.012, respectively. 0.008, adhesion when the metal was deposited was grade 4, and the surface gloss was 380%.

こうして得られた2軸配向ポリプロピレンフィルムは、金属蒸着接着力に優れており、表面強靱性も良好であるものの、蒸着時に熱シワを生じ蒸着加工性に劣り、さらに表面光沢度が低く蒸着外観に劣り、実用に耐えないものであった。   The biaxially oriented polypropylene film thus obtained has excellent metal vapor deposition adhesiveness and surface toughness, but has heat wrinkles during vapor deposition and poor vapor deposition processability, and has a low surface glossiness and a vapor deposition appearance. It was inferior and could not stand practical use.

(比較例5)
蒸着面側(層(B))の樹脂として樹脂b1、コア層(層(A))として樹脂a1、蒸着面と反対側の表面層(層(C))として樹脂cを用いて、2軸延伸後のフイルム厚みがそれぞれ、1:48:1μm(合計厚みが50μm)となるように積層した。製膜方法は前記方法に従い、長手方向に135℃に予熱した後に4.8倍に延伸し、更に横方向に155℃に予熱して9倍に延伸した。その後、層(B)表面を空気雰囲気でコロナ放電処理して巻き取った。得られた2軸延伸ポリプロピレンフイルムの層(B)表面の(O/C)は0.23、層(A)、(B)、(C)の面配向係数はそれぞれ0.014、0.0220.015であった。
(Comparative Example 5)
Biaxial, using resin b1 as the resin on the deposition surface side (layer (B)), resin a1 as the core layer (layer (A)), and resin c as the surface layer (layer (C)) opposite to the deposition surface The films were laminated such that the film thickness after stretching was 1: 48: 1 μm (total thickness was 50 μm). In accordance with the above-mentioned method, the film-forming method was preheated to 135 ° C. in the longitudinal direction and then stretched 4.8 times, and further preheated to 155 ° C. in the transverse direction and stretched 9 times. Thereafter, the surface of the layer (B) was subjected to corona discharge treatment in an air atmosphere and wound up. The (O / C) on the surface of the layer (B) of the obtained biaxially oriented polypropylene film was 0.23, and the plane orientation coefficients of the layers (A), (B), and (C) were 0.014 and 0.0220, respectively. .015.

こうして得られた2軸配向ポリプロピレンフィルムは、延伸ムラにより厚み均一性が悪く、至るところで偏肉を生じており、実用に耐えるものではなかった。   The biaxially oriented polypropylene film thus obtained had poor thickness uniformity due to stretching unevenness, and uneven thickness was produced everywhere, so that it was not practical.

Figure 2009184252
Figure 2009184252

Figure 2009184252
Figure 2009184252

Figure 2009184252
Figure 2009184252

Claims (5)

ポリプロピレン樹脂層(A)、および融点が149〜159℃であるプロピレン系共重合体を含むポリオレフイン系樹脂層(B)の少なくとも2層構成を有し、該ポリオレフイン樹脂層(B)の表面の酸素(O)と炭素(C)の元素組成比(O/C)が0.2〜0.4であり、次式(1)で表される面配向係数(Fn)がポリプロピレン樹脂層(A)において0.013〜0.020、ポリオレフィン系樹脂層(B)において0.005〜0.012である金属蒸着用ポリプロピレンフイルム。
Fn=(MDn+TDn)/2−ZDn・・・式(1)
MDn:フィルムのMD(長手)方向の屈折率
TDn:フィルムのTD(幅)方向の屈折率
ZDn:フィルムのZD(厚み)方向の屈折率
It has at least two layers of a polypropylene resin layer (A) and a polyolefin resin layer (B) containing a propylene copolymer having a melting point of 149 to 159 ° C., and oxygen on the surface of the polyolefin resin layer (B) The elemental composition ratio (O / C) of (O) and carbon (C) is 0.2 to 0.4, and the plane orientation coefficient (Fn) represented by the following formula (1) is a polypropylene resin layer (A). Metal film for metal vapor deposition of 0.013-0.020 in the polyolefin resin layer (B).
Fn = (MDn + TDn) / 2−ZDn (1)
MDn: refractive index in the MD (longitudinal) direction of the film
TDn: refractive index in the TD (width) direction of the film
ZDn: refractive index in the ZD (thickness) direction of the film
ポリオレフイン系樹脂層(B)に含まれる有機及び/又は無機のフィラーの合計量が300〜1,500ppm(質量基準)である、請求項1に記載の金属蒸着用ポリプロピレンフイルム。 The polypropylene film for metal vapor deposition of Claim 1 whose total amount of the organic and / or inorganic filler contained in a polyolefin resin layer (B) is 300-1,500 ppm (mass basis). ポリオレフイン系樹脂層(B)が、冷キシレン可溶部を1〜10質量%含み、かつ該冷キシレン可溶部の質量平均分子量が10,000以上である、請求項1または2に記載の金属蒸着用ポリプロピレンフイルム。 The metal according to claim 1 or 2, wherein the polyolefin resin layer (B) contains 1 to 10% by mass of a cold xylene soluble part, and the mass average molecular weight of the cold xylene soluble part is 10,000 or more. Polypropylene film for vapor deposition. 厚みが40〜75μmである、請求項1〜3のいずれかに記載の金属蒸着用ポリプロピレンフイルム。 The polypropylene film for metal vapor deposition according to any one of claims 1 to 3, wherein the thickness is 40 to 75 µm. 請求項1〜4のいずれかに記載の金属蒸着用ポリプロピレンフイルムのポリオレフイン系樹脂層(B)の表面に金属蒸着層が設けられてなり、該金属蒸着層の厚みが100〜800オングストロームである金属化ポリプロピレンフイルム。 A metal having a metal vapor deposition layer provided on the surface of the polyolefin resin layer (B) of the polypropylene film for metal vapor deposition according to any one of claims 1 to 4, wherein the metal vapor deposition layer has a thickness of 100 to 800 angstroms. Polypropylene film.
JP2008027313A 2008-02-07 2008-02-07 Polypropylene film for metal vapor deposition and metallized polypropylene film Pending JP2009184252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027313A JP2009184252A (en) 2008-02-07 2008-02-07 Polypropylene film for metal vapor deposition and metallized polypropylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027313A JP2009184252A (en) 2008-02-07 2008-02-07 Polypropylene film for metal vapor deposition and metallized polypropylene film

Publications (1)

Publication Number Publication Date
JP2009184252A true JP2009184252A (en) 2009-08-20

Family

ID=41068016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027313A Pending JP2009184252A (en) 2008-02-07 2008-02-07 Polypropylene film for metal vapor deposition and metallized polypropylene film

Country Status (1)

Country Link
JP (1) JP2009184252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157652A1 (en) * 2013-03-29 2014-10-02 凸版印刷株式会社 Gas-barrier laminate and method for manufacturing gas-barrier laminate
JP2016087814A (en) * 2014-10-30 2016-05-23 凸版印刷株式会社 Gas barrier laminate and manufacturing method therefor
WO2022201741A1 (en) * 2021-03-25 2022-09-29 住友化学株式会社 Olefin-based polymer composition and film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157652A1 (en) * 2013-03-29 2014-10-02 凸版印刷株式会社 Gas-barrier laminate and method for manufacturing gas-barrier laminate
CN105121154A (en) * 2013-03-29 2015-12-02 凸版印刷株式会社 Gas-barrier laminate and method for manufacturing gas-barrier laminate
JPWO2014157652A1 (en) * 2013-03-29 2017-02-16 凸版印刷株式会社 Gas barrier laminate and method for producing gas barrier laminate
TWI616335B (en) * 2013-03-29 2018-03-01 Toppan Printing Co Ltd Gas-barrier laminated body and manufacturing method of gas-barrier laminated body
US10329658B2 (en) 2013-03-29 2019-06-25 Toppan Printing Co., Ltd. Gas barrier laminate and method for producing the gas barrier laminate
EP4289891A3 (en) * 2013-03-29 2024-03-13 Toppan Printing Co., Ltd. Gas-barrier laminate and method for manufacturing gas-barrier laminate
JP2016087814A (en) * 2014-10-30 2016-05-23 凸版印刷株式会社 Gas barrier laminate and manufacturing method therefor
WO2022201741A1 (en) * 2021-03-25 2022-09-29 住友化学株式会社 Olefin-based polymer composition and film

Similar Documents

Publication Publication Date Title
EP1864793B1 (en) Metallized blaxially oriented polypropylene film with high metal adhesion
JP5411935B2 (en) Heat-sealable uniaxially oriented propylene film having tear directionality
CN112512806B (en) Laminate and packaging bag comprising same
TWI364446B (en) Surface protective film
JP5292819B2 (en) Method for producing a polyolefin film for surface protection
JP2023038239A (en) Method of producing biaxially oriented polypropylene-based film
JPWO2018180164A1 (en) Biaxially oriented polypropylene film
CN114728510A (en) High scratch-resistant laminated tube with metallized polyethylene layer decoration
JP2008246947A (en) Surface protective film
WO2001038434A1 (en) Stretched resin film and process for producing the same
US20170282507A1 (en) Biaxially oriented polyolefin film with high moisture vapor barrier and stiffness properties
US11794397B2 (en) Heat-stable, biaxially oriented, polypropylene films
JP2009241375A (en) Polypropylene film for heat print lamination
TW202218889A (en) Laminated film
JP2009184252A (en) Polypropylene film for metal vapor deposition and metallized polypropylene film
US20130323513A1 (en) Metalizable Oriented Polypropylene Films With A Functionalized Tie Layer Material
WO2021154469A1 (en) Oriented polyolefin release films
JPWO2018097161A1 (en) Laminated polypropylene film
JP7188651B1 (en) Polypropylene films, laminates, packaging materials, and packages
JP2004168040A (en) Metal vapor deposited biaxially stretched polypropylene film
JP2008238438A (en) Polypropylene film for metallization deposition and metallized polypropylene film
JP4240620B2 (en) Metallized biaxially oriented polypropylene film and laminate using the same
CN114728512A (en) Gas barrier film
JP2003103730A (en) Laminated film and metal vapor-deposited laminated film
JP2004009566A (en) Film for heat-fused printed laminate