JP2009180573A - Method and apparatus for measuring groove curvature of ball bearing - Google Patents

Method and apparatus for measuring groove curvature of ball bearing Download PDF

Info

Publication number
JP2009180573A
JP2009180573A JP2008018547A JP2008018547A JP2009180573A JP 2009180573 A JP2009180573 A JP 2009180573A JP 2008018547 A JP2008018547 A JP 2008018547A JP 2008018547 A JP2008018547 A JP 2008018547A JP 2009180573 A JP2009180573 A JP 2009180573A
Authority
JP
Japan
Prior art keywords
ball bearing
spherical
raceway
groove curvature
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008018547A
Other languages
Japanese (ja)
Inventor
Tsuguto Nakaseki
嗣人 中関
Masatoshi Miwa
正敏 三羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008018547A priority Critical patent/JP2009180573A/en
Publication of JP2009180573A publication Critical patent/JP2009180573A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a groove curvature of a ball bearing, which is easily applied to a site for grooving an orbital plane of the bearing and the like, and precisely measures the groove curvature of the orbital plane at a low cost, without being dependent on the measurement technique of an operator, and to provide an apparatus for measuring the groove curvature which is used for the measuring method. <P>SOLUTION: In the method for measuring the groove curvature of the ball bearing, a spherical-surface electrode 3 made of a conductive body 4 being coated by an insulating film 5 and having a spherical surface simulated to a ball of the ball bearing, is set such that the spherical surface is in pressed contact with the orbital plane 2 of the ball bearing, and in this state, a capacitance between the spherical-surface electrode 3 and the orbital plane 2 is measured, and then the groove curvature of the orbital plane 2 is measured based on a value of the capacitance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、玉軸受の軌道面の溝曲率を測定する溝曲率測定方法、およびその測定方法に用いられる溝曲率測定装置に関する。   The present invention relates to a groove curvature measuring method for measuring the groove curvature of a raceway surface of a ball bearing and a groove curvature measuring apparatus used for the measuring method.

玉軸受には、その寿命や摩擦トルクに影響する一因子として、軸受軌道面の溝曲率比がある。溝曲率比とは溝曲率半径/ボール半径として定義され、1より大きな値である。すなわち、例えばラジアル玉軸受において、内輪あるいは外輪の軌道面の溝曲率比が大きいとボールとの接触応力が高くなり、軸受の疲労寿命が短くなる。逆に、軌道面の溝曲率比が小さいとすべり成分が増加し、軸受の摩擦トルクが大きくなる。このため、玉軸受の軸受軌道面においては、用途に応じて寿命とトルクの関係が最適となる溝曲率比が選択される。   A ball bearing has a groove curvature ratio of a bearing raceway surface as one factor affecting the life and friction torque. The groove curvature ratio is defined as groove radius of curvature / ball radius and is a value larger than 1. That is, for example, in a radial ball bearing, if the groove curvature ratio of the raceway surface of the inner ring or the outer ring is large, the contact stress with the ball becomes high and the fatigue life of the bearing is shortened. Conversely, when the groove curvature ratio of the raceway surface is small, the slip component increases and the friction torque of the bearing increases. For this reason, on the bearing raceway surface of the ball bearing, a groove curvature ratio that optimizes the relationship between the life and the torque is selected according to the application.

このように、玉軸受において、軸受軌道面の溝曲率比を決める溝曲率半径は軸受性能に対して重要な管理値であり、溝加工現場においても常時監視されるべき項目である。この場合の溝加工は研削加工であるため、切れ味を維持するのに定期的な砥石のドレッシングが必要になる。砥石のドレッシングは、ダイヤモンドを砥石に当てて砥石を削ることであるから、ダイヤモンドも徐々に摩耗する。ダイヤモンドが摩耗すると、砥石に正確な形状をつくることができなくなる。このため、前記軸受軌道面の研削加工後に、定期的に溝曲率を測定して、ダイヤモンドドレッサーの修正を行う必要がある。
上記したように、定期的に溝曲率を測定する場合において、その測定の間隔が長い場合には形状測定器のような高級な測定器を使用することができるが、測定頻度が高いと加工機の横で測定しなければならないので、形状測定器の使用は実用的ではない。
As described above, in the ball bearing, the groove curvature radius that determines the groove curvature ratio of the bearing raceway surface is an important management value for the bearing performance, and should be constantly monitored even at the groove machining site. Since the grooving in this case is grinding, regular grindstone dressing is required to maintain sharpness. Since the dressing of the grindstone is to cut the grindstone by putting the diamond on the grindstone, the diamond gradually wears. When diamond wears out, it is impossible to make an accurate shape on the grindstone. For this reason, after grinding the bearing raceway surface, it is necessary to periodically measure the groove curvature and correct the diamond dresser.
As described above, when the groove curvature is measured periodically, a high-grade measuring instrument such as a shape measuring instrument can be used if the measurement interval is long, but if the measurement frequency is high, the processing machine Use of a shape measuring instrument is not practical.

玉軸受における軌道面の溝曲率を測定する技術について、これまで公開された事例はないが、動圧軸受の球面曲率半径を測定する方法についての技術が提案されている(例えば特許文献1)。
特開昭58−193408号公報
There has been no published example of the technique for measuring the groove curvature of the raceway surface in the ball bearing, but a technique for measuring the spherical curvature radius of the hydrodynamic bearing has been proposed (for example, Patent Document 1).
JP 58-193408 A

特許文献1に開示の技術は、レーザー干渉計を用いて動圧軸受の球面曲率半径を測定するものであり、レーザー光の波長レベルの分解能が高いため高精度な測定が可能である。しかし、この測定方法を玉軸受の軌道面の溝曲率の測定に用いたとしても、環境の悪い溝加工現場ではレーザー干渉計を使うことができないので、専用の場所にレーザー干渉計を設置しなければならず実用的ではない。   The technique disclosed in Patent Document 1 measures the spherical radius of curvature of a hydrodynamic bearing using a laser interferometer, and can measure with high accuracy because of the high resolution of the wavelength level of laser light. However, even if this measurement method is used to measure the groove curvature of the raceway surface of a ball bearing, a laser interferometer cannot be used at a groove processing site where the environment is bad, so a laser interferometer must be installed in a dedicated place. It must be impractical.

この発明の目的は、軸受軌道面の溝加工現場などでも容易に適用できて、軌道面の溝曲率を作業者の測定技術に左右されることなく低コストで高精度に測定できる玉軸受の溝曲率測定方法、およびその測定方法に用いられる溝曲率測定装置を提供することである。   An object of the present invention is a ball bearing groove that can be easily applied at a groove processing site of a bearing raceway surface and can measure the groove curvature of the raceway surface with high accuracy at a low cost without being influenced by an operator's measurement technique. It is providing the curvature measuring method and the groove curvature measuring apparatus used for the measuring method.

この発明の玉軸受の溝曲率測定方法は、表面が絶縁膜で被覆され玉軸受のボールに模した球面を有する導体からなる球面電極の前記球面を、前記玉軸受の軌道輪の軌道面に押し当てた状態で、前記球面電極と前記軌道面の間の静電容量を測定し、その静電容量値から前記軌道面の溝曲率を測定するものである。上記の玉軸受のボールに模した球面とは、測定対象となる玉軸受のボールとほぼ同じ曲率半径の球面のことであり、球の全体の表面となる球面であっても、また球の一部の表面となる部分的な球面であっても良い。
この測定方法によると、球面電極と軸受軌道面の間の静電容量を測定し、その測定された静電容量値から軌道面の溝曲率を測定するので、軸受軌道面の溝加工現場などでも容易に適用できて、低コストで溝曲率を測定することができる。また、作業者の測定技術に左右されることなく高精度に測定することができる。特に、前記球面電極には、玉軸受のボールに模した球面を有する導体を用い、その球面を軌道面に押し当てるので、玉軸受の軌道面とボールの接触状態を模して測定することになり、精度の良い測定が行える。
The method of measuring the groove curvature of a ball bearing according to the present invention is to push the spherical surface of a spherical electrode made of a conductor having a spherical surface imitating a ball of a ball bearing, the surface of which is coated with an insulating film, onto the raceway surface of the raceway of the ball bearing. In the applied state, the capacitance between the spherical electrode and the raceway surface is measured, and the groove curvature of the raceway surface is measured from the capacitance value. The spherical surface imitating the ball of the above-mentioned ball bearing is a spherical surface having substantially the same radius of curvature as the ball bearing ball to be measured. It may be a partial spherical surface that becomes the surface of the part.
According to this measurement method, the capacitance between the spherical electrode and the bearing raceway surface is measured, and the groove curvature of the raceway surface is measured from the measured capacitance value. It can be easily applied and the groove curvature can be measured at low cost. Moreover, it can measure with high precision, without being influenced by the operator's measurement technique. In particular, since the spherical electrode uses a conductor having a spherical surface imitating the ball of a ball bearing and presses the spherical surface against the raceway surface, the contact state between the raceway surface of the ball bearing and the ball is measured. Therefore, accurate measurement can be performed.

この発明において、前記球面電極は、玉軸受のボールに模した鋼球の表面を絶縁膜で被覆したものであっても良い。   In the present invention, the spherical electrode may be formed by coating the surface of a steel ball imitating a ball of a ball bearing with an insulating film.

この発明において、前記球面電極は、玉軸受の軌道面に対向する対向面となり、かつ玉軸受のボールに模した部分的な球面を有し、その球面を絶縁膜で被覆したものであっても良い。すなわち、前記球面は球の表面の一部となる面とし、球面電極の前記球面以外の部分の形状は任意の形状とする。この場合に、前記球面電極の、前記玉軸受の軌道面の軸方向に対応する幅を、前記玉軸受の軌道面における面取り部を除く幅よりも狭い面域に対向する幅としても良い。
玉軸受の軌道輪では、軌道面と外径面部とが面取り部でつながっているため、前記面取り部の寸法にばらつきがあると、軌道面の溝曲率が同じであっても前記面取り部の寸法に応じて測定される静電容量が変化し、溝曲率測定に誤差を与えることになる。そこで、球面電極の球面の幅を、玉軸受の軌道面における面取り部を除く面域よりも狭い面域に対向する幅とすると、面取り部の寸法のばらつきが、測定される静電容量に及ぼす影響を無くすことができ、測定誤差を低減して精度良く溝曲率を測定することができる。
In this invention, the spherical electrode may be a facing surface that faces the raceway surface of the ball bearing, and has a partial spherical surface imitating the ball of the ball bearing, and the spherical surface is covered with an insulating film. good. That is, the spherical surface is a surface that becomes a part of the surface of the sphere, and the shape of the spherical electrode other than the spherical surface is an arbitrary shape. In this case, the width of the spherical electrode corresponding to the axial direction of the raceway surface of the ball bearing may be a width facing a surface area narrower than the width excluding the chamfered portion on the raceway surface of the ball bearing.
In a ball bearing race, the raceway surface and the outer diameter surface portion are connected by a chamfered portion. Therefore, if there are variations in the dimensions of the chamfered portion, the dimensions of the chamfered portion are the same even if the groove curvature of the raceway surface is the same. Accordingly, the measured capacitance changes, and an error is given to the groove curvature measurement. Therefore, when the width of the spherical surface of the spherical electrode is a width facing a surface area narrower than the surface area excluding the chamfered portion on the raceway surface of the ball bearing, the dimensional variation of the chamfered portion affects the measured capacitance. The influence can be eliminated, the measurement error can be reduced, and the groove curvature can be measured with high accuracy.

この発明において、前記軌道面は、ラジアル玉軸受の内輪または外輪の軌道面であっても良く、またスラスト玉軸受の軌道面であっても良い。   In the present invention, the raceway surface may be a raceway surface of an inner ring or an outer ring of a radial ball bearing, or may be a raceway surface of a thrust ball bearing.

この発明の玉軸受の溝曲率測定装置は、この発明の上記いずれかの玉軸受の溝曲率測定方法に用いられる測定装置であって、玉軸受の軌道輪を支持する測定台と、表面が絶縁膜で被覆され玉軸受のボールに模した球面を有する導体からなる球面電極と、この球面電極の球面を前記軌道輪の軌道面に押し当てる押し当て手段と、前記球面電極の導体および前記軌道面間に交流電圧を印加する交流電圧印加手段と、これら手段によって前記球面電極の導体および前記軌道面間の静電容量に相当する電圧発生手段と、この電圧を軌道輪の溝曲率半径に演算し出力する手段とを備えたものである。
この構成によると、この発明方法を用いて、前述のように軌道面の溝曲率を、作業者の測定技術に左右されることなく低コストで高精度に測定することができる。また、軸受軌道面の溝加工現場などにも適用することができる。
The groove curvature measuring device for a ball bearing according to the present invention is a measuring device used in any one of the above-described ball curvature measuring methods for a ball bearing according to the present invention, and the surface is insulated from the measuring table for supporting the bearing ring of the ball bearing. A spherical electrode made of a conductor having a spherical surface coated with a film and imitating a ball of a ball bearing; pressing means for pressing the spherical surface of the spherical electrode against the raceway surface of the raceway ring; the conductor of the spherical electrode and the raceway surface AC voltage applying means for applying an AC voltage between them, voltage generating means corresponding to the capacitance between the conductor of the spherical electrode and the raceway surface by these means, and calculating this voltage as the groove curvature radius of the raceway ring Output means.
According to this configuration, using the method of the present invention, the groove curvature of the raceway surface can be measured with high accuracy at low cost without being affected by the operator's measurement technique as described above. Further, the present invention can be applied to a groove processing site of a bearing raceway surface.

この発明の玉軸受の溝曲率測定方法は、表面が絶縁膜で被覆され玉軸受のボールに模した球面を有する導体からなる球面電極の前記球面を、前記玉軸受の軌道輪の軌道面に押し当てた状態で、前記球面電極と前記軌道面の間の静電容量を測定し、その静電容量値から前記軌道面の溝曲率を測定するものとしたので、軸受軌道面の溝加工現場などでも容易に適用できて、軌道面の溝曲率を作業者の測定技術に左右されることなく低コストで高精度に測定することができる。
この発明の玉軸受の溝曲率測定装置は、この発明の玉軸受の溝曲率測定方法に用いられる測定装置であって、玉軸受の軌道輪を支持する測定台と、表面が絶縁膜で被覆され玉軸受のボールに模した球面を有する導体からなる球面電極と、この球面電極の球面を前記軌道輪の軌道面に押し当てる押し当て手段と、前記球面電極の導体および前記軌道面間に交流電圧を印加する交流電圧印加手段と、前記球面電極の導体および前記軌道面の静電容量に相当する電圧を溝曲率半径に演算して出力する手段とを設けたため、軸受軌道面の溝加工現場などでも問題なく使用できて、軌道面の溝曲率を作業者の測定技術に左右されることなく低コストで高精度に測定することができる。
The method of measuring the groove curvature of a ball bearing according to the present invention is to push the spherical surface of a spherical electrode made of a conductor having a spherical surface imitating a ball of a ball bearing, the surface of which is coated with an insulating film, onto the raceway surface of the raceway of the ball bearing. In the contact state, the capacitance between the spherical electrode and the raceway surface is measured, and the groove curvature of the raceway surface is measured from the capacitance value. However, it can be easily applied, and the groove curvature of the raceway surface can be measured with high accuracy at low cost without being affected by the operator's measurement technique.
The groove curvature measuring apparatus for a ball bearing according to the present invention is a measuring apparatus used in the groove curvature measuring method for a ball bearing according to the present invention, the measuring table for supporting the bearing ring of the ball bearing, and the surface thereof being covered with an insulating film. A spherical electrode made of a conductor having a spherical surface imitating a ball of a ball bearing, a pressing means for pressing the spherical surface of the spherical electrode against the raceway surface of the raceway ring, and an AC voltage between the conductor of the spherical electrode and the raceway surface And means for calculating and outputting a voltage corresponding to the electrostatic capacity of the conductor of the spherical electrode and the raceway surface to the groove radius of curvature, and so on. However, it can be used without any problem, and the groove curvature of the raceway surface can be measured with high accuracy at low cost without being affected by the operator's measurement technique.

この発明の一実施形態を図1ないし図4と共に説明する。図1は、この実施形態の玉軸受の溝曲率測定方法の原理図を示す。同図において、球面電極3は、測定対象となる玉軸受のボールに模した球形の導体(ここでは鋼球)4の表面を絶縁膜5で被覆したものである。球面電極3の導体4の曲率半径Rbは、玉軸受の軌道輪(ここでは内輪)1における軌道面2の溝曲率半径Raよりも小さくされている。この球面電極3を、前記軌道輪1の軌道面2に押し当てると、球面電極3と軌道輪1の間にコンデンサが形成される。軌道面2の溝曲率が大きく(つまり曲率半径Raが短く)、球面電極3と軌道輪1の間の隙間が小さいと、前記コンデンサの静電容量は大きくなる。逆に、軌道面2の溝曲率が小さく(つまり曲率半径Raが長く)、球面電極3と軌道輪1の間の隙間が大きいと、前記コンデンサの静電容量は小さくなる。この玉軸受の溝曲率測定方法は、上記した原理を利用して、静電容量から軌道面2の溝曲率を測定するものである。なお、図1において、Obは前記球体4の曲率中心を、Orは軌道面2の曲率中心を、δは前記絶縁膜5の膜厚をそれぞれ示す。当然ではあるが、Ra>Rb+δの関係にあり、この関係を満足する範囲内において最大の鋼球を使用すると検出感度も高くなる。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a principle diagram of a method for measuring the groove curvature of a ball bearing according to this embodiment. In the figure, a spherical electrode 3 is obtained by coating the surface of a spherical conductor (here, a steel ball) 4 imitating a ball of a ball bearing to be measured with an insulating film 5. The radius of curvature Rb of the conductor 4 of the spherical electrode 3 is made smaller than the groove radius of curvature Ra of the raceway surface 2 in the raceway (in this case, the inner race) 1 of the ball bearing. When the spherical electrode 3 is pressed against the raceway surface 2 of the raceway ring 1, a capacitor is formed between the spherical electrode 3 and the raceway ring 1. When the groove curvature of the raceway surface 2 is large (that is, the radius of curvature Ra is short) and the gap between the spherical electrode 3 and the raceway ring 1 is small, the capacitance of the capacitor increases. Conversely, when the groove curvature of the raceway surface 2 is small (that is, the radius of curvature Ra is long) and the gap between the spherical electrode 3 and the raceway ring 1 is large, the capacitance of the capacitor is small. The groove curvature measuring method of this ball bearing measures the groove curvature of the raceway surface 2 from the electrostatic capacity by using the principle described above. In FIG. 1, Ob represents the center of curvature of the sphere 4, Or represents the center of curvature of the raceway surface 2, and δ represents the film thickness of the insulating film 5. Needless to say, there is a relationship of Ra> Rb + δ, and if the largest steel ball is used within a range satisfying this relationship, the detection sensitivity becomes high.

前記球面電極3の絶縁膜5の材料として、例えば耐摩耗性を有するセラミックを用いることができるが、この場合は被覆後の形状が乱れるという欠点がある。そこで、前記絶縁膜5の材料としては、耐摩耗性,耐薬品性に優れる樹脂の一例であるPAI(ポリアミド・イミド)樹脂や、このPAI樹脂に耐摩耗粉としてアルミナ等のセラミックを添加した材料を用いるのが望ましい。また、絶縁膜5の膜厚δが厚すぎると、溝曲率の大きな(曲率半径Raが短い)軌道面2には適用できなくなるため、ここではその膜厚δを25μmとしている。   As the material of the insulating film 5 of the spherical electrode 3, for example, ceramic having wear resistance can be used. However, in this case, there is a defect that the shape after coating is disturbed. Therefore, as the material of the insulating film 5, a PAI (polyamide-imide) resin which is an example of a resin excellent in wear resistance and chemical resistance, or a material in which a ceramic such as alumina is added to the PAI resin as wear-resistant powder. It is desirable to use If the insulating film 5 has a film thickness δ that is too thick, it cannot be applied to the raceway surface 2 having a large groove curvature (short curvature radius Ra). Therefore, the film thickness δ is set to 25 μm here.

図1には、前記コンデンサの静電容量を検出する回路の一構成例を示している。この静電容量検出回路6は、この玉軸受の溝曲率測定方法に用いられる後述する溝曲率測定装置11の一部を構成する交流電圧印加手段14と、参照コンデンサ15と、静電容量出力手段16とを備える。   FIG. 1 shows a configuration example of a circuit for detecting the capacitance of the capacitor. The capacitance detection circuit 6 includes an AC voltage application means 14, a reference capacitor 15, and a capacitance output means that constitute a part of a groove curvature measuring device 11 described later used in the groove curvature measuring method of the ball bearing. 16.

交流電圧印加手段14は、前記球面電極3の導体4に電気的に接続されて、導体4と軌道輪1の間に交流電圧を印加する手段である。印加する交流電圧の波形は、矩形であっても正弦波形であっても良いことが実験により確認されている。また、交流電圧の周波数は、安定した測定を可能とするうえで高い方が望ましいことが実験により確認されている。具体的には、その周波数を、100kHzよりも1MHzとした方が安定した測定が可能である。   The AC voltage application means 14 is a means that is electrically connected to the conductor 4 of the spherical electrode 3 and applies an AC voltage between the conductor 4 and the raceway ring 1. It has been confirmed by experiments that the waveform of the AC voltage to be applied may be rectangular or sinusoidal. Moreover, it has been confirmed by experiments that the frequency of the AC voltage is preferably higher in order to enable stable measurement. Specifically, stable measurement is possible when the frequency is 1 MHz rather than 100 kHz.

参照コンデンサ15は、一端が軌道輪1に電気的に接続され他端が接地されることで、前記球面電極3・軌道輪1間に形成されるコンデンサと直列に接続される。参照コンデンサ15としては、測定される前記静電容量と同程度、言い換えると同じオーダーの容量のものを用いるのが望ましい。   The reference capacitor 15 is connected in series with the capacitor formed between the spherical electrode 3 and the race 1 by electrically connecting one end to the race 1 and grounding the other end. As the reference capacitor 15, it is desirable to use a capacitor of the same order as the measured capacitance, in other words, having the same order of capacitance.

静電容量出力手段16は、軌道輪1に電気的に接続されて、前記球面電極3と軌道輪1間の静電容量を前記参照コンデンサ15との分圧として出力する信号処理回路である。この静電容量出力手段16は、前記分圧を整流することで前記静電容量を電圧として信号処理する整流回路部17のほか、図示しない線形回路、ゼロ点移動回路、増幅器18、表示器19など、一般的な測定器に付加されている各種回路部によって構成されている。前記整流回路部17は、ダイオード17a,17b、コンデンサ17cなどからなる。軌道面2の溝曲率と前記静電容量とは非線形な関係にあるので、前記線形回路はその関係を線形な関係に補正する。静電容量出力手段16を構成する他の回路部として、測定されたデータを記録するための出力部を設けても良い。   The capacitance output means 16 is a signal processing circuit that is electrically connected to the race 1 and outputs the capacitance between the spherical electrode 3 and the race 1 as a partial pressure of the reference capacitor 15. The capacitance output means 16 includes a rectifier circuit unit 17 that rectifies the divided voltage to process the signal using the capacitance as a voltage, a linear circuit (not shown), a zero point moving circuit, an amplifier 18, and a display 19. For example, it is constituted by various circuit units added to a general measuring instrument. The rectifier circuit unit 17 includes diodes 17a and 17b, a capacitor 17c, and the like. Since the groove curvature of the raceway surface 2 and the capacitance are in a non-linear relationship, the linear circuit corrects the relationship to a linear relationship. As another circuit unit constituting the capacitance output means 16, an output unit for recording measured data may be provided.

図2は、上記した玉軸受の溝曲率測定方法に用いられる溝曲率測定装置11の一例を示す。この溝曲率測定装置11は、玉軸受の軌道輪1を支持する測定台12と、図1で示した球面電極3と、この球面電極3の球面を前記軌道輪1の軌道面2に押し当てる押し当て手段13と、前記球面電極3の導体4間に交流電圧を印加する交流電圧印加手段14と、玉軸受の軌道輪1に接続された参照コンデンサ15と、前記球面電極3・軌道面2間の静電容量を前記参照コンデンサ15との分圧として出力する静電容量出力手段16とを備える。交流電圧印加手段14、参照コンデンサ15、および静電容量出力手段16は、図1に示した原理図の場合と同様に、静電容量検出回路6として1つの回路装置筐体17にまとめられている。   FIG. 2 shows an example of a groove curvature measuring device 11 used in the above-described method for measuring the groove curvature of a ball bearing. This groove curvature measuring device 11 presses a measuring table 12 for supporting a ball bearing race 1, the spherical electrode 3 shown in FIG. 1, and the spherical surface of the spherical electrode 3 against the raceway 2 of the race 1. The pressing means 13, the AC voltage applying means 14 for applying an AC voltage between the conductors 4 of the spherical electrode 3, the reference capacitor 15 connected to the raceway 1 of the ball bearing, and the spherical electrode 3 and the raceway surface 2 And a capacitance output means 16 for outputting the capacitance between them as a partial pressure with the reference capacitor 15. The AC voltage applying means 14, the reference capacitor 15, and the capacitance output means 16 are combined into one circuit device housing 17 as the capacitance detection circuit 6, as in the case of the principle diagram shown in FIG. 1. Yes.

図2では、測定対象である玉軸受の軌道輪1を、ラジアル玉軸受の内輪とした場合を示している。前記測定台12は、概形コ字状の部材からなり、その下辺部12aには上方に向け突出する2つの下部電極7,8が設けられている。この2つの下部電極7,8は軌道輪1の調心機能も担うものであって、これら両下部電極7,8の上に軌道輪1が置かれて所定姿勢に支持される。これら2つの下部電極7,8のうち一方の下部電極7に、前記参照コンデンサ15および静電容量出力手段16が同軸線等の配線18で接続される。   FIG. 2 shows a case where the raceway 1 of the ball bearing to be measured is an inner ring of a radial ball bearing. The measurement table 12 is made of a substantially U-shaped member, and two lower electrodes 7 and 8 projecting upward are provided on the lower side portion 12a. The two lower electrodes 7 and 8 are also responsible for the alignment function of the raceway ring 1. The raceway ring 1 is placed on the lower electrodes 7 and 8 and supported in a predetermined posture. The reference capacitor 15 and the capacitance output means 16 are connected to one of the two lower electrodes 7 and 8 by a wiring 18 such as a coaxial line.

測定台12の上辺部12bには、筒状の押し当て手段13が昇降可能に垂下して設けられており、その下端に前記球面電極3が固定されている。測定台12の上辺部12bに対して、前記押し当て手段13を矢印Aのように昇降して調整することにより、測定台12に支持された前記軌道輪1の軌道面2の溝底に球面電極3が押し当てられる。球面電極3の導体4に、前記交流電圧印加手段14が前記押し当て手段13内を経由する同軸線等の配線19で接続される。前記各配線18,19の外部導体18a,19aは、前記回路装置筐体17と共に接地されている。このように接地することにより、この測定装置の信号系を飛来ノイズから防御でき、安定した測定が可能となる。   A cylindrical pressing means 13 is provided on the upper side 12b of the measuring table 12 so as to be movable up and down, and the spherical electrode 3 is fixed to the lower end thereof. A spherical surface is formed on the groove bottom of the raceway surface 2 of the raceway ring 1 supported by the measurement table 12 by adjusting the pressing means 13 by raising and lowering the pressing means 13 as indicated by an arrow A with respect to the upper side portion 12b of the measurement table 12. The electrode 3 is pressed. The AC voltage applying means 14 is connected to the conductor 4 of the spherical electrode 3 by a wiring 19 such as a coaxial line passing through the inside of the pressing means 13. The outer conductors 18 a and 19 a of the wirings 18 and 19 are grounded together with the circuit device housing 17. By grounding in this way, the signal system of this measuring apparatus can be protected from incoming noise, and stable measurement can be performed.

この玉軸受の溝曲率測定方法によると、玉軸受のボールに模した球面を有する導体4の表面を絶縁膜5で被覆してなる球面電極3の球面を、玉軸受の軌道輪1の軌道面2に押し当てた状態で、球面電極3と軌道面2の間の静電容量を測定し、その測定された静電容量値から前記軌道面2の溝曲率を測定するので、軸受軌道面の溝加工現場などでも容易に適用できて、低コストで溝曲率を測定することができる。また、作業者の測定技術に左右されることなく高精度に測定することができる。特に、前記球面電極3には、玉軸受のボールに模した球面を有する導体を用い、その球面を軌道面2に押し当てるので、玉軸受の軌道面2とボールの接触状態を模して測定することになり、精度の良い測定が行える。   According to the groove curvature measuring method of this ball bearing, the spherical surface of the spherical electrode 3 formed by coating the surface of the conductor 4 having a spherical surface imitating the ball of the ball bearing with an insulating film 5 is used as the raceway surface of the raceway 1 of the ball bearing. 2, the capacitance between the spherical electrode 3 and the raceway surface 2 is measured, and the groove curvature of the raceway surface 2 is measured from the measured capacitance value. It can be easily applied at the groove processing site, and the groove curvature can be measured at low cost. Moreover, it can measure with high precision, without being influenced by the operator's measurement technique. In particular, the spherical electrode 3 is made of a conductor having a spherical surface imitating a ball of a ball bearing, and the spherical surface is pressed against the raceway surface 2. Therefore, the contact state between the raceway surface 2 of the ball bearing and the ball is measured. Therefore, accurate measurement can be performed.

また、この測定方法の実施において、図2の構成とした溝曲率測定装置11を用いた場合には、測定対象である玉軸受の軌道輪1を安定良く支持できて、その軌道面2の溝底に球面電極3を確実に押し当てることができるので、軌道面2の溝曲率を作業者の測定技術に左右されることなく低コストで高精度に測定できる。   In the implementation of this measuring method, when the groove curvature measuring device 11 having the configuration shown in FIG. 2 is used, the bearing ring 1 of the ball bearing to be measured can be stably supported, and the groove of the raceway surface 2 can be supported. Since the spherical electrode 3 can be reliably pressed against the bottom, the groove curvature of the raceway surface 2 can be measured with high accuracy at low cost without being influenced by the operator's measurement technique.

ところで、上記測定方法を適用する玉軸受の軌道輪1では、図3に示すように軌道面2と外径面部1aとが面取り部1bでつながっている。このため、前記面取り部1bの寸法にばらつきがあると、軌道面2における球面電極3との対向面積が変化することになる。コンデンサの両電極に相当する球面電極3と軌道面2との間の静電容量は、ギャップと対向面積と電極間の誘電率で決まるため、軌道面2の溝曲率が同じであっても前記面取り部1bの寸法に応じて前記静電容量が変化し、溝曲率測定に誤差を与えることになる。
このような測定誤差の発生を避ける対策の一例として、溝曲率測定に先立ち、軌道面2の溝深さ(図3に符号dで示す)を予め測定しておき、その溝深さに応じて測定された静電容量値を補正すれば良い。これにより、溝曲率測定への面取り部1bの影響を無くすことができる。
By the way, in the bearing ring 1 of the ball bearing to which the above measuring method is applied, as shown in FIG. 3, the raceway surface 2 and the outer diameter surface portion 1a are connected by a chamfered portion 1b. For this reason, if the dimension of the chamfered portion 1b varies, the area of the raceway surface 2 facing the spherical electrode 3 changes. Since the electrostatic capacitance between the spherical electrode 3 corresponding to both electrodes of the capacitor and the raceway surface 2 is determined by the gap, the opposing area, and the dielectric constant between the electrodes, even if the groove curvature of the raceway surface 2 is the same, The capacitance changes in accordance with the size of the chamfered portion 1b, which gives an error in groove curvature measurement.
As an example of a measure for avoiding such a measurement error, prior to the groove curvature measurement, the groove depth (indicated by d in FIG. 3) of the raceway surface 2 is measured in advance, and the groove depth is determined according to the groove depth. What is necessary is just to correct | amend the measured electrostatic capacitance value. Thereby, the influence of the chamfered portion 1b on the groove curvature measurement can be eliminated.

図4は、上記した測定誤差の発生を避ける対策の他の例を示す。この対策例は、玉軸受のボールに模した部分的な球面4aを前記軌道面2の対向面として導体4に形成し、その球面4aに絶縁膜5を被覆して非球形の球面電極3を構成したものである。この場合の絶縁膜5で被覆される球面4aの幅Aは、前記軌道面2における面取り部1bを除く面域の幅Bよりも狭い面域に対向する幅とする。これにより、面取り部1bの寸法のばらつきが、測定される静電容量に及ぼす影響を無くすことができる。尚、AとBの差は小さいほど検出感度が高いため、A/Bは0.8以上が好ましい。   FIG. 4 shows another example of measures for avoiding the above-described measurement error. In this countermeasure example, a partial spherical surface 4a imitating a ball of a ball bearing is formed on the conductor 4 as an opposing surface of the raceway surface 2, and the spherical surface 4a is covered with an insulating film 5 to form an aspherical spherical electrode 3. It is composed. In this case, the width A of the spherical surface 4a covered with the insulating film 5 is a width facing a surface area narrower than the width B of the surface area excluding the chamfered portion 1b on the raceway surface 2. Thereby, the influence which the dispersion | variation in the dimension of the chamfer part 1b has on the measured electrostatic capacitance can be eliminated. In addition, since the detection sensitivity is so high that the difference between A and B is small, A / B is preferably 0.8 or more.

球面電極3の導体4として、図1および図2に示すよう鋼球を用いる場合は、玉軸受のボールをそのまま利用できるので入手が容易で、球面電極3の製作コストも低減できるが、図4のように球形以外の特殊な形状の球面電極3を用いることにより、測定誤差を低減して精度良く溝曲率を測定することができる。   When a steel ball is used as the conductor 4 of the spherical electrode 3 as shown in FIGS. 1 and 2, since the ball of the ball bearing can be used as it is, it is easy to obtain and the manufacturing cost of the spherical electrode 3 can be reduced. Thus, by using the spherical electrode 3 having a special shape other than the spherical shape, the groove curvature can be measured with high accuracy by reducing the measurement error.

なお、上記実施形態では、玉軸受の軌道面2に参照コンデンサ15を接続し、球面電極3の導体4に交流電圧を印加して、球面電極3・軌道面2間の静電容量を測定する場合について説明したが、これとは逆に、球面電極3の導体4に参照コンデンサ15を接続し、玉軸受の軌道面2に交流電圧を印加するようにしても、同様にして軌道面2の溝曲率を精度良く測定することができる。   In the above embodiment, the reference capacitor 15 is connected to the raceway surface 2 of the ball bearing, and an AC voltage is applied to the conductor 4 of the spherical electrode 3 to measure the capacitance between the spherical electrode 3 and the raceway surface 2. Although the case has been described, conversely, even if the reference capacitor 15 is connected to the conductor 4 of the spherical electrode 3 and an AC voltage is applied to the raceway surface 2 of the ball bearing, The groove curvature can be accurately measured.

また、上記実施形態では、ラジアル玉軸受の内輪の軌道面を測定対象とした場合を例示して説明したが、この発明は、ラジアル玉軸受の外輪の軌道面やスラスト玉軸受の軌道面を測定対象としても、同様にその溝曲率を精度良く測定することができる。   Further, in the above embodiment, the case where the raceway surface of the inner ring of the radial ball bearing is set as the measurement object has been described as an example. Similarly, the groove curvature can be accurately measured.

この発明の一実施形態にかかる玉軸受の溝曲率測定方法の原理図である。It is a principle figure of the groove curvature measuring method of the ball bearing concerning one Embodiment of this invention. 同測定方法に用いられる溝曲率測定装置を示す構成図である。It is a block diagram which shows the groove curvature measuring apparatus used for the measuring method. 同測定方法が適用される軌道輪における軌道面と面取り部の関係を示す説明図である。It is explanatory drawing which shows the relationship between the track surface and chamfering part in the bearing ring to which the same measuring method is applied. 溝曲率測定装置における球面電極の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the spherical electrode in a groove curvature measuring apparatus.

符号の説明Explanation of symbols

1…玉軸受の軌道輪
1b…面取り部
2…軌道面
3…球面電極
4…導体
5…絶縁膜
6…静電容量検出回路
11…溝曲率測定装置
12…測定台
13…押し当て手段
14…交流電圧印加手段
15…参照コンデンサ
16…静電容量出力手段
DESCRIPTION OF SYMBOLS 1 ... Ball bearing ring 1b ... Chamfer 2 ... Raceway surface 3 ... Spherical electrode 4 ... Conductor 5 ... Insulating film 6 ... Capacitance detection circuit 11 ... Groove curvature measuring device 12 ... Measuring stand 13 ... Pushing means 14 ... AC voltage application means 15 ... reference capacitor 16 ... capacitance output means

Claims (3)

表面が絶縁膜で被覆され、全体または一部が玉軸受のボールに模した球面を有する導体からなる球面電極の前記球面を、前記玉軸受の軌道輪の軌道面に押し当てた状態で、前記球面電極と前記軌道面の間の静電容量を測定し、その静電容量値から前記軌道面の溝曲率を測定する玉軸受の溝曲率測定方法。   In a state where the spherical surface of the spherical electrode made of a conductor having a spherical surface coated with an insulating film and partially or partially imitating a ball of a ball bearing is pressed against the raceway of the raceway of the ball bearing, A groove curvature measuring method for a ball bearing, wherein a capacitance between a spherical electrode and the raceway surface is measured, and a groove curvature of the raceway surface is measured from the capacitance value. 請求項1において、一部が玉軸受のボールに模した球面を有する導体からなる前記球面電極の、前記玉軸受の軌道面の軸方向に対応する幅を、前記玉軸受の軌道面における面取り部を除く幅よりも狭い面域に対向する幅とした玉軸受の溝曲率測定方法。   2. The chamfered portion in the raceway surface of the ball bearing according to claim 1, wherein a width corresponding to the axial direction of the raceway surface of the ball bearing of the spherical electrode, a part of which is a conductor having a spherical surface imitating a ball of the ball bearing. A groove curvature measuring method of a ball bearing having a width opposite to a surface area narrower than a width excluding. 請求項1または請求項2に記載の玉軸受の溝曲率測定方法に用いられる測定装置であって、玉軸受の軌道輪を支持する測定台と、表面が絶縁膜で被覆され玉軸受のボールに模した球面を有する導体からなる球面電極と、この球面電極の球面を前記軌道輪の軌道面に押し当てる押し当て手段と、前記球面電極の導体および前記軌道面間に交流電圧を印加する交流電圧印加手段により前記球面電極・軌道面間の静電容量を電気信号に変えその信号を軌道輪の溝曲率半径に演算して出力する手段とを備えた玉軸受の溝曲率測定装置。   A measuring device used in the groove curvature measuring method of the ball bearing according to claim 1 or 2, wherein the measuring table for supporting the bearing ring of the ball bearing, and the ball of the ball bearing whose surface is coated with an insulating film. A spherical electrode made of a conductor having a simulated spherical surface, pressing means for pressing the spherical surface of the spherical electrode against the raceway surface of the raceway ring, and an AC voltage for applying an AC voltage between the conductor of the spherical electrode and the raceway surface A device for measuring the groove curvature of a ball bearing, comprising means for converting the capacitance between the spherical electrode and the raceway surface into an electrical signal by an applying means and calculating the signal as a groove radius of curvature of the raceway ring.
JP2008018547A 2008-01-30 2008-01-30 Method and apparatus for measuring groove curvature of ball bearing Pending JP2009180573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018547A JP2009180573A (en) 2008-01-30 2008-01-30 Method and apparatus for measuring groove curvature of ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018547A JP2009180573A (en) 2008-01-30 2008-01-30 Method and apparatus for measuring groove curvature of ball bearing

Publications (1)

Publication Number Publication Date
JP2009180573A true JP2009180573A (en) 2009-08-13

Family

ID=41034673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018547A Pending JP2009180573A (en) 2008-01-30 2008-01-30 Method and apparatus for measuring groove curvature of ball bearing

Country Status (1)

Country Link
JP (1) JP2009180573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543678C1 (en) * 2013-08-23 2015-03-10 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Capacitance meter of tubular channel warping
CN106556338A (en) * 2016-11-21 2017-04-05 山东科技大学 A kind of larger radius of curvature measurement special purpose device and measuring method
CN112781482A (en) * 2020-08-21 2021-05-11 哈尔滨工业大学(威海) Method for measuring space curvature of deformable curved surface and method for manufacturing inductive space curvature measurement sensitive element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2543678C1 (en) * 2013-08-23 2015-03-10 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Capacitance meter of tubular channel warping
CN106556338A (en) * 2016-11-21 2017-04-05 山东科技大学 A kind of larger radius of curvature measurement special purpose device and measuring method
CN112781482A (en) * 2020-08-21 2021-05-11 哈尔滨工业大学(威海) Method for measuring space curvature of deformable curved surface and method for manufacturing inductive space curvature measurement sensitive element

Similar Documents

Publication Publication Date Title
EP1909060B1 (en) Micro surface shape measuring probe
JP7286754B2 (en) METHOD AND APPARATUS FOR PROCESS KIT CENTERING MEASUREMENT
CN107643321B (en) Multi-frequency alternating current field fingerprint method metal pipeline corrosion detection technology based on phase identification
CN106225737B (en) Cable contact surface irregularity detection device and its detection method
JP2009180573A (en) Method and apparatus for measuring groove curvature of ball bearing
JP2001174441A (en) Non-contact inspecting apparatus
Lee et al. A curved edge diffraction-utilized displacement sensor for spindle metrology
Hidaka et al. Study of a small-sized ultrasonic probe
CN106970253B (en) A kind of the ac high voltage sensor and measurement method of novel diaphragm structure
CN101441234A (en) Self-adapting stabilized contact electric resistance measuring apparatus
JP4427654B2 (en) Film thickness measuring apparatus and film thickness measuring method
CN104133116B (en) Relative dielectric constant testing method based on principle of capacitance calculation
JP2000292106A (en) Monitoring apparatus for measuring thickness of film
CN101750010B (en) Dual-roller non-contact type thickness measuring system
CN104165820A (en) Sensor for detecting content of ferrum powder in lubricating oil and detecting method
JP2008076213A (en) Charging potential measuring probe, and charging potential distribution measuring system and charging potential distribution measuring device using probe
CN102636193A (en) Duplex differential capacitor sensor
CN202511806U (en) Double differential capacitance sensor
Kiviluoma Method and device for in situ runout measurement of calender thermo rolls
Widmaier et al. New material standards for traceability of roundness measurements of large-scale rotors
CN115962938B (en) Non-contact testing method for air film rigidity of H-shaped dynamic pressure bearing gyro motor of gyroscope
KR101486732B1 (en) Roundness measuring apparatus and method of the large annular specimen
Cameron et al. Paper 4: Measurement of Oil Film Thickness between Rolling Discs Using a Variable Reluctance Technique
JPS63225105A (en) Measurement of profile of non-conductive roll
JPS6228604A (en) Noncontact type profile measuring instrument