JP2009179987A - Reinforced concrete column - Google Patents

Reinforced concrete column Download PDF

Info

Publication number
JP2009179987A
JP2009179987A JP2008018985A JP2008018985A JP2009179987A JP 2009179987 A JP2009179987 A JP 2009179987A JP 2008018985 A JP2008018985 A JP 2008018985A JP 2008018985 A JP2008018985 A JP 2008018985A JP 2009179987 A JP2009179987 A JP 2009179987A
Authority
JP
Japan
Prior art keywords
concrete
fiber
outer shell
column
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008018985A
Other languages
Japanese (ja)
Inventor
Hiroshi Hosoya
博 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2008018985A priority Critical patent/JP2009179987A/en
Publication of JP2009179987A publication Critical patent/JP2009179987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforced concrete column which can prevent broken pieces form being scattered together with an explosion sound in crushing and increase a limit distortion angle (toughness), when a hollow outer-shell precast concrete member filled with filling concrete and constituting the reinforced concrete column is formed of ultrahigh-strength concrete. <P>SOLUTION: This reinforced concrete column 1 is formed by arranging a main reinforcement 5 for the column inside the hollow outer-shell precast concrete member 2 in which a shear reinforcement 4 is embedded, and infilling the filling concrete 3. The hollow outer-shell precast concrete member is formed in such a manner that steel fibers with a fiber diameter of 0.1-1 mm and a fiber length of 60 mm or less are mixed into the ultrahigh-strength concrete with a compressive strength of 100 N/mm<SP>2</SP>or more at a mixing ratio which satisfies the following expression (1): R<SB>u</SB>(×10<SP>-3</SP>rad)=2.622×steel-fiber mixing ratio (vol.%)+24.525. In the expression (1), R<SB>u</SB>represents the limit distortion angle, and the steel-fiber mixing ratio (vol.%) is 2% or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中詰めコンクリートが充填されて鉄筋コンクリート柱を構成する中空外殻プレキャストコンクリート部材を超高強度コンクリートで形成する場合に、圧壊時に爆裂音を伴って破片が飛散することを防止し、更には限界変形角(靭性)を増大することが可能な鉄筋コンクリート柱に関する。   In the present invention, when a hollow outer shell precast concrete member constituting a reinforced concrete column filled with filling concrete is formed of ultra-high-strength concrete, it is possible to prevent debris from being scattered with an explosive sound during crushing, and Relates to a reinforced concrete column capable of increasing the limit deformation angle (toughness).

超高層建物の建設にあたって、施工の合理化、工期の短縮を図るため、中空外殻プレキャストコンクリート部材(以下、外殻PCa部材という)を用いた鉄筋コンクリート柱(以下、RC柱という)が採用されている。このRC柱は、外殻PCa部材の内部に中詰めコンクリートを充填して構成される。例えば、外殻PCa部材を、圧縮強度80N/mm2程度の超高強度コンクリートに鋼繊維を混入して形成するようにしたRC柱が知られている(特許文献1参照)。 In the construction of high-rise buildings, reinforced concrete columns (hereinafter referred to as RC columns) using hollow outer shell precast concrete members (hereinafter referred to as outer shell PCa members) are employed in order to streamline construction and shorten the construction period. . The RC pillar is configured by filling the inside of the outer shell PCa member with filled concrete. For example, an RC pillar is known in which the outer shell PCa member is formed by mixing steel fibers in ultrahigh strength concrete having a compressive strength of about 80 N / mm 2 (see Patent Document 1).

また、外殻PCa部材に圧縮強度85N/mm2程度の超高強度コンクリートを、中詰めコンクリートに圧縮強度70N/mm2程度の超高強度コンクリートを用いるようにしたRC柱が知られている。
特開2004−332236号公報
Further, the ultra-high strength concrete of approximately compressive strength 85N / mm 2 to the outer shell PCa member, compressive strength 70N / mm 2 approximately RC Columns to use a ultra-high-strength concrete to medium filling concrete are known.
JP 2004-332236 A

本発明者は、上述したようなRC柱に軸力をかけた状態で横方向繰り返し荷重を加える加力実験を行って構造性能を検討したところ、外殻PCa部材に対し、Fc(圧縮強度)=100N/mm2級のコンクリートを用い、かつ高軸力を受ける下層階の外柱に相当するRC柱の場合には、巨大地震を受けたとき、層間変形角が1/200(5×10-3)〜1/100(10×10-3)radの段階で、圧縮側のRC柱端部コンクリートが、爆裂の様相を呈して圧壊することが分かった。この現象は、地震力により建物の高層部が低層部に対して建物外方へ迫り出すように水平変位することで生じる曲げモーメントによって、下層階の外柱に作用する軸力が増加することに起因する。この圧壊時には、図5の柱せん断力−層間変形角曲線の一例に示すように、耐力が一時的にではあるが急激に低下するため、構造性能上改善する必要がある。また、圧壊時には大きな爆裂音が生じ、破片が飛散するため、居住性の観点からもその改善が必要である。 The present inventor conducted a force experiment in which a lateral repetitive load was applied in a state where an axial force was applied to the RC column as described above and examined the structural performance. As a result, Fc (compressive strength) was applied to the outer shell PCa member. = In the case of RC columns corresponding to the outer columns of the lower floor receiving high axial force using 100 N / mm 2 class concrete, the interlaminar deformation angle is 1/200 (5 × 10 5) when subjected to a huge earthquake. -3 ) to 1/100 (10 × 10 -3 ) rad, it was found that the RC column end concrete on the compression side collapsed in an explosive manner. This phenomenon is due to the fact that the axial force acting on the outer column of the lower floor increases due to the bending moment generated by the horizontal displacement so that the high-rise part of the building protrudes outward from the low-rise part due to the seismic force. to cause. At the time of this crushing, as shown in an example of the column shear force-interlayer deformation angle curve of FIG. 5, the proof stress decreases temporarily but suddenly, so it is necessary to improve the structural performance. Moreover, since a loud explosive sound is generated at the time of crushing and fragments are scattered, it is necessary to improve it from the viewpoint of comfortability.

本発明は上記従来の課題に鑑みて創案されたものであって、中詰めコンクリートが充填されてRC柱を構成する外殻PCa部材を超高強度コンクリートで形成する場合に、耐力性能を向上できるとともに、圧壊時に爆裂音を伴って破片が飛散することを防止することが可能なRC柱を提供することを目的とする。   The present invention was devised in view of the above-described conventional problems, and can improve the proof stress performance when the outer shell PCa member constituting the RC pillar is filled with the inside-filled concrete and is formed of ultrahigh-strength concrete. At the same time, it is an object of the present invention to provide an RC pillar capable of preventing debris from being scattered with an explosive sound during crushing.

本発明にかかるRC柱は、せん断補強筋を埋設した中空外殻プレキャストコンクリート部材内方に、柱主筋を配筋するとともに中詰めコンクリートを充填して形成される鉄筋コンクリート柱であって、上記中空外殻プレキャストコンクリート部材が、圧縮強度100N/mm2以上の超高強度コンクリートに、繊維径0.1〜1mm、繊維長さ60mm以下の鋼繊維を下記式(1)を満たす混入率で混入して形成されることを特徴とする鉄筋コンクリート柱。
式(1)
限界変形角Ru(×10-3rad)=2.622×鋼繊維混入率(容積%)+24.525
但し、鋼繊維混入率(容積%)は2%以下
An RC column according to the present invention is a reinforced concrete column formed by placing a column main reinforcing bar and filling in-filled concrete inside a hollow outer shell precast concrete member in which a shear reinforcing bar is embedded. A shell precast concrete member is mixed with ultra high strength concrete having a compressive strength of 100 N / mm 2 or more and steel fibers having a fiber diameter of 0.1 to 1 mm and a fiber length of 60 mm or less at a mixing rate satisfying the following formula (1). Reinforced concrete pillar that is formed.
Formula (1)
Limit deformation angle R u (× 10 −3 rad) = 2.622 × Steel fiber mixture rate (volume%) + 24.525
However, steel fiber mixing rate (volume%) is 2% or less

本発明にかかるRC柱にあっては、中詰めコンクリートが充填されてRC柱を構成する外殻PCa部材を鋼繊維混入超高強度コンクリートで形成する場合に、耐力性能並びに靭性性能を向上できるとともに、圧壊時に爆裂音を伴って破片が飛散することを防止することができる。   In the RC pillar according to the present invention, when the outer shell PCa member constituting the RC pillar is filled with the filling concrete and formed of the steel fiber mixed ultra high strength concrete, the proof stress performance and the toughness performance can be improved. It is possible to prevent debris from being scattered with an explosive sound during crushing.

以下に、本発明にかかるRC柱の好適な一実施形態を、添付図面を参照して詳細に説明する。図1には、本実施形態にかかるRC柱1の側断面図および平断面図が示されている。RC柱1は、薄肉な外殻PCa部材2内方に中詰めコンクリート3を充填して形成される。外殻PCa部材2は、平断面四角形の中空筒体状に形成される。外殻PCa部材2の肉厚部には、高さ方向に適宜間隔を隔てて、環状のせん断補強筋4が複数埋設される。外殻PCa部材2内方には、周方向に適宜間隔を隔てて、複数の柱主筋5が配筋される。柱主筋5は、外殻PCa部材2の内周面に対し、隙間をあけて配設される。中詰めコンクリート3は、柱主筋5を埋設するように、外殻PCa部材2内部に充填される。外殻PCa部材2は、型枠へコンクリートを流し込んで成形する流し込み成形や、遠心成形など、一般周知の成形方法でプレキャスト成形される。外殻PCa部材2の内面には、中詰めコンクリート3との付着を向上させるために、シアコッターを形成しても良い。   Hereinafter, a preferred embodiment of an RC pillar according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a side sectional view and a plan sectional view of an RC pillar 1 according to the present embodiment. The RC pillar 1 is formed by filling the inside concrete 3 inside the thin outer shell PCa member 2. The outer shell PCa member 2 is formed in the shape of a hollow cylinder having a square cross section. A plurality of annular shear reinforcement bars 4 are embedded in the thick portion of the outer shell PCa member 2 at appropriate intervals in the height direction. A plurality of column main bars 5 are arranged inside the outer shell PCa member 2 at appropriate intervals in the circumferential direction. The column main reinforcement 5 is disposed with a gap with respect to the inner peripheral surface of the outer shell PCa member 2. The filling concrete 3 is filled in the outer shell PCa member 2 so as to embed the column main reinforcement 5. The outer shell PCa member 2 is precast molded by a generally known molding method such as cast molding in which concrete is poured into a mold and molded, or centrifugal molding. A sheer cotter may be formed on the inner surface of the outer shell PCa member 2 in order to improve adhesion to the filling concrete 3.

特に、外殻PCa部材2は、鋼繊維6を混入した、圧縮強度100N/mm2以上の超高強度コンクリートで形成される。鋼繊維6としては、繊維径が0.1〜1mm、好ましくは0.2〜0.6mm程度であって、かつ繊維長さが60mm以下、好ましくは15〜30mmのものが用いられる。繊維径が0.1mm未満であると、コンクリートを混練しにくい。また、コンクリートの流動性に劣る。繊維径が1mmを超えると、ひび割れの抑制効果が低減する。繊維径は、0.2〜0.6mmであれば、コンクリートを混練しやすく、コンクリートの流動性の確保が可能である。また、適度なひび割れの抑制効果を期待できる。繊維長さは、60mmを超えると、コンクリートを混練しにくい。また、厚さ70〜80mm程度の外殻PCa部材成形用の型枠には、物理的に当該繊維入りコンクリートを充填しにくい。繊維長さは、15〜30mmであると、コンクリートの混練が可能である。流動性があるため、コンクリートを打設しやすい。また適度なひび割れの抑制効果を期待できる。 In particular, the outer shell PCa member 2 is made of ultra high strength concrete having a compressive strength of 100 N / mm 2 or more mixed with steel fibers 6. As the steel fiber 6, one having a fiber diameter of 0.1 to 1 mm, preferably about 0.2 to 0.6 mm, and a fiber length of 60 mm or less, preferably 15 to 30 mm is used. When the fiber diameter is less than 0.1 mm, it is difficult to knead the concrete. Moreover, it is inferior to the fluidity | liquidity of concrete. When the fiber diameter exceeds 1 mm, the effect of suppressing cracking is reduced. If the fiber diameter is 0.2 to 0.6 mm, the concrete can be easily kneaded and the fluidity of the concrete can be ensured. Moreover, a moderate crack suppression effect can be expected. When the fiber length exceeds 60 mm, it is difficult to knead the concrete. In addition, it is difficult to physically fill the fiber-containing concrete into a mold for molding the outer shell PCa member having a thickness of about 70 to 80 mm. When the fiber length is 15 to 30 mm, concrete can be kneaded. It is easy to place concrete due to its fluidity. Moreover, a moderate crack suppression effect can be expected.

鋼繊維6は下記式(1)を満たす混入率で、超高強度コンクリートに混入される。
式(1)
限界変形角Ru(×10-3rad)=2.622×鋼繊維混入率(容積%)+24.525
但し、鋼繊維混入率(容積%)は2%以下
The steel fibers 6 are mixed into the ultra high strength concrete at a mixing rate that satisfies the following formula (1).
Formula (1)
Limit deformation angle R u (× 10 −3 rad) = 2.622 × Steel fiber mixture rate (volume%) + 24.525
However, steel fiber mixing rate (volume%) is 2% or less

上記式(1)中、「限界変形角」とは、後述するように、実証実験で得られた柱せん断力(Q)−層間変形角(R)曲線のうち、第1サイクルのQ−R曲線の包絡線上で最大耐力から耐力が80%に低下したときの層間変形角をいう。容積%で、超高強度コンクリートに対する鋼繊維6の混入率は2%を超えると、コンクリートの混練を適切に行うことができないので、これを上限値とする。   In the above formula (1), the “limit deformation angle” means, as will be described later, the first cycle QR in the column shear force (Q) -interlayer deformation angle (R) curve obtained in the demonstration experiment. The interlaminar deformation angle when the proof stress is reduced to 80% from the maximum proof stress on the envelope of the curve. If the mixing ratio of the steel fibers 6 to the ultra-high-strength concrete exceeds 2% by volume%, the concrete cannot be properly mixed, so this is set as the upper limit.

以下に、上記式(1)を得るに至った上記RC柱1の構造性能についての実証試験について説明する。   Below, the verification test about the structural performance of the said RC pillar 1 which resulted in the said Formula (1) is demonstrated.

(A)実験概要
実証試験は、三体のRC柱試験体「PCN−1」,「PCF−1」,「PCN−2」を用いて行った。PCF−1とは、図1に示した本実施形態にかかるRC柱1に相当する、繊維補強したRC柱試験体であって、鋼繊維混入率が1%のものをいう。PCF−2とは、PCF−1に対し、鋼繊維混入率を2%にしたものである。PCN−1は、PCF−1およびPCF−2に対し、鋼繊維混入率を0%にしたもの、すなわち繊維補強していないものをいう。三体の試験体の諸元が表1に示されている。
(A) Outline of Experiment The demonstration test was performed using three RC column specimens “PCN-1”, “PCF-1”, and “PCN-2”. PCF-1 is a fiber reinforced RC column test body corresponding to the RC column 1 according to the present embodiment shown in FIG. 1 and has a steel fiber mixing rate of 1%. PCF-2 is a steel fiber mixing rate of 2% with respect to PCF-1. PCN-1 refers to a steel fiber mixing rate of 0% with respect to PCF-1 and PCF-2, that is, a fiber not reinforced. Table 1 shows the specifications of the three specimens.

Figure 2009179987
Figure 2009179987

三体の試験体は、実物の約1/3である。いずれも曲げ破壊型とした。PCF−1,PCF−2には、鋼繊維6に加えて、有機繊維を0.2容積%混入した。本実験では、鋼繊維6としては表2に示す高強度鋼繊維を用いた。   The three specimens are about 1/3 of the actual specimen. All were bend fracture types. In addition to steel fiber 6, 0.2% by volume of organic fiber was mixed in PCF-1 and PCF-2. In this experiment, high strength steel fibers shown in Table 2 were used as the steel fibers 6.

Figure 2009179987
Figure 2009179987

また、有機繊維としては表3に示すPVA(ポリビニルアルコール)繊維を用いた。   Moreover, the PVA (polyvinyl alcohol) fiber shown in Table 3 was used as an organic fiber.

Figure 2009179987
Figure 2009179987

中詰めコンクリート3には繊維は混入していない。試験体の水平方向断面寸法は300×300mm、柱内法高さは1080mmで、シアスパン比は1.80である。外殻PCa部材2の厚さは24mmで内側面にシアコッターを設けている。柱主筋5にはD16でUSD685の高強度筋を用い、主筋比pgは2.65%である。横補強筋(せん断補強筋4)にはRB6.2でSBPDN1275の高強度筋を用い、40mmピッチに外周筋と中子筋を配筋し、横補強筋比pwは1.0%である。外殻PCa部材2、中詰めコンクリート3ともに、普通ポルトランドセメントにシリカフュームを混和し混練した。外殻PCa部材2のコンクリートには最大寸法10mmの砕石を、中詰めコンクリート3には最大寸法13mmの砕石を用いた。目標圧縮強度を外殻PCa部材2は115N/mm2に、中詰めコンクリート3は100N/mm2に設定した。 No fiber is mixed in the filling concrete 3. The horizontal cross-sectional dimension of the test specimen is 300 × 300 mm, the in-column height is 1080 mm, and the shear span ratio is 1.80. The thickness of the outer shell PCa member 2 is 24 mm, and a sheacotter is provided on the inner surface. The column main muscle 5 is a high strength muscle of D6 and USD 685, and the main muscle ratio pg is 2.65%. As the transverse reinforcement (shear reinforcement 4), the high strength reinforcement of SBPDN1275 is used in RB6.2, and the outer reinforcement and the core reinforcement are arranged at a pitch of 40 mm, and the transverse reinforcement ratio pw is 1.0%. Both outer shell PCa member 2 and filled concrete 3 were kneaded by mixing silica fume with ordinary Portland cement. A crushed stone having a maximum size of 10 mm was used for the concrete of the outer shell PCa member 2, and a crushed stone having a maximum size of 13 mm was used for the filling concrete 3. The target compressive strength was set to 115 N / mm 2 for the outer shell PCa member 2 and to 100 N / mm 2 for the filling concrete 3.

建研式加力装置を用い、油圧ジャッキにより一定軸力を加えた状態で水平方向に正負交番漸増繰り返し加力を行い、試験体に逆対称曲げモーメントを作用させた。加力サイクルは、原則として、層間変形角(R)でR=±1/400,1/200,1/100,1/67,1/50radを各2回繰り返し、その後、耐力の低下度合いを勘案してR=±1/33,1/25radの加力を行った。導入した軸力は、軸力比(η)にして0.55である。   Using a Kenken-type force device, a constant axial force was applied with a hydraulic jack, and a positive and negative alternating force was applied repeatedly in the horizontal direction, and an anti-symmetric bending moment was applied to the specimen. As a general rule, the load cycle is repeated twice each with R = ± 1/400, 1/200, 1/100, 1/67, 1/50 rad at the interlayer deformation angle (R). Considering this, R = ± 1/33, 1/25 rad was applied. The introduced axial force is 0.55 in terms of axial force ratio (η).

(B)実験結果
(a)破壊状況について、RC柱端部(図1中、二点鎖線で囲んだ領域X参照)のコンクリートが圧壊し耐力が低下したときの層間変形角Rを表4に示す。当該層間変形角Rは、比率において、PCN−1を1として、PCF−1では1.20,PCF−2では1.06であった。
(B) Experimental results (a) Regarding the fracture condition, Table 4 shows the interlaminar deformation angle R when the concrete at the RC column end (see region X surrounded by a two-dot chain line in FIG. 1) collapses and the proof stress decreases. Show. The interlayer deformation angle R was 1.20 for PCF-1 and 1.06 for PCF-2, with PCN-1 as 1.

Figure 2009179987
Figure 2009179987

目視によれば、鋼繊維6が混入されていないPCN−1では、約1/200(5×10-3)radでRC柱端部Xのコンクリートが爆裂音を伴って圧壊した。その後、かぶりコンクリートの剥離が進行し、1/50radではRC柱端部X全域にわたり損傷を受けた。これに対し、鋼繊維6が1%混入されたPCF−1では、1/50radに至ってもRC柱端部Xの損傷は軽微であった。超高強度コンクリートへの鋼繊維6の混入の有無により破壊状況が大きく異なることが分かった。 Visually, in PCN-1 in which the steel fibers 6 were not mixed, the concrete at the RC column end X collapsed with an explosive sound at about 1/200 (5 × 10 −3 ) rad. Thereafter, peeling of the cover concrete progressed, and at 1/50 rad, the entire RC column end X was damaged. On the other hand, in PCF-1 in which 1% of the steel fiber 6 was mixed, damage to the RC column end portion X was slight even at 1/50 rad. It was found that the fracture situation varies greatly depending on the presence or absence of the steel fibers 6 in the ultra high strength concrete.

圧壊が始まる1/200radでのRC柱端部Xの状況を検討すると、PCN−1では、この層間変形角Rの第2サイクルでRC柱端部Xのかぶりコンクリートが圧壊により剥離し、耐力が大きく低下した。PCF−1では、打ち継ぎ部のコンクリートに圧壊の兆候が若干見られるものの、外殻PCa部材2にはほとんど圧壊およびかぶりコンクリートの剥離は見られなかった。   When examining the situation of the RC column end X at 1/200 rad where crushing starts, in PCN-1, the cover concrete of the RC column end X is peeled off by crushing in the second cycle of this interlayer deformation angle R, and the proof stress is It was greatly reduced. In PCF-1, although some signs of crushing were seen in the concrete at the joint, almost no crushing and peeling of the cover concrete was seen in the outer shell PCa member 2.

この後、1/100radのサイクルのピークに至る過程の1/179〜1/154radで圧壊が発生し一時的に耐力が低下したが、その低下の程度はPCN−1に比べ小さかった。圧壊は徐々に進むため、PCN−1で発生したような爆裂音や爆裂に伴うかぶりコンクリートの飛散は生じなかった。   Thereafter, crushing occurred at 1/179 to 1/154 rad in the process of reaching the peak of the 1/100 rad cycle, and the yield strength was temporarily reduced, but the degree of the decrease was smaller than that of PCN-1. Since the crushing gradually progressed, the explosion sound generated by PCN-1 and the scattering of the cover concrete accompanying the explosion did not occur.

最終破壊状況では、PCN−1では、外殻PCa部材2がほとんど剥離し横補強筋4が露出してしまった。PCF−1,PCF−2では、ひび割れの発生数は少なく、かぶりコンクリートの剥離も生じなかった。PCF−1とPCF−2とは破壊状況に大きな差は見られなかった。鋼繊維6を混入することにより、RC柱端部Xのコンクリートの圧壊の程度並びにその周辺のかぶりコンクリートの剥離の程度を低減できることが確認された。   In the final fracture situation, in PCN-1, the outer shell PCa member 2 was almost peeled off and the lateral reinforcing bars 4 were exposed. In PCF-1 and PCF-2, the number of cracks was small, and the cover concrete did not peel off. There was no significant difference between PCF-1 and PCF-2 in the destruction situation. It was confirmed that mixing the steel fibers 6 can reduce the degree of concrete collapse at the RC column end X and the degree of peeling of the surrounding concrete cover.

(b)柱せん断力−層間変形角曲線
柱せん断力(Q)−層間変形角(R)曲線を図2に示す。PCN−1では、正方向は1/200(5×10-3)radのピークで、負方向は1/100(10×10-3)radのピークに向かう途中で圧壊が生じたため急激に耐力が低下したが、PCF−1,PCF−2では、1/100radのピークに向かう途中で圧壊したものの圧壊に伴う耐力の低下は小さく、ほぼ安定したQ−R曲線を描いた。これにより、鋼繊維6を混入することで、靭性向上を期待できることが分かった。Q−R曲線の正方向の包絡線を図3に示す。PCN−1では、1/200radで圧壊のため耐力が急激に低下しているが、PCF−1,PCF−2では1/100radに向かう途中で一時的に耐力が低下するものの、すぐに回復している。圧壊に伴う耐力の低下傾向が鋼繊維の混入により大きく抑制できることが分かった。
(B) Column shear force-interlayer deformation angle curve The column shear force (Q) -interlayer deformation angle (R) curve is shown in FIG. In PCN-1, the positive direction has a peak of 1/200 (5 × 10 −3 ) rad, and the negative direction has collapsed in the middle of the peak of 1/100 (10 × 10 −3 ) rad. Although PCF-1 and PCF-2 collapsed on the way to the peak of 1/100 rad, the decrease in yield strength accompanying the collapse was small, and an almost stable QR curve was drawn. Thereby, it turned out that the toughness improvement can be expected by mixing the steel fibers 6. The positive envelope of the QR curve is shown in FIG. In PCN-1, the yield strength decreased rapidly due to crushing at 1/200 rad, but in PCF-1 and PCF-2, the yield strength decreased temporarily on the way to 1/100 rad, but recovered immediately. ing. It was found that the tendency to decrease the yield strength due to crushing can be greatly suppressed by the mixing of steel fibers.

(c)ひび割れ
目視により、鋼繊維6を混入した場合には、混入しない場合に比べ、ひび割れ数が少なく、ひび割れ幅は狭いことを確認できた。
(C) Cracks It was confirmed by visual observation that when steel fibers 6 were mixed, the number of cracks was smaller and the crack width was narrower than when not mixed.

(d)軸方向ひずみ度
PCN−1では、かぶりコンクリートの剥離が進行するため、かぶりコンクリートの剥離がほとんど発生しないPCF−1,PCF−2に比べ、軸方向ひずみ度が増大することが確認され、特に大変形時において、鋼繊維6の混入は軸方向ひずみ度の減少に寄与することが分かった。
(D) Axial Strain Degree In PCN-1, since the peeling of the cover concrete proceeds, it is confirmed that the axial strain increases as compared with PCF-1 and PCF-2 where the cover concrete hardly peels off. In particular, it was found that the mixing of the steel fibers 6 contributes to a decrease in the axial strain when a large deformation is caused.

(e)横補強筋ひずみ度
RC柱端部Xおよび中央部で、PCN−1に比べ、PCF−1,PCF−2のひずみ度は幾分小さかった。圧壊が進む過程では、鋼繊維6を混入した外殻PCa部材2の方が、横補強筋4のひずみ度が小さいと言える。大変形時でひび割れが拡大する場合には、繊維長さが短いと、鋼繊維6を混入しても、繊維による拘束効果が十分に得られないと考えられる。
(E) Lateral reinforcement strain degree The degree of strain of PCF-1 and PCF-2 was somewhat smaller than that of PCN-1 at the RC column end X and the central part. In the process of crushing, it can be said that the outer shell PCa member 2 mixed with the steel fibers 6 has a smaller degree of distortion of the lateral reinforcing bars 4. When cracks expand at the time of large deformation, if the fiber length is short, even if steel fibers 6 are mixed, it is considered that the restraining effect by the fibers cannot be sufficiently obtained.

(f)限界変形角Ruと鋼繊維混入率との関係
限界変形角Ruの実験値を、限界変形角Ruの正負両方向の平均値と鋼繊維の混入率(%)との関係とともに、図4に示す。限界変形角Ruは、実験で得られたQ−R曲線のうち、第1サイクルのQ−R曲線の包絡線上で最大耐力から耐力が80%に低下したときの層間変形角として求めたものである。図から、鋼繊維6の混入率が増大すると限界変形角Ruは直線的に増大することが分かる。回帰式を求め、この式から推定すると、限界変形角Ruは、鋼繊維混入率が0%の場合に比べ、2%混入すると20%程度増大すると言える。これにより、鋼繊維6による補強が靭性の向上に有効であることが確認できる。上記回帰式は、数10%というような広い範囲ではなく、せいぜい0〜2%のきわめて狭い範囲を対象とするものであることから、0%、1%、2%の三点のデータにより、適切に特定できる。一般周知の混練方法・混練装置では、超高強度コンクリートに対し、鋼繊維6を2%以上混入すると、混練が困難になる。
The experimental values of the relationship limit drift angle R u and (f) a limit drift angle R u and steel fiber incorporation ratio, together with the relationship between the average values of both positive and negative directions and mixture ratio of steel fibers limit drift angle R u (%) As shown in FIG. Limit deformation angle R u, of the Q-R curve obtained in the experiment, which was obtained as story drift when strength from the maximum strength in the envelope line of the Q-R curve of the first cycle drops 80% It is. From the figure, the limit deformation angle R u the mixing ratio is increased steel fibers 6 it can be seen that a linearly increasing. A regression equation, the estimated from this equation, the limit deformation angle R u is compared with the case where the steel fiber incorporation ratio of 0%, it can be said that an increase about 20%, the mixed 2%. Thereby, it can confirm that the reinforcement by the steel fiber 6 is effective for the improvement of toughness. Since the above regression equation is not a wide range such as several tens of percent, but a very narrow range of 0 to 2% at the most, based on three points of data of 0%, 1% and 2%, Can be identified appropriately. In a generally known kneading method and kneading apparatus, kneading becomes difficult if 2% or more of steel fibers 6 are mixed into ultrahigh strength concrete.

(g)最大耐力の実験値の検討
表5に示した実験値からすると、正方向の値で理解されるように、PCF−1,PCF−2は、PCN−1よりも最大耐力が高かった。鋼繊維6を混入することによって靭性のみならず、曲げ耐力も増大することが確認できた。曲げ耐力の上昇は、鋼繊維6の混入により外殻PCa部材2による拘束効果がさらに高まったものと考えられる。
(G) Examination of experimental value of maximum yield strength From the experimental values shown in Table 5, as understood from the positive values, PCF-1 and PCF-2 had higher maximum yield strength than PCN-1. . It was confirmed that mixing the steel fiber 6 increases not only the toughness but also the bending strength. It is considered that the increase in the bending strength is that the restraining effect by the outer shell PCa member 2 is further increased by the mixing of the steel fibers 6.

Figure 2009179987
Figure 2009179987

以上説明したように本実施形態にかかるRC柱1にあっては、外殻PCa部材2が、圧縮強度100N/mm2以上の超高強度コンクリートに、繊維径0.1〜1mm、繊維長さ60mm以下の鋼繊維6を下記式(1)を満たす混入率で混入して形成されることにより、以下のような作用効果を得ることができる。
式(1)
限界変形角Ru(×10-3rad)=2.622×鋼繊維混入率(容積%)+24.525
但し、鋼繊維混入率(容積%)は2%以下
As described above, in the RC pillar 1 according to the present embodiment, the outer shell PCa member 2 is made of ultrahigh strength concrete having a compressive strength of 100 N / mm 2 or more, a fiber diameter of 0.1 to 1 mm, and a fiber length. By forming steel fibers 6 of 60 mm or less at a mixing rate that satisfies the following formula (1), the following operational effects can be obtained.
Formula (1)
Limit deformation angle R u (× 10 −3 rad) = 2.622 × Steel fiber mixture rate (volume%) + 24.525
However, steel fiber mixing rate (volume%) is 2% or less

RC柱端部Xのコンクリートの圧壊の程度並びにかぶりコンクリートの剥離の程度を低減できる。鋼繊維6の混入により圧壊に伴って耐力が低下することを抑制することができる。鋼繊維6を混入した場合には、混入しない場合に比べ、ひび割れ数が少なくなり、ひび割れ幅も狭く抑えることができる。層間変形角R=1/50(20×10-3)radを超える大変形時には、鋼繊維6の混入によりRC柱1の軸方向ひずみ度を減少することができる。限界変形角Ruは、鋼繊維6の混入率の増大に伴い直線的に増大し、鋼繊維6を2(容積%)混入することで、混入しない場合に比べ、限界変形角Ruを20%程度増大させることができる。鋼繊維6を混入した外殻PCa部材2を用いたRC柱1では、外殻PCa部材2の拘束効果を高めることができる。鋼繊維6を混入することで、曲げ耐力や靭性を増大させることができる。これにより本実施形態にかかるRC柱1にあっては、中詰めコンクリート3が充填されてRC柱1を構成する鋼繊維混入外殻PCa部材2を超高強度コンクリートで形成する場合に、耐力性能並びに靭性性能を向上できるとともに、圧壊時に爆裂音を伴って破片が飛散することを防止することができる。 The degree of concrete crushing at the RC column end X and the degree of peeling of the cover concrete can be reduced. It can suppress that a yield strength falls with crushing by mixing of the steel fiber 6. FIG. When the steel fibers 6 are mixed, the number of cracks is reduced and the crack width can be suppressed narrower than when the steel fibers 6 are not mixed. At the time of large deformation exceeding the interlayer deformation angle R = 1/50 (20 × 10 −3 ) rad, the axial strain of the RC column 1 can be reduced by mixing the steel fibers 6. The limit deformation angle R u increases linearly with the increase in the mixing rate of the steel fibers 6, and the limit deformation angle R u is set to 20 by mixing 2 (volume%) of the steel fibers 6 as compared with the case of not mixing. % Can be increased. In the RC pillar 1 using the outer shell PCa member 2 mixed with the steel fiber 6, the restraining effect of the outer shell PCa member 2 can be enhanced. By mixing the steel fibers 6, bending strength and toughness can be increased. Thereby, in the RC pillar 1 according to the present embodiment, when the steel fiber mixed outer shell PCa member 2 which is filled with the filling concrete 3 and forms the RC pillar 1 is formed of ultra high strength concrete, the proof stress performance. In addition, the toughness performance can be improved, and the fragments can be prevented from being scattered with an explosive sound during crushing.

さらに、圧壊が生じるかぶりコンクリート部分、すなわち外殻PCa部材2にのみ鋼繊維6を混入することでRC柱端部Xの爆裂破壊を減ずることができて、かぶりコンクリートの剥離やその他の損傷を軽減できるので、中詰めコンクリート3に繊維を混入しなくてもよく、建設コストの縮減を達成することができる。また、有機繊維を混入することで、靭性の向上をさらに高めることができるとともに、実際の建物に適用した際に想定される火災対策を確保することができる。   Furthermore, the explosion destruction of the RC column end X can be reduced by mixing the steel fiber 6 only in the cover concrete portion where the crushing occurs, that is, the outer shell PCa member 2, thereby reducing the peeling of the cover concrete and other damages. Therefore, it is not necessary to mix fibers in the filling concrete 3, and reduction of construction cost can be achieved. In addition, mixing organic fibers can further improve the toughness, and can secure fire countermeasures assumed when applied to an actual building.

本発明にかかるRC柱の好適な一実施形態を説明する説明図である。It is explanatory drawing explaining suitable one Embodiment of RC pillar concerning this invention. PCN−1,PCF−1,PCF−2の実証試験におけるQ−R曲線のグラフを示す図である。It is a figure which shows the graph of the QR curve in the verification test of PCN-1, PCF-1, and PCF-2. 図2のQ−R曲線の正方向の包絡線のグラフを示す図である。It is a figure which shows the graph of the envelope of the positive direction of the QR curve of FIG. PCN−1,PCF−1,PCF−2の実証試験における限界変形角Ruの実験値を、限界変形角Ruの正負両方向の平均値と鋼繊維の混入率(%)との関係とともに示した説明図である。The experimental values of the critical deformation angle R u in demonstration of PCN-1, PCF-1, PCF-2, shown with the relationship between the average value and the mixing ratio of steel fibers in both the positive and negative directions of the limit deformation angle R u (%) FIG. 背景技術で説明したRC柱のQ−R曲線の一例のグラフを示す図である。It is a figure which shows the graph of an example of the QR curve of RC pillar demonstrated by background art.

符号の説明Explanation of symbols

1 RC柱
2 外殻PCa部材
3 中詰めコンクリート
4 せん断補強筋
5 柱主筋
6 鋼繊維
DESCRIPTION OF SYMBOLS 1 RC pillar 2 Outer shell PCa member 3 Filled concrete 4 Shear reinforcement 5 Column main reinforcement 6 Steel fiber

Claims (1)

せん断補強筋を埋設した中空外殻プレキャストコンクリート部材内方に、柱主筋を配筋するとともに中詰めコンクリートを充填して形成される鉄筋コンクリート柱であって、
上記中空外殻プレキャストコンクリート部材が、圧縮強度100N/mm2以上の超高強度コンクリートに、繊維径0.1〜1mm、繊維長さ60mm以下の鋼繊維を下記式(1)を満たす混入率で混入して形成されることを特徴とする鉄筋コンクリート柱。
式(1)
限界変形角Ru(×10-3rad)=2.622×鋼繊維混入率(容積%)+24.525
但し、鋼繊維混入率(容積%)は2%以下
Reinforced concrete columns formed by laying column main bars inside and filling filled concrete inside hollow outer shell precast concrete members with embedded shear reinforcement,
The hollow outer shell precast concrete member is mixed with ultra high strength concrete having a compressive strength of 100 N / mm 2 or more and a steel fiber having a fiber diameter of 0.1 to 1 mm and a fiber length of 60 mm or less satisfying the following formula (1). Reinforced concrete pillars formed by mixing.
Formula (1)
Limit deformation angle R u (× 10 −3 rad) = 2.622 × Steel fiber mixture rate (volume%) + 24.525
However, steel fiber mixing rate (volume%) is 2% or less
JP2008018985A 2008-01-30 2008-01-30 Reinforced concrete column Pending JP2009179987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018985A JP2009179987A (en) 2008-01-30 2008-01-30 Reinforced concrete column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018985A JP2009179987A (en) 2008-01-30 2008-01-30 Reinforced concrete column

Publications (1)

Publication Number Publication Date
JP2009179987A true JP2009179987A (en) 2009-08-13

Family

ID=41034173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018985A Pending JP2009179987A (en) 2008-01-30 2008-01-30 Reinforced concrete column

Country Status (1)

Country Link
JP (1) JP2009179987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053412A (en) * 2011-09-01 2013-03-21 Kajima Corp Structure made of reinforced concrete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130846A (en) * 1986-11-21 1988-06-03 株式会社ブリヂストン Panel
JP2004232258A (en) * 2003-01-29 2004-08-19 Ohbayashi Corp Segment
JP2004332236A (en) * 2003-04-30 2004-11-25 Toda Constr Co Ltd Precast concrete column
JP2005146601A (en) * 2003-11-13 2005-06-09 Taisei Corp Reinforced column structure
JP2009270281A (en) * 2008-05-01 2009-11-19 Okumura Corp Super highrise building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130846A (en) * 1986-11-21 1988-06-03 株式会社ブリヂストン Panel
JP2004232258A (en) * 2003-01-29 2004-08-19 Ohbayashi Corp Segment
JP2004332236A (en) * 2003-04-30 2004-11-25 Toda Constr Co Ltd Precast concrete column
JP2005146601A (en) * 2003-11-13 2005-06-09 Taisei Corp Reinforced column structure
JP2009270281A (en) * 2008-05-01 2009-11-19 Okumura Corp Super highrise building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053412A (en) * 2011-09-01 2013-03-21 Kajima Corp Structure made of reinforced concrete

Similar Documents

Publication Publication Date Title
JP2009203106A (en) Polymer cement material of high toughness for reinforcing bending of concrete frame and method for reinforcing bending of concrete frame using polymer cement material of high toughness
JP5861985B2 (en) Seismic reinforcement method and repair method for reinforced concrete members
CN102898103B (en) Section steel high-ductility fiber concrete combined column
JP2020111941A (en) Construction method of concrete structure
JP2006016900A (en) Tunnel constructing segment
JP2020200759A (en) Steel beam with floor slab
JP2009270281A (en) Super highrise building
JP2009179987A (en) Reinforced concrete column
JP2013119722A (en) Method for enhancing shear capacity of reinforced concrete beam
JP7176875B2 (en) High-rise buildings and precast prestressed concrete columns
JP6387247B2 (en) Construction method and formwork support for concrete beams or slabs
KR20140105152A (en) Wall for seismic retrofit and construction methods of the wall
JP3762143B2 (en) Construction method of reinforced / unanchored seismic reinforced walls
JP2011121832A (en) Kneaded material for cement composite material excellent in shear break resistance, composite material, and bridge beam member
JP5922993B2 (en) Structure and lining method using multiple fine crack type fiber reinforced cement composites
KR20200011279A (en) Lateral reinforcement structure of reinforced concrete pillar
JP2007120002A (en) Pretension member
JP2009279837A (en) Manufacturing method of pretension member, and construction method of concrete structure
JP6987577B2 (en) How to repair concrete structures
JP3703714B2 (en) High bending toughness and high strength pile
JP2000192455A (en) Cast-in-place reinforced concrete pile
JPH08189080A (en) Placing form and concrete structure
JP4412188B2 (en) Concrete pillar and its construction method
JP2003336349A (en) Composite structural member of reinforced concrete
CN102924012B (en) High-ductility fiber concrete short column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Effective date: 20120417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A02