JP2009183900A - Gas adsorbent - Google Patents

Gas adsorbent Download PDF

Info

Publication number
JP2009183900A
JP2009183900A JP2008028088A JP2008028088A JP2009183900A JP 2009183900 A JP2009183900 A JP 2009183900A JP 2008028088 A JP2008028088 A JP 2008028088A JP 2008028088 A JP2008028088 A JP 2008028088A JP 2009183900 A JP2009183900 A JP 2009183900A
Authority
JP
Japan
Prior art keywords
gas
polymer compound
water
absorbing polymer
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008028088A
Other languages
Japanese (ja)
Inventor
Yasutoshi Kawate
靖俊 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008028088A priority Critical patent/JP2009183900A/en
Publication of JP2009183900A publication Critical patent/JP2009183900A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas adsorbent can drastically reducing the corrosion generation rate in metal components. <P>SOLUTION: Water absorbing polymer compound particles 13 together with physical adsorbent particles 12 are enclosed in a housing member 11 comprising gas-permeable sheets 11A and 11B. The inner wall on the gas-permeable sheet 11B side is coated with an adhesive material 14, and physical adsorbent particles 12 and a part of the water absorbing polymer compound particles 13 are fixed. The physical adsorbent particles 12 are adsorbed with various out gases, and further, the water absorbing polymer compound particles 13 have a high steam collection action, thereby collecting a large amount of steam with a small amount to suppress the corrosion generation rate in the metal components. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有害ガスを含む種々のガスを吸着、捕集し、電気・電子機器等を保護するガス吸着体に関する。   The present invention relates to a gas adsorber that adsorbs and collects various gases including harmful gases and protects electric / electronic devices and the like.

一般に、電気・電子機器には、有害ガスを吸着、捕集するためにガス吸着体が用いられる。この種のものとしては、従来、2枚の不織布等の通気性シートに吸着剤を挟んで用いるもの、あるいは塗料に吸着剤を混合してなるもの等が提案されている(特許文献1〜10)。   In general, a gas adsorber is used for electric and electronic devices to adsorb and collect harmful gases. As this type of material, there have conventionally been proposed one in which an adsorbent is sandwiched between two air-permeable sheets such as non-woven fabrics, or one obtained by mixing an adsorbent with a paint (Patent Documents 1 to 10). ).

このようなガス吸着体では、複数種類のガスを同時に吸着、捕集する場合には、通常、物理的吸着作用を有する吸着剤と化学的吸着作用をもつ吸着剤とのいずれか、または、これらを混合したものが用いられる。物理吸着作用を有する吸着剤としては、例えば、活性炭、活性アルミナ、ゼオライトが用いられる。また、化学吸着作用を有する吸着剤としては、活性炭粒子にアミン系化合物を添着させた薬品添着炭粒子や、炭酸カルシウム等が用いられる。   In such a gas adsorbent, when adsorbing and collecting a plurality of types of gas at the same time, usually either an adsorbent having a physical adsorption action or an adsorbent having a chemical adsorption action, or these A mixture of these is used. For example, activated carbon, activated alumina, or zeolite is used as the adsorbent having a physical adsorption action. Further, as the adsorbent having a chemical adsorption action, chemical-added carbon particles obtained by adding an amine compound to activated carbon particles, calcium carbonate, or the like is used.

電気部品や電子部品の信頼性に悪影響を与えるガス、例えば腐食を加速するガスとしては硫化水素、NOx、SOx、含Clガス、含Fガスおよび水蒸気が挙げられる。また、電気接点の導通や機構部品の動作および光学部品の光透過性を阻害するガスとしては、シリコーンガス、炭化水素ガス、有機酸ガス等が挙げられる。更に、臭気異常の原因となるガスとしてはトルエン、フェノールや酢酸エチル、ホルムアルデヒド等が挙げられる。   Examples of gases that adversely affect the reliability of electrical and electronic components, such as gases that accelerate corrosion, include hydrogen sulfide, NOx, SOx, Cl-containing gas, F-containing gas, and water vapor. Examples of the gas that hinders electrical connection of electrical contacts, operation of mechanical components, and light transmittance of optical components include silicone gas, hydrocarbon gas, and organic acid gas. Furthermore, examples of gases that cause odor abnormalities include toluene, phenol, ethyl acetate, and formaldehyde.

特開2006−116501号公報JP 2006-116501 A 特開平11−300138号公報、JP-A-11-300138, 特開平2−290225号公報JP-A-2-290225 昭63−178822号公報Sho 63-178822 特開2006−88088号公報JP 2006-88088 A 特開2003−340277号公報JP 2003-340277 A 特開2003−126625号公報JP 2003-126625 A 特開2002−273123号公報JP 2002-273123 A 特開2002−1112号公報Japanese Patent Laid-Open No. 2002-1112 特開2000−246043号公報JP 2000-246043 A

以上のような種々のガスの中で、特に、水蒸気は電子部品中の金属部品の腐食や接点不良に大きく影響を与えるため、金属部品の近傍ではできるだけ除去することが望ましいが、上記物理吸着剤では水蒸気の吸着量が自重の40%程度と少ないという問題があった。一方、化学吸着剤での水蒸気の吸着量は自重の50%以上であり、物理吸着剤よりは高くなるが、その他のガス成分の吸着率が低いことと、一度水蒸気が吸着してしまった吸着剤は自然に再生しないことから、使用可能期間が比較的短いという問題があった。   Among the various gases described above, in particular, water vapor greatly affects the corrosion and contact failure of metal parts in electronic parts, so it is desirable to remove them as close as possible to the metal parts. However, there was a problem that the adsorption amount of water vapor was as low as about 40% of its own weight. On the other hand, the amount of water vapor adsorbed by the chemical adsorbent is 50% or more of its own weight, which is higher than the physical adsorbent, but the adsorption rate of other gas components is low, and the water vapor has once adsorbed. Since the agent does not regenerate naturally, there is a problem that the usable period is relatively short.

本発明はかかる問題点に鑑みてなされたもので、その目的は、各種ガスと共に空気中に存在する過剰の水分(水蒸気ガス)を、少量で、効率的に捕集することができ、金属部品の腐食に対する信頼性を向上させることができるガス吸着体を提供することにある。   The present invention has been made in view of such problems, and the object thereof is to efficiently collect excess moisture (water vapor gas) present in the air together with various gases in a small amount. An object of the present invention is to provide a gas adsorbent capable of improving the reliability against corrosion.

本発明のガス吸着体は、通気性シートにより構成された収容部材を備え、その収容部材内に、ガスに対する物理的吸着作用を有する物理吸着剤と共に、吸水性の高分子化合物を含むものである。   The gas adsorbent of the present invention includes a housing member constituted by a breathable sheet, and contains a water-absorbing polymer compound together with a physical adsorbent having a physical adsorption action for gas in the housing member.

本発明のガス吸着体では、物理吸着剤により各種アウトガスが吸着されると共に、高い水蒸気捕集作用を有する高分子化合物によって、水分が高効率で捕集される。   In the gas adsorbent of the present invention, various outgases are adsorbed by the physical adsorbent, and moisture is collected with high efficiency by the polymer compound having a high water vapor collecting action.

本発明のガス吸着体によれば、物理吸着剤と共に吸水性の高分子化合物を混合して用いるようにしたので、特に、電気・電子部品の信頼性に悪影響を及ぼす水蒸気を効率的に捕集することができ、少量の吸着剤により金属部品の腐食発生率を大幅に低減することができる。   According to the gas adsorber of the present invention, since a water-absorbing polymer compound is mixed with a physical adsorbent, it is particularly effective to efficiently collect water vapor that adversely affects the reliability of electrical and electronic components. The corrosion rate of metal parts can be greatly reduced with a small amount of adsorbent.

以下、本発明の一実施の形態に係るガス吸着体の構成について説明する。   Hereinafter, the configuration of the gas adsorbent according to an embodiment of the present invention will be described.

図1は本発明の一実施の形態に係るガス吸着体の断面構成を表すものである。このガス吸着体1は、収容部材11内に、1または複数の種類の物理吸着剤粒子12および吸水性の高分子化合物粒子13を混合して封入したものである。収容部材11は、例えば2枚の通気性シート11A,11Bをその周辺部(端部)において、接着または熱融着により互いに密着したものである。この収容部材11の例えば通気性シート11B側の内壁には粘着材14が塗布されており、物理吸着剤粒子12および吸水性の高分子化合物粒子13の一部が粘着材14によって固定されている。   FIG. 1 shows a cross-sectional configuration of a gas adsorber according to an embodiment of the present invention. The gas adsorbent 1 is obtained by mixing and enclosing one or more kinds of physical adsorbent particles 12 and water-absorbing polymer compound particles 13 in a housing member 11. The housing member 11 is formed by, for example, adhering two air-permeable sheets 11A and 11B to each other at the peripheral portion (end portion) by adhesion or heat fusion. An adhesive material 14 is applied to the inner wall of the housing member 11 on the air permeable sheet 11B side, for example, and a part of the physical adsorbent particles 12 and the water-absorbing polymer compound particles 13 are fixed by the adhesive material 14. .

通気性シート11A,11Bは、例えば、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維ポリアミド繊維等の合成繊維からなる不織布、またはポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる多孔性フィルムであるが、その形状や厚みは限定されるものではなく、ガスを充分に透過させる性質を有するものであればよい。   The breathable sheets 11A and 11B are, for example, nonwoven fabrics made of synthetic fibers such as polyethylene fibers, polypropylene fibers, polyester fibers, and polyamide fibers, or porous films made of synthetic resins such as polyethylene, polypropylene, polyester, and polyamide. The shape and thickness are not limited, and any shape having a property of sufficiently allowing gas to permeate may be used.

物理吸着剤粒子12は物理的なガス吸着作用を有するものであり、具体的には、例えば活性炭、シリカゲル、活性アルミナ、ゼオライトなどが挙げられるが、その中でも吸着容量の観点から特に活性炭やシリカゲルの粒子が好ましい。なお、物理吸着剤粒子12としては上記に限定されず、用途に応じて様々な吸着剤を用いることができる。   The physical adsorbent particles 12 have a physical gas adsorbing action, and specific examples include activated carbon, silica gel, activated alumina, zeolite and the like. Among them, activated carbon and silica gel are particularly preferred from the viewpoint of adsorption capacity. Particles are preferred. The physical adsorbent particles 12 are not limited to the above, and various adsorbents can be used depending on the application.

吸水性の高分子化合物粒子13は水蒸気吸着作用を有するものであり、例えば、ポリアクリル酸、ポリビニルアルコールアクリル酸、ポリアクリル酸ソーダ、デンプンにアクリル酸をグラフト重合したもの、またはポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミド、若しくはポリビニルピロリド水溶液を電離性放射線で照射して架橋反応させたもの、更にはホルマリンやグルタルアルデヒドなどによる化学処理により架橋反応させたものが挙げられ、これらのうちの1種類または複数の種類を用いることができる。これらは、自重の200%以上の吸水率を有しており、高分子化合物粒子13として望ましい。   The water-absorbing polymer compound particles 13 have a water vapor adsorbing action. For example, polyacrylic acid, polyvinyl alcohol acrylic acid, sodium polyacrylate, starch obtained by graft polymerization of acrylic acid, polyethylene oxide, polyvinyl alcohol , A polyacrylamide or polyvinylpyrrolide aqueous solution irradiated with ionizing radiation to cause a crosslinking reaction, and further a crosslinking reaction by chemical treatment with formalin, glutaraldehyde, etc., one of these or Multiple types can be used. These have a water absorption rate of 200% or more of their own weight, and are desirable as the polymer compound particles 13.

物理吸着剤粒子12と吸水性の高分子化合物粒子13は混合して用いられる。物理吸着剤および上記高分子化合物の全体に対する上記高分子化合物の混合比は、50重量%以上90重量%以下とすることが望ましく、また吸水性の高分子化合物を完全に分散させることがより望ましい。50重量%未満であると、金属部品の水蒸気吸収による腐食防止効果が十分ではなく、90重量%より多くなると、他のガスの補集効果が不足するからである。90重量%以下また、充填率はシート1cm2 あたり0.2g以上が有効である。 The physical adsorbent particles 12 and the water-absorbing polymer compound particles 13 are mixed and used. The mixing ratio of the polymer compound to the whole of the physical adsorbent and the polymer compound is preferably 50% by weight or more and 90% by weight or less, and more preferably the water-absorbing polymer compound is completely dispersed. . This is because if the amount is less than 50% by weight, the corrosion preventing effect due to water vapor absorption of the metal parts is not sufficient, and if it exceeds 90% by weight, the effect of collecting other gases is insufficient. 90% by weight or less The filling rate is effectively 0.2 g or more per 1 cm 2 of the sheet.

粘着材14は、例えばポリアクリル酸エステルであり、通気性シート11A,11Bの物理吸着剤粒子12および吸水性の高分子化合物粒子13と接する面に薄く塗布することにより、これら粒子の偏在を抑制することができる。   The pressure-sensitive adhesive material 14 is, for example, a polyacrylic acid ester, and suppresses uneven distribution of these particles by thinly applying the surface to the physical adsorbent particles 12 and the water-absorbing polymer compound particles 13 of the breathable sheets 11A and 11B. can do.

以上の構成を有する本実施の形態に係るガス吸着体1は、例えば電気・電子部品とともに梱包箱内に同封され、物理吸着剤粒子12によって各種ガスを、また、吸水性の高分子化合物粒子13によって水蒸気を効率的に吸着・補集する。これにより、金属部品の腐食等が抑制され、電気・電子部品の信頼性が向上することとなる。   The gas adsorbent 1 according to the present embodiment having the above-described configuration is enclosed in a packing box together with, for example, electric / electronic components, and various gases are absorbed by the physical adsorbent particles 12, and the water-absorbing polymer compound particles 13 are also contained. Efficiently absorbs and collects water vapor. Thereby, corrosion of a metal part etc. is suppressed and the reliability of an electrical / electronic part will improve.

以下、具体的な実施例について説明する。
[実施例]
Specific examples will be described below.
[Example]

(実施例1および比較例1〜3)
吸着剤粒子として、粒度分布が0.25〜0.59mmの活性炭、活性アルミナおよびシリカゲルを準備した。吸水性の高分子化合物としては、ポリアクリル酸ソーダを含む三洋化成製吸水ゲル「サンフレッシュST500S」(商品名)を用いた。実施例1では、活性炭と吸水性の高分子化合物とを重量比1:1で混合した。通気性シートとしてポリエステル製不織布を用い、各実施例毎に粒子を包み試料を作製した。
実施例1;活性炭+吸水性の高分子化合物
比較例1;シリカゲル
比較例2;活性炭
比較例3;活性アルミナ
(Example 1 and Comparative Examples 1-3)
As adsorbent particles, activated carbon, activated alumina and silica gel having a particle size distribution of 0.25 to 0.59 mm were prepared. As a water-absorbing polymer compound, Sanyo Chemical's water-absorbing gel "Sunfresh ST500S" (trade name) containing polyacrylic acid soda was used. In Example 1, activated carbon and a water-absorbing polymer compound were mixed at a weight ratio of 1: 1. A polyester non-woven fabric was used as a breathable sheet, and a sample was prepared by wrapping particles in each example.
Example 1; activated carbon + water-absorbing polymer compound Comparative Example 1; silica gel Comparative Example 2; activated carbon Comparative Example 3; activated alumina

(吸水率測定)
上記実施例1および比較例1〜3の試料を25℃/100%RHの条件で1週間放置し、それらの吸水率を測定した。結果を下記に示す。
実施例1;活性炭+吸水性の高分子化合物 86%
比較例1;シリカゲル 32%
比較例2;活性炭 35%
比較例3;活性アルミナ 20%
(Measurement of water absorption)
The samples of Example 1 and Comparative Examples 1 to 3 were allowed to stand for 1 week under the condition of 25 ° C./100% RH, and their water absorption was measured. The results are shown below.
Example 1: Activated carbon + water-absorbing polymer compound 86%
Comparative Example 1 Silica gel 32%
Comparative Example 2: activated carbon 35%
Comparative Example 3; activated alumina 20%

このように吸着剤粒子のみを封入した試料(比較例1〜3)の吸水率が約20%〜35%と低いのに対し、活性炭と吸水性の高分子化合物とを混合した試料(実施例1)は、85%以上の高い吸水率を示した。   In this way, the sample in which only the adsorbent particles are encapsulated (Comparative Examples 1 to 3) has a low water absorption of about 20% to 35%, whereas the sample in which activated carbon and a water-absorbing polymer compound are mixed (Examples) 1) showed a high water absorption of 85% or more.

(実施例2,3、比較例4)
通気性シートとしてポリエステル製不織布を用い、吸着剤粒子としては粒度分布が0.25〜0.59mmの活性炭またはシリカゲルを準備すると共に、吸水性の高分子化合物として、三洋化成製の吸水性の高分子化合物「サンフレッシュST500S」(商品名)を準備した。実施例2,3では、吸着剤粒子と高分子吸収ゲルとを重量比で1:1となるように混合した。片面にアクリル系粘着材を塗布した通気性シートの粘着材面に、この混合物を100mg/cm2 となるように散布した後、その上にもう1枚の通気性シートを重ね合わせて接着し、ガス吸着体を得た。
また、比較例4では、活性炭とシリカゲルとを重量比で1:1となるように混合した。
実施例2;活性炭+吸水性の高分子化合物
実施例3;シリカゲル+吸水性の高分子化合物
比較例4;活性炭+シリカゲル
(Examples 2 and 3, Comparative Example 4)
A polyester non-woven fabric is used as a breathable sheet, and activated carbon or silica gel having a particle size distribution of 0.25 to 0.59 mm is prepared as an adsorbent particle, and a highly water-absorbing polymer manufactured by Sanyo Chemical is used as a water-absorbing polymer compound. A molecular compound “Sunfresh ST500S” (trade name) was prepared. In Examples 2 and 3, adsorbent particles and polymer absorbent gel were mixed at a weight ratio of 1: 1. After spraying this mixture to 100 mg / cm 2 on the pressure-sensitive adhesive surface of a breathable sheet coated with an acrylic pressure-sensitive adhesive material on one side, another gas-permeable sheet is superimposed on and adhered to it. A gas adsorber was obtained.
Moreover, in the comparative example 4, activated carbon and silica gel were mixed so that it might become 1: 1 by weight ratio.
Example 2; activated carbon + water-absorbing polymer compound Example 3; silica gel + water-absorbing polymer compound Comparative Example 4; activated carbon + silica gel

(ガス吸着能評価)
上記実施例5,6のガス吸着体についての硫化水素ガス(H2 S)吸着性能を評価した。ポリエチレン製の密閉壜中に、H2 Sを気相濃度が16ppmlなるように封入し、ガス濃度を検知管で測定した後、ガス吸着体1cm2を入れて72h暴露した。暴露後のガス濃度を、再度測定し、ガス吸着効率を評価した。その結果を下記に示す。
実施例2;活性炭+吸水性の高分子化合物 83%減少
実施例3;シリカゲル+吸水性の高分子化合物 69%減少
(Gas adsorption capacity evaluation)
The hydrogen sulfide gas (H2 S) adsorption performance of the gas adsorbers of Examples 5 and 6 was evaluated. H2 S was enclosed in a polyethylene sealed cage so that the gas phase concentration was 16 ppml, and after measuring the gas concentration with a detector tube, 1 cm 2 of the gas adsorbent was placed and exposed for 72 hours. The gas concentration after the exposure was measured again to evaluate the gas adsorption efficiency. The results are shown below.
Example 2: Activated carbon + absorbing polymer compound 83% reduction Example 3: Silica gel + water absorbing polymer compound 69% reduction

(銀片変色状態評価)
更に、上記ガス吸着能評価の際に、銀の硫化に対する影響を確認するため、銀片を共存させ、硫化状態も確認した。その結果を図2(A)〜(C)に示す。図2(A)は実施例2のガス吸着体を入れたときの銀片の硫化状態を表すものである。また、図2(B)は実施例3のガス吸着体を入れたとき、図2(C)は吸着剤を入れないとき(比較例4)の銀片の硫化状態を表すものである。
(Silver piece discoloration state evaluation)
Furthermore, in order to confirm the influence with respect to the sulfidation of silver in the said gas adsorption ability evaluation, the silver piece was coexisted and the sulfide state was also confirmed. The results are shown in FIGS. FIG. 2 (A) shows the sulfidation state of the silver piece when the gas adsorber of Example 2 is inserted. FIG. 2B shows the sulfurized state of the silver piece when the gas adsorber of Example 3 is put, and FIG. 2C shows the silver piece when no adsorbent is put (Comparative Example 4).

銀片は大気中に硫化水素ガスが存在する場合、表面で反応して硫化銀を生成する。この時、銀片の表面は変色するが、生成した硫化銀の厚さによってその色は異なる。一般に厚さが厚くなるにつれ金属光沢から、褐色、茶色、紫、青、黒、灰色と変化する。図2(A),(B)においては銀片の表面は銀または褐色であるが、図2(C)においては青から黒に変色し、硫化物の生成が確認された。従って、実施例2,3のガス吸着体は硫化水素ガスを吸収し、銀の硫化を阻止する機能を有すると考える。   The silver piece reacts on the surface to produce silver sulfide when hydrogen sulfide gas is present in the atmosphere. At this time, the surface of the silver piece changes color, but the color varies depending on the thickness of the silver sulfide produced. In general, as the thickness increases, it changes from metallic luster to brown, brown, purple, blue, black, and gray. In FIGS. 2 (A) and 2 (B), the surface of the silver piece is silver or brown, but in FIG. 2 (C), the color changed from blue to black, and the formation of sulfide was confirmed. Therefore, it is considered that the gas adsorbers of Examples 2 and 3 have a function of absorbing hydrogen sulfide gas and preventing silver sulfidation.

(酢酸ガスおよび水蒸気吸着性能評価)
上記実施例2,3および比較例4のガス吸着体についての酢酸ガスおよび水蒸気吸着性能を評価した。ポリエチレン製の密閉壜中に酢酸(50%水溶液)を0.5g入れ、壜の蓋の内側にTG用Al製カップをカーボンテープで固定した。吸着剤を壜の壁面に粘着テープで固定し、密閉状態で室温で130時間放置した。
(Acetic acid gas and water vapor adsorption performance evaluation)
Acetic acid gas and water vapor adsorption performances of the gas adsorbers of Examples 2 and 3 and Comparative Example 4 were evaluated. 0.5 g of acetic acid (50% aqueous solution) was put in a polyethylene sealed bottle, and an Al cup for TG was fixed with carbon tape inside the lid of the bottle. The adsorbent was fixed to the wall surface of the bag with an adhesive tape and left in a sealed state at room temperature for 130 hours.

その結果を図3(A)〜(D)に示す。このうち図3(A)は、実施例2のガス吸着体を入れたときのTG用Al製カップの表面の状態を示すものであり、同じく、図3(B)は実施例3のガス吸着体を入れたとき、図3(C)は比較例4のガス吸着体を入れたときの状態を表している。なお、図3(D)は吸着剤を入れないときのものである。実施例2,3のガス吸着体を入れたものは、Al表面に殆ど腐食生成物が確認されないが、比較例4のガス吸着体を入れたもの、および吸着剤を入れないものでは、表面に腐食生成物が確認された。   The results are shown in FIGS. 3A shows the state of the surface of the Al cup for TG when the gas adsorber of Example 2 is inserted. Similarly, FIG. 3B shows the gas adsorption of Example 3. 3C shows a state when the gas adsorbent of Comparative Example 4 is put. Note that FIG. 3D shows a case where no adsorbent is added. In the samples containing the gas adsorbers of Examples 2 and 3, almost no corrosion products were confirmed on the Al surface. However, in the sample containing the gas adsorbent of Comparative Example 4 and those without adsorbent, Corrosion products were identified.

(実施例4〜8)
通気性シートとしてポリエステル製不織布を用い、吸着剤粒子としては粒度分布が0.25〜0.59mmの活性炭を準備した。さらに、吸水性の高分子化合物としては、三洋化成製吸水ゲル「サンフレッシュST500S」(商品名)を用いた。活性炭粒子と高分子吸収ゲルの混合比をそれぞれ重量比で1:9,1:3,5:5,3:1,9:1となるように混合した。片面にアクリル系粘着材を塗布した通気性シートの粘着材面に、混合物を100mg/cm2 になるように散布した後、その上にもう1枚の通気性シートを重ね合わせて接着し、ガス吸着体を得た。
実施例4;活性炭:吸水性の高分子化合物=1:9
実施例5;活性炭:吸水性の高分子化合物=1:3
実施例6;活性炭:吸水性の高分子化合物=5:5
実施例7;活性炭:吸水性の高分子化合物=3:1
実施例8;活性炭:吸水性の高分子化合物=9:1
(Examples 4 to 8)
A polyester nonwoven fabric was used as the breathable sheet, and activated carbon having a particle size distribution of 0.25 to 0.59 mm was prepared as the adsorbent particles. Furthermore, as a water-absorbing polymer compound, Sanyo Chemical's water-absorbing gel “Sunfresh ST500S” (trade name) was used. The mixing ratio of the activated carbon particles and the polymer absorbent gel was mixed such that the weight ratios were 1: 9, 1: 3, 5: 5, 3: 1, 9: 1, respectively. After spraying the mixture to 100 mg / cm 2 on the pressure-sensitive adhesive surface of a breathable sheet coated with an acrylic pressure-sensitive adhesive material on one side, another gas-permeable sheet is superimposed on and adhered to the gas, An adsorbent was obtained.
Example 4: Activated carbon: water-absorbing polymer compound = 1: 9
Example 5; activated carbon: water-absorbing polymer compound = 1: 3
Example 6; activated carbon: water-absorbing polymer compound = 5: 5
Example 7; activated carbon: water-absorbing polymer compound = 3: 1
Example 8; activated carbon: water-absorbing polymer compound = 9: 1

(酢酸ガスおよび水蒸気吸着性能評価)
実施例4〜8のガス吸着体についての酢酸ガスおよび水蒸気吸着性能を、上記と同様の手法で評価した。
(Acetic acid gas and water vapor adsorption performance evaluation)
The acetic acid gas and water vapor adsorption performance of the gas adsorbers of Examples 4 to 8 was evaluated by the same method as described above.

その結果を図4(A)〜(E)に示す。図4(A)は実施例4、図4(B)は実施例5、図4(C)は実施例6、図4(D)は実施例7、図4(E)は実施例8のそれぞれの結果を表している。実施例7,8のように吸水性の高分子化合物の混合比が少ない場合(10%,25%)には腐食の発生が僅かに見られるが、実施例4〜6のように吸水性の高分子化合物の混合比が多い場合(50%,75%,90%)には腐食は見られない。これにより、吸水性の高分子化合物を含めることによる効果は、混合比で50重量%〜90重量%の範囲がより好ましいことが分かった。   The results are shown in FIGS. 4 (A) shows Example 4, FIG. 4 (B) shows Example 5, FIG. 4 (C) shows Example 6, FIG. 4 (D) shows Example 7, and FIG. 4 (E) shows Example 8. Each result is shown. When the mixing ratio of the water-absorbing polymer compound is small as in Examples 7 and 8 (10%, 25%), the occurrence of corrosion is slightly observed. When the mixing ratio of the polymer compound is large (50%, 75%, 90%), no corrosion is observed. Thereby, it turned out that the effect by including a water-absorbing polymer compound is more preferably in the range of 50 wt% to 90 wt% in terms of mixing ratio.

(有機ガス吸着性能評価)
上記実施例6のガス吸着体についての有機ガス吸着性能を評価した。ポリエチレン製の密閉壜中に低分子シロキサン(環状4量体)、トルエンをそれぞれ200mg入れ、この壜の蓋の裏に吸着剤を固定し、密閉状態で常温140h暴露した後、吸着されたガス量をTPD−MS(Temperature Programmed Desorption or Decomposition Mass- Spectrometry )、およびTPD−GC/MS(Temperature Programmed Desorption or Decomposition Gas Chromatograph Massspectrometry )にて測定した。結果を下記に示す。なお、比較例4についての結果も同時に示した。
トルエンが吸着されたガス量 吸着量/全体量
実施例6;活性炭+吸水性の高分子化合物 7.4mg/100mg
比較例4;活性炭+シリカゲル 4.0mg/100mg

低分子シロキサンが吸着されたガス量 吸着量/全体量
実施例6;活性炭+吸水性の高分子化合物 10.0mg/100mg
比較例4;活性炭+シリカゲル 11.8mg/100mg
(Organic gas adsorption performance evaluation)
The organic gas adsorption performance of the gas adsorber of Example 6 was evaluated. 200 mg each of low-molecular-weight siloxane (cyclic tetramer) and toluene are placed in a polyethylene sealed cage, the adsorbent is fixed on the back of the lid of the cage, and exposed to room temperature for 140 hours in a sealed state. Was measured by TPD-MS (Temperature Programmed Desorption or Decomposition Mass- Spectrometry) and TPD-GC / MS (Temperature Programmed Desorption or Decomposition Gas Chromatograph Massspectrometry). The results are shown below. The results for Comparative Example 4 are also shown.
Gas amount to which toluene was adsorbed Adsorbed amount / total amount Example 6: Activated carbon + water-absorbing polymer compound 7.4 mg / 100 mg
Comparative Example 4; activated carbon + silica gel 4.0 mg / 100 mg

Gas amount in which low-molecular-weight siloxane was adsorbed Adsorbed amount / total amount Example 6: Activated carbon + water-absorbing polymer compound 10.0 mg / 100 mg
Comparative Example 4; activated carbon + silica gel 11.8 mg / 100 mg

トルエンの吸着性能については、実施例6の吸着量が比較例4の倍程度であった。低分子シロキサンの吸着性能については、比較例4と実施例6はほぼ同等であった。更に吸着能は自重の10%程度であった。   Regarding the adsorption performance of toluene, the adsorption amount of Example 6 was about twice that of Comparative Example 4. Comparative example 4 and Example 6 were substantially equivalent about the adsorption performance of low molecular siloxane. Furthermore, the adsorption capacity was about 10% of its own weight.

以上の実施例からも明かなように、本実施の形態に係るガス吸収体では、物理吸着剤粒子に吸水性の高分子化合物を混合して用いるようにしたので、物理吸着剤粒子による各種ガスの吸着と共に、吸水性の高分子化合物による水蒸気の補集が効率的に行われる。これにより、金属部品の腐食発生確率を大幅に低減することができ、電気・電子部品を効果的に保護することができる。特に、吸水性の高分子化合物の混合比を50%〜90%の範囲とすることにより、水蒸気の捕集効果を顕著に高めることができる。   As is clear from the above examples, in the gas absorber according to the present embodiment, the water-absorbing polymer compound is mixed with the physical adsorbent particles and used. In addition to the adsorption of water, water vapor is efficiently collected by the water-absorbing polymer compound. Thereby, the probability of occurrence of corrosion of metal parts can be greatly reduced, and the electrical / electronic parts can be effectively protected. In particular, when the mixing ratio of the water-absorbing polymer compound is in the range of 50% to 90%, the effect of collecting water vapor can be remarkably enhanced.

本発明の一実施の形態に係るガス吸着体を表す断面図である。It is sectional drawing showing the gas adsorption body which concerns on one embodiment of this invention. 実施例2,3および比較例4の銀片変色状態を表す図である。It is a figure showing the silver piece discoloration state of Examples 2, 3 and Comparative Example 4. 実施例2,3および比較例4の酢酸ガスおよび水蒸気吸着性能の評価結果を表す図である。It is a figure showing the evaluation result of the acetic acid gas of Example 2, 3 and the comparative example 4, and water vapor | steam adsorption performance. 実施例4〜8の酢酸ガスおよび水蒸気吸着性能の評価結果を表す図である。It is a figure showing the evaluation result of the acetic acid gas and water vapor | steam adsorption performance of Examples 4-8.

符号の説明Explanation of symbols

1…ガス吸着体、11…収容部材、11A,11B…通気性シート、12…物理吸着剤粒子、13…高分子化合物粒子、14…粘着材。   DESCRIPTION OF SYMBOLS 1 ... Gas adsorber, 11 ... Housing member, 11A, 11B ... Breathable sheet, 12 ... Physical adsorbent particle, 13 ... Polymer compound particle, 14 ... Adhesive material.

Claims (7)

通気性シートにより構成された収容部材を備え、
前記収容部材内に、ガスに対する物理的吸着作用を有する物理吸着剤と共に、吸水性の高分子化合物を含む
ことを特徴とするガス吸着体。
A housing member made of a breathable sheet is provided,
A gas adsorbent comprising a water-absorbing polymer compound together with a physical adsorbent having a physical adsorption action for gas in the housing member.
前記高分子化合物は、ポリアクリル酸、ポリビニルアルコールアクリル酸、ポリアクリル酸ソーダ、デンプンにアクリル酸をグラフト重合したもの、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミド若しくはポリビニルピロリド水溶液を電離性放射線で照射して架橋反応させたもの、ホルマリンやグルタルアルデヒドによる化学処理による架橋反応させたもの、およびポリスチレンを硫酸で処理し、一部の水素をスルフォン基に置換したもの、のうちの少なくとも1種である
ことを特徴とする請求項1に記載のガス吸着体。
The polymer compound is irradiated with ionizing radiation from polyacrylic acid, polyvinyl alcohol acrylic acid, polyacrylic acid soda, starch grafted with acrylic acid, polyethylene oxide, polyvinyl alcohol, polyacrylamide or polyvinylpyrrolide aqueous solution. At least one selected from the group consisting of a cross-linking reaction, a chemical cross-linking reaction with formalin and glutaraldehyde, and a polystyrene treated with sulfuric acid, with some hydrogens replaced with sulfone groups. The gas adsorbent according to claim 1, wherein:
前記物理吸着剤および吸水性の高分子化合物に対する吸水性の高分子化合物の混合比は、50重量%以上90重量%以下である
ことを特徴とする請求項1または2に記載のガス吸着体。
The gas adsorbent according to claim 1 or 2, wherein a mixing ratio of the water-absorbing polymer compound to the physical adsorbent and the water-absorbing polymer compound is 50 wt% or more and 90 wt% or less.
前記物理吸着剤および吸水性の高分子化合物は粒子状であり、その一部が粘着材により前記収容部材の内壁に固定されている
ことを特徴とする請求項1に記載のガス吸着体。
The gas adsorbent according to claim 1, wherein the physical adsorbent and the water-absorbing polymer compound are in the form of particles, and a part thereof is fixed to the inner wall of the housing member by an adhesive.
前記粘着材は、ポリアクリル酸エステルを含む
ことを特徴とする請求項4に記載のガス吸着体。
The gas adsorbent according to claim 4, wherein the adhesive material includes a polyacrylate ester.
前記吸着剤は、活性炭、シリカゲル、ゼオライトおよび活性アルミナのうち少なくとも1種類である
ことを特徴とする請求項1に記載のガス吸着体。
The gas adsorbent according to claim 1, wherein the adsorbent is at least one of activated carbon, silica gel, zeolite, and activated alumina.
前記通気性シートは、不織布、多孔ポリエチレンフィルムまたは多孔ポリエチレンテレフタラートフィルムによって構成されている
ことを特徴とする請求項1に記載のガス吸着体。
2. The gas adsorbent according to claim 1, wherein the breathable sheet is made of a nonwoven fabric, a porous polyethylene film, or a porous polyethylene terephthalate film.
JP2008028088A 2008-02-07 2008-02-07 Gas adsorbent Pending JP2009183900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028088A JP2009183900A (en) 2008-02-07 2008-02-07 Gas adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028088A JP2009183900A (en) 2008-02-07 2008-02-07 Gas adsorbent

Publications (1)

Publication Number Publication Date
JP2009183900A true JP2009183900A (en) 2009-08-20

Family

ID=41067726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028088A Pending JP2009183900A (en) 2008-02-07 2008-02-07 Gas adsorbent

Country Status (1)

Country Link
JP (1) JP2009183900A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217986A (en) * 2011-04-06 2012-11-12 Shinwa Corp Tool for removing toxic gas
WO2016152645A1 (en) * 2015-03-26 2016-09-29 ニッタ株式会社 Chemical filter
US10113126B2 (en) 2016-02-04 2018-10-30 Korea Institute Of Science And Technology Reusable polymeric material for removing siloxane compounds in biogas, method thereby and apparatus therefor
JP2020199465A (en) * 2019-06-11 2020-12-17 イビデン株式会社 Hydrogen sulfide gas adsorption structure, and battery pack
CN114034778A (en) * 2021-09-09 2022-02-11 中车青岛四方机车车辆股份有限公司 Detection method and application of acetic acid gas volatilized from solid non-metallic material
CN116920318A (en) * 2023-07-22 2023-10-24 广东艾可欣技术有限公司 Fire extinguishing microcapsule and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012217986A (en) * 2011-04-06 2012-11-12 Shinwa Corp Tool for removing toxic gas
WO2016152645A1 (en) * 2015-03-26 2016-09-29 ニッタ株式会社 Chemical filter
JPWO2016152645A1 (en) * 2015-03-26 2017-09-28 ニッタ株式会社 Chemical filter
US10113126B2 (en) 2016-02-04 2018-10-30 Korea Institute Of Science And Technology Reusable polymeric material for removing siloxane compounds in biogas, method thereby and apparatus therefor
JP2020199465A (en) * 2019-06-11 2020-12-17 イビデン株式会社 Hydrogen sulfide gas adsorption structure, and battery pack
JP7272872B2 (en) 2019-06-11 2023-05-12 イビデン株式会社 Hydrogen sulfide gas adsorption structure and battery pack
CN114034778A (en) * 2021-09-09 2022-02-11 中车青岛四方机车车辆股份有限公司 Detection method and application of acetic acid gas volatilized from solid non-metallic material
CN114034778B (en) * 2021-09-09 2024-03-22 中车青岛四方机车车辆股份有限公司 Detection method and application of volatilized acetic acid gas in solid nonmetallic material
CN116920318A (en) * 2023-07-22 2023-10-24 广东艾可欣技术有限公司 Fire extinguishing microcapsule and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009183900A (en) Gas adsorbent
JP3153245B2 (en) Compact and improved adsorption filter without particle formation
US6890373B2 (en) Adsorbents, process for producing the same, and applications thereof
JP5209300B2 (en) Adsorption film and organic EL device
JP2010521763A (en) Improved adsorptive article for disk drives
JP2010533571A (en) Contaminant suppression filter with filling port
JP2014533195A (en) Method for applying a sorbent on a substrate, carrier and / or carrier coated substrate
JP2008138300A (en) Fibrous sheet, method for producing the same, deodorant, and air filter
JP2017109198A (en) Carbon dioxide absorbing material, pellet and filter
CN109104831A (en) Filter medium and filtering product for electronic shell
KR20160022814A (en) Container containing absorbent
US3532637A (en) Solid regenerable absorber for acid gases
JP2006519098A (en) GAS ADSORPTION COMPOSITION AND APPARATUS AND METHOD FOR PRODUCING THEM
JP2002273123A (en) Chemical filter
TWI265149B (en) Process for removing water from gaseous substance
WO2014004276A1 (en) Absorbent for optics and electrical components
JP2006192388A (en) Gas adsorbing filter medium
KR101995200B1 (en) Multi-layer composite fibrous filter for Method and system for vehicle and manufacturing method thereof
JP2001170497A (en) Catalyst for cleaning air
JP2012125760A (en) Adsorption cell, and method of manufacturing the same
JP4558842B2 (en) Photocatalytic member storage method
JPS61101244A (en) Carbon dioxide adsorber
EP0957320B1 (en) Heat exchanger element
JP3029808B2 (en) Deodorizing filter device
JP3733679B2 (en) filter