JP2009176806A - Nonvolatile magnetic memory element - Google Patents

Nonvolatile magnetic memory element Download PDF

Info

Publication number
JP2009176806A
JP2009176806A JP2008011365A JP2008011365A JP2009176806A JP 2009176806 A JP2009176806 A JP 2009176806A JP 2008011365 A JP2008011365 A JP 2008011365A JP 2008011365 A JP2008011365 A JP 2008011365A JP 2009176806 A JP2009176806 A JP 2009176806A
Authority
JP
Japan
Prior art keywords
layer
magnetization
fixed
magnetic memory
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008011365A
Other languages
Japanese (ja)
Inventor
Takeshi Tamanoi
健 玉野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008011365A priority Critical patent/JP2009176806A/en
Publication of JP2009176806A publication Critical patent/JP2009176806A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonvolatile magnetic memory capable of reversing magnetization efficiently with a low current density. <P>SOLUTION: The invention relates to a nonvolatile magnetic memory in which a magnetization inversion layer of a ferrimagnetic structure antiferromagnetically coupled weakly with a stationary layer is reversed by a magnetic field from magnetization inversion control layers and the magnetization directions of the magnetization inversion control layers are fixed being faced to both sides of the magnetization inversion layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、不揮発性磁気メモリ素子の磁化反転機構およびデバイス構造に関する。   The present invention relates to a magnetization reversal mechanism and device structure of a nonvolatile magnetic memory element.

不揮発性磁気メモリ素子の一つに磁気ランダムアクセスメモリ素子(MRAM:Magnetic Random Access Memory )がある。MRAMは、トンネル磁気抵抗素子(TMR:Tunneling Magneto-Resistive )の上下に記録読み出し用の電流配線(ビット線とワード線)を施した構成となっている。TMR素子は、極めて薄い絶縁性のバリア層を強磁性層でサンドイッチした構造とし、強磁性層の磁化の向きに応じて膜厚方向の抵抗値が大きく変化するトンネル効果を利用したものである。   One of the nonvolatile magnetic memory elements is a magnetic random access memory (MRAM). The MRAM has a configuration in which current wirings (bit lines and word lines) for recording and reading are provided above and below a tunneling magnetoresistive element (TMR). The TMR element has a structure in which an extremely thin insulating barrier layer is sandwiched between ferromagnetic layers, and utilizes a tunnel effect in which the resistance value in the film thickness direction varies greatly in accordance with the magnetization direction of the ferromagnetic layer.

TMR素子の主要構成は、基板上に、固定層(反強磁性層)/固定磁化層(ピン層)/絶縁層(バリア層)/磁化反転層(フリー層)が順次積層されたものとなっている。MRAMでは、フリー層の磁化反転の制御は、上下の配線に流した電流が作る合成磁場によって行われる。   The main configuration of the TMR element is a substrate in which a fixed layer (antiferromagnetic layer) / a fixed magnetization layer (pinned layer) / an insulating layer (barrier layer) / a magnetization switching layer (free layer) are sequentially stacked. ing. In the MRAM, the magnetization reversal of the free layer is controlled by a synthetic magnetic field generated by currents flowing in the upper and lower wirings.

しかし、高密度化するためにTMR素子が微小化してくると、磁化反転層(フリー層)の反磁界が増加し、磁化反転に必要な電流が増大して消費電力が増加する問題や、合成磁場が隣接素子に影響を与える等の問題が生じてくる。   However, if the TMR element is miniaturized to increase the density, the demagnetizing field of the magnetization reversal layer (free layer) increases, the current required for magnetization reversal increases and the power consumption increases. Problems such as a magnetic field affecting adjacent elements arise.

これらの問題を解決する一つの手法として、スピン偏極した電流を注入するスピン注入磁化反転方式の技術が提案されている(非特許文献1)。
”スピン注入磁化反転の研究動向”、屋上公二郎等、日本応用磁気学会、Vol.28、No.9(2004)
As one technique for solving these problems, a spin injection magnetization reversal technique for injecting a spin-polarized current has been proposed (Non-patent Document 1).
“Research Trends of Spin Injection Magnetization Reversal”, Kojiro Rooftop et al., Japan Society of Applied Magnetics, Vol. 28, no. 9 (2004)

しかしながら、上記スピン注入磁化反転方式の技術によって素子の微細化は対応可能であるが、現状では、磁化反転に必要な電流密度は、まだ、107 A/cm2 程度と大きい。GBit級の不揮発性磁気メモリ素子を実現するためには、素子面積0.1μm2 以下のサイズで、かつ、約2桁電流密度を改善する必要があると試算されている。 However, although the miniaturization of the element can be dealt with by the spin injection magnetization reversal technique, at present, the current density necessary for the magnetization reversal is still as large as about 10 7 A / cm 2 . In order to realize a GBit-class non-volatile magnetic memory element, it is estimated that it is necessary to improve the current density with an element area of 0.1 μm 2 or less and about two digits.

そこで、本発明では、不揮発性磁気メモリ素子において、磁化反転層(フリー層)の磁化を制御する磁化反転制御層を設けることによって、磁化反転層を低電流密度で効率的に反転させるための手法を提供する。   Therefore, in the present invention, a method for efficiently inverting the magnetization switching layer at a low current density by providing a magnetization switching control layer for controlling the magnetization of the magnetization switching layer (free layer) in the nonvolatile magnetic memory element. I will provide a.

第一の発明は、基板上に第一の固定層/該第一の固定層によって磁化方向が固定される固定磁化層/バリア層/磁化反転層が順次積層されてなる不揮発性磁気メモリ素子であって、前記磁化反転層を挟む両サイドの一方の側に、前記固定磁化層と金属材料層を介して反強磁性結合させた第一の磁化反転制御層と、前記磁化反転層の他方の側に、前記固定磁化層と直接強磁性結合させた第二の磁化反転制御層と、を形成させたことを特徴とする不揮発性磁気メモリ素子に関する。   A first invention is a nonvolatile magnetic memory element in which a first fixed layer / a fixed magnetization layer / barrier layer / magnetization inversion layer whose magnetization direction is fixed by the first fixed layer are sequentially stacked on a substrate. A first magnetization reversal control layer antiferromagnetically coupled to the fixed magnetization layer and a metal material layer on one side of both sides of the magnetization reversal layer, and the other of the magnetization reversal layers The present invention relates to a nonvolatile magnetic memory element characterized in that, on the side, a second magnetization reversal control layer that is directly ferromagnetically coupled to the fixed magnetization layer is formed.

すなわち、第一の発明によれば、トンネル磁気抵抗効果を利用した不揮発性磁気メモリ素子において、第一の磁化反転制御層が、磁気抵抗素子の磁化反転層の片側において固定磁化層と金属材料層を介して反強磁性結合し、第二の磁化反転制御層が、磁気抵抗素子の他側において前記固定磁化層と直接強磁性結合させる構成とすることによって、フェリ磁性構造の磁化反転層を磁化反転制御層からの磁場で反転させることができ、記録時に、電流を磁化反転層に印加すると同時に第一の固定層との間で磁化反転層に電圧を加えることによって従来課題とされた電流密度を大幅に減少させることが可能となる。   That is, according to the first invention, in the nonvolatile magnetic memory element using the tunnel magnetoresistive effect, the first magnetization reversal control layer includes the fixed magnetization layer and the metal material layer on one side of the magnetization reversal layer of the magnetoresistive element. And the second magnetization reversal control layer is directly ferromagnetically coupled to the fixed magnetization layer on the other side of the magnetoresistive element, thereby magnetizing the ferrimagnetic structure magnetization reversal layer. Current density, which can be reversed by a magnetic field from the reversal control layer, is applied to the magnetization reversal layer at the same time as applying a voltage to the magnetization reversal layer simultaneously with the first fixed layer during recording. Can be greatly reduced.

第二の発明は、前記磁化反転層の上に反強磁性体からなる第二の固定層を設けたことを特徴とする上記第一の発明に記載の不揮発性磁気メモリ素子に関する。   A second invention relates to the nonvolatile magnetic memory element according to the first invention, wherein a second pinned layer made of an antiferromagnetic material is provided on the magnetization switching layer.

すなわち、第二の発明によれば、磁化反転層は、上に薄く設けた固定層と弱く反強磁性結合させることによって、他の素子からの浮遊磁場や両サイドの磁化反転制御層の磁場バランスのバラツキの影響を抑えることが可能となる。   In other words, according to the second invention, the magnetization reversal layer is weakly antiferromagnetically coupled to the pinned layer provided thinly thereon, so that the stray magnetic field from other elements and the magnetic field balance of the magnetization reversal control layers on both sides are obtained. It becomes possible to suppress the influence of the variation of.

第三の発明は、前記磁化反転層の両サイドに形成された前記第一の磁化反転制御層及び前記第二の反転制御層の磁化方向を互いに向き合うように固定させたことを特徴とする上記第一または第二の発明に記載の不揮発性磁気メモリ素子に関する。   The third invention is characterized in that the magnetization directions of the first magnetization inversion control layer and the second inversion control layer formed on both sides of the magnetization inversion layer are fixed so as to face each other. The present invention relates to the nonvolatile magnetic memory element according to the first or second invention.

すなわち、第三の発明によれば、一方の側の磁化反転制御層が、固定磁化層と金属材料層を介して反強磁性結合し、他方の側の磁化反転制御層が、固定磁化層と直接強磁性結合していることによって、磁化反転制御層の磁化方向は、磁化反転層の両サイドに互いに向き合った状態に固定することが可能であり、こうした向き合った磁化方向の構成をとることによって磁化反転層における磁化反転を少ない電流で容易に制御できる。   That is, according to the third invention, the magnetization reversal control layer on one side is antiferromagnetically coupled via the pinned magnetization layer and the metal material layer, and the magnetization reversal control layer on the other side is Due to the direct ferromagnetic coupling, the magnetization direction of the magnetization reversal control layer can be fixed in a state facing each other on both sides of the magnetization reversal layer. The magnetization reversal in the magnetization reversal layer can be easily controlled with a small current.

第四の発明は、記録時、前記第一の固定層と前記磁化反転層との間の電圧印加と同時に、前記磁化反転層の両サイドに形成した前記磁化反転制御層のいずれかを選択して前記第一の固定層との間に電圧が印加されることを特徴とする上記第一乃至第三の発明のいずれかに記載の不揮発性磁気メモリ素子に関する。   According to a fourth aspect of the present invention, during recording, one of the magnetization reversal control layers formed on both sides of the magnetization reversal layer is selected simultaneously with voltage application between the first fixed layer and the magnetization reversal layer. The present invention relates to the nonvolatile magnetic memory element according to any one of the first to third inventions, wherein a voltage is applied between the first fixed layer and the first fixed layer.

すなわち、第四の発明によれば、一方の磁化反転制御層と第一の固定層間に電圧を加え電流を流す。ジュール熱の影響で磁化反転制御層の磁化が小さくなり、もう一方の磁化反転制御層からの漏洩磁場が優勢となり、この磁場によって磁化反転層の磁化が反転し、「0」または「1」の記録状態ができる。   That is, according to the fourth aspect of the invention, a voltage is applied between the one magnetization reversal control layer and the first fixed layer to cause a current to flow. Due to the effect of Joule heat, the magnetization of the magnetization reversal control layer becomes smaller, the leakage magnetic field from the other magnetization reversal control layer becomes dominant, and the magnetization of the magnetization reversal layer is reversed by this magnetic field. Recording status is possible.

以上、本発明の不揮発性磁気メモリ素子により、互いに逆向きに磁化した磁化反転制御層をトンネル磁気抵抗(TMR)素子の磁化反転層の両側に設け、記録時にどちらか一方の磁化反転制御層に電圧を加えることで、磁化反転に必要な電流密度が従来に比べて一桁から二桁大幅低減する効果がでてくる。   As described above, with the nonvolatile magnetic memory element of the present invention, the magnetization reversal control layers magnetized in opposite directions are provided on both sides of the magnetization reversal layer of the tunnel magnetoresistive (TMR) element, and either one of the magnetization reversal control layers is recorded during recording. By applying a voltage, the current density required for magnetization reversal is significantly reduced by one to two digits compared to the conventional case.

以下、図面にもとづいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態になる不揮発性磁気メモリ素子の基本構造例を示す。本発明の不揮発性磁気メモリ素子(MRAM)は、極めて薄い絶縁膜を強磁性薄膜で挟んだ構造において、強磁性膜の磁化の向きに応じて膜厚方向の抵抗値が大きく変化するトンネル磁気抵抗(TMR)効果を利用したものでる。   FIG. 1 shows an example of the basic structure of a nonvolatile magnetic memory element according to an embodiment of the present invention. The nonvolatile magnetic memory element (MRAM) of the present invention has a structure in which a resistance value in the film thickness direction varies greatly in accordance with the magnetization direction of the ferromagnetic film in a structure in which an extremely thin insulating film is sandwiched between ferromagnetic thin films. It uses the (TMR) effect.

TMR素子は、基板上に順次、第一の固定層1(反強磁性層)/固定磁化層2(ピンンド層)/バリア層3(絶縁層)/磁化反転層4(フリー層)/第二の固定層5(反強磁性層)を積層させたものとなっている。   The TMR element is formed on the substrate in the order of the first pinned layer 1 (antiferromagnetic layer) / pinned magnetic layer 2 (pinned layer) / barrier layer 3 (insulating layer) / magnetization switching layer 4 (free layer) / second. The fixed layer 5 (antiferromagnetic layer) is laminated.

このTMR素子において、磁化反転層4の磁化を効率的に反転させて書込み時の電流密度を低減するために、TMR素子としての一部を構成するバリア層3/磁化反転層4/第二の固定層5からなる積層体の両サイドに第一、第二の磁化反転制御層6、7を配置したことを特徴とする。   In this TMR element, in order to efficiently reverse the magnetization of the magnetization switching layer 4 and reduce the current density at the time of writing, the barrier layer 3 / magnetization switching layer 4 / second layer constituting part of the TMR element. The first and second magnetization reversal control layers 6 and 7 are arranged on both sides of the laminated body including the fixed layer 5.

磁化反転層4は、磁性体内に逆向きのスピンを有する電子が注入されると、注入電子スピンに応じて磁性材料内の磁化の向きが反転する。また、磁化反転層4の上に薄く設けた第二の固定層5と弱く反強磁性結合させることによって、他の素子からの浮遊磁場や両サイドの磁化反転制御層6、7の磁場のバラツキの影響を抑えることを可能としている。なお、磁化反転層4は、1層でなくとも反強磁性結合させた3層のフェリ磁性構造としてもよい。この場合の磁化反転は、正味の磁化方向は磁化反転制御層からの磁化方向に揃えられる。   In the magnetization reversal layer 4, when electrons having spins in the opposite direction are injected into the magnetic body, the magnetization direction in the magnetic material is reversed according to the injected electron spins. Further, by weakly antiferromagnetically coupling with the second pinned layer 5 provided thinly on the magnetization switching layer 4, the stray magnetic field from other elements and the variation in the magnetic field of the magnetization switching control layers 6 and 7 on both sides are obtained. It is possible to suppress the influence of. The magnetization reversal layer 4 may have a three-layer ferrimagnetic structure that is antiferromagnetically coupled instead of one layer. In this case, the net magnetization direction is aligned with the magnetization direction from the magnetization reversal control layer.

第一の磁化反転制御層6は、固定磁化層2との間にルテニウム(Ru)や銅(Cu)など非磁性の金属の薄層からなる金属層9を介し反強磁性結合させることによって、固定磁化層2とは逆向きに磁化されている。また、他方の第二の反転制御層7は、固定磁化層2と、直接、強磁性結合させることによって固定磁化層2と同一方向に磁化された状態になっている。こうして、TMR素子の両サイドに設けた磁化反転制御層6、7の磁化方向は、互いに向き合った構成が実現される。   The first magnetization reversal control layer 6 is antiferromagnetically coupled to the fixed magnetization layer 2 via a metal layer 9 made of a thin layer of nonmagnetic metal such as ruthenium (Ru) or copper (Cu). It is magnetized in the opposite direction to the fixed magnetization layer 2. The other second inversion control layer 7 is magnetized in the same direction as the pinned magnetic layer 2 by being directly ferromagnetically coupled to the pinned magnetic layer 2. In this way, a configuration is realized in which the magnetization directions of the magnetization reversal control layers 6 and 7 provided on both sides of the TMR element face each other.

図2は、本発明の実施の形態になる不揮発性磁気メモリ素子の磁化状態(再生時)を示す。図2は、不揮発性磁気メモリ素子における磁化反転層4の磁化状態を読み出す際(再生時)の構成を示している。第一の磁化反転制御層6は、RuやCuなど非磁性の金属層9を介して固定磁化層2と反強磁性結合させ、一方、反対側の第二の磁化反転制御層7は、直接、固定磁化層2と強磁性結合させることによって、TMR素子としての一部を構成するバリア層3/磁化反転層4/第二の固定層5からなる積層体の両サイドの磁化反転制御層6、7の磁化方向が互いに向き合った状態となっている。   FIG. 2 shows the magnetization state (during reproduction) of the nonvolatile magnetic memory element according to the embodiment of the present invention. FIG. 2 shows a configuration when reading the magnetization state of the magnetization switching layer 4 in the nonvolatile magnetic memory element (during reproduction). The first magnetization reversal control layer 6 is antiferromagnetically coupled to the fixed magnetization layer 2 via a nonmagnetic metal layer 9 such as Ru or Cu, while the second magnetization reversal control layer 7 on the opposite side is directly The magnetization reversal control layers 6 on both sides of the laminate composed of the barrier layer 3 / magnetization reversal layer 4 / second pinned layer 5 constituting a part of the TMR element by being ferromagnetically coupled to the pinned magnetic layer 2. , 7 are in a state in which the magnetization directions face each other.

ここで、電流IR は、固定層1/固定層5間に流す読出し電流(一定電流)を示している。固定磁化層に対する磁化反転層の磁化の向き「平行」、「反平行」にしたがって、磁気抵抗が異なり、対応させたビット「0」、「1」を電圧差として検出する仕組みとなっている。 Here, the current I R indicates a read current (constant current) that flows between the fixed layer 1 and the fixed layer 5. According to the magnetization directions “parallel” and “antiparallel” of the magnetization switching layer with respect to the fixed magnetization layer, the magnetic resistance differs, and the corresponding bits “0” and “1” are detected as a voltage difference.

また、電源10は、磁化反転層6または7/第一の固定層1間に書込み時(記録時)に供給される電源であり、スイッチA/Bの切換えによって、磁化反転層6または7への電圧供給が行なわれる。   The power source 10 is a power source supplied during writing (recording) between the magnetization switching layer 6 or 7 / the first fixed layer 1, and is switched to the magnetization switching layer 6 or 7 by switching the switch A / B. Is supplied.

図3は、本発明の実施の形態になる“0 ”記録時における磁化状態図を示す。磁化反転層4の磁化方向を反転させるために、書込み電流IW (下向き)を流すとともに、第一の磁化反転制御層6と固定層1間に電源10による電圧を加え電流を流す。その際に、発生するジュール熱の影響で第一の磁化反転制御層6の磁化が小さくなり、もう一方の第二の磁化反転制御層7からの漏洩磁場が優勢となり、この磁場によって磁化反転層4の磁化方向は、固定磁化層の磁化方向と同一の方向に揃い、「0」記録の状態ができる。 FIG. 3 shows a magnetization state diagram at the time of “0” recording according to the embodiment of the present invention. In order to reverse the magnetization direction of the magnetization switching layer 4, a write current I W (downward) is passed, and a voltage is applied from the power supply 10 between the first magnetization switching control layer 6 and the fixed layer 1 to pass the current. At that time, the magnetization of the first magnetization reversal control layer 6 becomes smaller due to the influence of the generated Joule heat, and the leakage magnetic field from the other second magnetization reversal control layer 7 becomes dominant. 4 are aligned in the same direction as the magnetization direction of the pinned magnetic layer, and a “0” recording state is obtained.

図4は、本発明の実施の形態になる“1”記録時における磁化状態図を示す。磁化反転層の磁化を逆方向に反転させる場合には、書込み電流IW (上向き)を流すとともに、第二の磁化反転制御層7と第一の固定層1間に電圧を加える。図3と同様に、第二の磁化反転制御層7の磁化が小さくなり、第一の磁化反転制御層6からの漏洩磁場が優勢となることによって磁化反転層4の磁化が逆方向に反転し、「1」記録の状態ができる。 FIG. 4 shows a magnetization state diagram at the time of “1” recording according to the embodiment of the present invention. In order to reverse the magnetization of the magnetization switching layer in the reverse direction, a write current I W (upward) is passed and a voltage is applied between the second magnetization switching control layer 7 and the first fixed layer 1. Similar to FIG. 3, the magnetization of the second magnetization reversal control layer 7 becomes smaller, and the leakage magnetic field from the first magnetization reversal control layer 6 becomes dominant, so that the magnetization of the magnetization reversal layer 4 is reversed in the reverse direction. , “1” can be recorded.

図5は、本発明の実施の形態になる不揮発性磁気メモリ素子の作製手順(その1)を示す。図5の不揮発性磁気メモリ素子の作製手順では、手順1〜4を示す。   FIG. 5 shows a manufacturing procedure (No. 1) of the nonvolatile magnetic memory element according to the embodiment of the present invention. In the manufacturing procedure of the nonvolatile magnetic memory element of FIG.

なお、以下に作製するTMR素子の構成は、第一の固定層1(反強磁性層)/固定磁化層2(ピン層)/バリア層3(絶縁層)/磁化反転層4(フリー層)/第二の固定層5(反強磁性層)/保護層11となっている。なお、本素子構成は、図1の構成に対し、さらに、保護膜11を積層させたものとしている。   The structure of the TMR element produced below is the first pinned layer 1 (antiferromagnetic layer) / pinned magnetic layer 2 (pinned layer) / barrier layer 3 (insulating layer) / magnetization switching layer 4 (free layer). / Second pinned layer 5 (antiferromagnetic layer) / protective layer 11 In this element configuration, a protective film 11 is further laminated on the configuration of FIG.

実施例では、各層の材料及び厚さを、上記の構成に対応し、IrMn(7nm)/CoFeB(1.8nm)/MgO(1.4nm)/CoFeB(3nm)/PtMn(1nm)/Ta(10nm)とした。但し、本発明は、必ずしもこの材料、組成、構成に限るものではない。
手順1:まず、上記TMR素子の各層を通常のスパッタリング法により順次成膜する。
手順2:つぎに、所望の再生コア幅を作成するため、TMR素子上にレジストを塗布後、露光、現像してレジストを一部分残す。
手順3:CF4 ガスを導入し、反応性エッチング(RIF:Reactive Ion Etching)法によって保護膜11としてのTaをエッチングする。
手順4:続いて、レジストを除去する。
In the examples, the material and thickness of each layer correspond to the above configuration, and IrMn (7 nm) / CoFeB (1.8 nm) / MgO (1.4 nm) / CoFeB (3 nm) / PtMn (1 nm) / Ta ( 10 nm). However, the present invention is not necessarily limited to this material, composition, and configuration.
Procedure 1: First, each layer of the TMR element is sequentially formed by a normal sputtering method.
Procedure 2: Next, in order to create a desired reproduction core width, a resist is applied on the TMR element, and then exposed and developed to leave a part of the resist.
Procedure 3: CF4 gas is introduced, and Ta as the protective film 11 is etched by a reactive etching (RIF) method.
Procedure 4: Subsequently, the resist is removed.

図6は、本発明の実施の形態になる不揮発性磁気メモリ素子の作製手順(その2)を示す。図6の不揮発性磁気メモリ素子の作製手順では、手順5〜8を示す。
手順5:イオンビームエッチング(IBE:Ion Beam Etching)によって、保護層11からバリア層3に至る層を所定幅となるように一度に削る。このとき、Taがマスクとして働き、Ta保護層11以下の層構造が形成される。
手順6:つぎに、Al2 3 絶縁層8をRFスパッタ法により4nm成膜する。
手順7:Arガスを導入してAl2 3 絶縁層8をミリングする。
手順8:続いて、片側の第一の磁化反転制御層6を固定磁化層2に反強磁性結合させるための金属層9としてRuを成膜する。Ru金属層9は、最終的に0.3nmになるように設ける。
FIG. 6 shows a manufacturing procedure (No. 2) of the nonvolatile magnetic memory element according to the embodiment of the present invention. In the manufacturing procedure of the nonvolatile magnetic memory element of FIG.
Procedure 5: The layer from the protective layer 11 to the barrier layer 3 is etched at a time so as to have a predetermined width by ion beam etching (IBE). At this time, Ta acts as a mask, and a layer structure below the Ta protective layer 11 is formed.
Procedure 6: Next, an Al 2 O 3 insulating layer 8 is formed to a thickness of 4 nm by RF sputtering.
Procedure 7: Ar gas is introduced to mill the Al 2 O 3 insulating layer 8.
Procedure 8: Subsequently, Ru is formed as a metal layer 9 for antiferromagnetic coupling of the first magnetization reversal control layer 6 on one side to the fixed magnetization layer 2. The Ru metal layer 9 is finally provided to be 0.3 nm.

図7は、本発明の実施の形態になる不揮発性磁気メモリ素子の作製手順(その2)を示す。図7の不揮発性磁気メモリ素子の作製手順では、手順9〜11を示す。
手順9:Arガスを導入してRu金属層9を斜めからミリングし、TMR素子の片側のみ残るようにする。斜めミリングは、ウエハー基板を載せた電極をターゲット材料の電極の対向位置からずらすことによって行う。
手順10:つぎに、磁化反転制御層6、7としてGdFe膜を約15nm成膜する。なお、磁化反転制御層は、再生磁気ヘッド用ハード膜として一般的なCoCrPt合金でもよいが、ここでは、比較的低い温度(ジュール熱)で磁化の大きさを変えることができるように、キュリー温度が200°C)程度のGdFe希土類遷移金属合金を用いた。
FIG. 7 shows a manufacturing procedure (No. 2) of the nonvolatile magnetic memory element according to the embodiment of the present invention. In the procedure for manufacturing the nonvolatile magnetic memory element in FIG. 7, procedures 9 to 11 are shown.
Procedure 9: Ar gas is introduced and the Ru metal layer 9 is milled obliquely so that only one side of the TMR element remains. The oblique milling is performed by shifting the electrode on which the wafer substrate is placed from the position opposite to the electrode of the target material.
Procedure 10: Next, a GdFe film is formed to a thickness of about 15 nm as the magnetization reversal control layers 6 and 7. The magnetization reversal control layer may be a general CoCrPt alloy as a hard film for a reproducing magnetic head, but here, the Curie temperature can be changed so that the magnitude of magnetization can be changed at a relatively low temperature (Joule heat). GdFe rare earth transition metal alloy of about 200 ° C.).

この磁性膜の飽和磁化の値は室温で250emu/cc程度になり、その組成はキュリー温度までほぼリニアに減少する希土類優勢の組成、例えば、Gd32Fe68とした。この磁化反転制御層6、7からの漏洩磁場は、磁化反転層4中で温度によって数十から数百Oeの大きさとなり、磁化反転層4の磁化反転をアシストする。
手順11:最後に,Ta保護層11が3nm程度削れるまで、化学的機械研磨(CMP:Chemical Mechanical Polishing )によって平坦化処理を行う。磁気メモリ素子として完成後、1.3テスラの磁場中において、350°Cの温度で真空中熱処理を行い、固定磁化層の磁化方向を固定した。
The saturation magnetization value of this magnetic film is about 250 emu / cc at room temperature, and its composition is a rare earth-dominated composition that decreases almost linearly to the Curie temperature, for example, Gd32Fe68. The leakage magnetic field from the magnetization reversal control layers 6 and 7 has a magnitude of several tens to several hundreds Oe depending on the temperature in the magnetization reversal layer 4 and assists the magnetization reversal of the magnetization reversal layer 4.
Procedure 11: Finally, planarization is performed by chemical mechanical polishing (CMP) until the Ta protective layer 11 is scraped by about 3 nm. After the magnetic memory element was completed, heat treatment was performed in a vacuum at a temperature of 350 ° C. in a magnetic field of 1.3 Tesla to fix the magnetization direction of the fixed magnetization layer.

磁気メモリ素子作製に先立って、磁化反転制御層6、7のない、例えば0.06μm2 の大きさの素子を成膜し、磁化反転動作の確認を行った。なお、第一の固定層1の厚さを薄くし、かつ反強磁性層(第一の固定層1)と強磁性層(固定磁化層2)との交換結合力がなくなる温度であるブロッキング温度が200°C程度になるようにし、さらに磁化反転層上の第二の固定層5はない構成とした。 Prior to the manufacture of the magnetic memory element, an element having a size of, for example, 0.06 μm 2 without the magnetization reversal control layers 6 and 7 was formed, and the magnetization reversal operation was confirmed. The blocking temperature is a temperature at which the first pinned layer 1 is thinned and the exchange coupling force between the antiferromagnetic layer (first pinned layer 1) and the ferromagnetic layer (pinned magnetic layer 2) is eliminated. Is set to about 200 ° C., and the second pinned layer 5 on the magnetization switching layer is not provided.

確認では、50Oeの磁場を固定磁化層と逆方向に加えながら100μsecのパルス電圧を印加し、固定磁化層の磁化反転が生じる電圧を調べたところ、約700mVであった。すなわち、700mVのパルス電圧印加でブロッキング温度に到達し、磁化反転したものと考えられる。   In confirmation, a pulse voltage of 100 μsec was applied while applying a magnetic field of 50 Oe in the opposite direction to the fixed magnetization layer, and the voltage at which magnetization reversal of the fixed magnetization layer was examined was about 700 mV. That is, it is considered that the blocking temperature was reached by applying a pulse voltage of 700 mV, and the magnetization was reversed.

したがって、磁気メモリ素子構造とした場合には、磁化反転制御層6、7を200°Cまで上げなくても磁化の大きさが制御できることとなるので、記録時の印加電圧は半分程度に下げることが可能である。   Therefore, in the case of a magnetic memory element structure, the magnitude of magnetization can be controlled without raising the magnetization reversal control layers 6 and 7 to 200 ° C. Therefore, the applied voltage at the time of recording is reduced to about half. Is possible.

以上、本発明によって上記製造工程で作製した磁気メモリ素子の磁化反転動作を確認した。その結果、記録時、TMR素子に電流を0.1mA流すと同時に、100μsecのパルス電圧を磁化反転制御層300mV加えたときに磁化反転層の反転が見られた。これは電流密度が約1X106 A/cm2 程度であり、従来よりも約一桁低い値となる。さらに、TMR素子に流す電流を0.07mAとした場合には、パルス電圧が400mVで反転が見られ、従来に比べて2桁近い電流密度の低減が可能であることが分かった。 As described above, the magnetization reversal operation of the magnetic memory element manufactured in the above manufacturing process according to the present invention was confirmed. As a result, at the time of recording, a current of 0.1 mA was passed through the TMR element, and at the same time, reversal of the magnetization reversal layer was observed when a pulse voltage of 100 μsec was applied to the magnetization reversal control layer 300 mV. This is a current density of about 1 × 10 6 A / cm 2 , which is about an order of magnitude lower than the conventional one. Furthermore, when the current passed through the TMR element was 0.07 mA, inversion was observed when the pulse voltage was 400 mV, and it was found that the current density could be reduced by nearly two orders of magnitude compared to the conventional case.

本発明の実施の形態になる不揮発性磁気メモリ素子の基本構造例を示す図である。It is a figure which shows the example of a basic structure of the non-volatile magnetic memory element which becomes embodiment of this invention. 本発明の実施の形態になる不揮発性磁気メモリ素子の磁化状態(再生時)を示す図である。It is a figure which shows the magnetization state (at the time of reproduction | regeneration) of the non-volatile magnetic memory element which becomes embodiment of this invention. 本発明の実施の形態になる“0 ”記録時における磁化状態図である。FIG. 6 is a magnetization state diagram at the time of “0” recording according to an embodiment of the present invention. 本発明の実施の形態になる“1”記録時における磁化状態図である。It is a magnetization state diagram at the time of “1” recording according to the embodiment of the present invention. 本発明の実施の形態になる不揮発性磁気メモリ素子の作製手順(その1)を示す図である。It is a figure which shows the preparation procedures (the 1) of the non-volatile magnetic memory element which becomes embodiment of this invention. 本発明の実施の形態になる不揮発性磁気メモリ素子の作製手順(その2)を表す図である。It is a figure showing the manufacture procedure (the 2) of the non-volatile magnetic memory element which becomes embodiment of this invention. 本発明の実施の形態になる不揮発性磁気メモリ素子の作製手順(その3)を表す図である。It is a figure showing the manufacture procedure (the 3) of the non-volatile magnetic memory element which becomes embodiment of this invention.

符号の説明Explanation of symbols

1 第一の固定層
2 固定磁化層
3 バリア層
4 磁化反転層
5 第二の固定層
6 第一の磁化反転制御層
7 第二の磁化反転制御層
8 絶縁層
9 金属層
10 電源
11 保護層
DESCRIPTION OF SYMBOLS 1 1st pinned layer 2 Pinned magnetization layer 3 Barrier layer 4 Magnetization reversal layer 5 2nd pinned layer 6 1st magnetization reversal control layer 7 2nd magnetization reversal control layer 8 Insulating layer 9 Metal layer 10 Power supply 11 Protective layer

Claims (4)

基板上に第一の固定層/該第一の固定層によって磁化方向が固定される固定磁化層/バリア層/磁化反転層が順次積層されてなる不揮発性磁気メモリ素子であって、
前記磁化反転層を挟む両サイドの一方の側に、前記固定磁化層と非磁性金属材料層を介して反強磁性結合させた第一の磁化反転制御層と、
前記磁化反転層の他方の側に、前記固定磁化層と直接強磁性結合させた第二の磁化反転制御層と、
を形成させたことを特徴とする不揮発性磁気メモリ素子。
A non-volatile magnetic memory element in which a first fixed layer / a fixed magnetization layer / barrier layer / magnetization inversion layer whose magnetization direction is fixed by the first fixed layer are sequentially stacked on a substrate,
A first magnetization reversal control layer antiferromagnetically coupled to the fixed magnetization layer and a nonmagnetic metal material layer on one side of both sides sandwiching the magnetization reversal layer;
A second magnetization reversal control layer that is ferromagnetically coupled directly to the fixed magnetization layer on the other side of the magnetization reversal layer;
A nonvolatile magnetic memory element characterized by comprising:
前記磁化反転層の上に反強磁性体からなる第二の固定層を設けたことを特徴とする請求項1に記載の不揮発性磁気メモリ素子。   The nonvolatile magnetic memory element according to claim 1, wherein a second pinned layer made of an antiferromagnetic material is provided on the magnetization switching layer. 前記磁化反転層の両サイドに形成された前記第一の磁化反転制御層及び前記第二の反転制御層の磁化方向を互いに向き合うように固定させたことを特徴とする請求項1または2に記載の不揮発性磁気メモリ素子。   3. The magnetization direction of the first magnetization reversal control layer and the second reversal control layer formed on both sides of the magnetization reversal layer is fixed so as to face each other. Non-volatile magnetic memory element. 記録時において、前記第一の固定層と前記磁化反転層との間の電圧印加と同時に、前記磁気反転層の両サイドに形成した前記磁化反転制御層のいずれかを選択して前記第一の固定層との間に電圧が印加されることを特徴とする請求項1乃至3のいずれかに記載の不揮発性磁気メモリ素子。   At the time of recording, simultaneously with voltage application between the first fixed layer and the magnetization switching layer, one of the magnetization switching control layers formed on both sides of the magnetic switching layer is selected and the first switching layer is selected. The nonvolatile magnetic memory element according to claim 1, wherein a voltage is applied between the fixed layer and the fixed layer.
JP2008011365A 2008-01-22 2008-01-22 Nonvolatile magnetic memory element Withdrawn JP2009176806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011365A JP2009176806A (en) 2008-01-22 2008-01-22 Nonvolatile magnetic memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011365A JP2009176806A (en) 2008-01-22 2008-01-22 Nonvolatile magnetic memory element

Publications (1)

Publication Number Publication Date
JP2009176806A true JP2009176806A (en) 2009-08-06

Family

ID=41031630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011365A Withdrawn JP2009176806A (en) 2008-01-22 2008-01-22 Nonvolatile magnetic memory element

Country Status (1)

Country Link
JP (1) JP2009176806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691596B2 (en) 2012-01-05 2014-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US9129690B2 (en) 2012-07-20 2015-09-08 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having improved characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691596B2 (en) 2012-01-05 2014-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US9190607B2 (en) 2012-01-05 2015-11-17 Kabushiki Kaisha Toshiba Magnetoresistive element and method of manufacturing the same
US9129690B2 (en) 2012-07-20 2015-09-08 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having improved characteristics

Similar Documents

Publication Publication Date Title
JP4371781B2 (en) Magnetic cell and magnetic memory
JP5460606B2 (en) Spin injection MRAM device with separate CPP assisted writing
US6838740B2 (en) Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
EP1552526B1 (en) Magnetic element utilizing spin transfer and an mram device using the magnetic element
JP5338666B2 (en) Domain wall random access memory
JP2009094104A (en) Magnetoresistive element
JP5354389B2 (en) Spin valve element, driving method thereof, and storage device using them
US20170271577A1 (en) Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element
JP2009027177A (en) Stt-mtj-mram cell, and method for manufacturing the same
JP2006516360A (en) Magnetostatically coupled magnetic element utilizing MRAM device using spin transfer and magnetic element
JP2004128430A (en) Magnetic storage device and its manufacturing method
US9070462B2 (en) Memory element and memory apparatus with a plurality of magnetic layers and an oxide layer
JP6434103B1 (en) Magnetic memory
JP2008171882A (en) Storage element and memory
JP2014072393A (en) Storage element, storage device, magnetic head
JP2005116658A (en) Magnetoresistive memory device
JP2006295001A (en) Storage element and memory
JP2006295000A (en) Storage element and memory
JP2001156358A (en) Magneto-resistance effect element and magnetic memory element
JP2006332527A (en) Magnetic storage element
US6898115B2 (en) Magnetoresistive element, and magnetic memory using the same
JP2007095765A (en) Multiple-value recording spin injection magnetization inverting element and device using the same
JP2001076479A (en) Magnetic memory element
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
JP2009176806A (en) Nonvolatile magnetic memory element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405