JP2009178781A - Radiation oscillation working method - Google Patents

Radiation oscillation working method Download PDF

Info

Publication number
JP2009178781A
JP2009178781A JP2008017964A JP2008017964A JP2009178781A JP 2009178781 A JP2009178781 A JP 2009178781A JP 2008017964 A JP2008017964 A JP 2008017964A JP 2008017964 A JP2008017964 A JP 2008017964A JP 2009178781 A JP2009178781 A JP 2009178781A
Authority
JP
Japan
Prior art keywords
machining
radial
small
amount
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008017964A
Other languages
Japanese (ja)
Other versions
JP5183226B2 (en
Inventor
Satoaki Kurokawa
聡昭 黒川
Masahito Kamiya
聖人 神谷
Makoto Arai
誠 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008017964A priority Critical patent/JP5183226B2/en
Publication of JP2009178781A publication Critical patent/JP2009178781A/en
Application granted granted Critical
Publication of JP5183226B2 publication Critical patent/JP5183226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation oscillation working method which makes angle transfer precision of working shape even by reducing one-sided consumption of each of angular parts of a pyramidal electrode during the time until an electrode reaches an instructed working position. <P>SOLUTION: In the radiation oscillation working method, the electrode with a reduced size of an angular hole is relatively moved from the radiation oscillation center toward the bottoms of a plurality of angular parts so as to go along the ridge lines of the pyramids while controlling the gap between the electrode and a workpiece, to thereby perform an electric discharge machining. The method includes: a small cyclic oscillation working step of circulatingly and oscillatingly working respective parts of the plurality of angular parts in a prescribed order until the electrode reaches a prescribed working progress amount smaller than an instructed working depth and an instructed radiation oscillation amount; and a step of repeating the small cyclic oscillation working step until the electrode reaches the instructed working depth and the instructed radiation oscillation amount or until the instructed working time comes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、数値制御放電加工機により、複数の角部を有する角穴をワークに仕上加工するために、角穴と相似形の減寸電極を、放射揺動中心から複数の角部の底へ向けて角錐の稜線に沿うように電極とワークの間隙制御を行いながら相対移動させ、放電加工を行なう放射揺動加工方法に関するものである。   In order to finish a square hole having a plurality of corners on a workpiece by a numerically controlled electric discharge machine, a reduction electrode having a shape similar to that of a square hole is provided at the bottom of a plurality of corners from a radial oscillation center. The present invention relates to a radial oscillating machining method in which an electric discharge machining is performed by relatively moving the gap between an electrode and a workpiece along a ridge line of a pyramid toward the surface.

従来、揺動加工機能を有する数値制御放電加工機において、一定の揺動面内において所定速度での周回運動又は放射運動を行なう揺動手段と、前記揺動面内において前記周回運動又は放射運動と独立に、電極と被加工物の間の間隙制御を行なう揺動間隙制御手段とを具備したものがある。   2. Description of the Related Art Conventionally, in a numerically controlled electric discharge machine having an oscillating function, oscillating means that performs an orbiting motion or a radiating motion at a predetermined speed within a fixed oscillating surface, and the orbiting or radiating motion within the oscillating surface. Independently, there is provided a swinging gap control means for controlling the gap between the electrode and the workpiece.

この数値制御放電加工機は、揺動最終目標形状を複数に分割する揺動形状分割手段と、各分割形状毎に最終目標形状に到達したか否かを判定する個別到達判定手段と、前記各分割形状全てが前記最終目標形状に到達したと判定されたときに揺動を終了する揺動判定手段とを具備している。   The numerically controlled electric discharge machine includes a swing shape dividing unit that divides a swing final target shape into a plurality of pieces, an individual arrival determination unit that determines whether or not the final target shape has been reached for each divided shape, Rocking determination means for ending rocking when it is determined that all the divided shapes have reached the final target shape.

上記の放電加工機による揺動加工方法は、荒加工電極での定速揺動+深さ方向への間隙制御送りの後、仕上電極で円錐台状の揺動を行なうようにすることにより、攪拌によるスラッジの排出の促進、集中放電の防止、側面の面粗度の向上がなされている(例えば、特許文献1参照)。   The swing machining method by the electric discharge machine described above is such that, after the constant speed swing at the rough machining electrode + the gap control feed in the depth direction, the finish electrode performs the truncated cone swing, Promotion of sludge discharge by agitation, prevention of concentrated discharge, and improvement of the surface roughness of the side surfaces (for example, see Patent Document 1).

特開平10−166224号公報JP-A-10-166224

しかしながら、上記従来の技術によれば、仕上加工において、指令加工位置に到達してからの加工終了判定時に、分割した揺動領域ごとの終了判定や、次の分割形状に移るかの判定を行なっているが、指令加工位置に到達するまでの間に電極の各角部や各側面の消耗を均一にするような処理がなされていない。そのため、同じ揺動を繰り返すことにより、角部に電極消耗の偏りが生じ、最終加工形状に電極消耗の偏りが転写され、最終加工形状の角部の形状精度が悪化する、という問題がある。また、面粗度を確保するための時間切加工においても同様の問題がある。   However, according to the above-described conventional technique, in finishing processing, when the processing end is determined after reaching the command processing position, the end determination for each divided swing region and the determination of whether to move to the next divided shape are performed. However, no processing is performed to make the wear of each corner and each side of the electrode uniform until the command machining position is reached. Therefore, by repeating the same swinging, there is a problem that the electrode wear bias is generated at the corner, the electrode wear bias is transferred to the final processed shape, and the shape accuracy of the corner of the final processed shape is deteriorated. In addition, there is a similar problem in time cutting for ensuring surface roughness.

本発明は、上記に鑑みてなされたものであって、指令加工位置に到達するまでの間、角柱状電極の各角部の消耗の偏りを減らし、加工形状の角転写精度を均一にする放射揺動加工方法を得ることを目的とする。   The present invention has been made in view of the above, and reduces the uneven consumption of each corner of the prismatic electrode until the command machining position is reached, and radiation that makes the angular transfer accuracy of the machined shape uniform. The object is to obtain a swing machining method.

上述した課題を解決し、目的を達成するために、本発明は、複数の角部を有する角穴をワークに仕上加工するために、前記角穴の減寸電極を、放射揺動中心から前記複数の角部の底へ向けて角錐の稜線に沿うように電極とワークの間隙制御を行いながら相対移動させ、放電加工を行なう放射揺動加工方法において、指令加工深さ及び指令放射揺動量より小さい所定の加工進行量に至るまで前記複数の角部の夫々を所定の順番に周回揺動加工する小周回揺動加工ステップと、前記小周回揺動加工ステップを、前記指令加工深さ及び指令放射揺動量に到達するか又は指令加工時間が来るまで複数回繰り返すステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a method for finishing a square hole having a plurality of corners on a workpiece, and reducing the reduction electrode of the square hole from the radial oscillation center. In the radial rocking machining method in which electric discharge machining is performed by controlling the gap between the electrode and the workpiece along the pyramid ridge line toward the bottom of a plurality of corners, and performing electric discharge machining, from the command machining depth and the commanded radiation fluctuation amount A small orbital oscillating machining step in which each of the plurality of corners is orbitally oscillated in a predetermined order until a small predetermined machining progress amount is achieved, and the small orbital oscillating machining step includes the command machining depth and the command And a step of repeating a plurality of times until the amount of radiation fluctuation is reached or the command processing time comes.

この発明によれば、指令加工位置に到達するまでの間、角柱状電極の各角部の消耗の偏りを減らし、加工形状の角転写精度を均一にすることができる、という効果を奏する。また、加工進行中の任意の時間における各角部の消耗の偏りを減らし、且つ、加工進み量を均一にすることができるため、面粗度を確保するための時間切加工においても角転写精度を確保することができる。   According to this invention, until reaching the command machining position, there is an effect that it is possible to reduce uneven wear of each corner of the prismatic electrode and make the angular transfer accuracy of the machined shape uniform. In addition, it is possible to reduce unevenness of wear at each corner at an arbitrary time during processing, and to make the processing progress uniform, so that the corner transfer accuracy can also be achieved in time cut processing to ensure surface roughness. Can be secured.

以下に、本発明にかかる放射揺動加工方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a radial rocking machining method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1−1は、本発明にかかる放射揺動加工方法により、四角柱状の減寸電極でワークに四角穴を仕上加工している途中の状態を示す横断面図であり、図1−2は、図1−1と同様の状態を示す縦断面図であり、図2は、本発明にかかる放射揺動加工方法を概念的に示す斜視図であり、図3−1は、四角穴の各角部の小放射揺動加工の周回順序を指示するテーブルであり、図3−2〜図3−5は、夫々1周目〜4(0)周目の小放射揺動加工順序を示す図であり、図4は、本発明にかかる放射揺動加工方法を実施する実施の形態1の数値制御放電加工機の機能ブロック図であり、図5は、実施の形態1の数値制御放電加工機の小放射揺動制御動作を示すフローチャートである。
Embodiment 1 FIG.
FIG. 1-1 is a cross-sectional view showing a state in the process of finishing a square hole in a workpiece with a square columnar reduction electrode by the radial oscillation processing method according to the present invention, and FIG. FIG. 2 is a longitudinal sectional view showing the same state as FIG. 1-1, FIG. 2 is a perspective view conceptually showing a radial rocking machining method according to the present invention, and FIG. FIG. 3-2 to FIG. 3-5 are diagrams illustrating the order of the small radial oscillation processing of the first round to the 4th (0) round, respectively. 4 is a functional block diagram of the numerically controlled electric discharge machine according to the first embodiment for carrying out the radial rocking machining method according to the present invention, and FIG. 5 is a numerically controlled electric discharge machine according to the first embodiment. It is a flowchart which shows small radiation fluctuation control operation | movement.

本発明の放射揺動加工方法は、図1−1及び図1−2に示すように、複数の角部11、12、13、14を有する角穴(本実施の形態では、四角穴)15をワーク10に仕上加工するために、角穴15と相似形の角柱(四角柱)状の減寸電極20を、放射揺動中心25から複数の角部11〜14の底(指令加工深さの底)11A〜14Aへ向けて、図2に示す角錐(四角錐)30の夫々の稜線31〜34に沿うように相対移動させ、放電加工を行なう加工方法である。   As shown in FIGS. 1-1 and 1-2, the radial rocking machining method of the present invention is a square hole (in this embodiment, a square hole) 15 having a plurality of corner portions 11, 12, 13, 14. In order to finish the workpiece 10 into a workpiece 10, a prismatic (square prism) -shaped reduction electrode 20 similar to the square hole 15 is provided from the radial oscillation center 25 to the bottom of the plurality of corner portions 11 to 14 (command processing depth). This is a machining method in which electric discharge machining is performed by relatively moving the pyramids (quadrangular pyramids) 30 shown in FIG. 2 along the respective ridgelines 31 to 34 toward the bottoms 11A to 14A.

この場合、本発明の特徴的な加工方法として、減寸電極20を、放射揺動中心25から夫々の角部11〜14の底11A〜14Aへ向けて四角錐の稜線に沿うように相対移動させて底11A〜14Aへ到達させ、合計4回の連続的放電加工で四角穴の仕上加工を行なうのではなく、夫々の角部11〜14の底11A〜14Aへ向けての加工を、複数回に分けて行なう。   In this case, as a characteristic processing method of the present invention, the reduction electrode 20 is relatively moved along the ridgeline of the quadrangular pyramid from the radial oscillation center 25 toward the bottoms 11A to 14A of the respective corners 11 to 14. Rather than having the bottoms 11A to 14A reached and finishing the square holes by a total of four continuous electrical discharge machinings, a plurality of machinings to the bottoms 11A to 14A of the respective corners 11 to 14 are performed. Divide it into times.

また、仕上加工代1Aを除去する仕上加工を行なうための、指令加工深さ36及び指令放射揺動量31A、32A、33A、34Aの各合成ベクトルより小さい所定の加工進行量(ベクトル値)に至るまで複数の角部11〜14の夫々を所定の順番に周回加工する(小周回揺動加工ステップ)。   Further, a predetermined machining progress amount (vector value) smaller than each of the combined vectors of the command machining depth 36 and the command radiation fluctuation amounts 31A, 32A, 33A, and 34A for performing the finishing machining for removing the finishing machining allowance 1A is reached. Each of the plurality of corner portions 11 to 14 is circularly processed in a predetermined order (small circular oscillation processing step).

すなわち、図2及び図3−1〜図3−5に示すように、1周目の小周回揺動加工ステップでは、放射方向1→放射方向3→放射方向2→放射方向4の順番で、夫々加工進行量に至るまで周回加工する。1周目の小周回揺動加工ステップでは、放射方向2及び4の加工は、放射方向1及び3の加工により、角部12、14の近傍以外は既に除去された面の加工となるので、放射方向1及び3よりも加工進み量が大きくなる傾向がある。   That is, as shown in FIGS. 2 and 3-1 to 3-5, in the first round small-turn swing machining step, in the order of radial direction 1 → radial direction 3 → radial direction 2 → radial direction 4, Each of them is rounded until the amount of progress is reached. In the first round small-swing oscillating machining step, the machining in the radial directions 2 and 4 is the machining of the surfaces already removed except for the vicinity of the corner portions 12 and 14 by the machining in the radial directions 1 and 3. There is a tendency that the machining advance amount becomes larger than those in the radial directions 1 and 3.

次に、2周目の小周回揺動加工ステップでは、放射方向2→放射方向4→放射方向3→放射方向1の順番で、夫々加工進行量に至るまで周回加工する。2周目の小周回揺動加工ステップでは、放射方向3及び1の加工は、放射方向2及び4の加工により、角部11、13の近傍以外は既に除去された面の加工となるので、放射方向2及び4よりも加工進み量が大きくなる傾向があり、1周目の小周回揺動加工ステップで発生した加工進み量のアンバランスを2週目の小周回揺動加工ステップで解消することができる。また、角柱状減寸電極20の各角部の消耗の偏りをなくし、加工形状の角転写精度を均一にすることができる。3周目、4周目以降も、図3−1、図3−4、図3−5に示す順番で周回加工を行ない、小周回揺動加工ステップを、指令加工深さ36及び指令放射揺動量31A、32A、33A、34Aに到達するか又は指令加工時間が来るまで複数回繰り返す。   Next, in the small-round swing machining step of the second round, the round machining is performed in the order of the radial direction 2 → radial direction 4 → radial direction 3 → radial direction 1 until the machining progress amount is reached. In the second round small orbital oscillating machining step, the machining in the radial directions 3 and 1 is the machining of the surfaces already removed except for the vicinity of the corners 11 and 13 by the machining in the radial directions 2 and 4. There is a tendency that the machining advance amount becomes larger than the radial directions 2 and 4, and the unbalance of the machining advance amount generated in the small-turn swing machining step in the first round is eliminated in the small-turn swing machining step in the second week. be able to. In addition, it is possible to eliminate unevenness of wear at each corner of the prismatic reduction electrode 20 and make the angular transfer accuracy of the processed shape uniform. In the third and fourth laps, the circular machining is performed in the order shown in FIGS. 3-1, 3-4, and 3-5, and the small circular oscillation machining step is performed with the command machining depth 36 and the command radial oscillation. Repeat several times until the amount of movement 31A, 32A, 33A, 34A is reached or the command machining time is reached.

このように、本発明の放射揺動加工方法は、指令加工深さ36及び指令放射揺動量31A〜34Aより小さい所定の加工進行量に至るまで角穴15の複数の角部11〜14の夫々を所定の順番に周回揺動加工する小周回揺動加工ステップと、この小周回揺動加工ステップを、指令加工深さ36及び指令放射揺動量31A〜34Aに到達するか又は指令加工時間が来るまで複数回繰り返すステップと、を含むので、指令加工位置36、31A〜34Aに到達するまでの間、角柱状減寸電極20の各角部の消耗の偏りをなくし、加工形状の角転写精度を均一にすることができる。   Thus, in the radial rocking machining method of the present invention, each of the plurality of corner portions 11 to 14 of the square hole 15 reaches the predetermined machining progress amount smaller than the command machining depth 36 and the commanded radiation rocking amounts 31A to 34A. A small orbital oscillating machining step in which the oscillating machining is performed in a predetermined order, and this small orbital oscillating machining step reaches the command machining depth 36 and the command radial oscillation amounts 31A to 34A or the command machining time comes. Until the command machining position 36, 31A to 34A is reached, the uneven consumption of each corner of the prismatic reduction electrode 20 is eliminated, and the angular transfer accuracy of the machining shape is improved. It can be made uniform.

次に、図4を参照して、本発明にかかる放射揺動加工方法を実施する実施の形態1の数値制御放電加工機について説明する。図4に示すように、NCプログラム解釈部41は、加工に用いるNCプログラムが格納されたNCプログラムメモリを備えている。NCプログラム解釈部41は、NCプログラムメモリからNCプログラムを読込んで解釈し、放射揺動パターンメモリ42からオペレータが選択して指令した、三角穴、四角穴、六角穴等の放射揺動パターン、及び、加工指令位置メモリ43からオペレータが選択して指令した指令加工深さ36及び各放射方向の指令放射揺動量31A、32A、33A、34A等を補間処理部44に送出し、更に、放射揺動パターン及び揺動速度等を揺動制御部51に送出し、加工条件を放電制御部46に送出する。   Next, with reference to FIG. 4, the numerically controlled electric discharge machine according to the first embodiment for carrying out the radial rocking machining method according to the present invention will be described. As shown in FIG. 4, the NC program interpretation unit 41 includes an NC program memory in which an NC program used for machining is stored. The NC program interpretation unit 41 reads and interprets the NC program from the NC program memory, and the radiation fluctuation pattern such as a triangular hole, a square hole, and a hexagonal hole selected and commanded by the operator from the radiation fluctuation pattern memory 42, and Then, the command machining depth 36 selected by the operator from the machining command position memory 43 and the commanded radiation fluctuation amounts 31A, 32A, 33A, 34A in the respective radial directions are sent to the interpolation processing unit 44, and further, the radiation fluctuations are transmitted. A pattern, a swing speed, and the like are sent to the swing control unit 51, and processing conditions are sent to the discharge control unit 46.

また、NCプログラム解釈部11は、放射揺動パターン、指令加工深さ36及び各放射方向の指令放射揺動量31A、32A、33A、34Aとともに、オペレータにより選択入力されたワーク10の材質及び電極20の材質等を加工進行量管理部52に送出する。   The NC program interpretation unit 11 also includes the material of the workpiece 10 and the electrode 20 selected and input by the operator, along with the radiation fluctuation pattern, the command machining depth 36, and the command radiation fluctuation amounts 31A, 32A, 33A, 34A in the respective radial directions. Are sent to the processing progress amount management unit 52.

放電制御部46は、NCプログラム解釈部41から送出された加工条件に基づいて、電極20とワーク10との間の放電間隙に放電電圧を印加して放電を発生させるように、図示しない放電電源に指令を出す。   The discharge control unit 46 applies a discharge voltage to the discharge gap between the electrode 20 and the workpiece 10 based on the machining conditions sent from the NC program interpretation unit 41 to generate a discharge (not shown). Command.

加工進行量管理部52は、角穴15の夫々の角部11〜14の、指令加工深さ36及び指令放射揺動量31A、32A、33A、34Aより小さい小周回揺動加工の加工進行量パラメータを格納している。この加工進行量パラメータとしては、各角部11〜14の底11A〜14Aへ向かう各放射方向における加工進み量(ベクトル量)、加工時間(加工進み量を略達成できる時間)、有効放電パルス数(加工進み量を略達成できる有効放電パルス数)のいずれかをオペレータが選択して用いる。   The machining progress amount management unit 52 is a machining progress amount parameter of small-circulation swing machining smaller than the command machining depth 36 and the command radial swing amounts 31A, 32A, 33A, 34A of the respective corner portions 11 to 14 of the square hole 15. Is stored. As the machining progress amount parameters, the machining advance amount (vector amount) in each radial direction toward the bottom 11A to 14A of each corner 11 to 14, the machining time (time during which the machining advance amount can be substantially achieved), the number of effective discharge pulses Any one of (the number of effective discharge pulses that can substantially achieve the machining progress amount) is selected and used by the operator.

この加工進行量パラメータは、放電加工機のメーカー側で、様々な加工条件、ワーク及び電極の材質、電極形状、加工面積等で加工試験を行なって決定した、電極の消耗量の偏りが略無視できる加工進行量となっている。例えば、加工時間パラメータとしては、上述の条件に応じて、1秒〜3分程度の適切な複数の加工進行量がパラメータテーブルに格納されている。NCプログラム解釈部11から送られた加工情報に基づいて、適切な加工進行量(例えば、時間1分)が選択決定され、放射方向切替判定部54に送出される。   This machining progress parameter is determined by the electric discharge machine manufacturer on the basis of various machining conditions, workpiece and electrode materials, electrode shape, machining area, etc. The amount of processing progress is possible. For example, as the machining time parameter, a plurality of appropriate machining progress amounts of about 1 second to 3 minutes are stored in the parameter table in accordance with the above-described conditions. Based on the machining information sent from the NC program interpretation unit 11, an appropriate machining progress amount (for example, time 1 minute) is selected and determined and sent to the radial direction switching determination unit 54.

加工進行量モニタ部53は、電極による実際の加工進行量をモニタし、モニタした加工進行量(例えば、経過した加工時間)を放射方向切替判定部54に送出する。放射方向切替判定部54は、加工進行量管理部52から送出された適切な加工進行量と加工進行量モニタ部53から送出された実際の加工進行量とを比較し、実際の加工進行量が適切な加工進行量に到達すると、到達判定信号を次放射方向決定部56に送出する。   The machining progress amount monitor unit 53 monitors the actual machining progress amount by the electrode, and sends the monitored machining progress amount (for example, the elapsed machining time) to the radial direction switching determination unit 54. The radial direction switching determination unit 54 compares the appropriate processing progress amount sent from the processing progress amount management unit 52 with the actual processing progress amount sent from the processing progress amount monitor unit 53, and the actual processing progress amount is determined. When an appropriate machining progress amount is reached, an arrival determination signal is sent to the next radiation direction determination unit 56.

加工進行量モニタ部53は、加工進行量が、加工進み量であれば加工進み量をモニタし、加工時間であれば加工時間をモニタし、有効放電パルス数であればパルス数をモニタする。通常は、加工時間が、加工進行量として用いられる。   The machining progress amount monitoring unit 53 monitors the machining progress amount if the machining progress amount is the machining advance amount, monitors the machining time if the machining time is the machining time, and monitors the pulse number if the number of effective discharge pulses. Usually, the processing time is used as the processing progress amount.

放射順管理部55は、図3−1に示すような、角穴の各小周回揺動加工における放射揺動方向順の管理テーブルを格納している。一例として示す四角穴の小周回揺動加工では、1周目では、図3−2に示すように、各角部の底に向けて対角を突くように、1、3、2、4の順で放射揺動加工を行なうように指令する。2周目〜4周目では、図3−3〜図3−5に示す順番で放射揺動加工を行なうように指令する。   The radiation order management unit 55 stores a management table of the order of the radial oscillation direction in each small-round oscillation processing of a square hole as shown in FIG. As an example, in the small round swing machining of a square hole, as shown in FIG. 3-2, in the first round, 1, 3, 2, 4 so as to protrude diagonally toward the bottom of each corner. Commands to perform radial rocking in order. In the 2nd to 4th laps, a command is given to perform the radial rocking process in the order shown in FIGS. 3-3 to 3-5.

次放射方向決定部56は、上述の到達判定信号が入力されると、放射順管理部55から、小周回揺動加工における次の放射揺動方向を読出し、次の放射揺動方向を決定して揺動制御部51に送出する。揺動制御部51は、次放射方向決定部56からの放射揺動方向信号と、加工進行量管理部52からの加工進行量信号とに基づいて所定の小放射揺動指令をサーボ制御部15に送出する。   When the arrival determination signal described above is input, the next radiation direction determination unit 56 reads the next radiation fluctuation direction in the small-circulation rocking process from the radiation order management unit 55 and determines the next radiation fluctuation direction. To the swing control unit 51. The swing control unit 51 sends a predetermined small radiation swing command to the servo control unit 15 based on the radiation swing direction signal from the next radiation direction determination unit 56 and the processing progress amount signal from the processing progress amount management unit 52. To send.

補間処理部44は、NCプログラム解釈部41からの指令加工深さ36及び各放射方向の指令放射揺動量31A、32A、33A、34Aと、加工進行量管理部52からの加工進行量信号とに基づいて所定の小加工深さ指令をサーボ制御部45に送出する。   The interpolation processing unit 44 uses the command processing depth 36 from the NC program interpretation unit 41, the command radial fluctuation amounts 31A, 32A, 33A, 34A in each radial direction, and the processing progress amount signal from the processing progress amount management unit 52. Based on this, a predetermined small machining depth command is sent to the servo control unit 45.

サーボ制御部45は、揺動制御部51からの小放射揺動指令と、補間処理部44からの小加工深さ指令とに基づいて図示しないX、Y、Z軸のサーボモータを制御し、角穴15と相似形の減寸電極20を、放射揺動中心25から角穴15の一つの角部の底へ向けて角錐の稜線に沿うように所定の加工進行量に至るまで放電仕上加工を行ない、加工進行量に至ると、電極を放射揺動中心25に戻す。   The servo control unit 45 controls the X, Y, and Z axis servo motors (not shown) based on the small radiation swing command from the swing control unit 51 and the small machining depth command from the interpolation processing unit 44, A reduction electrode 20 similar in shape to the square hole 15 is subjected to electrical discharge finishing until a predetermined amount of machining progresses along the ridge line of the pyramid from the radial oscillation center 25 toward the bottom of one corner of the square hole 15. When the amount of progress is reached, the electrode is returned to the radial oscillation center 25.

加工進行量モニタ部53が、上述の加工進行量をモニタしていて、モニタした加工進行量を放射方向切替判定部54に送出していて、放射方向切替判定部54が、加工進行量管理部52から送出された適切な加工進行量と加工進行量モニタ部53から送出された実際の加工進行量とを比較し、実際の加工進行量が適切な加工進行量に到達しているので、到達判定信号を次放射方向決定部56に送出し、次放射方向決定部56は、到達判定信号が入力されると、放射順管理部55から、小周回揺動加工における次の放射揺動方向を読出し、次の放射揺動方向を決定して揺動制御部51に送出する。このようにして、小周回揺動加工ステップを、指令加工深さ36及び指令放射揺動量31A〜34Aに到達するまで繰り返す。   The machining progress amount monitoring unit 53 monitors the above-described machining progress amount, sends the monitored machining progress amount to the radial direction switching determination unit 54, and the radial direction switching determination unit 54 includes the machining progress amount management unit. The appropriate machining progress amount sent from 52 and the actual machining progress amount sent from the machining progress monitor unit 53 are compared, and the actual machining progress amount has reached the appropriate machining progress amount. The determination signal is sent to the next radiation direction determination unit 56, and when the arrival determination signal is input, the next radiation direction determination unit 56 determines the next radiation fluctuation direction in the small-turn oscillation processing from the radiation order management unit 55. Read, determine the next oscillating direction of radiation, and send to the oscillating control unit 51. In this way, the small-round swing machining step is repeated until the command machining depth 36 and the commanded radiation swing amounts 31A to 34A are reached.

一方、オペレータが加工時間管理部57から指令加工時間(例えば、10分間)を選択して入力すると、時間切判定部58が加工スタート時からの加工時間をカウントし、指令加工時間が経過すると、揺動制御部51に停止指令を送出し、指令加工深さ36及び指令放射揺動量31A〜34Aに到達していなくても放電加工を停止させる。なお、このとき、一つの小周回揺動加工ステップの途中であるときは、一つの小周回ステップが完了してから停止するようにすれば、加工残の偏りの少ない角穴が得られる。   On the other hand, when the operator selects and inputs a command machining time (for example, 10 minutes) from the machining time management unit 57, the time-out determining unit 58 counts the machining time from the start of machining, and when the command machining time has elapsed, A stop command is sent to the swing control unit 51, and the electric discharge machining is stopped even if the command machining depth 36 and the command radiation swing amounts 31A to 34A have not been reached. At this time, when one small-turn swing machining step is in the middle of the process, if one small-turn step is completed and then stopped, a square hole with a small unbalanced machining residue can be obtained.

揺動制御部51、加工進行量管理部52、加工進行量モニタ部53、放射方向切替判定部54、放射順管理部55、次放射方向決定部56、加工時間管理部57及び時間切判定部58は、小周回揺動制御部50を構成している。   Oscillation control unit 51, processing progress amount management unit 52, processing progress amount monitor unit 53, radial direction switching determination unit 54, radial order management unit 55, next radial direction determination unit 56, processing time management unit 57, and time cut determination unit 58 constitutes the small-turn swing control unit 50.

次に、図5を参照して、小周回揺動制御部50による小周回揺動制御動作を説明する。放射揺動加工をスタートさせると、ステップS11で、電極の消耗量の偏りが略無視できる加工進行量(例えば、加工時間1分間)を決定する。次に、ステップS12に進み、放射揺動方向n=1を設定する。   Next, with reference to FIG. 5, the small-turn swing control operation by the small-turn swing control unit 50 will be described. When the radial oscillating machining is started, a machining progress amount (for example, a machining time of 1 minute) in which the deviation of the consumption amount of the electrode can be substantially ignored is determined in step S11. Next, it progresses to step S12 and the radial rocking | swiveling direction n = 1 is set.

次に、ステップS13に進み、今回の小周回揺動加工における放射揺動方向順を決定する。次に、ステップS14に進み、今回小周回揺動加工のn番目の放射揺動方向への放電加工を行なう。次に、ステップS15に進み、現在加工している放射揺動方向で指令加工位置に到達したか否かを判定する。ステップS15が肯定されると、加工を停止し、ステップS17に進み、放射揺動方向n=n+1を設定し、ステップS14に戻り、今回小周回揺動加工のn+1番目の放射揺動方向への放電加工を行なう。   Next, the process proceeds to step S13, and the order of the radial rocking direction in the current small-turn rocking process is determined. Next, it progresses to step S14 and performs the electric discharge machining to the nth radial rocking | fluctuation direction of this small circumference rocking | fluctuation machining. Next, it progresses to step S15 and it is determined whether it reached | attained the command processing position in the radial rocking direction currently processed. If step S15 is affirmed, the machining is stopped, the process proceeds to step S17, the radial rocking direction n = n + 1 is set, the process returns to step S14, and this time the small-round rocking machining is performed in the (n + 1) th radial rocking direction. Perform electrical discharge machining.

ステップS15が否定されると、ステップS16に進み、現在加工している放射方向で所定の加工進行量を加工したか否かを判定する。否であれば、ステップS14に戻り放電加工を継続する。   When step S15 is denied, it progresses to step S16 and it is determined whether the predetermined process progress amount was processed in the radial direction currently processed. If not, it returns to step S14 and continues electric discharge machining.

ステップS16が肯定されると、ステップS18に進み、今回小周回揺動加工の全ての放射揺動方向で所定の加工進行量の加工が終了したか否かを判定する。否であれば、ステップS17に進み、放射揺動方向n=n+1を設定し、ステップS14に戻り、今回小周回揺動加工のn+1番目の放射揺動方向への放電加工を行なう。   If step S16 is affirmed, the process proceeds to step S18, where it is determined whether or not a predetermined machining progress amount of machining has been completed in all radial rocking directions of the current small-turn rocking machining. If not, the process proceeds to step S17, the radial rocking direction n = n + 1 is set, and the process returns to step S14 to perform electric discharge machining in the n + 1th radial rocking direction of the current small-turn rocking process.

ステップS14〜S18を繰り返し、今回小周回揺動加工の全ての放射揺動方向で所定の加工進行量の加工が終了し、ステップS18が肯定されると、ステップS19に進み、指令加工時間が経過したか否かを判定する。   Steps S14 to S18 are repeated, and when processing of a predetermined machining progress amount is completed in all the radial swing directions of the small-turn swing processing this time and step S18 is affirmed, the process proceeds to step S19, and the command processing time has elapsed. Determine whether or not.

ステップS19が肯定されると加工を終了する。ステップS19が否定されると、ステップS20に進み、全ての放射揺動方向で指令加工位置に到達したか否かを判定する。否であれば、ステップS21に進み、小周回数+1を設定してステップS12に戻り、次の小周回揺動加工ステップに進む。   If step S19 is affirmed, the processing is terminated. If step S19 is negative, the process proceeds to step S20, and it is determined whether or not the command machining position has been reached in all radial swing directions. If not, the process proceeds to step S21, the number of small turns +1 is set, the process returns to step S12, and the process proceeds to the next small turn swing machining step.

ステップS12〜S21を繰り返し、全ての放射揺動方向で指令加工位置に到達し、ステップS20が肯定されると、加工を終了する。   Steps S12 to S21 are repeated, and when the command processing position is reached in all radial swing directions, and step S20 is affirmed, the processing ends.

以上、説明したように、実施の形態1の放射揺動加工方法は、複数の角部11〜14を有する三角形、四角形、六角形等の角穴15をワーク10に仕上加工するために、角穴15と相似形の角柱状の減寸電極20を、放射揺動中心25から角穴15の複数の角部11〜14の底11A〜14Aへ向けて角錐30の稜線31〜34に沿うように相対移動させ、放電加工を行なう放射揺動加工方法において、最終仕上指令加工深さ36及び最終仕上指令放射揺動量31A〜34Aより小さい所定の加工進行量に至るまで複数の角部11〜14の夫々を所定の順番に周回揺動加工する小周回揺動加工ステップと、この小周回揺動加工ステップを、最終仕上指令加工深さ36及び最終仕上指令放射揺動量31A〜34Aに到達するか又は指令加工時間が来るまで複数回繰り返すステップと、を含むことを特徴とする。   As described above, the radial rocking machining method according to the first embodiment is configured so that a square hole 15 such as a triangle, a quadrangle, or a hexagon having a plurality of corner portions 11 to 14 is finished on the workpiece 10. The prismatic reduction electrode 20 having a shape similar to that of the hole 15 is arranged along the ridge lines 31 to 34 of the pyramid 30 from the radial oscillation center 25 toward the bottoms 11A to 14A of the plurality of corners 11 to 14 of the square hole 15. In the radial rocking machining method in which electrical discharge machining is performed relative to the plurality of corner portions 11 to 14 until reaching a predetermined machining progress amount smaller than the final finishing command machining depth 36 and the final finishing command radial rocking amounts 31A to 34A. A small orbital oscillating machining step that circulates orbits each in a predetermined order, and whether this small orbital oscillating machining step reaches the final finishing command machining depth 36 and the final finishing command radiation oscillating amounts 31A to 34A. Or command processing time Repeating steps a plurality of times until, characterized in that it comprises a.

上述の放射揺動加工方法によれば、角穴15の角部11〜14の形状精度を高めるための放射揺動加工において、放射揺動方向を所定の加工進行量毎に切替えながら、決められた順番で小周回揺動加工を進めていくことにより、同一小周回において、角柱状電極20の各角部の消耗量を最小かつ均一にすることができる。それ故、仕上加工される角穴15に複数存在する角部11〜14の転写精度を均一にすることができる。   According to the above-described radial rocking machining method, in the radial rocking machining for improving the shape accuracy of the corner portions 11 to 14 of the square hole 15, the radial rocking direction is determined while switching the radial rocking direction for each predetermined amount of machining progress. By proceeding with the small-circulation swinging process in the same order, the consumption amount of each corner of the prismatic electrode 20 can be minimized and uniform in the same small-circulation. Therefore, it is possible to make the transfer accuracy of the corner portions 11 to 14 existing in the square hole 15 to be finished uniform.

また、角穴15仕上加工中の任意の時間に加工を停止させた場合でも、各放射揺動方向の角柱状電極20の各角部の消耗量が均一となっているので、特に、電極消耗量の大きい仕上加工における面粗度を確保するための時間切加工において、面粗度と角部の形状精度の両方を確保することができる。   Further, even when the machining is stopped at an arbitrary time during the finishing of the square hole 15, the consumption amount of each corner portion of the prismatic electrode 20 in each radial oscillation direction is uniform, so that the electrode consumption is particularly significant. In the time cut processing for securing the surface roughness in the finishing process with a large amount, both the surface roughness and the shape accuracy of the corners can be ensured.

実施の形態2.
図6は、本発明にかかる放射揺動加工方法を実施する実施の形態2の数値制御放電加工機の機能ブロック図であり、図7は、実施の形態2の数値制御放電加工機の小放射揺動制御動作を示すフローチャートであり、図8は、実施の形態2の放射揺動加工方法により、三角柱状の減寸電極でワークに三角穴を仕上加工している途中の状態を示す横断面図であり、図9は、三角穴の小周回揺動加工ステップにおける各放射揺動方向の加工進み量を示す図である。
Embodiment 2. FIG.
FIG. 6 is a functional block diagram of the numerically controlled electric discharge machine according to the second embodiment that implements the radial oscillating machining method according to the present invention, and FIG. 7 shows the small radiation of the numerically controlled electric discharge machine according to the second embodiment. FIG. 8 is a flowchart showing a swing control operation, and FIG. 8 is a cross-sectional view showing a state in the middle of finishing a triangular hole in a workpiece with a triangular prism-shaped reduction electrode by the radial swing machining method of the second embodiment. FIG. 9 is a diagram showing the machining progress amount in each radial rocking direction in the small round rocking machining step of the triangular hole.

図6を参照して、本発明にかかる放射揺動加工方法を実施する実施の形態2の数値制御放電加工機について説明する。図6に示すように、NCプログラム解釈部41は、加工に用いるNCプログラムが格納されたNCプログラムメモリを備えている。NCプログラム解釈部41は、NCプログラムメモリからNCプログラムを読込んで解釈し、放射揺動パターンメモリ42からオペレータが選択して指令した、図8に示す三角穴の放射揺動パターン、及び、加工指令位置メモリ43からオペレータが選択して指令した指令加工深さ36及び各放射方向の指令放射揺動量31A、32A、33A等を補間処理部44に送出し、更に、放射揺動パターン及び揺動速度等を揺動制御部51に送出し、加工条件を放電制御部46に送出する。   With reference to FIG. 6, a numerically controlled electric discharge machine according to a second embodiment for carrying out the radial rocking machining method according to the present invention will be described. As shown in FIG. 6, the NC program interpretation unit 41 includes an NC program memory in which an NC program used for machining is stored. The NC program interpreting unit 41 reads and interprets the NC program from the NC program memory, and the operator selects and commands the radial rocking pattern memory 42, and the triangular rocking radial rocking pattern shown in FIG. The command processing depth 36 selected by the operator from the position memory 43 and the commanded radiation swing amounts 31A, 32A, 33A, etc. in the respective radial directions are sent to the interpolation processing unit 44, and the radiation swing pattern and swing speed are further transmitted. And the like are sent to the swing control unit 51, and the machining conditions are sent to the discharge control unit 46.

また、NCプログラム解釈部11は、放射揺動パターン、指令加工深さ36及び各放射方向の指令放射揺動量31A、32A、33Aとともに、オペレータにより選択入力されたワーク10の材質、電極20の材質及び放電加工条件の電極消耗量等を加工進行量演算部52Aに送出する。   The NC program interpretation unit 11 also includes the material of the workpiece 10 and the material of the electrode 20 selected and input by the operator, along with the radiation oscillation pattern, the command machining depth 36, and the command radiation oscillation amounts 31A, 32A, 33A in the respective radial directions. The electrode consumption amount and the like of the electric discharge machining conditions are sent to the machining progress amount calculation unit 52A.

放電制御部46は、NCプログラム解釈部41から送出された加工条件に基づいて、電極20とワーク10との間の放電間隙に放電電圧を印加して放電を発生させるように、図示しない放電電源に指令を出す。   The discharge control unit 46 applies a discharge voltage to the discharge gap between the electrode 20 and the workpiece 10 based on the machining conditions sent from the NC program interpretation unit 41 to generate a discharge (not shown). Command.

加工進行量演算部52Aは、角穴15の夫々の角部11〜13の、指令加工深さ36及び指令放射揺動量31A、32A、33Aより小さい小周回揺動加工の加工進行量パラメータを格納している。この加工進行量パラメータとしては、各角部11〜13の底11A〜13Aへ向かう各放射方向における加工時間、有効放電パルス数のいずれかをオペレータが選択して用いる。   The machining progress amount calculation unit 52A stores the machining progress amount parameters of the small-round swing machining smaller than the command machining depth 36 and the command radial swing amounts 31A, 32A, and 33A of the respective corner portions 11 to 13 of the square hole 15. is doing. As the machining progress parameter, the operator selects and uses either the machining time in each radial direction toward the bottom 11A to 13A of each corner 11 to 13 or the number of effective discharge pulses.

この加工進行量パラメータは、放電加工機のメーカー側で、様々な加工条件、ワーク及び電極の材質、電極形状、加工面積等で加工試験を行なって決定した、電極の消耗量の偏りが略無視できる加工進行量となっている。例えば、加工時間パラメータとしては、上述の条件に応じて、1秒〜3分程度の適切な複数の加工進行量がパラメータテーブルに格納されている。NCプログラム解釈部11から送られた加工情報に基づいて、適切な加工進行量(例えば、時間1分)が選択決定され、放射方向切替判定部54に送出される。   This machining progress parameter is determined by the electric discharge machine manufacturer on the basis of various machining conditions, workpiece and electrode materials, electrode shape, machining area, etc. The amount of processing progress is possible. For example, as the machining time parameter, a plurality of appropriate machining progress amounts of about 1 second to 3 minutes are stored in the parameter table in accordance with the above-described conditions. Based on the machining information sent from the NC program interpretation unit 11, an appropriate machining progress amount (for example, time 1 minute) is selected and determined and sent to the radial direction switching determination unit 54.

加工進行量モニタ部53は、電極による実際の加工進行量をモニタし、モニタした加工進行量を放射方向切替判定部54に送出する。放射方向切替判定部54は、加工進行量演算部52Aから送出された適切な加工進行量と加工進行量モニタ部53から送出された実際の加工進行量とを比較し、実際の加工進行量が適切な加工進行量に到達すると、到達判定信号を次放射方向決定部56に送出する。   The processing progress amount monitoring unit 53 monitors the actual processing progress amount by the electrode and sends the monitored processing progress amount to the radial direction switching determination unit 54. The radial direction switching determination unit 54 compares the appropriate machining progress amount sent from the machining progress amount calculation unit 52A with the actual machining progress amount sent from the machining progress amount monitor unit 53, and the actual machining progress amount is determined. When an appropriate machining progress amount is reached, an arrival determination signal is sent to the next radiation direction determination unit 56.

加工進行量モニタ部53は、加工進行量が、加工時間であれば加工時間をモニタし、有効放電パルス数であればパルス数をモニタし、併せて、加工進み量もモニタしている。通常、加工時間が、加工進行量として用いられる。   The machining progress amount monitoring unit 53 monitors the machining time if the machining progress amount is the machining time, monitors the number of pulses if the machining progress amount is the number of effective discharge pulses, and also monitors the machining progress amount. Usually, the processing time is used as the processing progress amount.

放射順演算部55Aは、図3−1に示すような、角穴の各小周回揺動加工における放射揺動方向順の管理テーブルを格納している。三角穴の小周回揺動加工では、1周目では、例えば、図8に示す角部11、13、12の順で放射揺動加工を行なうように指令する。2周目では、図8に示す角部12、13、11の順で放射揺動加工を行なうように指令する。3周目、4周目では、夫々1周目、2周目と同じ順番で放射揺動加工を行なうように指令する。   The radiation order calculation unit 55A stores a management table for the order of the radiation swing direction in each small-turn swing processing of a square hole as shown in FIG. In the small round swing machining of the triangular hole, in the first round, for example, a command is given to perform the radial swing machining in the order of the corner portions 11, 13, and 12 shown in FIG. In the second round, a command is given to perform radial rocking processing in the order of corners 12, 13, and 11 shown in FIG. In the third and fourth laps, a command is given to perform radial rocking in the same order as in the first and second laps.

次放射方向決定部56は、上述の到達判定信号が入力されると、放射順演算部55Aから、小周回揺動加工における次の放射揺動方向を読出し、次の放射揺動方向を決定して揺動制御部51に送出する。揺動制御部51は、次放射方向決定部56からの放射揺動方向信号と、加工進行量演算部52Aからの加工進行量信号とに基づいて所定の小放射揺動指令をサーボ制御部15に送出する。   When the arrival determination signal described above is input, the next radiation direction determination unit 56 reads out the next radiation fluctuation direction in the small turn oscillation processing from the radiation order calculation unit 55A, and determines the next radiation fluctuation direction. To the swing control unit 51. The swing control unit 51 sends a predetermined small radial swing command to the servo control unit 15 based on the radiation swing direction signal from the next radiation direction determination unit 56 and the processing progress amount signal from the processing progress amount calculation unit 52A. To send.

補間処理部44は、NCプログラム解釈部41からの指令加工深さ36及び各放射方向の指令放射揺動量31A、32A、33Aと、加工進行量演算部52からの加工進行量信号とに基づいて所定の小加工深さ指令をサーボ制御部45に送出する。   The interpolation processing unit 44 is based on the command processing depth 36 from the NC program interpreting unit 41, the command radiation fluctuation amounts 31A, 32A, 33A in the respective radial directions, and the processing progress amount signal from the processing progress amount calculating unit 52. A predetermined small machining depth command is sent to the servo control unit 45.

サーボ制御部45は、揺動制御部51からの小放射揺動指令と、補間処理部44からの小加工深さ指令とに基づいて図示しないX、Y、Z軸のサーボモータを制御し、角穴15と相似形の減寸電極20を、放射揺動中心25から三角穴15の一つの角部の底へ向けて角錐の稜線に沿うように所定の加工進行量に至るまで放電仕上加工を行ない、加工進行量に至ると、電極を放射揺動中心25に戻す。   The servo control unit 45 controls the X, Y, and Z axis servo motors (not shown) based on the small radiation swing command from the swing control unit 51 and the small machining depth command from the interpolation processing unit 44, A reduction electrode 20 having a shape similar to that of the square hole 15 is subjected to an electric discharge finishing process up to a predetermined machining progress amount along the ridgeline of the pyramid from the radial oscillation center 25 toward the bottom of one corner of the triangular hole 15. When the amount of progress is reached, the electrode is returned to the radial oscillation center 25.

加工進行量モニタ部53が、上述の加工進行量をモニタしていて、モニタした加工進行量を放射方向切替判定部54に送出し、放射方向切替判定部54が、加工進行量演算部52Aから送出された適切な加工進行量と加工進行量モニタ部53から送出された実際の加工進行量とを比較し、実際の加工進行量が適切な加工進行量に到達しているので、到達判定信号を次放射方向決定部56に送出し、次放射方向決定部56は、到達判定信号が入力されると、放射順序演算部55Aから、小周回揺動加工における次の放射揺動方向を読出し、次の放射揺動方向を決定して揺動制御部51に送出する。   The machining progress amount monitor unit 53 monitors the above-described machining progress amount, sends the monitored machining progress amount to the radial direction switching determination unit 54, and the radial direction switching determination unit 54 starts from the machining progress amount calculation unit 52A. The appropriate machining progress amount sent and the actual machining progress amount sent from the machining progress amount monitor unit 53 are compared, and the actual machining progress amount has reached the appropriate machining progress amount, so an arrival determination signal Is transmitted to the next radiation direction determination unit 56, and when the arrival determination signal is input, the next radiation direction determination unit 56 reads the next radiation oscillation direction in the small-circulation oscillation processing from the radiation sequence calculation unit 55A, The next radiation swing direction is determined and sent to the swing control unit 51.

このようにして、今回の小周回揺動加工ステップが終了し、全ての放射揺動方向の加工が終わると、図9に誇張して示すように、各角部11〜13の夫々で加工進み量が異なっている。実施の形態2の不等辺三角形の加工における加工進み量の差は、主に、不等辺三角形の各放射方向の放射揺動量及び加工進み量当りのワークの加工量(取り量)の差によるものである。すなわち、鋭角となっている角部11は、放射揺動量及び加工進み量当りのワークの加工量(取り量)が大きいので、加工進み量が小さくなる。   In this way, when the current small-turn swing machining step is completed and the processing in all the radial swing directions is finished, as shown in an exaggerated manner in FIG. 9, the processing proceeds at each of the corner portions 11 to 13. The amount is different. The difference in machining advance amount in the processing of the unequal side triangle in the second embodiment is mainly due to the difference in the amount of radial oscillation in each radial direction of the unequal side triangle and the machining amount (take amount) of the workpiece per machining advance amount. It is. That is, since the corner portion 11 which is an acute angle has a large amount of machining (amount of machining) of the workpiece per the amount of radial oscillation and the amount of machining advance, the amount of machining advance becomes small.

加工進行量モニタ部53は、上述の加工進行量をモニタするとともに加工進み量をもモニタしていて、今回の小周回揺動加工ステップが終了した時点で、各放射方向の加工進み量を、放射方向切替時の加工進み量記憶部59に送出し、各放射方向の加工進み量を記憶させる。   The machining progress amount monitoring unit 53 monitors the above-described machining progress amount and also monitors the machining progress amount, and when the current small-turn swing machining step is completed, the machining progress amount in each radial direction is It is sent to the processing progress amount storage unit 59 at the time of switching the radial direction, and the processing progress amount in each radial direction is stored.

次の小周回揺動加工ステップに進むとき、加工進み量記憶部59は、記憶した各放射方向の加工進み量を、放射順序演算部55A及び加工進行量演算部52Aに送出し、放射順序演算部55Aでは、各放射方向の加工進み量の差に基づいて、放射揺動方向順序を決定する。すなわち、次の小周回揺動加工ステップでは、加工進み量の多い放射方向から先に加工を行うようにする(これは、実施の形態1と同じ理由による。)。電極の形状により各放射方向の加工進み量当たりの加工量が異なる等の理由により、加工進行中に加工進み量に不均一が生じた場合に、放射揺動方向順序を適切に切り替えることにより、加工進み量を均一にすることができる。   When proceeding to the next small-round swing machining step, the machining progress amount storage unit 59 sends the stored machining progress amounts in the respective radial directions to the radiation sequence calculation unit 55A and the machining progress amount calculation unit 52A, so that the radiation sequence calculation is performed. In the section 55A, the order of the radial oscillation direction is determined based on the difference in the machining progress amount in each radial direction. That is, in the next small orbital oscillating machining step, the machining is performed first from the radial direction in which the machining advance amount is large (for the same reason as in the first embodiment). If the processing amount per processing direction in each radial direction differs depending on the shape of the electrode, for example, if the processing progress amount is non-uniform during processing, by appropriately switching the radial oscillation direction sequence, The amount of processing advance can be made uniform.

また、加工進行量演算部52Aでも、各放射方向の加工進み量の差に基づいて、各放射方向の加工進行量を決定する。すなわち、次の小周回揺動加工ステップでは、加工進み量の少ない放射方向の加工進行量を多くするようにする。加工進行中に加工進み量に不均一が生じた場合に、各放射揺動方向の加工進行量を適切に増減させることにより、加工進み量を均一にすることができる。このようにして、小周回揺動加工ステップを、指令加工深さ36及び指令放射揺動量31A〜34Aに到達するまで繰り返す。   The processing progress amount calculation unit 52A also determines the processing progress amount in each radial direction based on the difference in the processing progress amount in each radial direction. That is, in the next small-round swing machining step, the machining progress amount in the radial direction with a small machining advance amount is increased. When unevenness occurs in the processing progress amount during processing, the processing progress amount can be made uniform by appropriately increasing or decreasing the processing progress amount in each radial oscillation direction. In this way, the small-round swing machining step is repeated until the command machining depth 36 and the commanded radiation swing amounts 31A to 34A are reached.

一方、オペレータが加工時間管理部57から指令加工時間(例えば、10分間)を選択して入力すると、時間切判定部58が加工スタート時からの加工時間をカウントし、指令加工時間が経過すると、揺動制御部51に停止指令を送出し、指令加工深さ36及び指令放射揺動量31A〜34Aに到達していなくても放電加工を停止させる。なお、このとき、一つの小周回揺動加工ステップの途中であるときは、一つの小周回ステップが完了してから停止するようにすれば、加工残の偏りの少ない角穴が得られる。   On the other hand, when the operator selects and inputs a command machining time (for example, 10 minutes) from the machining time management unit 57, the time-out determining unit 58 counts the machining time from the start of machining, and when the command machining time has elapsed, A stop command is sent to the swing control unit 51, and the electric discharge machining is stopped even if the command machining depth 36 and the command radiation swing amounts 31A to 34A have not been reached. At this time, when one small-turn swing machining step is in the middle of the process, if one small-turn step is completed and then stopped, a square hole with a small unbalanced machining residue can be obtained.

揺動制御部51、加工進行量演算部52A、加工進行量モニタ部53、放射方向切替判定部54、放射順序演算部55A、次放射方向決定部56、加工時間管理部57及び時間切判定部58は、実施の形態2の小周回揺動制御部50Aを構成している。   Oscillation control unit 51, processing progress amount calculation unit 52A, processing progress amount monitor unit 53, radial direction switching determination unit 54, radial order calculation unit 55A, next radial direction determination unit 56, processing time management unit 57, and time cut determination unit 58 constitutes the small orbital swing controller 50A of the second embodiment.

次に、図7を参照して、実施の形態2の小周回揺動制御部50Aによる小周回揺動制御動作を説明する。放射揺動加工をスタートさせると、まず、ステップS31で放射揺動方向n=1を設定する。次に、ステップS32に進み、今回の小周回揺動加工における放射揺動方向順を決定する。   Next, with reference to FIG. 7, the small-turn swing control operation by the small-turn swing control unit 50A according to the second embodiment will be described. When the radial rocking process is started, first, the radial rocking direction n = 1 is set in step S31. Next, the process proceeds to step S32, and the order of the radial rocking direction in the current small-turn rocking process is determined.

次に、ステップS33に進み、今回の小周回揺動加工における、電極の消耗量の偏りが無視できる、各放射方向の加工進行量(例えば、各放射方向とも、加工時間1分間)を決定する。次に、ステップS34に進み、今回の小周回揺動加工のn番目の放射揺動方向への放電加工を行なう。   Next, the process proceeds to step S33, and the amount of machining progress in each radial direction (for example, each machining direction is 1 minute in each radial direction) in which the deviation of the consumption amount of the electrode in the current small-turn swing machining can be ignored is determined. . Next, it progresses to step S34 and performs the electrical discharge machining to the nth radial rocking | fluctuation direction of this small-circle rocking | fluctuation machining.

次に、ステップS35に進み、現在加工している放射揺動方向で指令加工位置に到達したか否かを判定する。ステップS35が肯定されると、加工を停止し、ステップS37に進み、放射揺動方向n=n+1を設定し、ステップS34に戻り、今回の小周回揺動加工のn+1番目の放射揺動方向への放電加工を行なう。   Next, it progresses to step S35 and it is determined whether it reached | attained the command processing position in the radial rocking direction currently processed. When step S35 is affirmed, the machining is stopped, the process proceeds to step S37, the radial rocking direction n = n + 1 is set, the process returns to step S34, and the process proceeds to the (n + 1) th radial rocking direction of the current small-turn rocking process. EDM is performed.

ステップS35が否定されると、ステップS36に進み、現在加工している放射方向で所定の加工進行量(加工時間1分間)を加工したか否かを判定する。否であれば、ステップS34に戻り放電加工を継続する。   If step S35 is negative, the process proceeds to step S36, in which it is determined whether or not a predetermined machining progress amount (machining time of 1 minute) has been machined in the currently processed radial direction. If not, the process returns to step S34 to continue the electric discharge machining.

ステップS36が肯定されると、ステップS38に進み、今回の小周回揺動加工の全ての放射揺動方向で所定の加工進行量の加工が終了したか否かを判定する。否であれば、ステップS37に進み、放射揺動方向n=n+1を設定し、ステップS34に戻り、今回の小周回揺動加工のn+1番目の放射揺動方向への放電加工を行なう。   If step S36 is affirmed, the process proceeds to step S38, and it is determined whether or not the machining of a predetermined machining progress amount has been completed in all the radial rocking directions of the current small-turn rocking machining. If not, the process proceeds to step S37, the radial rocking direction n = n + 1 is set, and the process returns to step S34 to perform electric discharge machining in the n + 1th radial rocking direction of the current small-turn rocking process.

ステップS34〜S38を繰り返し、今回の小周回揺動加工の全ての放射揺動方向で所定の加工進行量の加工が終了し、ステップS38が肯定されると、ステップS39に進み、今回の小周回揺動加工の各放射揺動方向の加工進み量(実際の加工距離)を記憶する。次に、ステップS40に進み、指令加工時間が経過したか否かを判定する。   Steps S34 to S38 are repeated, and when processing of a predetermined processing progress amount is completed in all the radial swing directions of the current small-turn swing processing, and step S38 is affirmed, the process proceeds to step S39, and this small-turn swing is performed. The machining advance amount (actual machining distance) in each radial oscillation direction of the oscillation processing is stored. Next, it progresses to step S40 and it is determined whether the command processing time passed.

ステップS40が肯定されると加工を終了する。ステップS40が否定されると、ステップS41に進み、全ての放射揺動方向で指令加工位置に到達したか否かを判定する。否であれば、ステップS42に進み、小周回数+1を設定してステップS31に戻り、次の小周回揺動加工ステップに進む。   If step S40 is affirmed, the processing is terminated. If step S40 is negative, the process proceeds to step S41, where it is determined whether or not the command machining position has been reached in all radial swing directions. If not, the process proceeds to step S42, sets the number of small turns + 1, returns to step S31, and proceeds to the next small turn swing machining step.

ステップS31で放射揺動方向n=1を設定する。次に、ステップS32に進み、今回の小周回揺動加工における放射揺動方向順を決定する。放射揺動方向順序は、加工進み量(加工距離)の多い放射方向から先に加工を行うようにする。加工進行中に加工進み量に不均一が生じた場合に、放射揺動加工順序を適切に切り替えることにより、加工進み量を均一にすることができる。   In step S31, the radial oscillation direction n = 1 is set. Next, the process proceeds to step S32, and the order of the radial rocking direction in the current small-turn rocking process is determined. In the order of the radial oscillation direction, the processing is performed first from the radial direction in which the processing progress amount (processing distance) is large. When the processing progress amount becomes non-uniform during processing, the processing progress amount can be made uniform by appropriately switching the radial swing processing sequence.

次に、ステップS33に進み、今回の小周回揺動加工における、各放射揺動方向の加工進行量を決定する。この加工進行量としては、前回の小周回揺動加工における、各放射方向の加工進み量(加工距離)の差に基づいて、今回の各放射揺動方向の加工進行量を決定する。すなわち、今回の小周回揺動加工ステップでは、前回の小周回揺動加工において加工進み量の少ない放射揺動方向の加工進行量を多くするようにする。加工進行中に加工進み量に不均一が生じた場合に、各放射揺動方向の加工進行量を適切に増減させることにより、加工進み量を均一にすることができる。   Next, the process proceeds to step S33, and the amount of machining progress in each radial oscillation direction in the current small-turn oscillation processing is determined. As this processing progress amount, the current processing progress amount in each radial oscillation direction is determined based on the difference in the processing advance amount (processing distance) in each radial direction in the previous small-round oscillation processing. That is, in the current small orbital oscillating machining step, the machining progress amount in the radial oscillating direction with a small machining advance amount is increased in the previous small orbital oscillating machining. When unevenness occurs in the processing progress amount during processing, the processing progress amount can be made uniform by appropriately increasing or decreasing the processing progress amount in each radial oscillation direction.

ステップS34以降のステップは、前回の小周回揺動加工ステップと同様である。このようにして、ステップS31〜S42の小周回揺動加工ステップを、指令加工深さ36及び指令放射揺動量31A〜33Aに到達するまで繰り返す。   The steps after step S34 are the same as the previous small-turn swing machining step. In this way, the small-round swing machining steps of steps S31 to S42 are repeated until the command machining depth 36 and the commanded radiation swing amounts 31A to 33A are reached.

以上、説明したように、実施の形態2の放射揺動加工方法は、小周回揺動加工ステップにおける複数の角部の夫々の加工進み量(加工距離)を記憶し、次回の小周回揺動加工ステップ時に、夫々の角部の加工進み量の差に基づいて、夫々の角部の小周回揺動加工順を変更するので、夫々の角部の加工進み量を均一にすることができる。   As described above, the radial rocking machining method of the second embodiment stores the machining advance amounts (machining distances) of the plurality of corners in the small round rocking machining step, and the next small round rocking process. At the time of the machining step, the order of small-round swing machining of each corner is changed on the basis of the difference in machining advance of each corner, so that the machining advance of each corner can be made uniform.

また、小周回揺動加工ステップにおける複数の角部の夫々の加工進み量を記憶し、次回の小周回揺動加工ステップ時に、夫々の角部の加工進み量の差に基づいて、夫々の角部の加工進行量を変更するので、夫々の角部の加工進み量を均一にすることができる。   In addition, the respective machining advance amounts of a plurality of corners in the small-circulation swing machining step are stored, and the respective corners are stored based on the difference in the machining advance amounts of the respective corner portions in the next small-turn swing machining step. Since the amount of machining progress of the part is changed, the amount of machining progress of each corner can be made uniform.

以上のように、本発明にかかる放射揺動加工方法は、複数の角部を有する角穴をワークに仕上加工するのに有用である。   As described above, the radial rocking machining method according to the present invention is useful for finishing a square hole having a plurality of corners into a workpiece.

本発明にかかる放射揺動加工方法により四角柱状の減寸電極でワークに四角穴を仕上加工している途中の状態を示す横断面図である。It is a cross-sectional view showing a state in the middle of finishing a square hole in a workpiece with a rectangular columnar reduction electrode by the radial rocking machining method according to the present invention. 図1−1と同様の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the same state as FIGS. 1-1. 本発明にかかる放射揺動加工方法を概念的に示す斜視図である。It is a perspective view which shows notionally the radial rocking processing method concerning this invention. 四角穴の各角部の小放射揺動加工の周回順序を指示するテーブルである。It is a table which instruct | indicates the rotation order of the small radiation rocking | fluctuation process of each corner | angular part of a square hole. 1周目の小放射揺動加工順序を示す図である。It is a figure which shows the small radiation rocking | fluctuation processing order of the 1st round. 2周目の小放射揺動加工順序を示す図である。It is a figure which shows the small radiation rocking | fluctuation processing order of the 2nd round. 3周目の小放射揺動加工順序を示す図である。It is a figure which shows the small radiation rocking | fluctuation machining order of the 3rd round. 4(0)周目の小放射揺動加工順序を示す図である。It is a figure which shows the small radiation rocking | fluctuation processing order of 4th (0) circumference. 本発明にかかる放射揺動加工方法を実施する実施の形態1の数値制御放電加工機の機能ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a functional block diagram of a numerically controlled electric discharge machine according to a first embodiment that implements a radial rocking machining method according to the present invention. 実施の形態1の数値制御放電加工機の小放射揺動制御動作を示すフローチャートである。3 is a flowchart showing a small radiation fluctuation control operation of the numerically controlled electric discharge machine according to the first embodiment. 本発明にかかる放射揺動加工方法を実施する実施の形態2の数値制御放電加工機の機能ブロック図である。It is a functional block diagram of the numerical control electric discharge machine of Embodiment 2 which implements the radial rocking machining method concerning the present invention. 実施の形態2の数値制御放電加工機の小放射揺動制御動作を示すフローチャートである。6 is a flowchart showing a small radiation fluctuation control operation of the numerically controlled electric discharge machine according to the second embodiment. 実施の形態2の放射揺動加工方法により、三角柱状の減寸電極でワークに三角穴を仕上加工している途中の状態を示す横断面図である。It is a cross-sectional view which shows the state in the middle of finishing a triangular hole in a workpiece | work with a triangular prism-shaped reduction electrode by the radial oscillation processing method of Embodiment 2. FIG. 三角穴の小周回揺動加工ステップにおける各放射揺動方向の加工進み量を示す図である。It is a figure which shows the process advance amount of each radial rocking | fluctuation direction in the small circumference rocking | fluctuation machining step of a triangular hole.

符号の説明Explanation of symbols

1A 仕上加工代
10 ワーク
11,12,13,14 角部
11A,12A,13A,14A 角部の底(指令加工深さの底)
15 角穴(四角穴)
20 減寸電極
25 放射揺動中心
30 角錐(四角錐)
31,32,33,34 稜線
31A,32A,33A,34A 指令放射揺動量
36 指令加工深さ
41 NCプログラム解釈部
42 放射揺動パターンメモリ
43 加工指令位置メモリ
44 補間処理部
45 サーボ制御部
46 放電制御部
50,50A 小周回揺動制御部
51 揺動制御部
52 加工進行量管理部
52A 加工進行量演算部
53 加工進行量モニタ部
54 放射方向切替判定部
55 放射順管理部
55A 放射順序演算部
56 次放射方向決定部
57 加工時間管理部
58 時間切判定部
1A Finishing machining allowance 10 Work 11, 12, 13, 14 Corner 11A, 12A, 13A, 14A Corner bottom (command processing depth bottom)
15 square hole (square hole)
20 Reduction electrode 25 Radial oscillation center 30 Pyramid (square pyramid)
31, 32, 33, 34 Ridge 31A, 32A, 33A, 34A Command Radiation Fluctuation 36 Command Machining Depth 41 NC Program Interpretation Unit 42 Radiation Fluctuation Pattern Memory 43 Machining Command Position Memory 44 Interpolation Processing Unit 45 Servo Control Unit 46 Discharge Control unit 50, 50A Small-circulation oscillation control unit 51 Oscillation control unit 52 Processing progress amount management unit 52A Processing progress amount calculation unit 53 Processing progress amount monitor unit 54 Radiation direction switching determination unit 55 Radiation order management unit 55A Radiation order calculation unit 56 Next Radiation Direction Determination Unit 57 Machining Time Management Unit 58 Time Cutout Determination Unit

Claims (4)

複数の角部を有する角穴をワークに仕上加工するために、前記角穴の減寸電極を、放射揺動中心から前記複数の角部の底へ向けて角錐の稜線に沿うように電極とワークの間隙制御を行いながら相対移動させ、放電加工を行なう放射揺動加工方法において、
指令加工深さ及び指令放射揺動量より小さい所定の加工進行量に至るまで前記複数の角部の夫々を所定の順番に周回揺動加工する小周回揺動加工ステップと、
前記小周回揺動加工ステップを、前記指令加工深さ及び指令放射揺動量に到達するか又は指令加工時間が来るまで複数回繰り返すステップと、
を含むことを特徴とする放射揺動加工方法。
In order to finish a square hole having a plurality of corners into a workpiece, the electrode for reducing the size of the square hole is formed so as to be along the ridge line of the pyramid from the radial oscillation center toward the bottom of the plurality of corners. In the radial rocking machining method that performs electrical discharge machining by relative movement while controlling the gap of the workpiece,
A small orbital oscillating machining step for orbiting and oscillating each of the plurality of corners in a predetermined order until a predetermined machining progress amount smaller than the command machining depth and the commanded radial oscillation amount;
Repeating the small orbital oscillating machining step a plurality of times until the command machining depth and the command radial oscillation amount are reached or the command machining time comes;
A radial rocking machining method comprising:
前記加工進行量は、前記各角部の底へ向かう各放射方向における加工進み量、加工時間又は有効放電パルス数のいずれかであることを特徴とする請求項1に記載の放射揺動加工方法。   2. The radial rocking machining method according to claim 1, wherein the machining progress amount is one of a machining advance amount, a machining time, and an effective discharge pulse number in each radial direction toward the bottom of each corner. . 前記小周回揺動加工ステップにおける前記複数の角部の夫々の加工進み量を記憶し、次回の小周回揺動加工ステップ時に、前記夫々の角部の加工進み量の差に基づいて、該夫々の角部の小周回揺動加工順を変更することを特徴とする請求項1又は2に記載の放射揺動加工方法。   The respective machining advance amounts of the plurality of corner portions in the small-circular swing machining step are stored, and the respective progress amounts of the corner portions are stored based on the difference in the machining advance amounts of the respective corner portions in the next small-circular swing machining step. 3. The radial oscillating machining method according to claim 1, wherein the order of the small oscillating machining of the corners is changed. 前記小周回揺動加工ステップにおける前記複数の角部の夫々の加工進み量を記憶し、次回の小周回揺動加工ステップ時に、前記夫々の角部の加工進み量の差に基づいて、該夫々の角部の加工進行量を変更することを特徴とする請求項1〜3のいずれか一つに記載の放射揺動加工方法。   The respective machining advance amounts of the plurality of corner portions in the small-circular swing machining step are stored, and the respective progress amounts of the corner portions are stored based on the difference in the machining advance amounts of the respective corner portions in the next small-circular swing machining step. The radial rocking machining method according to claim 1, wherein a machining progress amount of the corner portion is changed.
JP2008017964A 2008-01-29 2008-01-29 Radial rocking machining method Active JP5183226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017964A JP5183226B2 (en) 2008-01-29 2008-01-29 Radial rocking machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017964A JP5183226B2 (en) 2008-01-29 2008-01-29 Radial rocking machining method

Publications (2)

Publication Number Publication Date
JP2009178781A true JP2009178781A (en) 2009-08-13
JP5183226B2 JP5183226B2 (en) 2013-04-17

Family

ID=41033154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017964A Active JP5183226B2 (en) 2008-01-29 2008-01-29 Radial rocking machining method

Country Status (1)

Country Link
JP (1) JP5183226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151905A1 (en) * 2010-06-02 2011-12-08 三菱電機株式会社 Electrodischarge machining apparatus
CN106041232A (en) * 2016-06-28 2016-10-26 哈尔滨工业大学 Main shaft execution mechanism for electrical discharge machining device for machining square holes and machining method implemented through execution mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105665850A (en) * 2014-11-20 2016-06-15 中国航空工业第六八研究所 Electromachining method for machining square hole in wall of round hole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669035A (en) * 1979-10-11 1981-06-10 Mitsubishi Electric Corp Method and device for discharge working
JPH01316132A (en) * 1988-04-30 1989-12-21 Koenig Wilfried Dr Electric discharge machining method
JP2001138140A (en) * 1999-10-18 2001-05-22 Agie Sa Method and device for optimizing machining parameter in electric discharge machining

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669035A (en) * 1979-10-11 1981-06-10 Mitsubishi Electric Corp Method and device for discharge working
JPH01316132A (en) * 1988-04-30 1989-12-21 Koenig Wilfried Dr Electric discharge machining method
JP2001138140A (en) * 1999-10-18 2001-05-22 Agie Sa Method and device for optimizing machining parameter in electric discharge machining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151905A1 (en) * 2010-06-02 2011-12-08 三菱電機株式会社 Electrodischarge machining apparatus
JP5279954B2 (en) * 2010-06-02 2013-09-04 三菱電機株式会社 EDM machine
CN106041232A (en) * 2016-06-28 2016-10-26 哈尔滨工业大学 Main shaft execution mechanism for electrical discharge machining device for machining square holes and machining method implemented through execution mechanism

Also Published As

Publication number Publication date
JP5183226B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
KR102344443B1 (en) Control device for machine tool, and machine tool provided with said control device
CN108732989B (en) Control device for machine tool for performing swing cutting
KR101985116B1 (en) Numerical control device
US6942436B2 (en) NC program generating method, NC apparatus, computer memory product, and computer program product
US11059115B2 (en) Gear machining apparatus and gear machining method
JP6763917B2 (en) Machine tool control device
JP6744815B2 (en) Machine tool control device and machine tool
CN108732999B (en) Control device for machine tool for performing swing cutting
KR20190134697A (en) Machine tools and machine tools
KR20130069643A (en) Adaptive control of a machining process
JP5183226B2 (en) Radial rocking machining method
US6521856B1 (en) Method and device for controlling a die-sink erosion machine
JP6912506B2 (en) Machine tool control device
JP2012164200A (en) Numerical controller making in-position check on rotating shaft
JP2020163487A (en) Servo control device
JP7036786B2 (en) Numerical control device, program and control method
CN112130524A (en) Numerical controller, program recording medium, and control method
JP2604461B2 (en) Electric discharge machining method and apparatus
JPH09108945A (en) Electric discharge machining device and method
JP2010017800A (en) Deburring method and deburring device
CN107848046A (en) For mach method and system
JPS6399135A (en) Control method of electric discharge machining
US11453094B2 (en) Servo controller
CN109129176B (en) Control device
JP7459160B2 (en) Machine Tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250