JP2009176525A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2009176525A
JP2009176525A JP2008012815A JP2008012815A JP2009176525A JP 2009176525 A JP2009176525 A JP 2009176525A JP 2008012815 A JP2008012815 A JP 2008012815A JP 2008012815 A JP2008012815 A JP 2008012815A JP 2009176525 A JP2009176525 A JP 2009176525A
Authority
JP
Japan
Prior art keywords
insulator
spark plug
ridge angle
metal
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012815A
Other languages
Japanese (ja)
Other versions
JP4965471B2 (en
Inventor
Jiro Yumino
次郎 弓野
Akira Suzuki
彰 鈴木
Mai Moribe
真衣 森部
Yuichi Nakano
雄一 中野
Mamoru Musasa
守 無笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008012815A priority Critical patent/JP4965471B2/en
Publication of JP2009176525A publication Critical patent/JP2009176525A/en
Application granted granted Critical
Publication of JP4965471B2 publication Critical patent/JP4965471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spark plug in which anti-fouling property is improved by utilizing a cleaning effect by corona discharge. <P>SOLUTION: When a distance between the outer side end part 68 of diameter direction in a fittings face 61 facing toward the rear end and a first edge angle part region 65 is L, the distance X between a ring-shaped packing 8 and the first edge corner part region 65 of the rear end side in a fittings reduced diameter part 60 of the body fittings 50 is arranged to be 0.05 L or more and 0.3 L or less. By this, since the angle of the first edge corner part region 65 becomes exposed without being covered by the packing 8, electric field intensity in the vicinity of the first edge corner part region 65 becomes intensified so that the corona discharge occurs. Since the carbon adhered to the surface of the insulating insulator 10 is cleaned by this corona discharge, the anti-fouling property of the spark plug is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関に組みつけられて混合気への点火を行うためのスパークプラグに関するものである。   The present invention relates to a spark plug that is assembled in an internal combustion engine and ignites an air-fuel mixture.

従来、内燃機関には点火のためのスパークプラグが用いられている。一般的なスパークプラグは、自身の先端側に火花放電のための電極を形成する中心電極と、その中心電極を軸孔内に保持する絶縁碍子と、この絶縁碍子の径方向周囲を取り囲んで保持する主体金具とを有している。その主体金具には接地電極の一端部が接合されており、他端部と中心電極の先端部との間で火花放電間隙が形成されている。この火花放電間隙が着火部となり、火花放電が行われることによって、混合気への点火が行われる。   Conventionally, spark plugs for ignition are used in internal combustion engines. A typical spark plug has a center electrode that forms an electrode for spark discharge on its tip side, an insulator that holds the center electrode in the shaft hole, and surrounds the periphery of the insulator in the radial direction. And a metal shell. One end of the ground electrode is joined to the metal shell, and a spark discharge gap is formed between the other end and the tip of the center electrode. This spark discharge gap becomes an ignition part, and spark discharge is performed, whereby the air-fuel mixture is ignited.

ところで、このようなスパークプラグの構造において、絶縁碍子の先端側における脚長部の径は、絶縁碍子の軸線方向の中間部における胴部の径より細くなっており、脚長部と胴部との間には段部が形成されている。その絶縁碍子の段部が、主体金具の筒孔内に設けられた縮径部に環状のパッキンを介して係止されることで、絶縁碍子の段部と主体金具の縮径部との間に所定の隙間を有した状態で絶縁碍子が主体金具内に保持されている。近年、この隙間を所定距離以下に狭めたスパークプラグが提案されている(例えば、特許文献1参照)。このような構成としたスパークプラグでは、主体金具の外径を小さくできるので、スパークプラグ自体を小型化することができ、ひいてはスパークプラグが取り付けられるエンジンヘッドを設計する上での自由度を高めることができる。また、絶縁碍子と主体金具との間の隙間が広い場合に比べて、絶縁碍子から主体金具への熱伝導性(熱引き)が向上するため、スパークプラグの点火前に自然に発火してしまうプレイグニッション(過早点火)の発生する可能性が低くなる。さらに、隙間に侵入する未燃ガスの量が減少するため、絶縁碍子の表面に付着するカーボンの量が減り、くすぶり汚損の発生が抑制される。   By the way, in the structure of such a spark plug, the diameter of the leg long part at the tip end side of the insulator is smaller than the diameter of the trunk part in the intermediate part in the axial direction of the insulator, and between the leg long part and the trunk part. A step portion is formed in the. The step portion of the insulator is locked to the reduced diameter portion provided in the cylindrical hole of the metal shell through an annular packing, so that the gap between the step portion of the insulator and the reduced diameter portion of the metal shell is reduced. The insulator is held in the metal shell with a predetermined gap therebetween. In recent years, a spark plug in which the gap is narrowed to a predetermined distance or less has been proposed (see, for example, Patent Document 1). In the spark plug having such a configuration, the outer diameter of the metal shell can be reduced, so that the spark plug itself can be reduced in size, and thus, the degree of freedom in designing an engine head to which the spark plug is attached can be increased. Can do. In addition, compared with the case where the gap between the insulator and the metal shell is wide, the thermal conductivity (heat pull) from the insulator to the metal shell is improved, so that it spontaneously ignites before ignition of the spark plug. The possibility of pre-ignition (pre-ignition) is reduced. Furthermore, since the amount of unburned gas entering the gap is reduced, the amount of carbon adhering to the surface of the insulator is reduced, and the occurrence of smoldering contamination is suppressed.

しかし、絶縁碍子と主体金具との隙間が狭くなったことで、絶縁碍子がカーボンの付着によって汚損された際には、この隙間で火花が飛ぶリーク(漏電)現象が発生しやすくなる。このリーク現象は、周囲の電界強度が大きくなる程生じやすい。そこで、主体金具の内部に設けられた縮径部の角に、曲率半径が0.2mm以上のRを付けて角を丸め、縮径部近傍の電界強度を下げたスパークプラグが提案されている(例えば、特許文献2参照)。
特開2005−183177号公報 特開平9−283259号公報
However, since the gap between the insulator and the metal shell becomes narrow, when the insulator is fouled by the adhesion of carbon, a leak (leakage) phenomenon in which sparks fly through this gap is likely to occur. This leakage phenomenon tends to occur as the ambient electric field strength increases. Accordingly, a spark plug has been proposed in which the radius of curvature is 0.2 mm or more at the corner of the reduced diameter portion provided inside the metal shell to round the corner to reduce the electric field strength near the reduced diameter portion. (For example, refer to Patent Document 2).
JP 2005-183177 A Japanese Patent Laid-Open No. 9-283259

しかしながら、特許文献2に記載のスパークプラグでは、主体金具の縮径部近傍の電界強度が下がったことにより、コロナ放電の発生が抑制され、このコロナ放電を利用した絶縁碍子の汚損の清浄が難しくなるという問題があった。また、縮径部の角の丸めを行わなかった場合においても、上記隙間に配置されるパッキンがこの角を覆うと、電界強度が下がってコロナ放電が発生し難くなるという問題があった。   However, in the spark plug described in Patent Document 2, the occurrence of corona discharge is suppressed because the electric field strength in the vicinity of the reduced diameter portion of the metal shell is reduced, and it is difficult to clean the insulators using this corona discharge. There was a problem of becoming. Further, even when the rounded corners are not rounded, if the packing disposed in the gap covers the corners, there is a problem that the electric field strength is lowered and corona discharge is difficult to occur.

本発明は上記問題点を解決するためになされたものであり、コロナ放電による清浄効果を利用して、耐汚損性を向上することができるスパークプラグを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a spark plug that can improve the stain resistance by utilizing the cleaning effect of corona discharge.

上記目的を達成するために、請求項1に係る発明のスパークプラグは、自身の先端側に火花放電のための電極を形成する軸状の中心電極と、前記中心電極の軸線方向に延びる軸孔を有し、その軸孔の内部で前記中心電極を保持する絶縁碍子と、前記軸線方向に延びる筒孔を有し、その筒孔の内部で前記絶縁碍子を保持する主体金具と、前記絶縁碍子と前記主体金具とに接するように両者間に介在する環状のパッキンとを備え、前記絶縁碍子は、自身の後端側の部位である碍子胴部と、自身の先端側の部位であり、前記碍子胴部の外径よりも縮径された脚長部と、前記碍子胴部と前記脚長部とを連結し、前記軸線方向の先端側を向く面である碍子先端向き面を有する碍子段部とを備えて構成され、前記主体金具の前記筒孔には、その前記筒孔の内径よりも縮径された金具縮径部が形成され、前記金具縮径部は、前記軸線方向の後端側を向く面である金具後端向き面及び径方向内側を向く面である内向き面を有し、前記パッキンが、前記絶縁碍子の前記碍子先端向き面と、前記主体金具の前記金具後端向き面との間に配置されているスパークプラグであって、前記金具縮径部における前記金具後端向き面及び前記内向き面がなす第一稜角部位と前記パッキンとの間の距離が、前記金具後端向き面における径方向外側の端部と前記第一稜角部位との距離をLとして、0.05L以上、0.3L以下であることを特徴とする。   In order to achieve the above object, a spark plug according to a first aspect of the present invention includes an axial center electrode that forms an electrode for spark discharge on its tip side, and an axial hole that extends in the axial direction of the center electrode. And an insulator that holds the center electrode inside the shaft hole, a cylindrical hole that extends in the axial direction, and holds the insulator inside the cylinder hole, and the insulator And an annular packing interposed therebetween so as to be in contact with the metal shell, and the insulator is an insulator body portion which is a rear end side portion of the insulator, and a front end side portion of the insulator, A leg length part having a diameter smaller than the outer diameter of the insulator body part, and an insulator step part that connects the insulator body part and the leg length part and has an insulator tip-facing surface that is a surface facing the tip side in the axial direction; The cylindrical hole of the metallic shell is formed in the cylindrical hole. A reduced-diameter portion of the metal fitting having a diameter smaller than the diameter is formed, and the reduced-diameter portion of the metal fitting is an inward-facing surface that faces the rear end side of the metal fitting that faces the rear end side in the axial direction and a surface that faces the inner side in the radial direction. A spark plug disposed between the insulator tip-facing surface of the insulator and the metal-facing end-facing surface of the metal shell, wherein the packing has a reduced diameter portion. The distance between the first ridge angle part formed by the metal rear end facing surface and the inward surface and the packing is the distance between the radially outer end of the metal rear end surface and the first ridge angle part. L is 0.05 L or more and 0.3 L or less.

また、請求項2に係る発明のスパークプラグは、請求項1に記載の発明の構成に加え、軸線を含む前記主体金具の断面を見たときに、その断面の輪郭線における前記第一稜角部位の曲率半径が0.2mm以下であることを特徴とする。   Moreover, the spark plug of the invention according to claim 2 has the first ridge angle part in the contour line of the cross section when the cross section of the metal shell including the axis is viewed in addition to the configuration of the invention of claim 1. The radius of curvature of is 0.2 mm or less.

また、請求項3に係る発明のスパークプラグは、請求項1又は2に記載の発明の構成に加え、前記第一稜角部位と前記絶縁碍子とが、0.3mm以下の距離をおいて離間していることを特徴とする。   According to a third aspect of the present invention, there is provided a spark plug according to the first or second aspect, wherein the first ridge angle portion and the insulator are spaced apart by a distance of 0.3 mm or less. It is characterized by.

また、請求項4に係る発明のスパークプラグは、請求項1乃至3のいずれかに記載の発明の構成に加え、軸線を含む前記主体金具の断面を見たときに、前記金具縮径部における前記金具後端向き面と、前記主体金具の軸線と直交する平面との角度が20度以上、30度以下であることを特徴とする。   In addition to the configuration of the invention according to any one of claims 1 to 3, the spark plug of the invention according to claim 4 has a reduced diameter portion when the cross-section of the metal shell including the axis is viewed. An angle between the surface facing the rear end of the metal fitting and a plane orthogonal to the axis of the metal shell is 20 degrees or more and 30 degrees or less.

また、請求項5に係る発明のスパークプラグは、請求項1乃至4のいずれかに記載の発明の構成に加え、前記金具縮径部は、前記軸線方向の先端側を向く面である金具先端向き面を有し、軸線を含む前記主体金具の断面を見たときに、その断面の輪郭線において、前記金具縮径部の前記内向き面と前記金具先端向き面とがなす第二稜角部位の曲率半径が、前記第一稜角部位の曲率半径よりも大きいことを特徴とする。   According to a fifth aspect of the present invention, in the spark plug of the invention, in addition to the structure of the first aspect of the invention, the metal fitting diameter-reduced portion is a metal tip which is a surface facing the tip side in the axial direction. A second ridge angle portion formed by the inward surface of the reduced-diameter portion of the metal fitting and the metal fitting tip-facing surface in a contour line of the cross-section when the cross-section of the metal shell including the axis is included. The curvature radius of is larger than the curvature radius of the first ridge angle portion.

請求項1に係る発明のスパークプラグでは、第一稜角部位とパッキンとの間の距離Xを、金具後端向き面における径方向外側の端部と第一稜角部位との距離Lに対し0.05L以上となるように位置関係を定めたので、第一稜角部位をパッキンに覆われることなく露出させることができる。これにより、第一稜角部位近傍の電界強度はその周囲よりも強くなり、コロナ放電を発生させ易くできる。コロナ放電が生じれば、絶縁碍子の表面に付着したカーボンを焼き切って清浄することができるので、リーク現象が発生する虞を低くすることができる。すなわち、第一稜角部位近傍の電界強度を強くすることで、積極的にコロナ放電を発生させ、カーボンの清浄効果を得ることができる。従って、請求項1に係る発明のスパークプラグによると、主体金具と絶縁碍子との間の距離を狭くしてもリーク現象の発生を抑制できるので、スパークプラグの小型化を図ると共に、絶縁碍子から主体金具への熱引きを向上することができる。さらに、第一稜角部位とパッキンとの間の距離を0.3L以下とすることで、環状のパッキンの径方向の幅が狭くなって強度が下がることを防止することができる。よって、パッキンの過剰な変形によるスパークプラグの性能の劣化を防ぐことができる。   In the spark plug according to the first aspect of the present invention, the distance X between the first ridge angle portion and the packing is set to 0. 0 with respect to the distance L between the radially outer end portion and the first ridge angle portion on the metal rear end facing surface. Since the positional relationship is determined to be 05L or more, the first ridge angle portion can be exposed without being covered with the packing. Thereby, the electric field strength in the vicinity of the first ridge angle portion becomes stronger than the surrounding area, and corona discharge can be easily generated. If corona discharge occurs, the carbon adhering to the surface of the insulator can be burned off and cleaned, so that the risk of occurrence of a leak phenomenon can be reduced. That is, by increasing the electric field strength in the vicinity of the first ridge angle portion, corona discharge can be positively generated and a carbon cleaning effect can be obtained. Therefore, according to the spark plug of the invention of claim 1, since the occurrence of the leak phenomenon can be suppressed even if the distance between the metal shell and the insulator is reduced, the spark plug can be reduced in size and Heat extraction to the metal shell can be improved. Further, by setting the distance between the first ridge angle portion and the packing to 0.3 L or less, it is possible to prevent the strength in the radial direction of the annular packing from being reduced and the strength from being lowered. Therefore, deterioration of the performance of the spark plug due to excessive deformation of the packing can be prevented.

このように、第一稜角部位近傍にコロナ放電を発生させるにあたって、第一稜角部位の角が尖っている方が電界強度は強くなり、コロナ放電が発生しやすくなる。よって、請求項2に係る発明では、軸線を含む主体金具の断面を見たときに、その断面の輪郭線における第一稜角部位の曲率半径を0.2mm以下として角を尖らせているので、コロナ放電によるカーボンの清浄効果をより確実に得ることができる。   As described above, when the corona discharge is generated in the vicinity of the first ridge angle portion, the sharper the corner of the first ridge angle portion, the stronger the electric field strength and the easier the corona discharge occurs. Therefore, in the invention according to claim 2, when looking at the cross-section of the metal shell including the axis, because the radius of curvature of the first ridge corner portion in the outline of the cross-section is 0.2mm or less, the corner is sharpened, The carbon cleaning effect by corona discharge can be obtained more reliably.

また、コロナ放電が到達する距離には限界があるが、請求項3に係る発明のように、第一稜角部位と絶縁碍子とを0.3mm以下の距離をおいて離間させることで、第一稜角部位近傍に発生するコロナ放電が絶縁碍子の表面まで確実に到達してカーボンを清浄するため、リーク現象の発生を抑制することができる。そして、第一稜角部位と絶縁碍子との間の距離を狭くする程、絶縁碍子の外径を変えずに主体金具の内径を小さくでき、ひいてはスパークプラグの外径を小さくできるので、スパークプラグが取り付けられるエンジンヘッドの設計を行うにあたって、その自由度を高めることができる。さらに、絶縁碍子と主体金具とが近づくため熱の伝導効率が良くなり、絶縁碍子から主体金具への熱引きが向上し、プレイグニッションの発生を抑制することもできる。   Further, although the distance that the corona discharge can reach is limited, as in the invention according to claim 3, the first ridge angle portion and the insulator are separated by a distance of 0.3 mm or less, so that the first Since the corona discharge generated in the vicinity of the ridge portion reliably reaches the surface of the insulator and cleans the carbon, the occurrence of a leak phenomenon can be suppressed. And, as the distance between the first ridge angle portion and the insulator is reduced, the inner diameter of the metal shell can be reduced without changing the outer diameter of the insulator, and the outer diameter of the spark plug can be reduced. When designing the engine head to be mounted, the degree of freedom can be increased. Furthermore, since the insulator and the metal shell are close to each other, the heat conduction efficiency is improved, the heat sink from the insulator to the metal shell is improved, and the occurrence of pre-ignition can be suppressed.

また、請求項4に係る発明のように、主体金具の軸線と直交する平面に対する金具縮径部の金具後端向き面の角度θを20度以上、30度以下とすることが望ましい。θの値を20度以上とすることで、主体金具の軸線と絶縁碍子の軸線とを一致させてスパークプラグを組み付けることが容易になり、偏芯による性能の劣化を防止することができる。そして、θの値を30度以下とすることで、パッキンに十分な力が加わるため、主体金具とパッキンとの間、又は絶縁碍子とパッキンとの間に隙間が生じて気密性が悪化することを防止することができる。さらに、θを30度以下とすることで第一稜角部位の角が尖るため、第一稜角部位近傍の電界強度を強くすることができる。   In addition, as in the invention according to claim 4, it is desirable that the angle θ of the metal fitting rear end facing surface of the metal reduced diameter portion with respect to a plane perpendicular to the axis of the metal shell is 20 degrees or more and 30 degrees or less. By setting the value of θ to 20 degrees or more, the spark plug can be easily assembled by aligning the axis of the metal shell and the axis of the insulator, and deterioration of performance due to eccentricity can be prevented. And, by setting the value of θ to 30 degrees or less, sufficient force is applied to the packing, so that a gap is generated between the metal shell and the packing, or between the insulator and the packing, and the airtightness is deteriorated. Can be prevented. Furthermore, since the angle of the first ridge angle part is sharpened by setting θ to 30 degrees or less, the electric field strength in the vicinity of the first ridge angle part can be increased.

また、金具縮径部における先端側に第二稜角部位が形成されている場合、請求項5に係る発明のように、軸線を含む主体金具の断面を見たときに、その断面の輪郭線における第二稜角部位の曲率半径を、第一稜角部位の曲率半径よりも大きくすることが望ましい。このようにすれば、主体金具の筒内における電界強度が第一稜角部位近傍と第二稜角部位近傍とで分散されるため、より火花放電間隙に近い第二稜角部位の近傍の電界強度を弱めることができ、リーク現象を発生し難くすることができる。そして、リーク現象が発生し難くなることで、スパークプラグへより高い電圧を印加することができる。すなわち、スパークプラグの耐電圧を向上することができる。また、第一稜角部位近傍の電界強度が強くなるため、コロナ放電によるカーボンの清浄効果を向上することができる。   Further, when the second ridge angle portion is formed on the distal end side in the reduced-diameter portion of the metal fitting, when the cross-section of the metal shell including the axis is viewed as in the invention according to claim 5, the outline of the cross-section It is desirable to make the curvature radius of the second ridge angle part larger than the curvature radius of the first ridge angle part. By doing so, the electric field strength in the cylinder of the metal shell is distributed between the vicinity of the first ridge angle portion and the vicinity of the second ridge angle portion, so that the electric field strength near the second ridge angle portion closer to the spark discharge gap is weakened. It is possible to make the leak phenomenon difficult to occur. And since it becomes difficult to generate | occur | produce a leak phenomenon, a higher voltage can be applied to a spark plug. That is, the withstand voltage of the spark plug can be improved. Moreover, since the electric field strength in the vicinity of the first ridge angle portion is increased, the carbon cleaning effect by corona discharge can be improved.

以下、本発明を具体化したスパークプラグの一実施の形態について、図面を参照して説明する。まず、図1及び図2を参照して、一例としてのスパークプラグ100の構造について説明する。図1は、スパークプラグ100の部分断面図であり、図2は、パッキン8付近の要部を拡大した断面図である。尚、図1において、スパークプラグ100の軸線方向を図面における上下方向とし、下側をスパークプラグ100の先端側、上側を後端側として説明する。   Hereinafter, an embodiment of a spark plug embodying the present invention will be described with reference to the drawings. First, the structure of the spark plug 100 as an example will be described with reference to FIGS. 1 and 2. FIG. 1 is a partial cross-sectional view of the spark plug 100, and FIG. 2 is an enlarged cross-sectional view of a main part near the packing 8. In FIG. 1, the spark plug 100 will be described with the axial direction as the vertical direction in the drawing, the lower side as the front end side of the spark plug 100, and the upper side as the rear end side.

図1に示すように、スパークプラグ100は、概略、絶縁碍子10と、この絶縁碍子10を保持する主体金具50と、絶縁碍子10内に軸線O方向に保持された中心電極20と、主体金具50の先端面57に基端部32を溶接され、先端部31の内面33が中心電極20の先端部22を臨むように屈曲された接地電極30と、絶縁碍子10の後端部に設けられた端子金具40とから構成されている。   As shown in FIG. 1, the spark plug 100 generally includes an insulator 10, a metal shell 50 that holds the insulator 10, a center electrode 20 that is held in the insulator 10 in the direction of the axis O, and a metal shell. 50 is provided at the rear end portion of the insulator 10 and the ground electrode 30 which is bent so that the inner end 33 of the front end portion 31 faces the front end portion 22 of the center electrode 20. Terminal metal fitting 40.

まず、このスパークプラグ100の絶縁体を構成する絶縁碍子10について説明する。絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線O方向へ伸びる軸孔12が形成された筒形状を有する。軸線O方向の略中央には外径が最も大きな鍔部19が形成されており、それより後端側(図1における上側)には後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には後端側胴部18よりも外径の小さな先端側胴部17が形成され、さらにその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径されており、スパークプラグ100が内燃機関のエンジンヘッド(図示外)に取り付けられた際には、その燃焼室に曝される。そして、脚長部13と先端側胴部17との間は、軸線O方向の先端側を向く面である碍子先端向き面14(図2参照)を有する碍子段部15として形成されている。尚、先端側胴部17、後端側胴部18、鍔部19を含めた碍子段部15よりも後端側の部位が、本発明における「碍子胴部」に相当する。   First, the insulator 10 constituting the insulator of the spark plug 100 will be described. As is well known, the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape in which a shaft hole 12 extending in the direction of the axis O is formed at the center of the shaft. A flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end body portion 18 is formed on the rear end side (upper side in FIG. 1). A front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the front end side (lower side in FIG. 1) from the flange portion 19. A long leg portion 13 having an outer diameter smaller than that of the side body portion 17 is formed. The long leg portion 13 is reduced in diameter toward the tip side, and when the spark plug 100 is attached to the engine head (not shown) of the internal combustion engine, it is exposed to the combustion chamber. And between the leg long part 13 and the front end side trunk | drum 17, it is formed as the insulator step part 15 which has the insulator tip direction surface 14 (refer FIG. 2) which is a surface which faces the front end side of an axis line O direction. In addition, the part of the rear end side from the insulator step part 15 including the front end side body part 17, the rear end side body part 18, and the flange part 19 corresponds to the "insulator body part" in the present invention.

次に、中心電極20は、インコネル(商標名)600又は601等のニッケル系合金等により略円柱状に形成され、内部に熱伝導性に優れる銅等からなる金属芯23を有している。中心電極20は、その軸線がスパークプラグ100の軸線Oと一致するように絶縁碍子10の軸孔12内の先端側にて保持されている。中心電極20の先端側は絶縁碍子10の先端部11の先端面から突出され、その突出部分は先端側に向かって径小となるように形成されている。この突出部分の先端には耐火花消耗性を向上するための貴金属チップ91が接合されており、中心電極20本体と一体となって小径の先端部22を構成している。尚、本実施の形態では、中心電極20と一体になった貴金属チップ91を含め「中心電極」と称する。   Next, the center electrode 20 is formed in a substantially cylindrical shape from a nickel-based alloy such as Inconel (trade name) 600 or 601, and has a metal core 23 made of copper or the like having excellent thermal conductivity. The center electrode 20 is held on the distal end side in the shaft hole 12 of the insulator 10 so that the axis thereof coincides with the axis O of the spark plug 100. The distal end side of the center electrode 20 protrudes from the distal end surface of the distal end portion 11 of the insulator 10, and the protruding portion is formed so that the diameter decreases toward the distal end side. A noble metal tip 91 for improving the spark wear resistance is joined to the tip of the protruding portion, and a small-diameter tip 22 is formed integrally with the center electrode 20 body. In the present embodiment, the noble metal tip 91 integrated with the center electrode 20 is referred to as a “center electrode”.

また、中心電極20は、軸孔12の内部に設けられたシール体4及びセラミック抵抗体3を経由して、上方の端子金具40に電気的に接続されている。そして、端子金具40には高圧ケーブル(図示外)がプラグキャップ(図示外)を介して接続され、高電圧が印加されるようになっている。   The center electrode 20 is electrically connected to the upper terminal fitting 40 via the seal body 4 and the ceramic resistor 3 provided in the shaft hole 12. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown) so that a high voltage is applied.

次いで、接地電極30について説明する。接地電極30は耐腐食性の高い金属から構成され、一例として、インコネル(商標名)600又は601等のニッケル合金が用いられる。この接地電極30は自身の長手方向の横断面が略長方形を有しており、基端部32が主体金具50の先端面57に溶接により接合されている。また、接地電極30の先端部31は、一側面側が中心電極20の先端部22に対向するように屈曲され、その内面33と中心電極20の先端面21(本実施の形態では貴金属チップ91の先端面21)との間で火花放電間隙が形成されている。   Next, the ground electrode 30 will be described. The ground electrode 30 is made of a metal having high corrosion resistance. As an example, a nickel alloy such as Inconel (trade name) 600 or 601 is used. The ground electrode 30 has a substantially rectangular cross section in the longitudinal direction, and the base end portion 32 is joined to the front end surface 57 of the metal shell 50 by welding. The tip 31 of the ground electrode 30 is bent so that one side faces the tip 22 of the center electrode 20, and the inner surface 33 and the tip 21 of the center electrode 20 (in this embodiment, the noble metal tip 91). A spark discharge gap is formed between the tip surface 21).

次に、主体金具50について説明する。図1に示すように、主体金具50は、図示外の内燃機関のエンジンヘッドにスパークプラグ100を固定するための円筒状の金具であり、自身の先端面57より絶縁碍子10の先端部11を突出させた状態で、脚長部13から後端側胴部18にかけての部位を取り囲むようにして、絶縁碍子10を内部に保持している。主体金具50は低炭素鋼材により形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、内燃機関の上部に設けられたエンジンヘッドに螺合する雄ねじ状のねじ部52とを備えている。その工具係合部51とねじ部52との間には鍔状のシール部54が形成され、シール部54とねじ部52との間の位置に、エンジン内の気密漏れを防止するためのガスケット5が嵌挿されている。   Next, the metal shell 50 will be described. As shown in FIG. 1, the metal shell 50 is a cylindrical metal fitting for fixing the spark plug 100 to an engine head of an internal combustion engine (not shown), and the tip portion 11 of the insulator 10 is connected to the tip surface 57 of the metal shell 50. In the protruding state, the insulator 10 is held inside so as to surround a portion from the leg long part 13 to the rear end side body part 18. The metal shell 50 is formed of a low carbon steel material, and includes a tool engaging portion 51 into which a spark plug wrench (not shown) is fitted, and a male screw-like screw portion 52 that is screwed into an engine head provided at the upper part of the internal combustion engine. I have. A flange-like seal portion 54 is formed between the tool engaging portion 51 and the screw portion 52, and a gasket for preventing airtight leakage in the engine at a position between the seal portion 54 and the screw portion 52. 5 is inserted.

また、主体金具50の工具係合部51より後端側には薄肉の加締め部53が設けられており、シール部54と工具係合部51との間には薄肉の座屈部58が設けられている。この座屈部58は、加締め部53を加締める際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、気密性を高めている。また、工具係合部51から加締め部53にかけての主体金具50の内周面と、内部に保持される絶縁碍子10の後端側胴部18の外周面との間には円環状のリング部材6,7が介在されており、さらに両リング部材6,7間にタルク(滑石)9の粉末が充填されている。   A thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engagement portion 51, and a thin buckling portion 58 is provided between the seal portion 54 and the tool engagement portion 51. Is provided. The buckling portion 58 is configured so as to bend outwardly and deform with the addition of a compressive force when the crimping portion 53 is crimped, thereby improving airtightness. An annular ring is formed between the inner peripheral surface of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10 held inside. Members 6 and 7 are interposed, and a powder of talc (talc) 9 is filled between the ring members 6 and 7.

そして、図2に示すように、主体金具50の軸線O方向の先端側には、主体金具50の筒孔55に径方向内向きに突出され、筒孔55の内周を一周する金具縮径部60が設けられている。この金具縮径部60は、後端側(図2における上方)を向く面である金具後端向き面61と、金具後端向き面61の径方向内側の端部から先端側に向けて延びると共に径方向内側を向く内向き面62と、内向き面62の先端側の端部から径方向外側に向けて延びると共に先端側(図2における下方)を向く金具先端向き面63とを有している。そして、金具後端向き面61と内向き面62とにより第一稜角部位65が形成され、内向き面62と金具先端向き面63とにより第二稜角部位66が形成されている。   Then, as shown in FIG. 2, the metal fitting 50 has a reduced diameter that protrudes radially inwardly into the cylindrical hole 55 of the metallic shell 50 on the distal end side in the axis O direction of the metallic shell 50 and makes one round of the inner circumference of the cylindrical hole 55. A portion 60 is provided. The metal fitting reduced diameter portion 60 extends from the metal rear end facing surface 61 which is a surface facing the rear end side (upward in FIG. 2) and the radially inner end of the metal rear end facing surface 61 toward the front end side. And an inwardly facing surface 62 facing radially inward, and a fitting distally facing surface 63 extending from the end of the inwardly facing surface 62 toward the radially outer side and facing the distal end side (downward in FIG. 2). ing. A first ridge angle portion 65 is formed by the metal rear end facing surface 61 and the inward surface 62, and a second ridge angle portion 66 is formed by the inward surface 62 and the metal tip facing surface 63.

このような構成のもと、図1に示すように、主体金具50の金具縮径部60の金具後端向き面61にパッキン8を配置し、筒孔55内に挿入した絶縁碍子10の碍子段部15を支持させる。さらに、リング部材6,7及びタルク9を主体金具50と絶縁碍子10との間に配置し、その状態で加締め部53の端部を内側に折り曲げるようにして加締めることにより、絶縁碍子10が主体金具50内で先端側に向け押圧される。すると、図2に示すように、主体金具50の筒孔55に形成された金具縮径部60の金具後端向き面61に、絶縁碍子10の碍子段部15における碍子先端向き面14が環状のパッキン8を介して支持されて、主体金具50と絶縁碍子10とが一体にされる。このパッキン8は、熱伝導率の高い銅の板体を打ち抜いて作られたものであり、絶縁碍子10の熱を効率よく主体金具50に伝え、主体金具50を介してエンジンヘッドへ逃がすことができるため、スパークプラグ100の耐熱性が向上している。また、主体金具50と絶縁碍子10との間の気密性はパッキン8によって保持されており、絶縁碍子10の脚長部13の外周面と、主体金具50の内周面との間の間隙部70に入り込んだ未燃ガスは、パッキン8よりも後端側(図2における上側)へ流出しないように構成されている。   With such a configuration, as shown in FIG. 1, the insulator 8 of the insulator 10 inserted in the cylindrical hole 55 is arranged with the packing 8 on the metal rear end facing surface 61 of the metal diameter reduced portion 60 of the metal shell 50. The step portion 15 is supported. Furthermore, the ring members 6, 7 and the talc 9 are disposed between the metal shell 50 and the insulator 10, and in this state, the end of the crimping portion 53 is bent inward, and the insulator 10 is thus crimped. Is pressed toward the front end side in the metal shell 50. Then, as shown in FIG. 2, the insulator tip-facing surface 14 of the insulator step portion 15 of the insulator 10 is annularly formed on the metal rear end-facing surface 61 of the metal diameter-reduced portion 60 formed in the cylindrical hole 55 of the metal shell 50. The metal shell 50 and the insulator 10 are integrated with each other through the packing 8. The packing 8 is made by punching a copper plate having a high thermal conductivity, and can efficiently transfer the heat of the insulator 10 to the metal shell 50 and let it escape to the engine head via the metal shell 50. Therefore, the heat resistance of the spark plug 100 is improved. In addition, the airtightness between the metal shell 50 and the insulator 10 is maintained by the packing 8, and the gap 70 between the outer peripheral surface of the leg long portion 13 of the insulator 10 and the inner peripheral surface of the metal shell 50. The unburned gas that has entered is configured not to flow out to the rear end side (upper side in FIG. 2) from the packing 8.

次に、図2を参照して、絶縁碍子10、主体金具50、及びパッキン8の位置関係及び形状について説明する。先述したように、主体金具50の筒孔55に形成された金具縮径部60の後端側には、金具後端向き面61と内向き面62とにより第一稜角部位65が形成されている。そして、主体金具50に高電圧が印加されると、絶縁碍子10と主体金具50の間の間隙部70において、第一稜角部位65近傍の電界強度は他の部分よりも強くなり、コロナ放電が発生しうる。本発明では、第一稜角部位65近傍で積極的にコロナ放電を発生させることで、絶縁碍子10の脚長部13の表面に付着したカーボンを焼き切って清浄し、リーク(漏電)現象が発生する可能性を低下させることができる。   Next, the positional relationship and shape of the insulator 10, the metal shell 50, and the packing 8 will be described with reference to FIG. As described above, the first ridge angle portion 65 is formed on the rear end side of the metal fitting reduced diameter portion 60 formed in the cylindrical hole 55 of the metal shell 50 by the metal rear end facing surface 61 and the inward surface 62. Yes. When a high voltage is applied to the metal shell 50, the electric field strength in the vicinity of the first ridge angle portion 65 becomes stronger in the gap 70 between the insulator 10 and the metal shell 50 than in other portions, and corona discharge is generated. Can occur. In the present invention, by actively generating corona discharge in the vicinity of the first ridge angle portion 65, carbon adhering to the surface of the leg portion 13 of the insulator 10 is burned and cleaned, and a leak (leakage) phenomenon occurs. The possibility can be reduced.

本実施の形態では、金具後端向き面61にパッキン8を配置し、第一稜角部位65を露出させている。ここで、第一稜角部位65がパッキン8により覆われた状態であった場合、露出している場合に比べて第一稜角部位65近傍の電界強度は弱くなるため、コロナ放電の発生によるカーボンの清浄効果が得られなくなる虞がある。一方で、第一稜角部位65とパッキン8との間の距離を大きくする程、環状のパッキン8における径方向の幅が狭くなるため、パッキン8の剛性が低下して変形を生ずる虞がある。パッキン8が変形すると、主体金具50を加締める際に絶縁碍子10へ過剰な力が加わり、絶縁碍子10に押し割れ等が発生する場合がある。また、気密性の低下を引き起こす場合もある。そこで、本実施の形態では、後述する実施例1に示す解析及び実施例2に示す試験の結果に基づいて、第一稜角部位65と、金具後端向き面61における径方向外側の端部68との間の距離をL、第一稜角部位65とパッキン8との間の距離をXとしたときに、0.05L≦X≦0.3Lとなるようにパッキン8の配置位置を規定している。   In the present embodiment, the packing 8 is disposed on the metal rear end facing surface 61 to expose the first ridge angle portion 65. Here, when the first ridge angle portion 65 is covered with the packing 8, the electric field strength in the vicinity of the first ridge angle portion 65 is weaker than that in the case where the first ridge angle portion 65 is exposed. There is a possibility that the cleaning effect cannot be obtained. On the other hand, as the distance between the first ridge angle portion 65 and the packing 8 is increased, the radial width of the annular packing 8 is narrowed, so that the rigidity of the packing 8 may be reduced and deformation may occur. When the packing 8 is deformed, an excessive force is applied to the insulator 10 when the metal shell 50 is caulked, and the insulator 10 may be cracked. In addition, the airtightness may be reduced. Therefore, in the present embodiment, based on the results of the analysis shown in Example 1 described later and the test shown in Example 2, the first ridge angle portion 65 and the end portion 68 on the outer side in the radial direction of the metal fitting rear end facing surface 61. The layout position of the packing 8 is defined so that 0.05L ≦ X ≦ 0.3L, where L is the distance between and the first ridge angle portion 65 and the packing 8 is X. Yes.

次いで、第一稜角部位65の形状について説明する。電界強度は、金属の角が尖っている程強くなるため、第一稜角部位65の角が尖っている程コロナ放電が発生し易くなり、カーボンの清浄効果が得られることになる。そこで、本実施の形態では後述する実施例3の結果に基づいて、軸線Oを含む主体金具50の断面を見たときに、その断面の輪郭線における第一稜角部位65の曲率半径rが0.2mm以下となるように構成し、第一稜角部位65を尖らせている。尚、第一稜角部位65の全周にわたってその曲率半径rをみたときに、曲率半径rの最大値及び最小値が0.05mm〜0.25mmの範囲内に収まっており、且つ全周にわたる曲率半径rの平均値が0.2mm以下となれば、カーボンの良好な清浄効果が得られる。   Next, the shape of the first ridge angle portion 65 will be described. Since the electric field strength increases as the corner of the metal becomes sharper, corona discharge is more likely to occur as the corner of the first ridge angle portion 65 becomes sharper, and a carbon cleaning effect is obtained. Therefore, in the present embodiment, when the cross section of the metal shell 50 including the axis O is viewed based on the result of Example 3 described later, the curvature radius r of the first ridge angle portion 65 in the contour line of the cross section is 0. It is configured to be 2 mm or less, and the first ridge angle portion 65 is sharpened. In addition, when the curvature radius r is seen over the entire circumference of the first ridge angle portion 65, the maximum value and the minimum value of the curvature radius r are within the range of 0.05 mm to 0.25 mm, and the curvature over the entire circumference. If the average value of the radius r is 0.2 mm or less, a good cleaning effect of carbon can be obtained.

また、軸線Oと直交する平面と、金具縮径部60における金具後端向き面61とがなす角度θを小さくする程、第一稜角部位65は尖った形状となるため、コロナ放電は発生し易くなる。さらに、パッキン8に加わる力が大きくなるため、絶縁碍子10とパッキン8との間、又は主体金具50とパッキン8との間に隙間が生じにくくなり、気密性が向上する。一方で、この角度θが小さすぎると、筒状の主体金具50の軸線と、この主体金具50に保持される絶縁碍子10の軸線とを一致させることができずに偏芯し、スパークプラグ100の耐熱性や耐リーク性を低下させる虞がある。そこで、本実施の形態では、後述する実施例4に示す解析及び実施例5に示す試験の結果に基づいて、軸線Oと直交する平面と金具後端向き面61とがなす角度θが20度以上、30度以下となるように構成している。   Further, as the angle θ formed by the plane orthogonal to the axis O and the metal fitting rear end facing surface 61 in the metal fitting reduced diameter portion 60 is reduced, the first ridge angle portion 65 becomes sharper, so that corona discharge occurs. It becomes easy. Furthermore, since the force applied to the packing 8 is increased, a gap is hardly generated between the insulator 10 and the packing 8 or between the metal shell 50 and the packing 8, and the airtightness is improved. On the other hand, if the angle θ is too small, the axis of the cylindrical metal shell 50 and the axis of the insulator 10 held by the metal shell 50 cannot be aligned with each other, and the spark plug 100 is eccentric. There is a risk of lowering the heat resistance and leakage resistance. Therefore, in the present embodiment, the angle θ formed by the plane orthogonal to the axis O and the metal fitting rear end facing surface 61 is 20 degrees based on the analysis results shown in Example 4 described later and the test results shown in Example 5. As described above, it is configured to be 30 degrees or less.

次いで、第一稜角部位65と絶縁碍子10との間の距離について説明する。本実施の形態では、先述したように、第一稜角部位65近傍にコロナ放電を発生させることで、絶縁碍子10の表面に付着したカーボンを清浄させている。しかし、第一稜角部位65と絶縁碍子10との間の距離Yを大きくしすぎると、コロナ放電が絶縁碍子10まで届かなくなり、清浄効果が得られない。また、距離Yを大きくする程、主体金具50と絶縁碍子10との間の間隙部70から第一稜角部位65近傍まで流れ込む未燃ガスの量が多くなるため、絶縁碍子10の表面に付着するカーボンの量も多くなり、コロナ放電による清浄が困難になる。そこで、本実施の形態では、後述する実施例6に示す試験の結果に基づいて、第一稜角部位65と絶縁碍子10とを0.3mm以下の距離をおいて離間させている。また、距離Yを短くする程、絶縁碍子10から主体金具50への熱伝導性を向上させ、スパークプラグ100の耐熱性を良好にする効果も得られる。尚、第一稜角部位65と絶縁碍子10との間の距離を全周にわたってみたときに、この距離の最大値及び最小値が0.1mm〜0.35mmの範囲内に収まっており、且つこの距離の全周にわたる平均値が0.3mm以下となれば良好な効果が得られる。   Next, the distance between the first ridge angle portion 65 and the insulator 10 will be described. In the present embodiment, as described above, the carbon adhering to the surface of the insulator 10 is cleaned by generating a corona discharge in the vicinity of the first ridge angle portion 65. However, if the distance Y between the first ridge angle portion 65 and the insulator 10 is too large, corona discharge does not reach the insulator 10 and a cleaning effect cannot be obtained. Further, as the distance Y is increased, the amount of unburned gas flowing from the gap 70 between the metal shell 50 and the insulator 10 to the vicinity of the first ridge angle portion 65 increases, and thus adheres to the surface of the insulator 10. The amount of carbon increases, and cleaning by corona discharge becomes difficult. Therefore, in the present embodiment, the first ridge angle portion 65 and the insulator 10 are separated by a distance of 0.3 mm or less based on the result of the test shown in Example 6 described later. Further, as the distance Y is shortened, the effect of improving the heat conductivity from the insulator 10 to the metal shell 50 and improving the heat resistance of the spark plug 100 can be obtained. In addition, when the distance between the first ridge angle part 65 and the insulator 10 is viewed over the entire circumference, the maximum value and the minimum value of this distance are within the range of 0.1 mm to 0.35 mm, and this If the average value over the entire circumference of the distance is 0.3 mm or less, a good effect can be obtained.

次いで、第二稜角部位66の形状について説明する。第二稜角部位66は、第一稜角部位65よりも火花放電間隙に近い。よって、第一稜角部位65にてリーク現象が生じる場合よりも、第二稜角部位66にて生じる場合の方が絶縁碍子10表面の沿面距離が短くなるため、第二稜角部位66の方がリーク現象は発生し易い。また、電界強度が強くなる程、その場所にてリーク現象が発生する可能性は高くなる。従って、第二稜角部位66近傍の電界強度を強くすると、第二稜角部位66にてリーク現象が発生する頻度が多くなるため、正規の火花放電間隙で飛火する回数が減ってスパークプラグ100の性能が劣化する。そこで、軸線Oを含む主体金具50の断面を見たときに、その断面の輪郭線において、第二稜角部位66の曲率半径Rを第一稜角部位65の曲率半径rよりも大きくしている。これにより、主体金具50の筒内における電界強度を第一稜角部位65近傍と第二稜角部位66近傍とで分散させ、リーク現象の発生を防止している。   Next, the shape of the second ridge angle portion 66 will be described. The second ridge angle part 66 is closer to the spark discharge gap than the first ridge angle part 65. Therefore, since the creepage distance on the surface of the insulator 10 is shorter when the leakage occurs at the second ridge angle portion 66 than when the leakage phenomenon occurs at the first ridge angle portion 65, the second ridge angle portion 66 leaks. The phenomenon is easy to occur. In addition, as the electric field strength increases, the possibility of a leak phenomenon occurring at that location increases. Therefore, if the electric field strength near the second ridge angle portion 66 is increased, the frequency of occurrence of a leak phenomenon at the second ridge angle portion 66 increases, so that the number of times of sparks in the regular spark discharge gap is reduced and the performance of the spark plug 100 is improved. Deteriorates. Therefore, when the cross section of the metal shell 50 including the axis O is viewed, the curvature radius R of the second ridge angle portion 66 is larger than the curvature radius r of the first ridge angle portion 65 in the outline of the cross section. Thereby, the electric field strength in the cylinder of the metal shell 50 is distributed between the vicinity of the first ridge angle portion 65 and the vicinity of the second ridge angle portion 66, thereby preventing the occurrence of a leak phenomenon.

このように構成したスパークプラグについて、本発明の効果を確認するために、以下に示す評価試験を行った。   In order to confirm the effect of this invention about the spark plug comprised in this way, the evaluation test shown below was done.

[実施例1]
まず、第一稜角部位65とパッキン8との間の距離と、第一稜角部位65近傍及び第二稜角部位66近傍での電界強度との関係についてシミュレーションによる解析を行った。このシミュレーションでは、公知のFEM解析法により電界強度を求めるソフトウェアを使用した。そして、第一稜角部位65と、金具後端向き面61における径方向外側の端部68との間の距離をL、第一稜角部位65とパッキン8との間の距離をXとして、Xの値が0となる場合、0.05Lとなる場合、0.10Lとなる場合の3つのパターンで各種条件を設定して電界強度の解析を行い、その解析結果を図3に示した。尚、図3に示すグラフの横軸はスパークプラグの軸線方向の位置を示し、左側がスパークプラグの後端側、右側が先端側に相当する。また、縦軸は電界強度を示し、上側ほど電界強度が高い。
[Example 1]
First, a simulation analysis was performed on the relationship between the distance between the first ridge angle part 65 and the packing 8 and the electric field strength in the vicinity of the first ridge angle part 65 and the second ridge angle part 66. In this simulation, software for obtaining electric field strength by a known FEM analysis method was used. And, the distance between the first ridge angle portion 65 and the radially outer end 68 of the metal rear end facing surface 61 is L, and the distance between the first ridge angle portion 65 and the packing 8 is X. When the value is 0, 0.05L, and 0.10L, various conditions are set in three patterns to analyze the electric field strength, and the analysis results are shown in FIG. The horizontal axis of the graph shown in FIG. 3 indicates the position of the spark plug in the axial direction, the left side corresponds to the rear end side of the spark plug, and the right side corresponds to the front end side. The vertical axis indicates the electric field strength, and the electric field strength is higher toward the upper side.

図3に示すように、この解析の結果、Xの値が0である場合(第一稜角部位65とパッキン8とが接触している場合)には、第一稜角部位65近傍の電界強度は周囲との差があまり無く、第二稜角部位66近傍の電界強度は周囲に比べて大幅に強いことが確認できた。これに対して、Xの値を0.05Lとすると、第一稜角部位65近傍の電界強度は強くなり、第二稜角部位66近傍の電界強度は弱くなった。すなわち、電界強度が第一稜角部位65と第二稜角部位66とに分散されることが確認できた。また、Xの値を0.10Lとすると、第一稜角部位65近傍の電界強度はさらに強くなり、第二稜角部位66の電界強度はさらに弱くなる。この結果により、第一稜角部位65近傍の電界強度を強くしてコロナ放電による清浄効果を得るためには、Xの値を0.05L以上とすることが望ましいことが分かった。   As shown in FIG. 3, when the value of X is 0 (when the first ridge angle portion 65 and the packing 8 are in contact) as a result of this analysis, the electric field strength in the vicinity of the first ridge angle portion 65 is There was not much difference from the surroundings, and it was confirmed that the electric field strength near the second ridge angle portion 66 was significantly stronger than the surroundings. On the other hand, when the value of X was 0.05 L, the electric field strength near the first ridge angle portion 65 was strong, and the electric field strength near the second ridge angle portion 66 was weak. That is, it was confirmed that the electric field strength is dispersed in the first ridge angle part 65 and the second ridge angle part 66. When the value of X is 0.10 L, the electric field strength near the first ridge angle portion 65 is further increased, and the electric field strength of the second ridge angle portion 66 is further decreased. From this result, it was found that the value of X is desirably 0.05 L or more in order to increase the electric field strength in the vicinity of the first ridge angle portion 65 and obtain a cleaning effect by corona discharge.

[実施例2]
次に、第一稜角部位65とパッキン8との間の距離と、パッキン8の厚さとの関係について評価試験を行った。この評価試験では、第一稜角部位65と、金具後端向き面61における径方向外側の端部68との間の距離をL、第一稜角部位65とパッキン8との間の距離をXとして、Xの値のみが0から0.5Lまで0.1Lずつ異なる複数のスパークプラグのサンプルを作成した。ここで、Xの値が大きくなる程、環状のパッキン8における径方向の幅は狭くなる。そして、各サンプルが同一の気密性を発揮した際のパッキン8の厚さを測定し、その測定結果を図4に示した。
[Example 2]
Next, an evaluation test was performed on the relationship between the distance between the first ridge angle portion 65 and the packing 8 and the thickness of the packing 8. In this evaluation test, the distance between the first ridge angle portion 65 and the radially outer end 68 of the metal rear end facing surface 61 is L, and the distance between the first ridge angle portion 65 and the packing 8 is X. Samples of a plurality of spark plugs differing by 0.1 L from 0 to 0.5 L only in the value of X. Here, the larger the value of X, the narrower the radial width of the annular packing 8. And the thickness of the packing 8 when each sample exhibited the same airtightness was measured, and the measurement result is shown in FIG.

図4に示すように、この評価試験の結果、Xの値を大きく(パッキン8の径方向の幅を狭く)していくと、Xが0〜0.2Lの場合はパッキンの厚さはほぼ変化しないが、0.3Lとなるとパッキン8は僅かに変形して薄くなり、0.4L以上とするとパッキン8の厚さは急に薄くなることが確認できた。先述したように、パッキン8が変形すると、絶縁碍子10に押し割れ等が発生する場合や気密性の低下を引き起こす虞があるため、変形量は小さい方がよい。従って、パッキン8の変形を防止してスパークプラグ100の性能を担保するためには、Xの値を0.3L以下とすることが望ましいと言える。そして、実施例1及び実施例2の2つの結果を統合すると、Xの値は0.05L≦X≦0.3とすることが望ましいことが分かった。   As shown in FIG. 4, as a result of this evaluation test, when the value of X is increased (the radial width of the packing 8 is narrowed), the thickness of the packing is almost equal when X is 0 to 0.2L. Although it did not change, it was confirmed that the packing 8 was slightly deformed and thinned at 0.3L, and that the thickness of the packing 8 was suddenly thinned at 0.4L or more. As described above, when the packing 8 is deformed, there is a possibility that the insulator 10 may be cracked or the like or the airtightness may be lowered. Therefore, in order to prevent the deformation of the packing 8 and ensure the performance of the spark plug 100, it can be said that the value of X is preferably set to 0.3 L or less. Then, when the two results of Example 1 and Example 2 were integrated, it was found that the value of X is preferably 0.05L ≦ X ≦ 0.3.

[実施例3]
次に、第一稜角部位65の角の曲率半径と、第一稜角部位65近傍の電界強度との関係についてシミュレーションによる解析を行った。このシミュレーションでは、公知のFEM解析法により電界強度を求めるソフトウェアを使用した。そして、先述した第一稜角部位65とパッキン8との間の距離を0.1Lに固定し、第一稜角部位65の角の曲率半径のみを0mmから0.5mmまでの間で変化させて各種条件を設定し、電界強度の解析を行った。この解析結果を図5に示した。
[Example 3]
Next, a simulation analysis was performed on the relationship between the radius of curvature of the corner of the first ridge angle portion 65 and the electric field strength near the first ridge angle portion 65. In this simulation, software for obtaining electric field strength by a known FEM analysis method was used. The distance between the first ridge angle portion 65 and the packing 8 is fixed to 0.1 L, and only the radius of curvature of the corner of the first ridge angle portion 65 is changed from 0 mm to 0.5 mm. Conditions were set and the electric field strength was analyzed. The analysis results are shown in FIG.

図5に示すように、この解析の結果、曲率半径を大きく(角を丸く)していくと、第一稜角部位65近傍の電界強度は弱くなることが確認できた。そして、曲率半径が0.2mmより大きい場合の電界強度は弱い値のままあまり変化しないが、0.2mm以下の場合は曲率半径を小さくする程電界強度が強くなることが確認できた。従って、コロナ放電による清浄効果を得るためには、第一稜角部位65の角の曲率半径を0.2mm以下とすることが望ましいと言える。   As shown in FIG. 5, as a result of this analysis, it was confirmed that the electric field strength in the vicinity of the first ridge angle portion 65 becomes weaker as the radius of curvature is increased (rounded corners). When the radius of curvature is greater than 0.2 mm, the electric field strength remains a small value and does not change much. However, when the radius of curvature is 0.2 mm or less, it can be confirmed that the electric field strength increases as the radius of curvature decreases. Therefore, in order to obtain a cleaning effect by corona discharge, it can be said that the radius of curvature of the corner of the first ridge angle portion 65 is desirably 0.2 mm or less.

[実施例4]
次に、軸線Oと直交する平面に対する金具後端向き面61の角度と、第一稜角部位65近傍の電界強度との関係についてシミュレーションによる解析を行った。このシミュレーションでは、FEM解析法により電界強度を求めるソフトウェアを使用した。そして、第一稜角部位65とパッキン8との間の距離を0.1Lに固定し、軸線Oと直交する平面に対する金具後端向き面61の角度θのみを変化させて各種条件を設定し、電界強度の解析を行った。この解析結果を図6に示した。
[Example 4]
Next, a simulation analysis was performed on the relationship between the angle of the metal fitting rear end facing surface 61 with respect to a plane orthogonal to the axis O and the electric field strength near the first ridge angle portion 65. In this simulation, software for obtaining electric field strength by FEM analysis was used. Then, the distance between the first ridge angle portion 65 and the packing 8 is fixed to 0.1 L, various conditions are set by changing only the angle θ of the metal fitting rear end facing surface 61 with respect to the plane orthogonal to the axis O, The electric field strength was analyzed. The analysis results are shown in FIG.

図6に示すように、この解析の結果、θの値が40度より大きい場合には、第一稜角部位65近傍の電界強度は弱い値のままあまり変化しないが、θの値が40度以下である場合には、θの値を小さくする程、電界強度が強くなることが確認できた。これより、θの値は40度以下とすることが望ましいことが分かった。   As shown in FIG. 6, when the value of θ is larger than 40 degrees as a result of this analysis, the electric field strength in the vicinity of the first ridge angle portion 65 remains weak but does not change much, but the value of θ is 40 degrees or less. In this case, it was confirmed that the electric field strength increased as the value of θ was decreased. From this, it was found that the value of θ is desirably 40 degrees or less.

[実施例5]
次に、軸線Oと直交する平面に対する金具後端向き面61の角度と、気密性及び組付け偏芯との関係について評価試験を行った。この評価試験では、軸線Oと直交する平面に対する金具後端向き面61の角度θのみを変化させて複数のスパークプラグを作成した。そして、各スパークプラグにおける主体金具50の軸心と絶縁碍子10の軸心とのずれ(組付け偏芯)を測定した。さらに、気密性を評価するために、各スパークプラグの先端側から主体金具50と絶縁碍子10との間の間隙部70(図2参照)へ、空気圧2MPaでエアを送り込み、隙間を通り抜けてパッキン8の後端側へ流出するエアの1分間での流出量(cc)を、エアフローメータを用いて測定する。この動作を、スパークプラグの温度を変化させて複数回行い、1分間で10ccのエアが流出した際の、パッキン8近傍の主体金具50の温度を測定した。これらの測定結果を図7に示した。尚、温度が高くなる程、エアはパッキン8の後端側へ流出し易くなる。よって、1分間で10ccのエアが流出した際の主体金具50の温度(漏洩座温)が高い程、気密性の良いスパークプラグと言える。
[Example 5]
Next, an evaluation test was performed on the relationship between the angle of the metal fitting rear end facing surface 61 with respect to a plane orthogonal to the axis O, airtightness, and assembly eccentricity. In this evaluation test, a plurality of spark plugs were produced by changing only the angle θ of the metal fitting rear end facing surface 61 with respect to the plane orthogonal to the axis O. And the shift | offset | difference (assembly eccentricity) of the axial center of the metal shell 50 in each spark plug and the axial center of the insulator 10 was measured. Further, in order to evaluate the airtightness, air is sent from the front end side of each spark plug to the gap 70 (see FIG. 2) between the metal shell 50 and the insulator 10 at an air pressure of 2 MPa, and the packing is passed through the gap. The amount of outflow (cc) per minute of the air flowing out to the rear end side of 8 is measured using an air flow meter. This operation was performed a plurality of times while changing the temperature of the spark plug, and the temperature of the metal shell 50 in the vicinity of the packing 8 when 10 cc of air flowed out in one minute was measured. The measurement results are shown in FIG. In addition, air becomes easy to flow out to the rear end side of the packing 8 as the temperature increases. Therefore, it can be said that the higher the temperature (leakage seating temperature) of the metal shell 50 when 10 cc of air flows out in one minute, the better the airtight spark plug.

図7に示すように、この評価試験の結果、θの値を大きくしていくと、30度までは良好な気密性が得られるが、30度より大きくなると気密性は急激に悪化していくことが確認できた。また、組付け偏芯に関しては、θの値を大きくしていくと、20度までは偏芯量は急激に少なくなり、20度より大きくなると緩やかに偏芯量が少なくなっていくことが確認できた。従って、気密性及び組付け偏芯を考慮すると、θの値は20度以上、30度以下とすることが望ましいと言える。   As shown in FIG. 7, as a result of this evaluation test, when the value of θ is increased, good airtightness can be obtained up to 30 degrees, but when it exceeds 30 degrees, the airtightness deteriorates rapidly. I was able to confirm. As for assembly eccentricity, it is confirmed that as the value of θ is increased, the amount of eccentricity rapidly decreases up to 20 degrees, and the amount of eccentricity decreases gradually when it exceeds 20 degrees. did it. Therefore, it can be said that the value of θ is preferably 20 degrees or more and 30 degrees or less in consideration of airtightness and assembly eccentricity.

[実施例6]
次に、第一稜角部位65及び絶縁碍子10の間の距離と、スパークプラグのくすぶり汚損との関係について評価試験を行った。この評価試験では、第一稜角部位65とパッキン8との間の距離を0.1Lに固定し、第一稜角部位65と絶縁碍子10との間の距離Yのみを0.1mm、0.3mm、0.4mmに変化させて、それぞれのスパークプラグについてくすぶり汚損の試験を行った。この試験は、JIS・D1606によって規定された所定の運転パターンに基づいて行った。この運転パターンでは、マイナス10度の温度状態において、絶縁碍子10が汚損し易い状況で運転させた後の絶縁碍子10の絶縁抵抗と、付着したカーボンが清浄され易い状況で運転させた後の絶縁碍子10の絶縁抵抗とを測定し、これを1サイクルとして合計10サイクルを繰り返し実施した。この測定結果を図8に示した。尚、汚損される速度に清浄の速度が間に合わず、絶縁碍子10の絶縁抵抗を保つことができなくなると、グラフは右下がりになる。
[Example 6]
Next, an evaluation test was performed on the relationship between the distance between the first ridge angle portion 65 and the insulator 10 and the smoldering contamination of the spark plug. In this evaluation test, the distance between the first ridge angle part 65 and the packing 8 is fixed to 0.1 L, and only the distance Y between the first ridge angle part 65 and the insulator 10 is 0.1 mm and 0.3 mm. The spark plug was subjected to a smoldering stain test for each spark plug. This test was performed based on a predetermined operation pattern defined by JIS D1606. In this operation pattern, in a temperature state of minus 10 degrees, the insulation resistance of the insulator 10 after being operated in a state where the insulator 10 is easily contaminated and the insulation after being operated in a state in which the attached carbon is easily cleaned. The insulation resistance of the insulator 10 was measured, and this was regarded as one cycle, and a total of 10 cycles were repeated. The measurement results are shown in FIG. In addition, if the speed of cleaning cannot keep up with the speed of fouling, and the insulation resistance of the insulator 10 cannot be maintained, the graph is lowered to the right.

図8に示すように、この評価試験の結果、距離Yが0.1mmである場合、及び0.3mmである場合には、10サイクルを経た後でも絶縁碍子10の絶縁抵抗は保たれているが、Yの値が0.4mmである場合には、絶縁抵抗を保てないことが確認できた。また、絶縁碍子10と主体金具50とが接触すると、絶縁碍子10の絶縁抵抗を確保できない。従って、コロナ放電による清浄効果を得るためには、第一稜角部位65と絶縁碍子10とを0.3mm以下の距離をおいて離間させることが望ましいことが分かった。   As shown in FIG. 8, when the distance Y is 0.1 mm and 0.3 mm as a result of this evaluation test, the insulation resistance of the insulator 10 is maintained even after 10 cycles. However, it was confirmed that the insulation resistance could not be maintained when the value of Y was 0.4 mm. Further, when the insulator 10 and the metal shell 50 are in contact with each other, the insulation resistance of the insulator 10 cannot be ensured. Therefore, in order to obtain a cleaning effect by corona discharge, it has been found desirable to separate the first ridge angle portion 65 and the insulator 10 from each other with a distance of 0.3 mm or less.

尚、本発明は各種の変形が可能なことは言うまでもない。例えば、本実施の形態の金具縮径部60とは異なり、金具縮径部60が主体金具50の先端面57まで延設されていてもよい。また、パッキンの材質に限定されることもなく、銅のみならず、鉄やステンレス等を用いてもよい。   Needless to say, the present invention can be modified in various ways. For example, unlike the metal fitting reduced diameter portion 60 of the present embodiment, the metal fitting reduced diameter portion 60 may be extended to the front end surface 57 of the metal shell 50. Moreover, it is not limited to the material of packing, You may use not only copper but iron, stainless steel, etc.

スパークプラグ100の部分断面図である。1 is a partial cross-sectional view of a spark plug 100. FIG. パッキン8付近の要部を拡大した断面図である。It is sectional drawing to which the principal part of packing 8 vicinity was expanded. 第一稜角部位65とパッキン8との間の距離と、主体金具50の金具縮径部60近傍での電界強度との関係についての解析の結果を示すグラフである。6 is a graph showing a result of analysis on a relationship between a distance between a first ridge angle portion 65 and a packing 8 and an electric field strength in the vicinity of the reduced diameter portion 60 of the metal shell 50. 第一稜角部位65とパッキン8との間の距離と、パッキン8の厚さとの関係についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about the relationship between the distance between the 1st ridge angle site | part 65 and the packing 8, and the thickness of the packing 8. FIG. 第一稜角部位65の角の曲率半径と、第一稜角部位65近傍の電界強度との関係についての解析の結果を示すグラフである。It is a graph which shows the result of the analysis about the relationship between the curvature radius of the angle | corner of the 1st ridge angle site | part 65, and the electric field strength of the 1st ridge angle site | part 65 vicinity. 軸線Oと直交する平面に対する金具後端向き面61の角度と、第一稜角部位65近傍の電界強度との関係についての解析の結果を示すグラフである。It is a graph which shows the result of the analysis about the relationship between the angle of the metal fitting rear end surface 61 with respect to the plane orthogonal to the axis line O, and the electric field strength of the 1st ridge angle part 65 vicinity. 軸線Oと直交する平面に対する金具後端向き面61の角度と、気密性及び組付け偏芯との関係についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about the relationship of the angle of the metal fitting rear end surface 61 with respect to the plane orthogonal to the axis line O, airtightness, and assembly eccentricity. 第一稜角部位65及び絶縁碍子10の間の距離と、スパークプラグのくすぶり汚損との関係についての評価試験の結果を示すグラフである。It is a graph which shows the result of the evaluation test about the relationship between the distance between the 1st ridge angle site | part 65 and the insulator 10, and the smoldering stain of a spark plug.

符号の説明Explanation of symbols

8 パッキン
10 絶縁碍子
12 軸孔
13 脚長部
14 碍子先端向き面
15 碍子段部
17 先端側胴部
18 後端側胴部
20 中心電極
50 主体金具
55 筒孔
60 金具縮径部
61 金具後端向き面
62 内向き面
63 金具先端向き面
65 第一稜角部位
66 第二稜角部位
68 端部
100 スパークプラグ
8 Packing 10 Insulator 12 Shaft hole 13 Leg long part 14 Insulator tip-facing surface 15 Insulator step 17 End-side trunk 18 Rear-end trunk 20 Central electrode 50 Main metal fitting 55 Cylindrical hole 60 Fitting reduced diameter part 61 Fitting rear end Surface 62 Inward surface 63 Metal tip-facing surface 65 First ridge angle portion 66 Second ridge angle portion 68 End portion 100 Spark plug

Claims (5)

自身の先端側に火花放電のための電極を形成する軸状の中心電極と、
前記中心電極の軸線方向に延びる軸孔を有し、その軸孔の内部で前記中心電極を保持する絶縁碍子と、
前記軸線方向に延びる筒孔を有し、その筒孔の内部で前記絶縁碍子を保持する主体金具と、
前記絶縁碍子と前記主体金具とに接するように両者間に介在する環状のパッキンとを備え、
前記絶縁碍子は、自身の後端側の部位である碍子胴部と、自身の先端側の部位であり、前記碍子胴部の外径よりも縮径された脚長部と、前記碍子胴部と前記脚長部とを連結し、前記軸線方向の先端側を向く面である碍子先端向き面を有する碍子段部とを備えて構成され、
前記主体金具の前記筒孔には、その前記筒孔の内径よりも縮径された金具縮径部が形成され、前記金具縮径部は、前記軸線方向の後端側を向く面である金具後端向き面及び径方向内側を向く面である内向き面を有し、
前記パッキンが、前記絶縁碍子の前記碍子先端向き面と、前記主体金具の前記金具後端向き面との間に配置されているスパークプラグであって、
前記金具縮径部における前記金具後端向き面及び前記内向き面がなす第一稜角部位と前記パッキンとの間の距離が、前記金具後端向き面における径方向外側の端部と前記第一稜角部位との距離をLとして、0.05L以上、0.3L以下であることを特徴とするスパークプラグ。
An axial center electrode that forms an electrode for spark discharge on its tip side;
An insulator having an axial hole extending in the axial direction of the central electrode, and holding the central electrode inside the axial hole;
A metal shell having a cylindrical hole extending in the axial direction and holding the insulator inside the cylindrical hole;
An annular packing interposed between the insulator and the metal shell so as to contact the insulator,
The insulator is an insulator body part which is a part on the rear end side of the insulator, a part on the tip side of the insulator, a leg length part whose diameter is smaller than an outer diameter of the insulator body part, and the insulator body part, The leg long portion is connected, and is configured to include an insulator step portion having an insulator tip facing surface that is a surface facing the tip end side in the axial direction.
A metal fitting diameter-reduced portion is formed in the cylindrical hole of the metal shell, and the metal fitting reduced-diameter portion is a surface facing the rear end side in the axial direction. A rear end facing surface and an inward facing surface that is a surface facing radially inward,
The packing is a spark plug disposed between the insulator tip-facing surface of the insulator and the metal rear-facing surface of the metal shell,
A distance between a first ridge angle portion formed by the metal rear end facing surface and the inward surface in the metal reduced diameter portion and the packing is a radially outer end of the metal rear end facing surface and the first A spark plug, wherein the distance from the ridge angle portion is L and is 0.05L or more and 0.3L or less.
軸線を含む前記主体金具の断面を見たときに、その断面の輪郭線における前記第一稜角部位の曲率半径が0.2mm以下であることを特徴とする請求項1に記載のスパークプラグ。   2. The spark plug according to claim 1, wherein when the cross section of the metallic shell including the axis is viewed, a radius of curvature of the first ridge angle portion in the outline of the cross section is 0.2 mm or less. 前記第一稜角部位と前記絶縁碍子とが、0.3mm以下の距離をおいて離間していることを特徴とする請求項1又は2に記載のスパークプラグ。   The spark plug according to claim 1 or 2, wherein the first ridge angle part and the insulator are spaced apart by a distance of 0.3 mm or less. 軸線を含む前記主体金具の断面を見たときに、前記金具縮径部における前記金具後端向き面と、前記主体金具の軸線と直交する平面との角度が20度以上、30度以下であることを特徴とする請求項1乃至3のいずれかに記載のスパークプラグ。   When the cross section of the metal shell including the axis is viewed, the angle between the surface facing the rear end of the metal fitting and the plane perpendicular to the axis of the metal shell is 20 degrees or more and 30 degrees or less. The spark plug according to any one of claims 1 to 3, wherein: 前記金具縮径部は、前記軸線方向の先端側を向く面である金具先端向き面を有し、
軸線を含む前記主体金具の断面を見たときに、その断面の輪郭線において、前記金具縮径部の前記内向き面と前記金具先端向き面とがなす第二稜角部位の曲率半径が、前記第一稜角部位の曲率半径よりも大きいことを特徴とする請求項1乃至4のいずれかに記載のスパークプラグ。
The metal fitting reduced diameter portion has a metal fitting tip-facing surface which is a surface facing the tip side in the axial direction,
When the cross section of the metal shell including the axis is viewed, the curvature radius of the second ridge angle portion formed by the inward surface of the reduced diameter portion of the metal fitting and the surface of the metal fitting tip in the contour line of the cross section is The spark plug according to any one of claims 1 to 4, wherein the spark plug is larger than a radius of curvature of the first ridge angle portion.
JP2008012815A 2008-01-23 2008-01-23 Spark plug Active JP4965471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012815A JP4965471B2 (en) 2008-01-23 2008-01-23 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012815A JP4965471B2 (en) 2008-01-23 2008-01-23 Spark plug

Publications (2)

Publication Number Publication Date
JP2009176525A true JP2009176525A (en) 2009-08-06
JP4965471B2 JP4965471B2 (en) 2012-07-04

Family

ID=41031413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012815A Active JP4965471B2 (en) 2008-01-23 2008-01-23 Spark plug

Country Status (1)

Country Link
JP (1) JP4965471B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218863A (en) * 2012-04-09 2013-10-24 Ngk Spark Plug Co Ltd Ignition plug
WO2014013654A1 (en) 2012-07-17 2014-01-23 日本特殊陶業株式会社 Spark plug
WO2014013723A1 (en) 2012-07-17 2014-01-23 日本特殊陶業株式会社 Spark plug
US9219350B1 (en) 2014-07-02 2015-12-22 Denso Corporation Spark plug for internal combustion engine
JP2016196849A (en) * 2015-04-03 2016-11-24 株式会社デンソー Internal combustion engine ignition control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165480A (en) * 1989-11-07 1991-07-17 Ind Magneti Marelli Srl Ignition plug for automobile
JPH09266056A (en) * 1996-03-28 1997-10-07 Ngk Spark Plug Co Ltd Spark plug
JP2001155838A (en) * 1999-10-21 2001-06-08 Beru Ag Spark plug
JP2002260817A (en) * 2000-12-27 2002-09-13 Ngk Spark Plug Co Ltd Spark plug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165480A (en) * 1989-11-07 1991-07-17 Ind Magneti Marelli Srl Ignition plug for automobile
JPH09266056A (en) * 1996-03-28 1997-10-07 Ngk Spark Plug Co Ltd Spark plug
JP2001155838A (en) * 1999-10-21 2001-06-08 Beru Ag Spark plug
JP2002260817A (en) * 2000-12-27 2002-09-13 Ngk Spark Plug Co Ltd Spark plug

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218863A (en) * 2012-04-09 2013-10-24 Ngk Spark Plug Co Ltd Ignition plug
KR101603480B1 (en) 2012-07-17 2016-03-14 니혼도꾸슈도교 가부시키가이샤 Spark plug
WO2014013723A1 (en) 2012-07-17 2014-01-23 日本特殊陶業株式会社 Spark plug
CN104488150A (en) * 2012-07-17 2015-04-01 日本特殊陶业株式会社 Spark plug
KR20150036498A (en) 2012-07-17 2015-04-07 니혼도꾸슈도교 가부시키가이샤 Spark plug
KR20150038137A (en) 2012-07-17 2015-04-08 니혼도꾸슈도교 가부시키가이샤 Spark plug
US9225150B2 (en) 2012-07-17 2015-12-29 Ngk Spark Plug Co., Ltd. Spark plug
WO2014013654A1 (en) 2012-07-17 2014-01-23 日本特殊陶業株式会社 Spark plug
US9306375B2 (en) 2012-07-17 2016-04-05 Ngk Spark Plug Co., Ltd. Spark plug
US9219350B1 (en) 2014-07-02 2015-12-22 Denso Corporation Spark plug for internal combustion engine
DE102015110416A1 (en) 2014-07-02 2016-01-07 Denso Corporation Spark plug for an internal combustion engine
DE102015110416B4 (en) 2014-07-02 2022-12-08 Denso Corporation Spark plug for an internal combustion engine
JP2016196849A (en) * 2015-04-03 2016-11-24 株式会社デンソー Internal combustion engine ignition control device

Also Published As

Publication number Publication date
JP4965471B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4482589B2 (en) Plasma jet ignition plug
JP4928626B2 (en) Spark plug
JP5337307B2 (en) Spark plug
JP4351272B2 (en) Spark plug
EP2216862B1 (en) Spark plug
JP5149295B2 (en) Spark plug
JP4965471B2 (en) Spark plug
EP2264844B1 (en) Spark plug for internal combustion engine
JP5525575B2 (en) Spark plug
JP2009087923A (en) Spark plug and internal combustion engine mounted with the spark plug
JP4430724B2 (en) Spark plug
JP4358078B2 (en) Spark plug
US7847473B2 (en) Spark plug
JP5032556B2 (en) Spark plug
US8215277B2 (en) Spark plug
JP5922087B2 (en) Spark plug
JP2006092955A (en) Spark plug
US9219350B1 (en) Spark plug for internal combustion engine
CN110011183B (en) Spark plug
JP5755310B2 (en) Spark plug
JP4750215B2 (en) Spark plug
JP5130333B2 (en) Spark plug
JP5421473B2 (en) Spark plug
JP2011066006A (en) Spark plug
JP2006260988A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Ref document number: 4965471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250