JP2009181718A - Manufacturing method of gas diffusion layer - Google Patents

Manufacturing method of gas diffusion layer Download PDF

Info

Publication number
JP2009181718A
JP2009181718A JP2008017569A JP2008017569A JP2009181718A JP 2009181718 A JP2009181718 A JP 2009181718A JP 2008017569 A JP2008017569 A JP 2008017569A JP 2008017569 A JP2008017569 A JP 2008017569A JP 2009181718 A JP2009181718 A JP 2009181718A
Authority
JP
Japan
Prior art keywords
support
exposed surface
substrate
base material
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017569A
Other languages
Japanese (ja)
Inventor
Hideki Sugimura
秀樹 杉村
Takeshi Sha
剛 謝
Hideo Tsuchiya
秀夫 土谷
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008017569A priority Critical patent/JP2009181718A/en
Publication of JP2009181718A publication Critical patent/JP2009181718A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a gas diffusion layer advantageous for setting a relatively more carrying volume of a fluid matter at a first exposed surface side of a base material and relatively less at a second exposed surface side. <P>SOLUTION: A porous base material 2 of a sheet shape having pores and conductivity as well as a first exposed surface 21 and a second exposed surface 22 back to back on each other, and a fluid matter having fluidity containing a water-repellent material are prepared. With the base material 2 in a state supported by a support body 12, the fluid matter is coated on the first exposed surface 21 of the base material 2. The coating process is carried out with the second exposed surface 22 of the base material 2 in a state loaded on and supported by a supporting face 11 of the support body 12. After or immediately before finish, or in the middle of the coating process, more than half of the second exposed surface 22 of the base material 2 is to be in a state out of contact with the support face 11 of the support body 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は燃料電池などに使用されるガス拡散層の製造方法に関する。   The present invention relates to a method for producing a gas diffusion layer used in a fuel cell or the like.

従来、特許文献1には、カーボン系の基材に撥水材を含浸させたガス拡散層において、触媒層に接触する側から反対側に向かうにつれてガス拡散層の厚み方向において撥水材の量を連続的に変化させた製造方法が開示されている。このように撥水材の量をガス拡散層の厚み方向に傾斜させた構造を採用すれば、ガス拡散層における排水性を高めるのに有利と記載されている。   Conventionally, in Patent Literature 1, in a gas diffusion layer in which a carbon-based substrate is impregnated with a water repellent material, the amount of the water repellent material in the thickness direction of the gas diffusion layer from the side in contact with the catalyst layer toward the opposite side. A manufacturing method in which is continuously changed is disclosed. It is described that it is advantageous to improve drainage in the gas diffusion layer by adopting a structure in which the amount of the water repellent material is inclined in the thickness direction of the gas diffusion layer.

特許文献2には、搬送ロールを直列に並設した搬送ロール群に基材を載せて搬送しつつ、一対のコーティングロール間に基材を挿入し、撥水材を含むペーストを基材の表面に塗布するガス拡散層の製造方法が開示されている。
特開2003−109604号公報 特開2004−71508号公報
In Patent Document 2, a base material is inserted between a pair of coating rolls while transporting the base material on a transport roll group in which transport rolls are arranged in series, and a paste containing a water repellent material is applied to the surface of the base material. A method for producing a gas diffusion layer applied to the substrate is disclosed.
JP 2003-109604 A JP 2004-71508 A

しかしながら上記した特許文献2に係る技術によれば、撥水材の量を基材の厚み方向に傾斜させたい場合、搬送ロールの表面張力によりペーストが搬送ロール側に広がり、基材の互い対向する第1表出面および第2表出面において撥水材量の傾斜を形成するには限界がある。   However, according to the technique according to Patent Document 2 described above, when it is desired to incline the amount of the water repellent material in the thickness direction of the base material, the paste spreads to the transport roll side due to the surface tension of the transport roll, and the base materials face each other. There is a limit in forming the slope of the amount of water repellent material on the first exposed surface and the second exposed surface.

本発明は上記した実情に鑑みてなされたものであり、撥水材を含む流動性をもつ流動物を基材の第1表出面に塗布する塗布工程を実施するにあたり、流動物の量を基材の第1表出面側で相対的に多く、基材の第2表出面側で相対的に少なく設定させるのに有利なガス拡散層の製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and in carrying out the coating step of applying a fluid having fluidity including a water repellent material to the first exposed surface of the substrate, the amount of the fluid is based on the amount. It is an object of the present invention to provide a method for producing a gas diffusion layer that is advantageous in that it is relatively large on the first exposed surface side of the material and relatively small on the second exposed surface side of the base material.

(1)様相1に係るガス拡散層の製造方法は、気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、基材を支持し得る支持面をもつ支持体とを用意する工程と、基材を支持体で支持した状態で、流動物を基材の第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、塗布工程は、基材の第2表出面を支持体の支持面に載せて支持した状態で行われ、塗布工程の終了後、塗布工程の終了直前、または、塗布工程の途中において、基材の第2表出面のうちの半分以上と支持体の支持面とを非接触状態とさせることを特徴とする
塗布工程では、基材の第2表出面を支持体の支持面に載せて支持した状態で行われる。従って塗布される基材の第1表出面の位置が安定し、塗布量および塗布厚みが安定する。
(1) A method for producing a gas diffusion layer according to aspect 1 includes a porous base material in the form of a sheet having pores and conductivity and having a first exposed surface and a second exposed surface facing each other; A step of preparing a fluid having fluidity including a material and a support having a support surface capable of supporting the substrate; In the manufacturing method of the gas diffusion layer including the application step of applying to the exit surface, the application step is performed with the second exposed surface of the substrate placed on and supported by the support surface of the support, and after the application step is completed, Immediately before the end of the coating process or in the middle of the coating process, more than half of the second exposed surface of the substrate and the support surface of the support are brought into a non-contact state. The second exposed surface is placed on and supported by the support surface of the support. Accordingly, the position of the first exposed surface of the substrate to be coated is stabilized, and the coating amount and coating thickness are stabilized.

前述したように、塗布工程は、基材の第2表出面を支持体の支持面に載せて支持した状態で行われる。これにより流動物は基材の第1表出面に塗布される。第1表面に塗布された流動物は、時間経過につれて、基材の厚み方向に含浸する。ここで、基材の第2表出面と支持体の支持面との接触が長く継続していると、流動物が基材の厚み方向に過剰に含浸し、基材の第1表出面から第2表出面に向かうおそれがある。更に含浸が進行すると、流動物のかなりの部分が基材の第2表出面に保持されてしまうおそれがある。場合によっては、第2表出面から流動物が流出してしまうおそれがある。その理由としては、基材の第2表出面と支持体の支持面との間における表面張力の影響と考えられる。すなわち、流動物が基材の第2表面から流出して支持体の支持面に一旦接触すると、表面張力の影響で、流動物が支持面側に吸引されるためと推察される。殊に、支持体の支持面が親水性をもつ場合には、流動物のかなりの部分が基材の第2表出面に流れるおそれがある。   As described above, the coating step is performed in a state where the second exposed surface of the base material is placed on and supported by the support surface of the support. Thereby, a fluid is apply | coated to the 1st exposed surface of a base material. The fluid applied to the first surface is impregnated in the thickness direction of the substrate over time. Here, if the contact between the second exposed surface of the base material and the support surface of the support member continues for a long time, the fluid is excessively impregnated in the thickness direction of the base material, and the first exposed surface of the base material 2 There is a risk of heading to the surface. When the impregnation further proceeds, a considerable part of the fluid may be held on the second exposed surface of the substrate. In some cases, the fluid may flow out from the second exposed surface. The reason is considered to be the influence of the surface tension between the second exposed surface of the substrate and the support surface of the support. That is, it is inferred that when the fluid flows out from the second surface of the substrate and once contacts the support surface of the support, the fluid is attracted to the support surface due to the influence of the surface tension. In particular, when the support surface of the support is hydrophilic, a significant portion of the fluid may flow to the second exposed surface of the substrate.

この点について本様相によれば、塗布工程の終了後、塗布工程の終了直前、または、塗布工程の途中において、基材の第2表出面のうちの半分以上と支持体の支持面とを非接触状態とさせる。この結果、上記した表面張力が低減または解消され、第1表出面側の流動物が基材の厚み方向に過剰に含浸することが抑制される。ひいては、流動物が基材の第2表出面側に過剰に保持されたり、流出したりすることが抑制される。このため、当該半分以上の領域において、流動物に含まれている撥水材の濃度(単位体積あたりの担持量)を、基材の厚み方向に良好に傾斜させることができる。すなわち、撥水材の量については、塗布側である第1表出面側で多く、非塗布側である第2表出面側で少なくできる。ここで、『基材の第2表出面のうちの半分以上』とは、第2表出面をこれの垂直方向から投影するとき、面積比で投影面積の50%以上を意味する。70%以上、90%以上が好ましい。基材のうち膜電極接合体として使用される部分の大部分は、支持体の支持面に非接触状態であることが好ましい。『塗布工程の終了直前』とは、塗布開始から塗布終了までの時間を100と相対表示するとき、塗布開始から70〜100の時間領域、80〜100の時間領域、殊に90〜100の時間領域が例示される。『塗布工程の終了後』とは、塗布工程の終了時点から1秒以内、2秒以内、5秒以内、10秒以内、30秒以内が好ましい。   In this aspect, according to this aspect, more than half of the second exposed surface of the base material and the support surface of the support body are not non-contacted after the coating process, immediately before the coating process, or in the middle of the coating process. Keep in contact. As a result, the surface tension described above is reduced or eliminated, and the fluid on the first exposed surface side is suppressed from being excessively impregnated in the thickness direction of the substrate. As a result, it is suppressed that the fluid is excessively held on the second exposed surface side of the base material or flows out. For this reason, in the said half or more area | region, the density | concentration (carrying amount per unit volume) of the water repellent material contained in the fluid can be favorably inclined in the thickness direction of the base material. That is, the amount of the water repellent material can be increased on the first exposed surface side, which is the application side, and can be decreased on the second exposed surface side, which is the non-coated side. Here, “more than half of the second exposed surface of the substrate” means 50% or more of the projected area in terms of area ratio when the second exposed surface is projected from the vertical direction. 70% or more and 90% or more are preferable. It is preferable that most of the part used as a membrane electrode assembly in the substrate is in a non-contact state with the support surface of the support. "Just before the end of the coating process" means that when the time from the start of coating to the end of coating is relatively displayed as 100, the time range from 70 to 100 from the start of coating, the time range from 80 to 100, especially 90 to 100 hours. Regions are illustrated. “After the coating process is completed” is preferably within 1 second, within 2 seconds, within 5 seconds, within 10 seconds, or within 30 seconds from the end of the coating process.

流動物に含まれている撥水材としてはフッ素樹脂、シリコーン樹脂等が例示される。フッ素樹脂は、ポリテトラフロオロエチレン(PTFE),テトラフロオロエチレン−ヘキサフロオロプロピレン共重合体(FEP),テトラフロオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフロオロエチレン−エチレン共重合体、ポリビニリデンフロライド、ポリフェニルヒドロシロキサンが例示される。流動物は例えば微小導電物質を含むことができる。微小導電物質はカーボンブラック、黒鉛粉末、カーボンナノチューブ、カーボン繊維等のカーボン系物質、ステンレス鋼等の金属系物質が例示され、形態としては粒子状、繊維状が例示される。基材としては、導電繊維または導電性粒子の集合体が例示され、カーボンクロス、カーボンペーパー、カーボン不織物が例示される。   Examples of the water repellent material contained in the fluid include a fluororesin and a silicone resin. The fluororesin is polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer Examples include coalescence, polyvinylidene fluoride, and polyphenylhydrosiloxane. The fluid can include, for example, a microconductive material. Examples of the micro conductive material include carbon-based materials such as carbon black, graphite powder, carbon nanotubes, and carbon fibers, and metal-based materials such as stainless steel. Examples of the form include particles and fibers. Examples of the substrate include conductive fibers or aggregates of conductive particles, such as carbon cloth, carbon paper, and carbon non-woven fabric.

(2)様相2に係るガス拡散層の製造方法は、気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、基材を支持し得る支持面をもつ支持体とを用意する工程と、基材を支持体で支持した状態で、流動物を基材の第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、塗布工程は、基材の第2表出面を支持体の支持面に載せて支持した状態で行われ、且つ、支持体の支持面のうち少なくとも基材の第2表出面に対面する部分に撥水性を有する状態で行われることを特徴とする。   (2) A method for producing a gas diffusion layer according to aspect 2 includes a porous base material in the form of a sheet having pores and conductivity and having a first exposed surface and a second exposed surface facing each other; A step of preparing a fluid having fluidity including a material and a support having a support surface capable of supporting the substrate; In the method for producing a gas diffusion layer including a coating step for coating on the exit surface, the coating step is performed in a state where the second exposed surface of the substrate is placed on and supported by the support surface of the support, and the support of the support is supported. It is characterized in that it is carried out in a state having water repellency in at least a portion of the surface facing the second exposed surface of the substrate.

塗布工程は、基材の第2表出面を支持体の支持面に載せて支持した状態で行われる。従って塗布される基材の第1表出面の位置が安定し、塗布量が安定する。これにより流動物は基材の第1表出面に塗布される。塗布された流動物は、時間経過につれて、基材の厚み方向に含浸し、基材の第1表出面から第2表出面に向かう。ここで、支持体の支持面が親水性を有するときには、第1表出面側の流動物が基材の厚み方向に過剰に含浸し、更に流動物のかなりの部分が基材の第2表出面側に保持されてしまうおそれがある。この点について本様相によれば、塗布工程は、支持体の支持面のうち少なくとも基材の第2表出面に対面する部分に撥水性が存在している。従って、基材の第1表出面に塗布された流動物が基材の厚み方向に第2表出面に向けて過剰に含浸することが抑制される。ひいては、流動物が基材の第2表出面側に過剰に保持されることが抑制される。このため流動物に含まれている撥水材の濃度(単位体積あたりの担持量)を基材の厚み方向に傾斜させることができる。すなわち、撥水性は撥水材で確保される。撥水材の量については、塗布側である第1表出面側で多く、非塗布側である第2表出面側で少なくできる。なお、支持体の支持面に存在する撥水材としては、前述したようなフッ素樹脂、シリコーン樹脂等が例示される。撥水性については、接触角が90度よりも大きく、望ましくは100度以上、更に望ましくは110度以上が好ましい。   The coating step is performed in a state where the second exposed surface of the substrate is placed on and supported by the support surface of the support. Accordingly, the position of the first exposed surface of the substrate to be coated is stabilized, and the coating amount is stabilized. Thereby, a fluid is apply | coated to the 1st exposed surface of a base material. The applied fluid is impregnated in the thickness direction of the substrate as time passes, and travels from the first exposed surface to the second exposed surface of the substrate. Here, when the support surface of the support has hydrophilicity, the fluid on the first exposed surface side is excessively impregnated in the thickness direction of the substrate, and a substantial part of the fluid is further exposed to the second exposed surface of the substrate. There is a risk of being held on the side. In this aspect, according to this aspect, in the coating process, water repellency exists in at least a portion of the support surface of the support that faces the second exposed surface of the base material. Therefore, excessive impregnation of the fluid applied to the first exposed surface of the substrate toward the second exposed surface in the thickness direction of the substrate is suppressed. As a result, it is suppressed that the fluid is excessively held on the second exposed surface side of the base material. For this reason, the density | concentration (carrying amount per unit volume) of the water repellent material contained in the fluid can be made to incline in the thickness direction of a base material. That is, the water repellency is ensured by the water repellent material. The amount of the water repellent material can be increased on the first exposed surface side, which is the application side, and can be decreased on the second exposed surface side, which is the non-coated side. In addition, examples of the water repellent material present on the support surface of the support include the above-described fluororesins and silicone resins. As for water repellency, the contact angle is larger than 90 degrees, desirably 100 degrees or more, more desirably 110 degrees or more.

(3)様相3に係るガス拡散層の製造方法は、気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、基材を支持し得る支持面をもつ支持体とを用意する工程と、基材を支持体で支持した状態で、流動物を基材の第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、支持体は多数の穴をもち、塗布工程は、基材の第2表出面を支持体で支持し、穴において、基材の第2表出面と支持体の支持面とを非接触状態とさせることを特徴とする。   (3) A method for producing a gas diffusion layer according to aspect 3 includes a porous base material in the form of a sheet having pores and conductivity, and having a first exposed surface and a second exposed surface facing each other, and a water repellent A step of preparing a fluid having fluidity including a material and a support having a support surface capable of supporting the substrate; In the manufacturing method of the gas diffusion layer including the coating step of coating on the exit surface, the support has a number of holes, and the coating step supports the second exposed surface of the substrate with the support, The second exposed surface and the support surface of the support are brought into a non-contact state.

塗布工程は、基材の第2表出面を支持体の支持面に載せて支持した状態で行われる。従って塗布される基材の第1表出面の位置が安定し、塗布量が安定する。流動物は基材の第1表出面に塗布される。塗布された流動物は、時間経過につれて、基材の厚み方向に含浸する。ここで、塗布工程の終了後において、基材の第2表出面と支持体の支持面との接触が長く継続していると、流動物が基材の厚み方向に過剰に含浸し、基材の第1表出面から第2表出面に向かう。更に含浸が進行すると、第1表出面側の流動物のかなりの部分が基材の第2表出面側に保持されてしまうおそれがある。基材の第2表出面と支持体の支持面との間における表面張力が発生する影響と考えられる。殊に、支持体の支持面が親水性をもつ場合には、この傾向が強い。   The coating step is performed in a state where the second exposed surface of the substrate is placed on and supported by the support surface of the support. Accordingly, the position of the first exposed surface of the substrate to be coated is stabilized, and the coating amount is stabilized. The fluid is applied to the first exposed surface of the substrate. The applied fluid is impregnated in the thickness direction of the substrate as time passes. Here, after completion of the coating process, if the contact between the second exposed surface of the base material and the support surface of the support body continues for a long time, the fluid is excessively impregnated in the thickness direction of the base material. From the first exposed surface to the second exposed surface. When the impregnation further proceeds, a considerable portion of the fluid on the first exposed surface side may be held on the second exposed surface side of the substrate. This is considered to be an effect of generating surface tension between the second exposed surface of the substrate and the support surface of the support. This tendency is particularly strong when the support surface of the support has hydrophilicity.

この点について本様相によれば、支持体は多数の穴をもち、塗布工程は、穴において、基材の第2表出面と支持体の支持面とを非接触状態とさせる。この結果、支持体の穴では、流動物が基材の厚み方向に過剰に含浸することが抑制される。ひいては、第1表出面側の流動物が基材の第2表出面側に過剰に保持されることが抑制される。このため流動物に含まれている撥水材の濃度(単位体積あたりの担持量)を基材の厚み方向に傾斜させることができる。すなわち、撥水材の量については、塗布側である第1表出面側で多く、非塗布側である第2表出面側で少なくできる。穴については、第2表出面に面する支持面側の全面積に占める穴の面積が面積比で60%以上、70%以上、80%以上、90%以上にできる。   In this regard, according to this aspect, the support has a large number of holes, and the coating step causes the second exposed surface of the base material and the support surface of the support to be in a non-contact state in the holes. As a result, the fluid is suppressed from being excessively impregnated in the thickness direction of the base material in the holes of the support. As a result, it is suppressed that the fluid on the first exposed surface side is excessively held on the second exposed surface side of the base material. For this reason, the density | concentration (carrying amount per unit volume) of the water repellent material contained in the fluid can be made to incline in the thickness direction of a base material. That is, the amount of the water repellent material can be increased on the first exposed surface side, which is the application side, and can be decreased on the second exposed surface side, which is the non-coated side. About a hole, the area of the hole which occupies for the whole area by the side of the support surface which faces a 2nd exposed surface can be 60% or more, 70% or more, 80% or more, 90% or more by area ratio.

本発明によれば、流動物を塗布するとき、撥水材を含む流動物が多孔質の基材の第2表出面から外方に過剰に流出してしまうおそれが抑制される。このため流動物に含まれている撥水材の濃度(単位体積あたりの担持量)を基材の厚み方向に良好に傾斜させることができる。この結果、撥水材の量については、基材のうち塗布側である第1表出面側で多く、塗布側と反対側である第2表出面側で少なくすることができる。   According to the present invention, when applying a fluid, the possibility that the fluid containing the water repellent material flows out excessively from the second exposed surface of the porous substrate is suppressed. For this reason, the concentration of the water repellent material contained in the fluid (supported amount per unit volume) can be favorably inclined in the thickness direction of the substrate. As a result, the amount of the water repellent material can be increased on the first exposed surface side that is the application side of the base material, and can be decreased on the second exposed surface side that is the opposite side to the application side.

本発明の各実施形態について図面を参照しつつ説明する。   Embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は実施形態1を模式的に示す。図1(A)は、基材2を載せる前の支持体12をもつ塗布装置1の斜視図を模式的に示す。図1(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図1(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。
(Embodiment 1)
FIG. 1 schematically shows the first embodiment. FIG. 1A schematically shows a perspective view of a coating apparatus 1 having a support 12 before the substrate 2 is placed thereon. FIG. 1B schematically shows a state immediately before the fluid is applied to the substrate 2 placed on the support 12. FIG. 1C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12.

まず、多孔質のシート状をなす基材2を用意する。基材2は、気孔および導電性をもつと共に、互いに背向する第1表出面21及び第2表出面22をもつ。基材2は、カーボン繊維の集合体で形成されており、カーボンクロス、カーボンペーパ、カーボン不織物が例示される。更にペースト状またはインク状の流動物を用意する。流動物は、撥水材および微小導電物質を分散媒(水またはアルコール)に配合した流動性を有し、基材2の内部に含浸する性質を有する。   First, a base material 2 having a porous sheet shape is prepared. The base material 2 has pores and conductivity, and has a first exposed surface 21 and a second exposed surface 22 facing away from each other. The base material 2 is formed of an aggregate of carbon fibers, and examples thereof include carbon cloth, carbon paper, and carbon non-woven fabric. Further, a paste-like or ink-like fluid is prepared. The fluid has a fluidity in which a water repellent material and a fine conductive material are blended in a dispersion medium (water or alcohol), and has a property of impregnating the inside of the substrate 2.

更に支持体12をもつ塗布装置1を用意する。塗布装置1は、固定部10と、固定部10に装備され平坦な支持面11をもつ平板状をなす水平状の支持体12と、支持体12の支持面11に沿って移動可能な塗布体13と、固定部10に保持され支持体12を高さ方向に沿って移動(昇降)させるピン状をなす可動体14とをもつ。   Further, a coating apparatus 1 having a support 12 is prepared. The coating apparatus 1 includes a fixed unit 10, a horizontal support 12 having a flat support surface 11 provided on the fixed unit 10, and an applicator movable along the support surface 11 of the support 12. 13 and a movable body 14 in the form of a pin that is held by the fixed portion 10 and moves (lifts) the support body 12 along the height direction.

塗布体13は、流動物を移動させて塗布させるブレードとして機能する塗布部材16と、塗布部材16の両端に保持され且つ固定部10の案内面10uに沿って移動させる保持体17とをもつ。可動体14は、支持体12の塗布方向(矢印X方向)の終端12e側において昇降可能に配置されている。従って可動体14は、支持体12に貫通状に形成されている出入孔18から上向きに突出したり、出入孔18の開口よりも下方に退避することができる。故に、可動体14は、支持面11上の基材2を上方(矢印Z1方向)に持ち上げることができる。可動体14は駆動機構で昇降させても良いし、手動で昇降させても良い。   The applicator 13 includes an applicator member 16 that functions as a blade that moves and applies the fluid, and a holder 17 that is held at both ends of the applicator member 16 and moves along the guide surface 10 u of the fixed portion 10. The movable body 14 is disposed so as to be movable up and down on the terminal end 12 e side in the application direction (arrow X direction) of the support body 12. Therefore, the movable body 14 can protrude upward from the entrance / exit hole 18 formed in the support body 12 in a penetrating manner, or can be retracted below the opening of the entrance / exit hole 18. Therefore, the movable body 14 can lift the substrate 2 on the support surface 11 upward (in the direction of arrow Z1). The movable body 14 may be moved up and down by a driving mechanism, or may be moved up and down manually.

塗布工程においては、まず、基材2の第2表出面22(下面)を支持体12の支持面11に載せて支持させる。この状態では、基材2の第1表出面21(上面)は上方に露出している。可動体14は出入孔18の開口から上方に突出していないため、基材2と可動体14との干渉が抑えられており、可動体14が基材2の邪魔になることはない。可動体14の上面である持ち上げ面14uは、基材2の第2表出面22(下面)に接触していても良いし、非接触でも良い。前者の場合、持ち上げ面14uが基材2の第2表出面22を支えるため、出入孔18において第1表出面21の高さ変化が抑制される利点が得られる。後者の場合、持ち上げ面14uと基材2との干渉が確実に抑制される利点が得られる。   In the coating step, first, the second exposed surface 22 (lower surface) of the substrate 2 is placed on and supported by the support surface 11 of the support 12. In this state, the first exposed surface 21 (upper surface) of the substrate 2 is exposed upward. Since the movable body 14 does not protrude upward from the opening of the access hole 18, interference between the base material 2 and the movable body 14 is suppressed, and the movable body 14 does not interfere with the base material 2. The lifting surface 14u that is the upper surface of the movable body 14 may be in contact with the second exposed surface 22 (lower surface) of the substrate 2 or may be non-contact. In the former case, since the lifting surface 14 u supports the second exposed surface 22 of the base material 2, there is an advantage that the height change of the first exposed surface 21 is suppressed in the access hole 18. In the latter case, there is an advantage that the interference between the lifting surface 14u and the substrate 2 is reliably suppressed.

この状態で、図1(B)に模式的に示すように、ペースト状またはインク状の流動物の塊体3を基材2の第1表出面21のうち始端2s側に載せる。始端は塗布始端を意味する。塊体3の量は、基材2の第1表出面21に塗布される撥水材および微小導電物質の量に応じて予め設定されている。そして、塗布体13を支持面11に塗布方向(矢印X方向)沿って移動させる。これにより流動物を支持面11上の基材2の第1表出面21に膜状に塗布する。膜は均一状が好ましい。なお、塗布体13の移動は自動で行っても良いし、手動で行っても良い。塗布体13の移動速度は一定とすることが好ましいが、これに限定されるものではない。   In this state, as shown schematically in FIG. 1B, the paste 3 or ink-like fluid mass 3 is placed on the first exposed surface 21 of the base 2 on the start end 2 s side. The start end means the application start end. The amount of the mass 3 is set in advance according to the amount of the water repellent material and the minute conductive material applied to the first exposed surface 21 of the base material 2. And the application body 13 is moved to the support surface 11 along an application direction (arrow X direction). As a result, the fluid is applied in the form of a film to the first exposed surface 21 of the substrate 2 on the support surface 11. The film is preferably uniform. In addition, the movement of the application body 13 may be performed automatically or manually. The moving speed of the application body 13 is preferably constant, but is not limited to this.

上記した塗布工程では、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われる。すなわち、基材2の第2表出面22と支持体12の支持面11とを接触させた状態で行われる。このため基材2の第1表出面21および第2表出面22の高さ変動が抑えられる。よって基材2の第1表出面21に流動物を均一に塗布させることができる。   The application process described above is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12. That is, it is performed in a state where the second exposed surface 22 of the substrate 2 and the support surface 11 of the support 12 are in contact with each other. For this reason, the height fluctuation of the 1st exposed surface 21 and the 2nd exposed surface 22 of the base material 2 is suppressed. Therefore, the fluid can be uniformly applied to the first exposed surface 21 of the substrate 2.

上記した塗布工程の終了後において、つまり、塗布方向(矢印X方向)沿って移動した塗布体13が基材2の終端2eを超えて支持体12の支持面11の終端eに到達した後において、図1(C)に模式的に示すように、可動体14を上方(矢印Z1方向)に移動させる。これにより可動体14の上面で支持体12上の基材2の終端2e側を持ち上げる。可動体14は支持体12の終端12e側に配置されているものの、支持体12の始端12s側には配置されていない。このため基材2の始端2s側は支持体12の支持面11に接触している。   After the end of the above-described application process, that is, after the application body 13 that has moved along the application direction (the direction of the arrow X) reaches the end e of the support surface 11 of the support 12 beyond the end 2e of the base material 2. As shown schematically in FIG. 1C, the movable body 14 is moved upward (in the direction of arrow Z1). Thereby, the terminal 2e side of the base material 2 on the support 12 is lifted on the upper surface of the movable body 14. Although the movable body 14 is disposed on the end 12 e side of the support 12, it is not disposed on the start end 12 s side of the support 12. For this reason, the starting end 2 s side of the substrate 2 is in contact with the support surface 11 of the support 12.

これにより図1(C)に模式的に示すように、基材2の終端2eが基材2の始端2sよりも上方に位置するように、基材2が角度θ1で上昇傾斜する。この結果、塗布工程の終了後において、支持体12上の基材2の第2表出面22と支持体12の支持面11とを離間させ、非接触性を高める。   Thereby, as schematically shown in FIG. 1C, the base material 2 is inclined upward at an angle θ <b> 1 so that the end 2 e of the base material 2 is positioned above the start end 2 s of the base material 2. As a result, after the coating step is finished, the second exposed surface 22 of the base material 2 on the support 12 and the support surface 11 of the support 12 are separated from each other, thereby improving the non-contact property.

ここで、基材2の第1表出面21に塗布された流動性をもつ流動物は、流動物の粘性にもよるが、時間経過につれて、毛細管現象や重力により、基材2の厚み方向に下方に向けて次第に含浸する。ここで、塗布工程の終了後において、基材2の第2表出面22と支持体12の支持面11との接触が長く継続していると、流動物が基材2の厚み方向に過剰に含浸し、基材2の第1表出面21(上面)から第2表出面22(下面)に向かう。更に含浸が進行すると、流動物のかなりの部分が基材2の第2表出面22側に流れるおそれがある。更にその流動物が第2表出面22に広がってしまうおそれがある。その理由としては、流動物が基材2の第2表出面22から支持面11に一旦流出したとき、基材2の第2表出面22と支持体12の支持面11との間における表面張力の影響が増加すると考えられる。殊に、支持体12の支持面11が親水性をもつ場合には、この傾向がある。これが流動物の『裏抜け現象』である。   Here, the fluid material having fluidity applied to the first exposed surface 21 of the base material 2 depends on the viscosity of the fluid material, but in the thickness direction of the base material 2 due to capillary action or gravity over time. Impregnate gradually downward. Here, when the contact between the second exposed surface 22 of the base material 2 and the support surface 11 of the support body 12 continues for a long time after the coating process is finished, the fluid is excessive in the thickness direction of the base material 2. It impregnates and goes from the 1st exposed surface 21 (upper surface) of the base material 2 to the 2nd exposed surface 22 (lower surface). When the impregnation further proceeds, a considerable part of the fluid may flow to the second exposed surface 22 side of the substrate 2. Furthermore, the fluid may spread on the second exposed surface 22. The reason is that the surface tension between the second exposed surface 22 of the substrate 2 and the support surface 11 of the support 12 when the fluid once flows out from the second exposed surface 22 of the substrate 2 to the support surface 11. It is thought that the influence of will increase. This tendency occurs particularly when the support surface 11 of the support 12 is hydrophilic. This is the “back-through phenomenon” of fluids.

この点について本実施形態によれば、前述したように、塗布工程の途中においては、基材2の第2表出面22と支持体12の支持面11とを接触させている。しかしながら塗布工程の終了後において、基材2を矢印Z1方向に持ち上げ、基材2の第2表出面22と支持体12の支持面11とを離間させ、両者の非接触性を高める。この結果、基材2の第2表出面22と支持体12の支持面11との間において、流動物を第2表出面22側に吸引させ得る表面張力が低減または解消される。故に、ペースト状の流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。ひいては、流動物が基材2の第2表出面22に過剰に保持されることが抑制される。このため流動物に含まれている撥水材および微小導電物質の濃度(単位体積あたりの担持量)を、基材2の厚み方向において良好に傾斜させることができる。すなわち、撥水材および微小導電物質の量については、基材2のうち塗布側である第1表出面21側で多く設定でき、第2表出面22側で少なく設定できる。このように撥水材および微小導電物質について、基材2の厚み方向において傾斜組成、傾斜濃度に設定することができる。   In this regard, according to the present embodiment, as described above, the second exposed surface 22 of the substrate 2 and the support surface 11 of the support 12 are brought into contact with each other during the coating process. However, after the coating process is finished, the base material 2 is lifted in the direction of the arrow Z1, and the second exposed surface 22 of the base material 2 and the support surface 11 of the support 12 are separated to increase the non-contact property between them. As a result, the surface tension between the second exposed surface 22 of the substrate 2 and the support surface 11 of the support 12 that can attract the fluid toward the second exposed surface 22 is reduced or eliminated. Therefore, excessive impregnation of the paste-like fluid toward the second exposed surface 22 in the thickness direction of the substrate 2 is suppressed. As a result, it is suppressed that the fluid is excessively held on the second exposed surface 22 of the substrate 2. For this reason, the concentration of the water repellent material and the minute conductive material (the amount carried per unit volume) contained in the fluid can be favorably inclined in the thickness direction of the substrate 2. That is, the amount of the water repellent material and the minute conductive material can be set larger on the first exposed surface 21 side, which is the application side, of the substrate 2 and can be set smaller on the second exposed surface 22 side. As described above, the water repellent material and the minute conductive material can be set to have a gradient composition and a gradient concentration in the thickness direction of the substrate 2.

塗布工程の終了後に限らず、塗布工程の終了直前において、つまり、塗布体13が支持体12の支持面11の終端12eに到着する直前に、可動体14を上方向(矢印Z1方向)に移動させて基材2の終端2e側を持ち上げても良い。ここで、塗布工程の終了直前とは、塗布している時間を100と相対表模式的に示すとき、開始時から80〜100の時間領域、殊に90〜100の時間領域とすることができる。但し、これに限定されるものではない。   The movable body 14 is moved upward (in the direction of the arrow Z1) not only after the application process is completed but immediately before the application process is completed, that is, immediately before the application body 13 arrives at the end 12e of the support surface 11 of the support body 12. Then, the end 2e side of the base material 2 may be lifted. Here, “immediately before the end of the coating process” can be set to a time region of 80 to 100, in particular, a time region of 90 to 100 from the start, when the coating time is schematically shown as 100. . However, it is not limited to this.

なお本実施形態によれば、基材2の傾斜角度θ1(図1(C)参照)によっては、基材2の始端2sと支持面11とを接触させつつ基材2の終端2eと支持面11との隙間を確保できる。従って、基材2の第2表出面22と支持面11との間の隙間の隙間幅を、塗布方向(矢印X方向)の始端2sから終端2eにかけて徐々に増加させることが期待できる。このため第1表出面21に塗布された流動物の含浸深さ(裏抜け量)についても、塗布方向(矢印X方向)の始端2sから終端2eにかけて徐々に変化させることができる。この場合には、ガス拡散層となる基材2において、塗布方向(矢印X方向)の始端2sから終端2eにかけて、撥水性を徐々に変化させることも期待できる。このように始端2sから終端2eにかけて撥水性を徐々に変化させると、ガスの流れ方向に対応させて面内の撥水性傾斜を実現することができる。撥水性については、接触角が90度よりも大きく、望ましくは100度以上、更に望ましくは110度以上が好ましい。   According to the present embodiment, depending on the inclination angle θ1 of the base material 2 (see FIG. 1C), the terminal end 2e of the base material 2 and the support surface are brought into contact with the start end 2s of the base material 2 and the support surface 11. 11 can be secured. Therefore, it can be expected that the gap width of the gap between the second exposed surface 22 of the substrate 2 and the support surface 11 is gradually increased from the start end 2s to the end end 2e in the application direction (arrow X direction). For this reason, the impregnation depth (back-through amount) of the fluid applied to the first exposed surface 21 can also be gradually changed from the start end 2s to the end end 2e in the application direction (arrow X direction). In this case, it can be expected that the water repellency is gradually changed from the start end 2s to the end end 2e in the coating direction (arrow X direction) in the base material 2 serving as the gas diffusion layer. In this way, when the water repellency is gradually changed from the start end 2s to the end end 2e, an in-plane water repellency gradient can be realized corresponding to the gas flow direction. As for water repellency, the contact angle is larger than 90 degrees, desirably 100 degrees or more, more desirably 110 degrees or more.

(実施形態2)
図2は実施形態2を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。以下、異なる部分を中心として説明する。可動体14は、支持体12の塗布方向(矢印X方向)の始端12s側に配置されており、支持体12に貫通状に形成されている出入孔18から上向きに突出したり、出入孔18の開口よりも下方に退避することができる。図2(A)は、基材2を載せる前の支持体12の斜視図を模式的に示す。図2(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図2(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。
(Embodiment 2)
FIG. 2 schematically shows the second embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. In the following, different parts will be mainly described. The movable body 14 is disposed on the start end 12 s side in the application direction (arrow X direction) of the support 12, and protrudes upward from the entrance / exit hole 18 formed in the support 12 in a penetrating manner. It can be retracted below the opening. FIG. 2A schematically shows a perspective view of the support 12 before the substrate 2 is placed. FIG. 2B schematically shows a state immediately before the fluid is applied to the substrate 2 placed on the support 12. FIG. 2C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12.

まず、実施形態1と同様に、基材2の第1表出面21(上面)を上方に露出させると共に、基材2の第2表出面22(下面)を支持体12の支持面11に載せて支持させる。ここで、可動体14は出入孔18の開口よりも下方に退避しているため、基材2の邪魔になることはない。この状態で、ペースト状またはインク状の流動物の塊体3を基材2の第1表出面21のうち始端2s側に載せる。そして、塗布体13を基材2の始端2sから支持面11に塗布方向(矢印X方向)沿って基材2の終端2eに向けて移動させる。これにより流動物を支持面11上の基材2の第1表出面21に膜状に塗布する。膜は均一状が好ましい。上記した塗布工程は、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われるため、基材2の第1表出面21の位置が安定し、流動物の塗布量を均一にさせるのに有利である。   First, as in the first embodiment, the first exposed surface 21 (upper surface) of the substrate 2 is exposed upward, and the second exposed surface 22 (lower surface) of the substrate 2 is placed on the support surface 11 of the support 12. To support. Here, since the movable body 14 is retracted below the opening of the entrance / exit hole 18, it does not interfere with the base material 2. In this state, the paste 3 or ink-like fluid mass 3 is placed on the start end 2 s side of the first exposed surface 21 of the substrate 2. Then, the application body 13 is moved from the start end 2s of the base material 2 to the support surface 11 along the application direction (arrow X direction) toward the terminal end 2e of the base material 2. As a result, the fluid is applied in the form of a film to the first exposed surface 21 of the substrate 2 on the support surface 11. The film is preferably uniform. Since the application step described above is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12, the position of the first exposed surface 21 of the substrate 2 is stabilized, and the flow It is advantageous for uniform application amount of animals.

塗布工程の終了後において、つまり、塗布体13が基材2の終端2eを超えて支持体12の支持面11の終端12eに到達した後(直後)において、可動体14を上方(矢印Z1方向)に移動させる。これにより可動体14の上面で支持体12上の基材2の始端2s側を持ち上げる。可動体14は支持体12の始端12s側に配置されているものの、支持体12の終端12e側には配置されていない。これにより図2(C)に模式的に示すように、基材2の始端2sが基材2の終端2eよりも上方に位置するように、基材2の始端2sが上昇傾斜する。この結果、支持体12上の基材2の第2表出面22と支持体12の支持面11とを離間させ、非接触性を高める。従って、基材2の第2表出面22と支持体12の支持面11との間において流動物を吸引させる表面張力が存在するときであっても、表面張力が低減または解消される。このため、流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。このため流動物に含まれている撥水材および微小導電物質の濃度(単位体積あたりの担持量)を基材2の厚み方向において傾斜させることができる。すなわち、撥水材および微小導電物質の量については、基材2のうち塗布側である第1表出面21側で多く設定でき、第2表出面22側で少なく設定できる。このように撥水材および微小導電物質について、基材2の厚み方向において傾斜組成、傾斜濃度に設定できる。なお、塗布工程の終了後に限らず、塗布工程の終了直前において、つまり、塗布体13が支持体12の支持面11の終端12eに到着する直前に、可動体14を上方向(矢印Z1方向)に移動させて基材2の始端2s側を持ち上げても良い。   After the end of the coating process, that is, after the coating body 13 reaches the end 12e of the support surface 11 of the support 12 beyond the end 2e of the substrate 2, the movable body 14 is moved upward (in the direction of arrow Z1). ). Thereby, the starting end 2s side of the base material 2 on the support 12 is lifted on the upper surface of the movable body 14. Although the movable body 14 is disposed on the start end 12 s side of the support body 12, it is not disposed on the end 12 e side of the support body 12. Thereby, as schematically shown in FIG. 2C, the starting end 2s of the base material 2 is inclined upward so that the starting end 2s of the base material 2 is positioned above the terminal end 2e of the base material 2. As a result, the second exposed surface 22 of the base material 2 on the support 12 and the support surface 11 of the support 12 are separated from each other, thereby improving non-contact properties. Therefore, even when there is a surface tension that attracts the fluid between the second exposed surface 22 of the substrate 2 and the support surface 11 of the support 12, the surface tension is reduced or eliminated. For this reason, excessive impregnation of the fluid toward the second exposed surface 22 in the thickness direction of the substrate 2 is suppressed. For this reason, the concentration of the water repellent material and the minute conductive material (supported amount per unit volume) contained in the fluid can be inclined in the thickness direction of the substrate 2. That is, the amount of the water repellent material and the minute conductive material can be set larger on the first exposed surface 21 side, which is the application side, of the substrate 2 and can be set smaller on the second exposed surface 22 side. In this way, the water repellent material and the minute conductive material can be set to have a gradient composition and a gradient concentration in the thickness direction of the substrate 2. Note that the movable body 14 is moved upward (in the direction of the arrow Z1) not only after the application process is completed, but immediately before the application process is completed, that is, immediately before the application body 13 arrives at the end 12e of the support surface 11 of the support body 12. The starting end 2s side of the base material 2 may be lifted.

なお本実施形態においても、基材2の傾斜角度θ2(図2(C)参照)によっては、基材2の始端2sと支持面11との隙間を確保しつつ、基材2の終端2eと支持面11とを接触させることができる。従って、基材2の第2表出面22と支持面11との間の隙間の隙間幅を、塗布方向(矢印X方向)の始端2sから終端2eにかけて徐々に変化させることが期待できる。このため第1表出面21に塗布された流動物の含浸深さについても、塗布方向(矢印X方向)の始端2sから終端2eにかけて徐々に変化させることができる。この場合には、ガス拡散層となる基材2において、塗布方向(矢印X方向)の始端2sから終端2eにかけて、撥水性を徐々に変化させることも期待できる。   Also in this embodiment, depending on the inclination angle θ2 of the base material 2 (see FIG. 2C), the clearance between the starting end 2s of the base material 2 and the support surface 11 is secured, while the end 2e of the base material 2 is The support surface 11 can be brought into contact. Therefore, it can be expected that the gap width of the gap between the second exposed surface 22 of the substrate 2 and the support surface 11 is gradually changed from the start end 2s to the end end 2e in the application direction (arrow X direction). For this reason, the impregnation depth of the fluid applied to the first exposed surface 21 can also be gradually changed from the start end 2s to the end end 2e in the application direction (arrow X direction). In this case, it can be expected that the water repellency is gradually changed from the start end 2s to the end end 2e in the coating direction (arrow X direction) in the base material 2 serving as the gas diffusion layer.

(実施形態3)
図3は実施形態3を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。以下、異なる部分を中心として説明する。以下、異なる部分を中心として説明する。図3(A)は、基材2を載せる前の支持体12の斜視図を模式的に示す。図3(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図3(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。可動体14(14a,14b)は、支持体12において、塗布方向(矢印X方向)と直交する方向(矢印Y方向)の一端側において配置されている。第1可動体14aは、支持体12の塗布方向の始端12s側において配置されている。第2可動体14bは、支持体12の塗布方向(矢印X方向)の終端12e側において配置されている。
(Embodiment 3)
FIG. 3 schematically shows the third embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. In the following, different parts will be mainly described. In the following, different parts will be mainly described. FIG. 3A schematically shows a perspective view of the support 12 before the substrate 2 is placed. FIG. 3B schematically shows a state immediately before the fluid is applied to the substrate 2 placed on the support 12. FIG. 3C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12. The movable body 14 (14a, 14b) is disposed on one end side of the support 12 in the direction (arrow Y direction) orthogonal to the application direction (arrow X direction). The first movable body 14 a is disposed on the start end 12 s side in the application direction of the support 12. The 2nd movable body 14b is arrange | positioned in the terminal end 12e side of the application direction (arrow X direction) of the support body 12. As shown in FIG.

塗布工程においては、前記した実施形態と同様に、基材2の第1表出面21(上面)を上方に露出させると共に、基材2の第2表出面22(下面)を支持体12の支持面11に載せて支持させる。ここで、可動体14は出入孔18の開口よりも下方に退避しているため、基材2の邪魔になることはない。この状態で、流動物の塊体3を基材2の第1表出面21のうち始端2s側に載せる。そして、塗布体13を支持面11に塗布方向(矢印X方向)沿って移動させる。これにより流動物を支持面11上の基材2の第1表出面21に膜状に塗布する。膜体は均一状が好ましい。上記した塗布工程は、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われ、塗布工程の終了後において、つまり、塗布体13が基材2の終端2eを超えて支持体12の支持面11の終端12eに到達した後(直後)において、可動体14を上方(矢印Z1方向)に移動させる。これにより第1可動体14aの上面で支持体12上の基材2の始端2s側を持ち上げる。第2可動体14bの上面で支持体12上の基材2の端部2eを持ち上げる。これにより基材2は、塗布方向(矢印X方向)と直交する方向(矢印Y方向)の一端2a側において持ち上がり、塗布方向(矢印X方向)と直交する方向(矢印Y方向)の他端2c側において持ち上がらない。この結果、基材2の矢印Y方向の一端2aは、矢印Y方向の他端2cよりも上方に位置するように、基材2の全体が傾斜する。この結果、支持体12上の基材2の第2表出面22と支持体12の支持面11とを離間させ、両者の非接触性を高める。従って前記した実施形態と同様に、流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。このため流動物に含まれている撥水材および微小導電物質の濃度(単位体積あたりの担持量)を基材2の厚み方向に傾斜させることができる。すなわち、撥水材および微小導電物質の量については、基材2のうち塗布側である第1表出面21側で多く設定され、第2表出面22側で少なく設定される。このように撥水材および微小導電物質について、基材2の厚み方向において傾斜組成、傾斜濃度に設定できる。なお、塗布工程の終了後に限らず、塗布工程の終了直前において、つまり、塗布体13が支持体12の支持面11の終端12eに到着する直前に、可動体14を上方向(矢印Z方向)に移動させて基材2の一端2a側を持ち上げても良い。   In the coating step, the first exposed surface 21 (upper surface) of the substrate 2 is exposed upward and the second exposed surface 22 (lower surface) of the substrate 2 is supported by the support 12 in the same manner as in the above-described embodiment. It is placed on the surface 11 and supported. Here, since the movable body 14 is retracted below the opening of the entrance / exit hole 18, it does not interfere with the base material 2. In this state, the mass 3 of the fluid is placed on the start surface 2 s side of the first exposed surface 21 of the substrate 2. And the application body 13 is moved to the support surface 11 along an application direction (arrow X direction). As a result, the fluid is applied in the form of a film to the first exposed surface 21 of the substrate 2 on the support surface 11. The film body is preferably uniform. The application step described above is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12, and after the application step is completed, that is, the application body 13 is the substrate 2. After reaching the end 12e of the support surface 11 of the support 12 beyond the end 2e (immediately after), the movable body 14 is moved upward (in the direction of arrow Z1). Thereby, the starting end 2s side of the base material 2 on the support body 12 is lifted by the upper surface of the first movable body 14a. The end 2e of the substrate 2 on the support 12 is lifted by the upper surface of the second movable body 14b. Thereby, the base material 2 is lifted on one end 2a side in the direction (arrow Y direction) orthogonal to the application direction (arrow X direction), and the other end 2c in the direction (arrow Y direction) orthogonal to the application direction (arrow X direction). Does not lift on the side. As a result, the entire base material 2 is inclined so that the one end 2a in the arrow Y direction of the base material 2 is positioned above the other end 2c in the arrow Y direction. As a result, the second exposed surface 22 of the base material 2 on the support 12 and the support surface 11 of the support 12 are separated from each other, and the non-contact property between them is enhanced. Therefore, as in the above-described embodiment, the fluid is suppressed from being excessively impregnated toward the second exposed surface 22 in the thickness direction of the substrate 2. For this reason, the concentration of the water repellent material and the minute conductive material (the amount carried per unit volume) contained in the fluid can be inclined in the thickness direction of the substrate 2. That is, the amount of the water repellent material and the minute conductive material is set to be large on the first exposed surface 21 side, which is the application side, of the substrate 2 and is set to be small on the second exposed surface 22 side. In this way, the water repellent material and the minute conductive material can be set to have a gradient composition and a gradient concentration in the thickness direction of the substrate 2. The movable body 14 is moved upward (in the direction of the arrow Z) not only after the application process is finished, but immediately before the application process is finished, that is, immediately before the application body 13 arrives at the end 12e of the support surface 11 of the support body 12. The one end 2a side of the base material 2 may be lifted up.

(実施形態4)
図4は実施形態4を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。以下、異なる部分を中心として説明する。図4(A)は、基材2を載せる前の支持体12の斜視図を模式的に示す。図4(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図4(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。上記した塗布工程は、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われ、塗布工程の終了後において、つまり、塗布体13が基材2の終端2eを超えて支持体12の支持面11の終端12eに到達した後において、可動体14を上方(矢印Z1方向)に移動させる。これにより基材2は、塗布方向(矢印X方向)と直交する方向(矢印Y方向)の他端2c側において持ち上がり、塗布方向(矢印X方向)と直交する方向(矢印Y方向)の一端2a側において持ち上がらない。この結果、基材2の矢印Y方向の他端2cは、矢印Y方向の一端2aよりも上方に位置するように、基材2の全体が傾斜する。この結果、支持体12上の基材2の第2表出面22と支持体12の支持面11とを離間させ、非接触性を高める。従って、流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。このため流動物に含まれている撥水材および微小導電物質の濃度(単位体積あたりの担持量)を基材2の厚み方向に傾斜させることができる。
(Embodiment 4)
FIG. 4 schematically shows the fourth embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. In the following, different parts will be mainly described. FIG. 4A schematically shows a perspective view of the support 12 before the substrate 2 is placed. FIG. 4B schematically shows a state immediately before the fluid is applied to the base material 2 placed on the support 12. FIG. 4C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12. The application step described above is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12, and after the application step is completed, that is, the application body 13 is the substrate 2. After reaching the end 12e of the support surface 11 of the support 12 beyond the end 2e, the movable body 14 is moved upward (in the direction of arrow Z1). Thereby, the base material 2 is lifted on the other end 2c side in the direction (arrow Y direction) orthogonal to the application direction (arrow X direction), and one end 2a in the direction (arrow Y direction) orthogonal to the application direction (arrow X direction). Does not lift on the side. As a result, the whole base material 2 inclines so that the other end 2c of the base material 2 in the arrow Y direction is positioned above the one end 2a in the arrow Y direction. As a result, the second exposed surface 22 of the base material 2 on the support 12 and the support surface 11 of the support 12 are separated from each other, thereby improving non-contact properties. Therefore, excessive impregnation of the fluid in the thickness direction of the base material 2 toward the second exposed surface 22 is suppressed. For this reason, the concentration of the water repellent material and the minute conductive material (the amount carried per unit volume) contained in the fluid can be inclined in the thickness direction of the substrate 2.

(実施形態5)
図5は実施形態5を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。以下、異なる部分を中心として説明する。図5(A)は、基材2を載せる前の支持体12の斜視図を模式的に示す。図5(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図5(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。図5(A)に模式的に示すように、可動体14は、支持体12の4隅領域に複数個(4個)配置されている。第1可動体14aおよび第2可動体14bは、支持体12の塗布方向(矢印X方向)の始端s側において配置されている。第3可動体14cおよび第2可動体14dは、支持体12の塗布方向の終端12e側において配置されている。
(Embodiment 5)
FIG. 5 schematically shows the fifth embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. In the following, different parts will be mainly described. FIG. 5A schematically shows a perspective view of the support 12 before the substrate 2 is placed. FIG. 5B schematically shows a state immediately before the fluid is applied to the substrate 2 placed on the support 12. FIG. 5C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12. As schematically shown in FIG. 5A, a plurality of (four) movable bodies 14 are arranged in the four corner regions of the support 12. The 1st movable body 14a and the 2nd movable body 14b are arrange | positioned in the start end s side of the application direction (arrow X direction) of the support body 12. As shown in FIG. The third movable body 14c and the second movable body 14d are arranged on the terminal end 12e side in the coating direction of the support body 12.

塗布工程においては、前記した実施形態と同様に、基材2の第1表出面21(上面)を上方に露出させると共に、基材2の第2表出面22(下面)を支持体12の支持面11に載せて支持させる。ここで、可動体14(14a〜14d)は出入孔18の開口よりも下方に退避しているため、基材2の邪魔になることはない。この状態で、流動物の塊体3を基材2の第1表出面21のうち始端2s側に載せる。そして、塗布体13を支持面11に塗布方向(矢印X方向)沿って移動させる。これにより流動物を支持面11上の基材2の第1表出面21に膜状に塗布する。上記した塗布工程は、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われ、塗布工程の終了後において、つまり、塗布体13が基材2の終端2eを超えて支持体12の支持面11の終端12eに到達した後において、第1可動体14a、第2可動体14b、第3可動体14c、第4可動体14dを上方(矢印Z1方向)にそれぞれ移動させる。この場合、同時に移動させて良いし、順番に移動させても良い。これにより可動体14で支持体12上の基材2の始端2sおよび終端2e側を持ち上げる。この結果、基材2の全体がほぼ水平状に持ち上がる。この結果、支持体12上の基材2の第2表出面22と支持体12の支持面11とを離間させ、非接触性を高める。従って、流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。このため流動物に含まれている撥水材および微小導電物質の濃度(単位体積あたりの担持量)を基材2の厚み方向に傾斜させることができる。すなわち、撥水材および微小導電物質の量については、基材2のうち塗布側である第1表出面21側で多く設定され、第2表出面22側で少なく設定される。このように撥水材および微小導電物質について、基材2の厚み方向において傾斜組成、傾斜濃度に設定できる。なお、塗布工程の終了後に限らず、塗布工程の終了直前において、つまり、塗布体13が支持体12の支持面11の終端12eに到着する直前に、可動体14を上方向(矢印Z1方向)に移動させて基材2の終端2e側を持ち上げても良い。   In the coating step, the first exposed surface 21 (upper surface) of the substrate 2 is exposed upward and the second exposed surface 22 (lower surface) of the substrate 2 is supported by the support 12 in the same manner as in the above-described embodiment. It is placed on the surface 11 and supported. Here, the movable body 14 (14 a to 14 d) is retracted below the opening of the entrance / exit hole 18, and therefore does not interfere with the base material 2. In this state, the mass 3 of the fluid is placed on the start surface 2 s side of the first exposed surface 21 of the substrate 2. And the application body 13 is moved to the support surface 11 along an application direction (arrow X direction). As a result, the fluid is applied in the form of a film to the first exposed surface 21 of the substrate 2 on the support surface 11. The application step described above is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12, and after the application step is completed, that is, the application body 13 is the substrate 2. After reaching the end 12e of the support surface 11 of the support 12 beyond the end 2e, the first movable body 14a, the second movable body 14b, the third movable body 14c, and the fourth movable body 14d are moved upward (in the direction of the arrow Z1). ) Respectively. In this case, they may be moved simultaneously or sequentially. As a result, the movable body 14 lifts the start end 2s and end 2e sides of the substrate 2 on the support 12. As a result, the entire base material 2 is lifted almost horizontally. As a result, the second exposed surface 22 of the base material 2 on the support 12 and the support surface 11 of the support 12 are separated from each other, thereby improving non-contact properties. Therefore, excessive impregnation of the fluid in the thickness direction of the base material 2 toward the second exposed surface 22 is suppressed. For this reason, the concentration of the water repellent material and the minute conductive material (the amount carried per unit volume) contained in the fluid can be inclined in the thickness direction of the substrate 2. That is, the amount of the water repellent material and the minute conductive material is set to be large on the first exposed surface 21 side, which is the application side, of the substrate 2 and is set to be small on the second exposed surface 22 side. In this way, the water repellent material and the minute conductive material can be set to have a gradient composition and a gradient concentration in the thickness direction of the substrate 2. Note that the movable body 14 is moved upward (in the direction of the arrow Z1) not only after the application process is completed, but immediately before the application process is completed, that is, immediately before the application body 13 arrives at the end 12e of the support surface 11 of the support body 12. The end 2e side of the base material 2 may be lifted by moving to.

(実施形態6)
図6〜図9は実施形態6を模式的に示す。塗布装置1は、枠状をなす縁支持体120と、縁支持体120に対して昇降可能な平坦な水平状の支持面122fをもつ中央支持体122と、縁支持体120に保持された副支持体125と、副支持体125に設けられ中央支持体122を持ち上げおよび持ち下げ可能な動力要素として機能する流体圧機器130とをもつ。流体圧機器130は、可撓性をもつ連通管102を介して流体供給装置100に繋がれている。流体供給装置100の操作部101を操作すると、流体供給装置100から流体(例えば空気等の気体、作動油等の液体)が流体圧機器130に供給され、流体圧機器130が膨張する。これにより中央支持体122を矢印Z1方向に持ち上げ、中央支持体122の係合部122mを縁支持体120の被係合部120mに係合させる。この状態では、縁支持体120の支持面120fと中央支持体122の支持面122fとが同一高さとなり、平面状態となる。中央支持体122と縁支持体120との間の隙間は、M1,M2として示される。
(Embodiment 6)
6 to 9 schematically show the sixth embodiment. The coating apparatus 1 includes a frame-shaped edge support 120, a center support 122 having a flat horizontal support surface 122 f that can be moved up and down with respect to the edge support 120, and a secondary support held by the edge support 120. A support body 125 and a fluid pressure device 130 that functions as a power element provided on the sub-support body 125 and capable of lifting and lowering the central support body 122 are included. The fluid pressure device 130 is connected to the fluid supply device 100 via a flexible communication tube 102. When the operation unit 101 of the fluid supply device 100 is operated, a fluid (for example, a gas such as air or a liquid such as hydraulic oil) is supplied from the fluid supply device 100 to the fluid pressure device 130, and the fluid pressure device 130 expands. Thereby, the center support body 122 is lifted in the arrow Z1 direction, and the engaging portion 122m of the center support body 122 is engaged with the engaged portion 120m of the edge support body 120. In this state, the support surface 120f of the edge support body 120 and the support surface 122f of the center support body 122 are at the same height and are in a planar state. The gaps between the central support 122 and the edge support 120 are shown as M1, M2.

この状態で塗布工程を実施する。塗布工程においては、前記した実施形態と同様に、図6に模式的に示すように、基材2の第2表出面22(下面)の中央領域2yを中央支持体122の支持面122fに載せて支持させる。基材2の第2表出面22(下面)の端領域2xを縁支持体120の支持面120fに載せる。このとき、基材2の第1表出面21(上面)は上方に露出している。   The coating process is performed in this state. In the coating process, as schematically illustrated in FIG. 6, the central region 2 y of the second exposed surface 22 (lower surface) of the base material 2 is placed on the support surface 122 f of the central support 122 as in the above-described embodiment. To support. The end region 2x of the second exposed surface 22 (lower surface) of the substrate 2 is placed on the support surface 120f of the edge support 120. At this time, the first exposed surface 21 (upper surface) of the substrate 2 is exposed upward.

そして、基材2の第1表出面21の始端2s側に流動物の塊体3を載せる。その状態で、塗布体を塗布方向に沿って移動させる。これにより流動物を支持面11上の基材2の第1表出面21に膜状に塗布する。塗布工程の終了後において、流体供給塗布装置100の操作部101を逆方向に操作すると、流体圧機器130から流体が抜け、流体圧機器130が収縮する。これにより図7に示すように中央支持体122を矢印Z2方向に寸法ΔH2ぶん持ち下げ、中央支持体122の係合部122mと縁支持体120の被係合部120mとの係合を解除させる。この結果、基材2の第2表出面22(下面)の半分以上と中央支持体122の支持面122fとを離間させ、非接触性を高める。従って、前記した実施形態と同様に、塗布された流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。このため流動物に含まれている撥水材および微小導電物質の濃度(単位体積あたりの担持量)を基材2の厚み方向に傾斜させることができる。すなわち、撥水材および微小導電物質の量については、基材2のうち塗布側である第1表出面21側で多く設定され、第2表出面22側で少なく設定される。このように撥水材および微小導電物質について、基材2の厚み方向において傾斜組成、傾斜濃度に設定できる。なお、塗布工程の終了後に限らず、場合によっては、塗布工程の終了直前において、あるいは、塗布途中において、中央支持体122を矢印Z2方向に寸法ΔH2ぶん持ち下げることにしても良い。   Then, the mass 3 of the fluid is placed on the start end 2 s side of the first exposed surface 21 of the substrate 2. In this state, the application body is moved along the application direction. As a result, the fluid is applied in the form of a film to the first exposed surface 21 of the substrate 2 on the support surface 11. When the operation unit 101 of the fluid supply and application apparatus 100 is operated in the reverse direction after the application process is finished, the fluid is removed from the fluid pressure device 130 and the fluid pressure device 130 contracts. As a result, as shown in FIG. 7, the center support 122 is lowered by a dimension ΔH2 in the direction of the arrow Z2, and the engagement between the engagement portion 122m of the center support 122 and the engaged portion 120m of the edge support 120 is released. . As a result, more than half of the second exposed surface 22 (lower surface) of the substrate 2 and the support surface 122f of the central support 122 are separated from each other, thereby improving non-contact properties. Therefore, as in the above-described embodiment, the applied fluid is suppressed from being excessively impregnated in the thickness direction of the base material 2 toward the second exposed surface 22. For this reason, the concentration of the water repellent material and the minute conductive material (the amount carried per unit volume) contained in the fluid can be inclined in the thickness direction of the substrate 2. That is, the amount of the water repellent material and the minute conductive material is set to be large on the first exposed surface 21 side, which is the application side, of the substrate 2 and is set to be small on the second exposed surface 22 side. In this way, the water repellent material and the minute conductive material can be set to have a gradient composition and a gradient concentration in the thickness direction of the substrate 2. Note that the center support 122 may be lowered by the dimension ΔH2 in the direction of the arrow Z2 immediately before the end of the application process or in the middle of the application.

(実施形態7)
図9は実施形態7を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。以下、異なる部分を中心として説明する。図9(A)は、基材2を載せる前の支持体12の斜視図を模式的に示す。図9(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図9(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。図9(A)に模式的に示すように、塗布工程は、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われる。支持体12の支持面11には撥水材膜11rが被覆されている。撥水材膜11rは、フッ素樹脂膜(例えばPTFE,FEP,PFA)で形成されており、厚みは例えば1〜500マイクロメートルとされている。但し厚みはこれに限定されるものではない。
(Embodiment 7)
FIG. 9 schematically shows the seventh embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. In the following, different parts will be mainly described. FIG. 9A schematically shows a perspective view of the support 12 before the substrate 2 is placed. FIG. 9B schematically shows a state immediately before the fluid is applied to the substrate 2 placed on the support 12. FIG. 9C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12. As schematically shown in FIG. 9A, the coating process is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12. The support surface 11 of the support 12 is covered with a water repellent film 11r. The water repellent material film 11r is formed of a fluororesin film (for example, PTFE, FEP, PFA) and has a thickness of, for example, 1 to 500 micrometers. However, the thickness is not limited to this.

塗布工程は、基材2の第2表出面22を支持体12の支持面11上の撥水材膜11rに載せて支持した状態で行われる。これにより流動物は基材2の第1表出面21に塗布される。塗布された流動物は、時間経過につれて、基材2の厚み方向に含浸し、基材2の第1表出面21から第2表出面22に向かう。ここで、支持体12の支持面11が親水性を有するときには、流動物が基材2の厚み方向に過剰に含浸し、更に流動物のかなりの部分が基材2の第2表出面22から外方に流出してしまうおそれがある。この点について本実施形態によれば、塗布工程は、基材2の第2表出面22を支持体12の支持面11上の撥水材膜11rに載せて支持した状態で行われる。このため基材2の第1表出面21に塗布された流動物が基材2の厚み方向に第2表出面22に向けて過剰に含浸することが抑制される。このため流動物に含まれている撥水材および/または微小導電物質の濃度(単位体積あたりの担持量)を基材2の厚み方向に傾斜させることができる。すなわち、撥水材および/または微小導電物質の量については、塗布側である第1表出面21側で多く、第2表出面22側で少なくできる。なお本実施形態では、基材2を持ち上げる可動体14は装備されていない。   The coating process is performed in a state where the second exposed surface 22 of the base material 2 is placed on and supported by the water repellent film 11r on the support surface 11 of the support 12. As a result, the fluid is applied to the first exposed surface 21 of the substrate 2. The applied fluid is impregnated in the thickness direction of the substrate 2 over time, and travels from the first exposed surface 21 of the substrate 2 to the second exposed surface 22. Here, when the support surface 11 of the support 12 has hydrophilicity, the fluid is excessively impregnated in the thickness direction of the substrate 2, and a substantial part of the fluid is further removed from the second exposed surface 22 of the substrate 2. There is a risk of spilling outward. In this regard, according to the present embodiment, the coating step is performed in a state where the second exposed surface 22 of the base material 2 is placed on and supported by the water repellent film 11r on the support surface 11 of the support body 12. For this reason, excessive impregnation of the fluid applied to the first exposed surface 21 of the substrate 2 toward the second exposed surface 22 in the thickness direction of the substrate 2 is suppressed. For this reason, it is possible to incline the concentration of the water repellent material and / or the fine conductive material (supported amount per unit volume) contained in the fluid in the thickness direction of the substrate 2. That is, the amount of the water repellent material and / or the minute conductive material can be increased on the first exposed surface 21 side, which is the application side, and decreased on the second exposed surface 22 side. In the present embodiment, the movable body 14 that lifts the substrate 2 is not provided.

(実施形態8)
図10は実施形態8を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。以下、異なる部分を中心として説明する。図10(A)は、基材2を載せる前の支持体12の斜視図を模式的に示す。図10(B)は、支持体12に載せた基材2に流動物を塗布する直前の状態を模式的に示す。図10(C)は、支持体12に載せた基材2に流動物を塗布した直後の状態を模式的に示す。図10(A)に模式的に示すように、支持体12は平板状をなしており、多数の穴12wをもつ。塗布工程は、基材2の第2表出面22を支持体12の支持面11に載せて支持した状態で行われる。これにより流動物は基材2の第1表出面21に塗布される。塗布された流動物は、時間経過につれて、基材2の厚み方向に含浸する。ここで、塗布工程の終了後において、基材2の第2表出面22と支持体12の支持面11との接触が長く継続していると、流動物が基材2の厚み方向に過剰に含浸し、基材2の第1表出面21から第2表出面22に向かう。殊に、支持体12の支持面11が親水性をもつ場合には、流動物のかなりの部分が基材2の第2表出面22側に向かうおそれがある。
(Embodiment 8)
FIG. 10 schematically shows the eighth embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. In the following, different parts will be mainly described. FIG. 10A schematically shows a perspective view of the support 12 before the substrate 2 is placed. FIG. 10B schematically shows a state immediately before the fluid is applied to the substrate 2 placed on the support 12. FIG. 10C schematically shows a state immediately after the fluid is applied to the substrate 2 placed on the support 12. As schematically shown in FIG. 10A, the support 12 has a flat plate shape and has a large number of holes 12w. The coating process is performed in a state where the second exposed surface 22 of the substrate 2 is placed on and supported by the support surface 11 of the support 12. As a result, the fluid is applied to the first exposed surface 21 of the substrate 2. The applied fluid is impregnated in the thickness direction of the substrate 2 over time. Here, when the contact between the second exposed surface 22 of the base material 2 and the support surface 11 of the support body 12 continues for a long time after the coating process is finished, the fluid is excessive in the thickness direction of the base material 2. It impregnates and goes from the first exposed surface 21 of the substrate 2 to the second exposed surface 22. In particular, when the support surface 11 of the support 12 has hydrophilicity, a considerable part of the fluid may be directed to the second exposed surface 22 side of the substrate 2.

この点について本実施形態によれば、支持体12は多数の穴12w(貫通穴でも、有底穴でも良い)をもつ。塗布工程は、基材2の第2表出面22を支持体12で支持した状態で行われる。この結果、支持体12の穴12wでは、基材2の第2表出面22と支持体12の支持面11とが常に非接触である。このため基材のうち穴12wに対面する領域では、流動物が基材2の厚み方向に過剰に含浸することが抑制される。このため流動物に含まれている撥水材および微小導電物質の量(単位体積あたりの担持量)を基材2の厚み方向に傾斜させることができる。すなわち、撥水材および/または微小導電物質の量については、塗布側である第1表出面21側で多く、第2表出面22側で少なくできる。なお支持体としては、多数の穴を有する網状部材で形成しても良い。   In this regard, according to the present embodiment, the support 12 has a large number of holes 12w (may be through holes or bottomed holes). The coating process is performed in a state where the second exposed surface 22 of the substrate 2 is supported by the support 12. As a result, in the hole 12w of the support body 12, the 2nd exposed surface 22 of the base material 2 and the support surface 11 of the support body 12 are always non-contact. For this reason, in the area | region which faces the hole 12w among base materials, it is suppressed that a fluid impregnates the thickness direction of the base material 2 excessively. For this reason, it is possible to incline the amount of the water repellent material and the minute conductive material (supported amount per unit volume) contained in the fluid in the thickness direction of the substrate 2. That is, the amount of the water repellent material and / or the minute conductive material can be increased on the first exposed surface 21 side, which is the application side, and decreased on the second exposed surface 22 side. In addition, you may form as a support body by the net-like member which has many holes.

(実施形態9)
図11は実施形態9を模式的に示す。本実施形態は実施形態1と基本的には同様の構成および同様の作用効果を有する。塗布装置1は、枠状をなす縁支持体120と、縁支持体120に対して昇降可能な平坦な水平状の支持面122fをもつ中央支持体122と、中央支持体122を昇降させる昇降機構129とをもつ。昇降機構129は、昇降体129mと、昇降体129mを昇降させる駆動部129nとを有する。塗布工程においては、まず、昇降機構129を上昇作動させ、中央支持体122の支持面122fと縁支持体120の支持面120fとを同じ高さ位置とする。この状態で基材2の縁領域2xを支持面120fに載せ、基材2の中央領域2yを支持面122fに載せる。そして、塗布終了後、塗布終了直前、塗布途中のうちの少なくとも一つにおいて、昇降機構129を下降作動させ、中央支持体122の支持面122fを縁支持体120の支持面120fよりも寸法ΔH2低下させる。この結果、基材2の第2表出面22(下面)の中央領域2yと中央支持体122の支持面122fとを離間させ、非接触性を高める。従って、基材2の中央領域2yにおいて、流動物が基材2の厚み方向に過剰に含浸することが抑制され、ひいては第2表出面22に過剰に担持されることが抑制される。
(Embodiment 9)
FIG. 11 schematically shows the ninth embodiment. This embodiment has basically the same configuration and the same operation and effect as the first embodiment. The coating apparatus 1 includes a frame-shaped edge support 120, a central support 122 having a flat horizontal support surface 122 f that can be moved up and down with respect to the edge support 120, and a lifting mechanism that lifts and lowers the central support 122. 129. The elevating mechanism 129 includes an elevating body 129m and a drive unit 129n that elevates and lowers the elevating body 129m. In the coating process, first, the elevating mechanism 129 is moved up so that the support surface 122f of the central support 122 and the support surface 120f of the edge support 120 are at the same height position. In this state, the edge region 2x of the substrate 2 is placed on the support surface 120f, and the central region 2y of the substrate 2 is placed on the support surface 122f. Then, after the application is completed, immediately before the application is completed, and at least one of the application is in progress, the elevating mechanism 129 is lowered to lower the support surface 122f of the central support 122 by a dimension ΔH2 lower than the support surface 120f of the edge support 120. Let As a result, the center region 2y of the second exposed surface 22 (lower surface) of the substrate 2 and the support surface 122f of the center support 122 are separated from each other, thereby improving non-contact properties. Therefore, in the central region 2y of the base material 2, it is suppressed that the fluid is excessively impregnated in the thickness direction of the base material 2, and as a result, excessive support on the second exposed surface 22 is suppressed.

(試験例)
上記した実施形態1〜7に係る塗布装置1を用い、同一組成の撥水ペースト(流動物)を基材2の第1表出面21に塗布した。この場合、撥水ペーストは、撥水材としてPTFEのディパージョン(ダイキン工業社,PTFE含有量:60質量%)、微小導電物質としてカーボンブラック(電気化学株式会社製)を、分散媒としての水に分散させて形成した。この場合、固形分比として、カーボンブラック/PTFEの質量比率を60/40に設定し、界面活性剤を用いて規定の粘度(1650cps)に設定した撥水ペースト(流動物)を形成した。基材2はカーボンペーパー(東レ株式会社製,TGP−060)を用いた。
(Test example)
The water repellent paste (fluid) having the same composition was applied to the first exposed surface 21 of the substrate 2 using the coating apparatus 1 according to the first to seventh embodiments. In this case, the water repellent paste has a PTFE dispersion (Daikin Kogyo Co., Ltd., PTFE content: 60 mass%) as the water repellent material, carbon black (manufactured by Electrochemical Co., Ltd.) as the micro conductive material, and water as the dispersion medium. It was formed by dispersing in In this case, as a solid content ratio, a carbon black / PTFE mass ratio was set to 60/40, and a water repellent paste (fluid) set to a specified viscosity (1650 cps) using a surfactant was formed. As the base material 2, carbon paper (manufactured by Toray Industries, Inc., TGP-060) was used.

基材2の第2表出面22を金属(材質:SUS316)製の板状の支持体12の支持面11に支持した。その状態で、ギャップを300マイクロメートに設定したブレード(塗布体)で撥水ペーストを基材2の第1表出面21に均一に塗布した。塗布量は約4.65ミリグラム/cmとした。その後、塗布済みの基材2を乾燥炉に挿入し、所定温度(70℃)にて所定時間(1時間)、大気雰囲気に乾燥させた。乾燥後の基材2を、焼成炉に挿入し、所定温度(350℃)にて所定時間(1時間)、大気雰囲気で焼成した。このようにして実施形態1〜5に係る燃料電池用のガス拡散層を形成した。このように作製したガス拡散層の撥水性パラメータとして水の接触角および水の転落角について測定した。接触角は、ガス拡散層の上に載せた水滴の輪郭の接線とガス拡散層との角度を意味する。また、水平状の保持面に保持したガス拡散層上に水滴を載せ、その状態で保持面を傾斜させ、水滴が滑り始めるときの保持面の水平線に対する傾斜角度を転落角として模式的に示す。裏抜け率については、画像処理ソフト(イメージプロ、プラス5.0J、マイクロソフト製)を用いて、単位面積あたりの裏抜けした部分に占める割合を算出した。測定結果を表1および表2に模式的に示す。比較例についても同様に測定した。比較例は、図9に模式的に示す塗布装置1と同様の塗布装置1を用いた。但し、比較例に係る支持体の支持面には撥水材膜が形成されていない。 The second exposed surface 22 of the substrate 2 was supported on the support surface 11 of a plate-like support 12 made of metal (material: SUS316). In this state, the water repellent paste was uniformly applied to the first exposed surface 21 of the substrate 2 with a blade (applied body) having a gap set to 300 micrometers. The coating amount was about 4.65 mg / cm 2 . Thereafter, the coated base material 2 was inserted into a drying furnace and dried at a predetermined temperature (70 ° C.) for a predetermined time (1 hour) in an air atmosphere. The dried base material 2 was inserted into a firing furnace and fired at a predetermined temperature (350 ° C.) for a predetermined time (1 hour) in an air atmosphere. Thus, the gas diffusion layer for fuel cells according to Embodiments 1 to 5 was formed. The water contact angle and the water fall angle were measured as the water repellency parameters of the gas diffusion layer thus prepared. The contact angle means the angle between the tangent line of the outline of the water droplet placed on the gas diffusion layer and the gas diffusion layer. In addition, a water droplet is placed on the gas diffusion layer held on the horizontal holding surface, the holding surface is inclined in this state, and the inclination angle with respect to the horizontal line of the holding surface when the water droplet starts to slide is schematically shown as a falling angle. The strike-through rate was calculated by using image processing software (Image Pro, Plus 5.0J, manufactured by Microsoft) to calculate the ratio of the strike-through portion per unit area. The measurement results are schematically shown in Tables 1 and 2. It measured similarly about the comparative example. The comparative example used the coating apparatus 1 similar to the coating apparatus 1 schematically shown in FIG. However, the water repellent film is not formed on the support surface of the support according to the comparative example.

ここで、接触角が大きいことは、撥水性が強いことを示す。転落角が小さいことは、撥水性が強いことを示す。表1,表2に模式的に示すように、比較例によれば、裏抜け率は100%であり、第1表出面21の接触角よりも第2表出面22の接触角が大きくなっている。これは、撥水材を含む流動物が基材2の塗布面である第1表出面21から、非塗布面である第2表出面22に裏抜けし、その結果、第1表出面21よりも第2表出面22の方が撥水性が強くなっていることを示す。   Here, a large contact angle indicates strong water repellency. A small falling angle indicates strong water repellency. As schematically shown in Tables 1 and 2, according to the comparative example, the strike-through rate is 100%, and the contact angle of the second exposed surface 22 is larger than the contact angle of the first exposed surface 21. Yes. This is because the fluid containing the water repellent material penetrates from the first exposed surface 21 that is the coated surface of the base material 2 to the second exposed surface 22 that is the non-coated surface, and as a result, from the first exposed surface 21. 2 also shows that the second exposed surface 22 is stronger in water repellency.

これに対して実施形態1〜実施形態7によれば、裏抜け率は0%であり、塗布面である第1表出面21の接触角よりも、非塗布面である第2表出面22の接触角が小さくなっている。これは、撥水材を含む撥水材ペーストが塗布面である第1表出面21から、非塗布面である第2表出面22に裏抜けすることが抑制されているためと推察される。その結果、塗布面である第1表出面21は、非塗布面である第2表出面22よりも撥水性が強くなっていることを示す。すなわち、基材2の厚み方向に撥水材を傾斜組成としている構造が得られていることを示す。   On the other hand, according to the first to seventh embodiments, the strike-through rate is 0%, and the contact angle of the first exposed surface 21 that is the coated surface is larger than that of the second exposed surface 22 that is the non-coated surface. The contact angle is small. This is presumably because the water repellent paste containing the water repellent material is prevented from penetrating from the first exposed surface 21 which is the coated surface to the second exposed surface 22 which is the non-coated surface. As a result, the first exposed surface 21 that is the coated surface shows higher water repellency than the second exposed surface 22 that is the non-coated surface. That is, it shows that a structure in which the water repellent material has a gradient composition in the thickness direction of the substrate 2 is obtained.

Figure 2009181718
Figure 2009181718

Figure 2009181718
Figure 2009181718

なお、塗布量、乾燥温度、乾燥時間、焼成温度、焼成時間は上記した数値に限定されるものではなく、適宜変更できる。   The coating amount, the drying temperature, the drying time, the firing temperature, and the firing time are not limited to the above numerical values, and can be changed as appropriate.

(適用形態1)
図12は適用形態1を模式的に示す。図12に模式的に示すように、燃料電池は、膜電極接合体50と、燃料(例えば水素含有ガス)を分配する溝51aを有する導電性をもつ燃料配流板51と、酸化剤(例えば酸素含有ガス)を分配する溝52aを有する導電性をもつ酸化剤配流板52とを備えている。膜電極接合体50は、燃料用ガス拡散層54、燃料用触媒層55、イオン伝導性(プロトン伝導性)をもつ伝導膜56と、酸化剤用触媒層57、酸化剤用ガス拡散層58を積層して形成されている。伝導膜56は炭化フッ素系(例えばパーフルオロカーボンスルホン酸)または炭化水素系で形成されている。燃料用触媒層55は触媒とイオン伝導物質とを有するものであり、発電反応に寄与する。酸化剤用触媒層57は触媒とイオン伝導物質とを有するものであり、発電反応に寄与する。
(Application 1)
FIG. 12 schematically shows Application Mode 1. As schematically shown in FIG. 12, the fuel cell includes a membrane electrode assembly 50, a conductive fuel distribution plate 51 having a groove 51a for distributing fuel (for example, hydrogen-containing gas), and an oxidant (for example, oxygen). And a conductive oxidant flow plate 52 having grooves 52a for distributing the contained gas). The membrane electrode assembly 50 includes a fuel gas diffusion layer 54, a fuel catalyst layer 55, a conductive film 56 having ionic conductivity (proton conductivity), an oxidant catalyst layer 57, and an oxidant gas diffusion layer 58. It is formed by stacking. The conductive film 56 is formed of a fluorine type (for example, perfluorocarbon sulfonic acid) or a hydrocarbon type. The fuel catalyst layer 55 includes a catalyst and an ion conductive material, and contributes to a power generation reaction. The oxidizing agent catalyst layer 57 has a catalyst and an ion conductive material, and contributes to a power generation reaction.

酸化剤用ガス拡散層58の第1表出面21は、主として発電反応を行う酸化剤用触媒層57に対面している。発電反応では水が生成される。生成水が溜まると、ガス流路を狭めて発電性能を低下させるため、高い排水性を有することが好ましい。   The first exposed surface 21 of the oxidant gas diffusion layer 58 faces the oxidant catalyst layer 57 that mainly performs a power generation reaction. Water is generated in the power generation reaction. When the generated water accumulates, it is preferable to have a high drainage because the gas flow path is narrowed to reduce the power generation performance.

本適用形態によれば、酸化剤用ガス拡散層58の第1表出面21は、発電反応により水を生成させ易い酸化剤用触媒層57に対面する。このため酸化剤用ガス拡散層58のうち酸化剤用触媒層57に直接的に対面する第1表出面21については、排水性を高めることが好ましい。そこで、酸化剤用ガス拡散層58では、撥水材の濃度(単位体積あたりの担持量)を基材2の厚み方向に傾斜させている。すなわち、酸化剤用ガス拡散層58では、撥水材の量については、流動物を塗布する側である第1表出面21側(酸化剤用触媒層57に対面する側)では多く設定し、第2表出面22側(酸化剤用触媒層57に背向する側)では少なく設定している排水構造を採用している。   According to this application mode, the first exposed surface 21 of the oxidant gas diffusion layer 58 faces the oxidant catalyst layer 57 that easily generates water by a power generation reaction. For this reason, it is preferable to improve the drainage of the first exposed surface 21 of the oxidant gas diffusion layer 58 that directly faces the oxidant catalyst layer 57. Therefore, in the oxidant gas diffusion layer 58, the concentration of the water repellent material (the amount carried per unit volume) is inclined in the thickness direction of the substrate 2. That is, in the oxidant gas diffusion layer 58, the amount of the water repellent material is set to be large on the first exposed surface 21 side (the side facing the oxidant catalyst layer 57) on which the fluid is applied, A small drainage structure is employed on the second exposed surface 22 side (the side facing away from the oxidant catalyst layer 57).

また燃料用ガス拡散層54の第1表出面21は、燃料用触媒層55に対面しており、高い排水性を有することが好ましい。そこで燃料用ガス拡散層54においては、撥水材の量(単位体積あたりの担持量)を基材2の厚み方向に傾斜させている。すなわち、燃料用ガス拡散層54における撥水材の量については、流動物を塗布する側である第1表出面21側で多く設定し、第2表出面22側で少なく設定している排水構造を採用している。   The first exposed surface 21 of the fuel gas diffusion layer 54 faces the fuel catalyst layer 55 and preferably has high drainage. Therefore, in the fuel gas diffusion layer 54, the amount of water repellent material (the amount carried per unit volume) is inclined in the thickness direction of the substrate 2. That is, the amount of the water repellent material in the fuel gas diffusion layer 54 is set to be large on the first exposed surface 21 side, which is the side on which the fluid is applied, and is set to be small on the second exposed surface 22 side. Is adopted.

(適用形態2)
図13は適用形態2を模式的に示す。本適用形態によれば、酸化剤用ガス拡散層58の第2表出面22は酸化剤用触媒層57に対面しており、第1表出面21は酸化剤用触媒層57に背向している。そこで、酸化剤用ガス拡散層58における撥水材の量については、流動物を塗布する側である第1表出面21側(酸化剤用触媒層57に背向する側)で多く、第2表出面22側(酸化剤用触媒層57に対面する側)で少なく設定されている。この結果、酸化剤用ガス拡散層58の厚み方向において、第2表出面22側(酸化剤用触媒層57に対面する側)から、第1表出面21側(酸化剤用触媒層57に背向する側)に向かうにつれて、撥水材の量が次第に増加する排水構造が採用されている。
(Application 2)
FIG. 13 schematically shows Application Mode 2. According to this application mode, the second exposed surface 22 of the oxidant gas diffusion layer 58 faces the oxidant catalyst layer 57, and the first exposed surface 21 faces away from the oxidant catalyst layer 57. Yes. Therefore, the amount of the water repellent material in the oxidant gas diffusion layer 58 is large on the first exposed surface 21 side (the side facing away from the oxidant catalyst layer 57), which is the side on which the fluid is applied, and second. The number is set to be small on the exposed surface 22 side (side facing the oxidant catalyst layer 57). As a result, in the thickness direction of the oxidant gas diffusion layer 58, from the second exposed surface 22 side (side facing the oxidant catalyst layer 57), the first exposed surface 21 side (back to the oxidant catalyst layer 57). A drainage structure is adopted in which the amount of water repellent material gradually increases as it goes to the opposite side.

更に、図13に模式的に示すように、燃料用ガス拡散層54の第2表出面22は燃料用触媒層55に対面しており、第1表出面21は燃料用触媒層55に背向している。そして燃料用ガス拡散層54における撥水材の量については、流動物を塗布する側である第1表出面21側(燃料用触媒層55に背向する側)で多く、第2表出面22側(燃料用触媒層55に対面する側)で少なく設定されている。この結果、燃料用ガス拡散層54の厚み方向において、第2表出面22側(燃料用触媒層55に対面する側)から、第1表出面21側(燃料用触媒層に背向する側)に向かうにつれて、撥水材の量が次第に増加する排水構造が採用されている。   Further, as schematically shown in FIG. 13, the second exposed surface 22 of the fuel gas diffusion layer 54 faces the fuel catalyst layer 55, and the first exposed surface 21 faces away from the fuel catalyst layer 55. is doing. The amount of the water repellent material in the fuel gas diffusion layer 54 is large on the first exposed surface 21 side (the side facing away from the fuel catalyst layer 55), which is the side on which the fluid is applied, and the second exposed surface 22. The number is set to be small on the side (the side facing the fuel catalyst layer 55). As a result, in the thickness direction of the fuel gas diffusion layer 54, from the second exposed surface 22 side (side facing the fuel catalyst layer 55) to the first exposed surface 21 side (side facing the fuel catalyst layer). A drainage structure in which the amount of the water repellent material gradually increases as it goes to is adopted.

(他の実施形態)
流動物を基材2の第1表出面21に塗布するにあたり、スプレーで塗布しても良い。流動物は撥水材の他に、微小導電物質としてカーボンブラックを含むが、微小導電物質を含まない場合でも良い。支持体12を固定し、支持体12の支持面11に沿って塗布体13を移動させることにしているが、これに限らず、塗布体13を固定し、支持体12の支持面11と共に基材2を移動させるせることにしても良い。ピン状をなす可動体14を上昇させて基材2を持ち上げて支持体12の支持面11から非接触とさせているが、可動体14に限定されるものではない。その他、本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施可能である。ある実施形態に特有の構造および機能は他の実施形態についても適用できる。
(Other embodiments)
When applying the fluid to the first exposed surface 21 of the substrate 2, it may be applied by spraying. In addition to the water repellent material, the fluid contains carbon black as a fine conductive material, but may contain no fine conductive material. The support body 12 is fixed and the application body 13 is moved along the support surface 11 of the support body 12. However, the present invention is not limited to this, and the application body 13 is fixed and together with the support surface 11 of the support body 12, The material 2 may be moved. Although the pin-shaped movable body 14 is raised and the base material 2 is lifted so as not to be in contact with the support surface 11 of the support body 12, it is not limited to the movable body 14. In addition, the present invention is not limited to the embodiment described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention. Structures and functions specific to one embodiment can be applied to other embodiments.

上記した記載から次の技術的思想も把握できる。
(付記項1)気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、前記基材を支持し得る支持面をもつ支持体とを用意する工程と、基材を支持体で支持した状態で、流動物を基材の第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、塗布工程は、基材の第2表出面を支持体の支持面に載せて支持した状態で行われることを特徴とするガス拡散層の製造方法。
The following technical idea can also be grasped from the above description.
(Additional Item 1) A porous base material in the form of a sheet having pores and conductivity and having a first exposed surface and a second exposed surface facing each other, and a fluid having fluidity including a water repellent material, A step of preparing a support having a support surface capable of supporting the base material, and a coating step of applying a fluid to the first exposed surface of the base material while the base material is supported by the support. In the method for producing a gas diffusion layer, the coating step is performed in a state where the second exposed surface of the substrate is placed on and supported by the support surface of the support.

本発明は例えば定置用、車両用、可搬用、携帯用、電子機器用、電気機器用の燃料電池に使用される多孔質のガス拡散層に利用することができる。   The present invention can be used, for example, for a porous gas diffusion layer used in a fuel cell for stationary use, vehicle use, portable use, portable use, electronic equipment, and electric equipment.

実施形態1に係り、図1(A)は基材を載せる前の支持体の斜視図であり、図1(B)は支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図1(C)は支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 1A is a perspective view of a support body before placing a substrate, and FIG. 1B schematically shows a state immediately before applying a fluid to the substrate placed on the support according to the first embodiment. FIG. 1C is a configuration diagram schematically showing a state immediately after a fluid is applied to a substrate placed on a support. 実施形態2に係り、図2(A)は基材を載せる前の支持体の斜視図であり、図2(B)は支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図2(C)は支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 2 (A) is a perspective view of a support body before placing a substrate, and FIG. 2 (B) schematically shows a state immediately before applying a fluid to the substrate placed on the support according to the second embodiment. FIG. 2C is a configuration diagram schematically showing a state immediately after the fluid is applied to the substrate placed on the support. 実施形態3に係り、図3(A)は基材を載せる前の支持体の斜視図であり、図3(B)は支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図3(C)は支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 3A is a perspective view of the support body before placing the substrate, and FIG. 3B schematically shows a state immediately before applying the fluid to the substrate placed on the support according to the third embodiment. FIG. 3C is a configuration diagram schematically showing a state immediately after the fluid is applied to the substrate placed on the support. 実施形態4に係り、図4(A)は基材を載せる前の支持体の斜視図であり、図4(B)は支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図4(C)は支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 4 (A) is a perspective view of the support body before placing the substrate, and FIG. 4 (B) schematically shows a state immediately before applying the fluid to the substrate placed on the support according to the fourth embodiment. FIG. 4C is a configuration diagram schematically showing a state immediately after the fluid is applied to the substrate placed on the support. 実施形態5に係り、図5(A)は基材を載せる前の支持体の斜視図であり、図5(B)は支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図5(C)は支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 5 (A) is a perspective view of a support body before placing a substrate, and FIG. 5 (B) schematically shows a state immediately before applying a fluid to the substrate placed on the support according to the fifth embodiment. FIG. 5C is a configuration diagram schematically showing a state immediately after the fluid is applied to the substrate placed on the support. 実施形態6に係り、中央支持体を縁支持体に向けて上昇させた装置の断面図である。FIG. 10 is a cross-sectional view of an apparatus according to Embodiment 6 in which the central support is raised toward the edge support. 実施形態6に係り、中央支持体を縁支持体から下降させた装置の断面図である。FIG. 10 is a cross-sectional view of an apparatus according to Embodiment 6 in which a central support is lowered from an edge support. 実施形態6に係り、中央支持体および縁支持体を有する装置を模式的に模式的に示す斜視図である。FIG. 10 is a perspective view schematically showing a device according to the sixth embodiment and having a central support body and an edge support body. 実施形態7に係り、図9(A)は、基材を載せる前の支持体の斜視図であり、図9(B)は、支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図9(C)は、支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 9A is a perspective view of the support body before placing the substrate, and FIG. 9B is a state immediately before applying the fluid to the substrate placed on the support according to the seventh embodiment. FIG. 9C is a configuration diagram schematically showing a state immediately after the fluid is applied to the substrate placed on the support. 実施形態8に係り、図10(A)は、基材を載せる前の支持体の斜視図であり、図10(B)は、支持体に載せた基材に流動物を塗布する直前の状態を模式的に示す構成図であり、図10(C)は、支持体に載せた基材に流動物を塗布した直後の状態を模式的に示す構成図である。FIG. 10A is a perspective view of the support body before placing the substrate, and FIG. 10B is a state immediately before applying the fluid to the substrate placed on the support according to the eighth embodiment. FIG. 10C is a configuration diagram schematically showing a state immediately after the fluid is applied to the substrate placed on the support. 実施形態9に係り、縁支持体に対して中央支持体を下降させた装置の断面図である。FIG. 10 is a cross-sectional view of an apparatus according to Embodiment 9 in which the central support is lowered with respect to the edge support. 適用形態1に係り、燃料電池の要部の断面図である。FIG. 6 is a cross-sectional view of the main part of the fuel cell according to Application Mode 1. 適用形態2に係り、燃料電池の要部の断面図である。It is sectional drawing of the principal part of a fuel cell concerning the application form 2. FIG.

符号の説明Explanation of symbols

1は塗布装置、10は固定部、11は支持面、12は支持体、12wは穴、14は可動体、130は撥水材膜11r、2は基材、21は第1表出面、22は第2表出面、3は塊体、50は膜電極接合体、51は燃料配流板、52は酸化剤配流板、54は燃料用ガス拡散層、55は燃料用触媒層、56は伝導膜、57は酸化剤用触媒層、58は酸化剤用ガス拡散層を模式的に示す。   DESCRIPTION OF SYMBOLS 1 is a coating device, 10 is a fixing | fixed part, 11 is a support surface, 12 is a support body, 12w is a hole, 14 is a movable body, 130 is a water repellent material film 11r, 2 is a base material, 21 is a 1st exposed surface, 22 Is the second exposed surface, 3 is a mass, 50 is a membrane electrode assembly, 51 is a fuel distribution plate, 52 is an oxidant distribution plate, 54 is a gas diffusion layer for fuel, 55 is a catalyst layer for fuel, and 56 is a conductive membrane. , 57 schematically shows an oxidant catalyst layer, and 58 schematically shows an oxidant gas diffusion layer.

Claims (3)

気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、前記基材を支持し得る支持面をもつ支持体とを用意する工程と、前記基材を前記支持体で支持した状態で、前記流動物を前記基材の前記第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、
前記塗布工程は、前記基材の前記第2表出面を前記支持体の前記支持面に載せて支持した状態で行われ、
前記塗布工程の終了後、前記塗布工程の終了直前、または、前記塗布工程の途中において、前記基材の前記第2表出面のうちの半分以上と前記支持体の前記支持面とを非接触状態とさせることを特徴とするガス拡散層の製造方法。
A porous base material in the form of a sheet having pores and conductivity and having a first exposed surface and a second exposed surface facing each other; a fluid having a fluidity including a water repellent material; and A step of preparing a support having a support surface that can be supported, and an application step of applying the fluid to the first exposed surface of the base material in a state where the base material is supported by the support. In the method for producing the gas diffusion layer,
The application step is performed in a state where the second exposed surface of the base material is placed on and supported by the support surface of the support,
After completion of the coating process, immediately before the end of the coating process or in the middle of the coating process, more than half of the second exposed surface of the substrate and the support surface of the support are in a non-contact state A method for producing a gas diffusion layer, characterized in that
気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、前記基材を支持し得る支持面をもつ支持体とを用意する工程と、前記基材を前記支持体で支持した状態で、前記流動物を前記基材の前記第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、
前記塗布工程は、前記基材の前記第2表出面を前記支持体の前記支持面に載せて支持した状態で行われ、且つ、前記支持体の前記支持面のうち少なくとも前記基材の前記第2表出面に対面する部分に撥水性を有する状態で行われることを特徴とするガス拡散層の製造方法。
A porous base material in the form of a sheet having pores and conductivity and having a first exposed surface and a second exposed surface facing each other; a fluid having a fluidity including a water repellent material; and A step of preparing a support having a support surface that can be supported, and an application step of applying the fluid to the first exposed surface of the base material in a state where the base material is supported by the support. In the method for producing the gas diffusion layer,
The coating step is performed in a state where the second exposed surface of the base material is placed on and supported by the support surface of the support body, and at least the first surface of the base material among the support surfaces of the support body. 2. A method for producing a gas diffusion layer, which is performed in a state having water repellency at a portion facing the exposed surface.
気孔および導電性をもつと共に互いに背向する第1表出面及び第2表出面をもつシート状をなす多孔質の基材と、撥水材を含む流動性をもつ流動物と、前記基材を支持し得る支持面をもつ支持体とを用意する工程と、前記基材を前記支持体で支持した状態で、前記流動物を前記基材の前記第1表出面に塗布する塗布工程とを含むガス拡散層の製造方法において、
前記支持体は多数の穴をもち、前記塗布工程は、前記基材の前記第2表出面を前記支持体で支持し、前記穴において、前記基材の前記第2表出面と前記支持体の前記支持面とを非接触状態とさせることを特徴とするガス拡散層の製造方法。
A porous base material in the form of a sheet having pores and conductivity and having a first exposed surface and a second exposed surface facing each other; a fluid having a fluidity including a water repellent material; and A step of preparing a support having a support surface that can be supported, and an application step of applying the fluid to the first exposed surface of the base material in a state where the base material is supported by the support. In the method for producing the gas diffusion layer,
The support has a plurality of holes, and the coating step supports the second exposed surface of the substrate with the support, and the second exposed surface of the substrate and the support in the hole. A method for producing a gas diffusion layer, wherein the support surface is brought into a non-contact state.
JP2008017569A 2008-01-29 2008-01-29 Manufacturing method of gas diffusion layer Pending JP2009181718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017569A JP2009181718A (en) 2008-01-29 2008-01-29 Manufacturing method of gas diffusion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017569A JP2009181718A (en) 2008-01-29 2008-01-29 Manufacturing method of gas diffusion layer

Publications (1)

Publication Number Publication Date
JP2009181718A true JP2009181718A (en) 2009-08-13

Family

ID=41035541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017569A Pending JP2009181718A (en) 2008-01-29 2008-01-29 Manufacturing method of gas diffusion layer

Country Status (1)

Country Link
JP (1) JP2009181718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133545A1 (en) 2011-03-31 2012-10-04 株式会社Eneosセルテック Gas diffusion layer, electrode for fuel cell, membrane electrode junction, and fuel cell
US8951693B2 (en) 2010-03-31 2015-02-10 Jx Nippon Oil & Energy Corporation Membrane electrode assembly and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951693B2 (en) 2010-03-31 2015-02-10 Jx Nippon Oil & Energy Corporation Membrane electrode assembly and fuel cell
WO2012133545A1 (en) 2011-03-31 2012-10-04 株式会社Eneosセルテック Gas diffusion layer, electrode for fuel cell, membrane electrode junction, and fuel cell

Similar Documents

Publication Publication Date Title
TWI658637B (en) Gas diffusion electrode and manufacturing method thereof
RU2561720C1 (en) Gas diffusion medium for fuel element, membrane-electrode block and fuel element
JP6070889B2 (en) Carbon sheet, gas diffusion electrode substrate and fuel cell
EP2477263A1 (en) Method for manufacturing fuel cell gas diffusion layer, fuel cell gas diffusion layer, and fuel cell
TWI743027B (en) Gas diffusion electrode substrate and manufacturing method of gas diffusion electrode substrate
JP4318316B2 (en) Manufacturing method of fuel cell
KR101730303B1 (en) Manufacturing method and manufacturing apparatus of gas diffusion layer for fuel cell
KR20210074896A (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JPWO2016060045A1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
KR20170068507A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
US7241474B2 (en) Preparation of patterned diffusion media
JP2015191826A (en) Method for manufacturing gas diffusion electrode, and manufacturing device therefor
JP2009181718A (en) Manufacturing method of gas diffusion layer
JP2010192425A (en) Gas diffusion layer, and solid polymer fuel cell using the same
JP4321039B2 (en) Polymer electrolyte fuel cell, oxidant gas separator for polymer electrolyte fuel cell
JP5332863B2 (en) Manufacturing method of gas diffusion electrode
JP6291962B2 (en) Method and apparatus for manufacturing gas diffusion electrode
JP2019160696A (en) Manufacturing method of gas diffusion layer for fuel cell
JP2008198474A (en) Manufacturing method of fuel cell diffusion layer, fuel cell diffusion layer and fuel cell
JP2006100155A (en) Fuel cell
JP7290112B2 (en) GAS DIFFUSION ELECTRODE SUBSTRATE AND MANUFACTURING METHOD THEREOF, POLYMER FUEL CELL
JP2018156818A (en) Gas diffusion electrode and fuel battery
JP2020149895A (en) Fuel battery cell and manufacturing method thereof
JP4561086B2 (en) Method for producing electrode for fuel cell
US20100055532A1 (en) Gas diffusion layer, fuel cell and method for fabricating fuel cell