JP2009174914A - Method and device for generating high-frequency electromagnetic wave signal - Google Patents

Method and device for generating high-frequency electromagnetic wave signal Download PDF

Info

Publication number
JP2009174914A
JP2009174914A JP2008011700A JP2008011700A JP2009174914A JP 2009174914 A JP2009174914 A JP 2009174914A JP 2008011700 A JP2008011700 A JP 2008011700A JP 2008011700 A JP2008011700 A JP 2008011700A JP 2009174914 A JP2009174914 A JP 2009174914A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave signal
frequency electromagnetic
solid insulator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011700A
Other languages
Japanese (ja)
Other versions
JP5145525B2 (en
Inventor
Shinya Otsuka
信也 大塚
Masayuki Hikita
政幸 匹田
Satoshi Iseshima
聡 伊勢島
Kazuki Omori
和貴 大森
Masashi Sawada
雅詞 澤田
Yasuteru Nakano
泰輝 中野
Shiro Maruyama
志郎 丸山
Toshihiro Hoshino
俊弘 星野
Yasuhiko Taniguchi
安彦 谷口
Takaaki Sakakibara
高明 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kyushu Institute of Technology NUC
Original Assignee
Toshiba Corp
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kyushu Institute of Technology NUC filed Critical Toshiba Corp
Priority to JP2008011700A priority Critical patent/JP5145525B2/en
Publication of JP2009174914A publication Critical patent/JP2009174914A/en
Application granted granted Critical
Publication of JP5145525B2 publication Critical patent/JP5145525B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for generating an electromagnetic wave signal in a GHz band due to gaseous discharge easily and with excellent reproducibility, to easily investigate an influence of the gaseous discharge on insulation assessment by a UHF method, or an influence on EMC, without providing large-scale experimental equipment. <P>SOLUTION: A gas insulation section and a solid insulator are provided between an upper electrode and a lower electrode being a pair and facing each other, and a floating metal section is provided between the gas insulation section and the solid insulator. By applying a power source voltage between this pair of electrodes, high-frequency electromagnetic wave signals from the VHF band up to the SHF band are generated while centering mainly on the UHF band. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、部分放電に関係する電力・産業分野、高周波信号伝搬を取り扱う通信分野、静電気放電と関連する精密機器製造分野、或いはEMC関連分野などで用いることのできるVHF帯からSHF帯までの主にUHF帯域を中心とする高周波電磁波信号を発生させる方法及び装置に関する。   The present invention is mainly applied from the VHF band to the SHF band that can be used in the power / industrial field related to partial discharge, the communication field dealing with high-frequency signal propagation, the precision instrument manufacturing field related to electrostatic discharge, or the EMC-related field. The present invention relates to a method and apparatus for generating a high-frequency electromagnetic wave signal centered on the UHF band.

現在、送変電所等で使用されている電力機器は30年を超える高経年化が進んでおり、事故や故障が発生する前に機器の電気的異常を早期に発見することや異常状態を的確に判断することが望まれている。そのため、部分放電検出による絶縁診断が広く検討されている。そのなかで特に、部分放電により放射されるUHF帯の電磁波を検出するUHF法の適用が、広範囲の検出ができ且つ検出感度が高いことや即応性があること等の理由から鋭意検討されている(特許文献1参照)。この電磁波測定は、主としてUHF帯を対象としているため、一般にUHF法と呼ばれている。これまで主にガス絶縁開閉機器を対象としてUHF法の適用が検討されていたが、近年では、変圧器や電力ケーブルへの適用も報告され始めている。   Currently, power equipment used in transmission substations, etc. has been aged for more than 30 years, and it is possible to detect electrical abnormalities of equipment early and accurately detect abnormal conditions before an accident or failure occurs. It is hoped that this will be judged. Therefore, insulation diagnosis by partial discharge detection has been widely studied. Among them, in particular, the application of the UHF method for detecting electromagnetic waves in the UHF band radiated by partial discharge has been studied earnestly because it can detect a wide range and has high detection sensitivity and quick response. (See Patent Document 1). Since this electromagnetic wave measurement mainly targets the UHF band, it is generally called the UHF method. Until now, the application of the UHF method has been studied mainly for gas-insulated switchgear, but in recent years, application to transformers and power cables has also begun to be reported.

一方、これまで送変電所等で電磁波測定を行うと、1GHzを超える信号が発生することが経験されており、その発生源は気中絶縁部からの放電であることが推定されていたが、その確証はなく、また発生メカニズムも不明であった。このような1GHzを超える電磁波信号は、UHF法による機器内部の異常や故障による部分放電信号の検出に対しては、区別のしにくいノイズ源となり、部分放電検出や絶縁診断の精度の悪化を招くものである。そのため、この特性把握が必要である。また、簡易にこのような高周波気中放電を発生させることができれば、工場内で大がかりな実験装置がなくても実環境を模擬した部分放電試験や診断装置に及ぼす影響や装置の評価が行えることになる。このような高周波信号を簡易に発生する装置は、このような高周波気中放電に対するEMC(Electro Magnet Compatibility: 電磁両立性又は電磁適合性と言われ、電磁波を機器の外に出さない、外来電磁波に対しての耐力又は耐性)問題を調べる信号源としての利用もできる。   On the other hand, when electromagnetic waves are measured at transmission substations and the like, it has been experienced that a signal exceeding 1 GHz is generated, and it has been estimated that the source is a discharge from the air insulation part. There was no confirmation, and the mechanism of occurrence was unknown. Such an electromagnetic wave signal exceeding 1 GHz becomes a noise source that is difficult to distinguish for the detection of partial discharge signals due to abnormalities or failures inside the equipment by the UHF method, and causes deterioration in accuracy of partial discharge detection and insulation diagnosis. Is. Therefore, it is necessary to grasp this characteristic. In addition, if such a high-frequency aerial discharge can be generated easily, the effect on the partial discharge test and the diagnostic device that simulates the actual environment and the evaluation of the device can be performed without a large-scale experimental device in the factory. become. An apparatus that easily generates such a high-frequency signal is said to be EMC (Electro Magnet Compatibility) or electromagnetic compatibility with respect to such high-frequency air discharge. It can also be used as a signal source for investigating problems.

このような高周波電磁波信号はEMCの問題として、あるいはその発生現象である静電気放電として精密機器製造分野や通信分野で検討が鋭意されている(特許文献2参照)。このような背景の元、空気中でGHzオーダの電磁波信号を簡易的にかつ再現性よく発生する手法と装置が必要とされている。
特開2003−43094号公報 特開2004−309153号公報
Such a high-frequency electromagnetic wave signal has been intensively studied in the precision instrument manufacturing field and the communication field as an EMC problem or as an electrostatic discharge that is a phenomenon that occurs (see Patent Document 2). Under such circumstances, there is a need for a method and an apparatus that can easily and reproducibly generate an electromagnetic wave signal in the order of GHz in the air.
JP 2003-43094 A JP 2004-309153 A

本発明は、気中放電によるGHz帯域電磁波信号を簡易にかつ再現性良く発生する方法及び装置を提供して、大がかりな実験装置がなくても簡易に気中放電がUHF法による絶縁診断に及ぼす影響、あるいはEMCに関する影響を調べることを可能にすることを目的としている。   The present invention provides a method and apparatus for generating a GHz band electromagnetic wave signal by air discharge easily and with good reproducibility. Air discharge easily affects insulation diagnosis by the UHF method without a large-scale experimental apparatus. The purpose is to make it possible to examine the influence or the influence on EMC.

本発明の高周波電磁波信号発生方法及び装置は、一対の対向する第1及び第2の電極の間に気中絶縁部と固体絶縁物を備え、かつ、この気中絶縁部と固体絶縁物の間にフローティング金属部を備え、前記一対の電極間に電源電圧を印加して、VHF帯からSHF帯までの主にUHF帯域を中心とする高周波電磁波信号を発生させる。   The method and apparatus for generating a high-frequency electromagnetic wave signal according to the present invention includes an air insulating part and a solid insulator between a pair of opposed first and second electrodes, and between the air insulating part and the solid insulator. And a power supply voltage is applied between the pair of electrodes to generate a high frequency electromagnetic wave signal mainly in the UHF band from the VHF band to the SHF band.

第1の電極の上に固体絶縁物を載置し、かつ、該固体絶縁物の上に前記フローティング金属部を載置して、前記気中絶縁部を該フローティング金属部と第2の電極の間の空気ギャップにより構成する。電圧分担用のコンデンサ或いは抵抗を用いて、第1及び第2の電極間に印加される電圧を分割して、この分割電圧を前記フローティング金属部に印加する。   A solid insulator is placed on the first electrode, and the floating metal portion is placed on the solid insulator, and the air insulation portion is placed between the floating metal portion and the second electrode. It is constituted by an air gap between them. The voltage applied between the first and second electrodes is divided using a voltage sharing capacitor or resistor, and this divided voltage is applied to the floating metal portion.

大型の電源を必要とせず、かつ大がかりな構成とすることなく簡易にGHz帯の気中放電による電磁波信号を発生できるため、実験や試験が容易に行えるようになる。気中放電によるEMC問題を簡易に検討できるようになる。   Since an electromagnetic wave signal by air discharge in the GHz band can be easily generated without requiring a large power source and without a large-scale configuration, experiments and tests can be easily performed. The EMC problem due to air discharge can be easily examined.

また、フローティング金属部の電圧をコンデンサ(或いは抵抗)で任意に配分することで、GHz帯域の気中放電を簡易に再現性よく発生することができる。   In addition, by arbitrarily distributing the voltage of the floating metal portion with a capacitor (or resistor), air discharge in the GHz band can be easily generated with good reproducibility.

以下、例示に基づき本発明を説明する。図1は、本発明を具体化する高周波電磁波信号発生装置の第1の例を示す図である。図示のように、対抗配置した上部電極(棒電極)と下部電極(平板電極)の間において、下部電極の上に固体絶縁物を載置し、さらにその上にフローティング金属部を載置する。フローティング金属部は、例えば板状である。このように、一対の電極の間に、固体絶縁物と気中絶縁部を備え、この固体絶縁物と気中絶縁部の間に板状の金属物体を電気的に浮いた状態で支持する。上部電極は、棒状、柱状或いは筒状形状に構成し、また、その先端部に、一つあるいは複数の針や棒などの突起物を付けたり、あるいは表面に凹凸を付けることで、気中放電の発生が容易となる。下部電極は、平板状構成とする。上部及び下部電極やフローティング金属部の材料としては、ステンレス、アルミニウム、銅などを用いることができる。なお、フローティング金属部には、後述のように、所定の電圧を印加するが、本明細書において、フローティングとは、電圧を印加するか否かに関わらず、接地されずに、電気的に浮いた状態を示す用語として用いている。   Hereinafter, the present invention will be described based on examples. FIG. 1 is a diagram showing a first example of a high-frequency electromagnetic wave signal generator embodying the present invention. As shown in the figure, a solid insulator is placed on the lower electrode between the upper electrode (bar electrode) and the lower electrode (flat plate electrode) arranged to face each other, and a floating metal part is placed thereon. The floating metal part has, for example, a plate shape. Thus, a solid insulator and an air insulation part are provided between a pair of electrodes, and a plate-shaped metal object is supported in an electrically floating state between the solid insulator and the air insulation part. The upper electrode has a rod-like, columnar, or cylindrical shape, and one or more protrusions such as needles or rods are attached to its tip, or the surface is uneven, thereby causing air discharge. Is easily generated. The lower electrode has a flat plate configuration. As materials for the upper and lower electrodes and the floating metal part, stainless steel, aluminum, copper and the like can be used. Note that a predetermined voltage is applied to the floating metal portion as will be described later. In this specification, the term “floating” means that the floating metal portion is electrically floating without being grounded regardless of whether or not the voltage is applied. It is used as a term to indicate the status.

例えば5KVの商用電源電圧を、一対の電極間に印加し、かつ、この電圧を直列接続の2個の電圧分担用コンデンサC1,C2で分圧して、フローティング金属部に印加する(2〜4KVの印加により放電は開始する)。コンデンサ無しの状態で一対の電極間に電圧印加を行った場合にも放電の発生は可能であるが、電圧分担用のコンデンサを取り付けることで、気中部での絶縁破壊を発生させずに低い電圧で容易に放電を発生させることができるようになる。上部及び下部電極の間にあるフローティング金属部を境に、その上下に等価的にコンデンサが形成されることになるが、固体絶縁物は厚みが空気部より小さく且つ誘電率が高いためにその下側の等価コンデンサの容量は大きくなる。外部コンデンサC1,C2を取り付けない場合、電圧分担は上側の等価コンデンサが大きくなることになり、この状態で放電を起こすには、非常に大きな電圧を印加する必要があるが、放電は可能である。但し、その場合、固体絶縁物の外側を通る経路で気中部で絶縁破壊が発生する可能性も生じる。そこで、固体絶縁物を介したフローティング金属部の電圧分担を大きくするために、図示のコンデンサC1,C2を取り付けている。なお、このような電圧分担とするためには、C1の容量はC2と同等か小さくする必要があり、更にこれらC1とC2の容量は電極間の等価的コンデンサの容量よりも大きなことが必要である。電源には、商用周波数の交流以外にも、直流や高周波交流を用いることができる。但し、直流の場合は、図示のコンデンサC1,C2に代えて、電圧分担用抵抗を用いることになる。   For example, a commercial power supply voltage of 5 KV is applied between a pair of electrodes, and this voltage is divided by two voltage sharing capacitors C1 and C2 connected in series and applied to the floating metal part (2-4 KV Discharge starts when applied). Discharge can occur even when a voltage is applied between a pair of electrodes without a capacitor, but by attaching a voltage sharing capacitor, a low voltage can be obtained without causing dielectric breakdown in the air. This makes it possible to easily generate a discharge. Capacitors are equivalently formed above and below the floating metal part between the upper and lower electrodes, but the solid insulator is smaller than the air part and has a higher dielectric constant, so The capacity of the equivalent capacitor on the side increases. When the external capacitors C1 and C2 are not attached, the voltage sharing is increased by the upper equivalent capacitor. To cause discharge in this state, it is necessary to apply a very large voltage, but discharge is possible. . However, in that case, there is a possibility that dielectric breakdown may occur in the aerial part along the path passing through the outside of the solid insulator. Therefore, in order to increase the voltage sharing of the floating metal part through the solid insulator, the illustrated capacitors C1 and C2 are attached. In order to achieve this kind of voltage sharing, the capacity of C1 must be equal to or smaller than C2, and the capacity of C1 and C2 must be larger than the capacity of the equivalent capacitor between the electrodes. is there. In addition to commercial frequency alternating current, direct current or high frequency alternating current can be used as the power source. However, in the case of DC, a voltage sharing resistor is used instead of the illustrated capacitors C1 and C2.

フローティング金属部からの放電には、上部の気中絶縁部で発生する気中放電と、下部の固体絶縁物と接触する部位での沿面放電の両方の放電発生がある。実際に発生する放電を模擬するためには、必要に応じて、両方の放電をそれぞれ或いは同時に発生できることが望ましい。このため、フローティング部の構成は、金属片を固体絶縁物に固定したり、あるいは自由に動けるように構成して、気中放電又は沿面放電或いはその両方を発生させる。   The discharge from the floating metal part includes both an air discharge generated at the upper air insulating part and a creeping discharge at a site in contact with the lower solid insulator. In order to simulate the actually generated discharge, it is desirable that both discharges can be generated individually or simultaneously as necessary. For this reason, the structure of the floating part is configured such that the metal piece is fixed to the solid insulator or can move freely to generate air discharge or creeping discharge or both.

放電には、極性効果による相違、具体的には正放電と負放電の相違がある。突起があるとその部位の電界は上がるが、突起に正の電圧が印加されていると電子は電界が強い方向へ加速されることになる(正極性の放電なので正放電)。一方、突起が負電圧であれば、電子は電界の弱い方向へ(突起から遠ざかる方向へ)移動することになる(負放電)。このように、電子の進む方向と電界が強くなる方向の関係で、放電の様子が変わることになる。フローティング部に近い下部電極(平板電極)を接地する、あるいは逆にして電源と接続する(即ち、図示の上部電極を接地する)ことで、放電形態を変化させることができる。   The discharge has a difference due to the polarity effect, specifically, a positive discharge and a negative discharge. If there is a protrusion, the electric field at that part increases, but if a positive voltage is applied to the protrusion, electrons are accelerated in a direction in which the electric field is strong (positive discharge because of positive polarity discharge). On the other hand, if the protrusion has a negative voltage, the electrons move in a direction where the electric field is weak (in a direction away from the protrusion) (negative discharge). Thus, the state of discharge changes depending on the relationship between the direction in which electrons travel and the direction in which the electric field increases. The discharge mode can be changed by grounding the lower electrode (flat plate electrode) close to the floating portion, or conversely connecting it to the power source (that is, grounding the upper electrode shown).

図1に示す固体絶縁物は、プレスボードなどの絶縁紙やPETフィルム、ポリイミドフィルムなどの絶縁フィルム、あるいはエポキシやアクリルあるいはガラスなどの無機および有機固体絶縁物を使用する。また、これら固体絶縁物は、新品だけではなく、電気的絶縁劣化を受けたものを使用しても良い。固体絶縁物は、フローティング金属部を支持するだけでなく、絶縁破壊防止のために用いるものである。固体絶縁物がないと容易に破壊が起こり、信号発生源として使用できない。また、実際の絶縁構成もこのように固体絶縁物で金属部位を絶縁することが行われているので、固体絶縁物部位から発生する放電を模擬することが可能になる。   The solid insulator shown in FIG. 1 uses an insulating paper such as a press board, an PET film, an insulating film such as a polyimide film, or an inorganic or organic solid insulator such as epoxy, acrylic or glass. In addition, these solid insulators may be used not only new but also those that have undergone electrical insulation deterioration. The solid insulator is used not only to support the floating metal part but also to prevent dielectric breakdown. Without a solid insulator, it easily breaks down and cannot be used as a signal source. Further, in the actual insulation configuration, since the metal part is insulated with the solid insulator in this way, the discharge generated from the solid insulator part can be simulated.

上述したように、上部電極は、突起や表面粗さを大きくして、そこから放電を起こすことができるが、あるいは、ここから放電を発生させたくない場合は、図2に示すように、上部電極と同電位の金属性の電界緩和用の金属シールド(緩和リング)を上部電極の周囲に取り付けても良い。図中の金属シールドは、上部電極の先端側を周囲から取り囲むようにドーナツ型に配置されている。上部電極は、電極表面を平滑にしたり緩和リングを取り付けることで気中部での放電を抑制することができる。実放電を模擬可能にするためには、必要に応じて種々の形態の放電を発生できることが望ましい。   As described above, the upper electrode can increase the protrusions and surface roughness and cause discharge from there, or if it is not desired to generate discharge from here, as shown in FIG. A metallic shield (relaxation ring) for relaxing a metallic electric field having the same potential as the electrode may be attached around the upper electrode. The metal shield in the figure is arranged in a donut shape so as to surround the tip side of the upper electrode from the periphery. The upper electrode can suppress discharge in the air by smoothing the electrode surface or attaching a relaxation ring. In order to simulate actual discharge, it is desirable that various forms of discharge can be generated as necessary.

実際の放電原因(固体絶縁物の劣化や欠陥、針や突起状電極など)に対応して、各種状態を模擬できる放電を発生させる必要がある。基本的放電は、フローティング金属部からの放電であるが、上部電極からの気中放電を発生させたり、或いは逆に抑制できることが望ましい。図示のような金属シールドを設けることにより、フローティング金属部や固体絶縁物部位からの放電のみを発生させることができる。   It is necessary to generate a discharge capable of simulating various states in response to actual causes of discharge (deterioration or defect of solid insulator, needles, protruding electrodes, etc.). The basic discharge is a discharge from the floating metal part, but it is desirable that the air discharge from the upper electrode can be generated or conversely suppressed. By providing a metal shield as shown in the figure, it is possible to generate only a discharge from the floating metal part or the solid insulator part.

上部及び下部電極の支持は、例えば、それぞれアクリル板などの固体絶縁物で固定し、そのアクリル板を対向させて、その四隅を棒状の支持物で固定すること(図示省略)で気中絶縁部ギャップを維持することができる。   The upper and lower electrodes are supported, for example, by fixing them with a solid insulator such as an acrylic plate, facing the acrylic plates, and fixing the four corners with rod-shaped supports (not shown). A gap can be maintained.

図3は、図1に示す高周波電磁波信号発生装置に電圧を印加したときに発生する放射電磁波スペクトル(周波数毎の信号強度)を示すグラフである。図3及び後述の全てのグラフにおいて、実線はバックグラウンドノイズ(BGN)を示し、かつ、点線はホーンアンテナで測定した周波数スペクトルの測定結果(PD:Partial Discharge)を示している。700MHz以下の領域はアンテナの感度外であるために信号強度は低くなっている。   FIG. 3 is a graph showing a radiated electromagnetic wave spectrum (signal intensity for each frequency) generated when a voltage is applied to the high-frequency electromagnetic wave signal generator shown in FIG. In FIG. 3 and all the graphs described later, a solid line indicates background noise (BGN), and a dotted line indicates a measurement result (PD: Partial Discharge) of a frequency spectrum measured with a horn antenna. The signal strength is low in the region below 700MHz because it is outside the antenna sensitivity.

測定条件は、以下の通りである。フローティング金属部:直径50mm、高さ6mmの金属、固体絶縁物:厚み0.1mmのPETフィルム、上部電極:直径数センチの棒電極、下部電極:直径100mm、高さ21mmの平板電極、棒電極とフローティング金属部の間の空気ギャップ:55mm、として測定した。コンデンサの容量C1は、気中絶縁部の容量よりも十分大きなことが必要であり、C1>=C2が望ましい。この測定には、電圧分担用コンデンサC1,C2として、それぞれ500pF、を用いた。電圧分担用のコンデンサ2つを電極と並列に接続することにより、気中絶縁部に電圧が集中することを防いで、放電の発生が容易となる。数kVの60Hz商用周波数の高電圧印加で、1GHzを超える周波数成分、即ち、VHF帯からSHF帯までの主にUHF帯域を中心とする10GHz程度までの高周波電磁波信号を含む気中放電が発生した(図3においては、測定装置の限界のため6GHz程度までしか計測していないが、10GHz程度まで発生していると思われる)。なお、周知のように、SHF(super high frequency)帯の帯域は3GHz−30GHzであり、VHF(very high frequency)帯の帯域は30MHz−300MHzであり、UHF(ultra high frequency)帯の帯域は300MHz-3GHzである。   The measurement conditions are as follows. Floating metal part: metal with a diameter of 50 mm, height of 6 mm, solid insulator: PET film with a thickness of 0.1 mm, upper electrode: bar electrode with a diameter of several centimeters, lower electrode: flat plate electrode with a diameter of 100 mm, height of 21 mm, bar electrode The air gap between the floating metal parts was measured as 55 mm. The capacitance C1 of the capacitor needs to be sufficiently larger than the capacitance of the air insulation part, and C1> = C2 is desirable. In this measurement, 500 pF was used as each of the voltage sharing capacitors C1 and C2. By connecting two voltage sharing capacitors in parallel with the electrodes, it is possible to prevent the voltage from concentrating on the air-insulating portion and to easily generate discharge. Application of high voltage at 60Hz commercial frequency of several kV generated a frequency component exceeding 1GHz, that is, an air discharge containing high-frequency electromagnetic signals up to about 10GHz centered mainly on the UHF band from the VHF band to the SHF band. (In Fig. 3, it is only measured up to about 6GHz due to the limitations of the measuring device, but it seems to have occurred up to about 10GHz). As is well known, the SHF (super high frequency) band is 3 GHz to 30 GHz, the VHF (very high frequency) band is 30 MHz to 300 MHz, and the UHF (ultra high frequency) band is 300 MHz. -3GHz.

フローティング部の固体絶縁物には、金属片の直下に穴や傷を付けたり、あるいは電気絶縁的に劣化したものを用いるなどして、その部位で放電を発生させることができる。図4は、本発明を具体化する高周波電磁波信号発生装置の第2の例を示す図である。フローティング金属部下部の領域の固体絶縁物に穴を開けたものである。厚み0.6mmのPETフィルムに、穴を開けて測定した放射電磁波スペクトルを示すグラフを図5に示している。穴のサイズは、数mmから数cm径のフローティング金属部よりも小さくして、穴に落ちない程度であれば良い。固体絶縁物に穴を開けることに代えて、フローティング金属部下部の領域の固体絶縁物に傷を付けることによっても、同様に1GHzを超える周波数成分を含む気中放電を発生させることが可能となる。固体絶縁物に傷を付けたときの放射電磁波スペクトルを示すグラフを図6に示している。   As the solid insulator of the floating portion, a hole or a flaw can be formed directly under the metal piece, or a material that has deteriorated in electrical insulation can be used, and discharge can be generated at that portion. FIG. 4 is a diagram showing a second example of the high-frequency electromagnetic wave signal generator embodying the present invention. A hole is formed in the solid insulator in the lower region of the floating metal part. FIG. 5 shows a graph showing a radiation electromagnetic spectrum measured by making a hole in a PET film having a thickness of 0.6 mm. The size of the hole may be smaller than a floating metal part having a diameter of several mm to several cm so as not to fall into the hole. Instead of drilling a hole in the solid insulator, it is possible to generate an air discharge including a frequency component exceeding 1 GHz by scratching the solid insulator in the region below the floating metal portion. . FIG. 6 shows a graph showing a radiated electromagnetic wave spectrum when the solid insulator is scratched.

図7は、本発明を具体化する高周波電磁波信号発生装置の第3の例を示す図である。図4に示す穴あき固体絶縁物の穴の中に金属異物を入れてフリー異物(自由に移動可能の異物)としても、同様に1GHzを超える周波数成分を含む気中放電を発生させることができる。厚み10mm、直径150mmのアクリルの固体絶縁物の穴の中に、金属異物(6mm×2本、5mm×1本の計3本:直径0.15mm)を入れた状態で測定した放射電磁波スペクトルを示すグラフを図8に示している。金属異物を入れた場合は、放電頻度が上がる効果が見られた。このようなフリー異物が機器に存在して電気事故の原因となる場合があるために、このような状態も模擬可能にするための構成を例示している。但し、フリー異物は、平板電極とフローティング金属部を短絡する程に長くすることはできない。
[比較例1]
図9は、比較例1を説明する図である。固体絶縁物として、2mm厚のプレスボードを使用し、かつ、上部電極と固体絶縁物間に20mmの空気ギャップを取った。図1の構成と対比すれば、フローティング金属部及びそれに電圧を印加するための電圧分担用コンデンサを有していない。この電極系では、GHzオーダの放電は確認できなかった。
[比較例2]
図10は、比較例2を説明する図である。図1の構成と対比すれば、フローティング金属部及びそれに電圧を印加するための電圧分担用コンデンサを有していないことに加えて、上部電極と固体絶縁物の間に空気ギャップが存在しない。このように、上部電極として棒電極を、かつ下部電極として平板電極を用いて、両電極間に固体絶縁物を挟み、電圧を加して放電を発生させると、図11のように1GHz程度までの気中放電しか発生しなかった。
FIG. 7 is a diagram showing a third example of the high-frequency electromagnetic wave signal generator embodying the present invention. Even if a metal foreign object is put into the hole of the perforated solid insulator shown in FIG. 4 to form a free foreign object (a foreign object that can be freely moved), an air discharge containing a frequency component exceeding 1 GHz can be generated. . Shows the radiated electromagnetic wave spectrum measured with metal foreign objects (6mm x 2, 5mm x 1 in total: 0.15mm in diameter) in a hole of acrylic solid insulation of thickness 10mm, diameter 150mm A graph is shown in FIG. In the case where a metal foreign object was added, the effect of increasing the discharge frequency was observed. Since such free foreign matter may be present in the equipment and cause an electrical accident, a configuration for enabling such a state to be simulated is illustrated. However, the free foreign matter cannot be made long enough to short-circuit the plate electrode and the floating metal part.
[Comparative Example 1]
FIG. 9 is a diagram for explaining the first comparative example. A 2 mm thick press board was used as the solid insulator, and a 20 mm air gap was provided between the upper electrode and the solid insulator. In contrast to the configuration of FIG. 1, the floating metal portion and the voltage sharing capacitor for applying a voltage thereto are not provided. In this electrode system, no discharge on the order of GHz could be confirmed.
[Comparative Example 2]
FIG. 10 is a diagram illustrating Comparative Example 2. In contrast to the configuration of FIG. 1, in addition to not having a floating metal part and a voltage sharing capacitor for applying a voltage thereto, there is no air gap between the upper electrode and the solid insulator. In this way, when a bar electrode is used as the upper electrode and a flat electrode is used as the lower electrode, a solid insulator is sandwiched between the two electrodes and a voltage is applied to generate a discharge, up to about 1 GHz as shown in FIG. Only an air discharge occurred.

本発明を具体化する高周波電磁波信号発生装置の第1の例を示す図である。It is a figure which shows the 1st example of the high frequency electromagnetic wave signal generator which embodies this invention. 金属性の電界緩和用の金属シールドの取り付けを説明する図である。It is a figure explaining attachment of the metallic shield for metallic electric field relaxation. 図1に示す高周波電磁波信号発生装置に電圧を印加したときに発生する放射電磁波スペクトルを示すグラフである。It is a graph which shows the radiation electromagnetic wave spectrum which generate | occur | produces when a voltage is applied to the high frequency electromagnetic wave signal generator shown in FIG. 本発明を具体化する高周波電磁波信号発生装置の第2の例を示す図である。It is a figure which shows the 2nd example of the high frequency electromagnetic wave signal generator which embodies this invention. 固体絶縁物に穴を開けて測定した放射電磁波スペクトルを示すグラフである。It is a graph which shows the radiation electromagnetic wave spectrum measured by making a hole in the solid insulator. 固体絶縁物に傷を付けたときの放射電磁波スペクトルを示すグラフである。It is a graph which shows a radiation electromagnetic wave spectrum when a solid insulator is damaged. 本発明を具体化する高周波電磁波信号発生装置の第3の例を示す図である。It is a figure which shows the 3rd example of the high frequency electromagnetic wave signal generator which embodies this invention. 固体絶縁物の穴の中に、金属異物を入れた状態で測定した放射電磁波スペクトルを示すグラフである。It is a graph which shows the radiation electromagnetic wave spectrum measured in the state which put the metal foreign material in the hole of a solid insulator. 比較例1を説明する図である。It is a figure explaining the comparative example 1. FIG. 比較例2を説明する図である。It is a figure explaining the comparative example 2. FIG. 比較例2に示す構成により測定した放射電磁波スペクトルを示すグラフである。6 is a graph showing a radiated electromagnetic wave spectrum measured by the configuration shown in Comparative Example 2.

Claims (12)

一対の対向する第1及び第2の電極の間に気中絶縁部と固体絶縁物を備え、かつ、この気中絶縁部と固体絶縁物の間にフローティング金属部を備えて、前記一対の電極間に電源電圧を印加して、VHF帯からSHF帯までの主にUHF帯域を中心とする高周波電磁波信号を発生させる高周波電磁波信号発生方法。 An air insulating part and a solid insulator are provided between a pair of opposed first and second electrodes, and a floating metal part is provided between the air insulating part and the solid insulator, and the pair of electrodes A high frequency electromagnetic wave signal generation method for generating a high frequency electromagnetic wave signal mainly in the UHF band from the VHF band to the SHF band by applying a power supply voltage therebetween. 第1の電極の上に固体絶縁物を載置し、かつ、該固体絶縁物の上に前記フローティング金属部を載置して、前記気中絶縁部を該フローティング金属部と第2の電極の間の空気ギャップにより構成した請求項1に記載の高周波電磁波信号発生方法。 A solid insulator is placed on the first electrode, and the floating metal portion is placed on the solid insulator, and the air insulation portion is placed between the floating metal portion and the second electrode. The high frequency electromagnetic wave signal generation method according to claim 1 constituted by an air gap between them. 電圧分担用のコンデンサ或いは抵抗を用いて、第1及び第2の電極間に印加される電圧を分割して、この分割電圧を前記フローティング金属部に印加する請求項2に記載の高周波電磁波信号発生方法。 3. The high frequency electromagnetic wave signal generation according to claim 2, wherein a voltage applied between the first and second electrodes is divided using a voltage sharing capacitor or resistor, and the divided voltage is applied to the floating metal part. Method. 一対の対向する第1及び第2の電極の間に気中絶縁部と固体絶縁物を備え、かつ、この気中絶縁部と固体絶縁物の間にフローティング金属部を備えて、前記一対の電極間に電源電圧を印加して、VHF帯からSHF帯までの主にUHF帯域を中心とする高周波電磁波信号を発生させる高周波電磁波信号発生装置。 An air insulating part and a solid insulator are provided between a pair of opposed first and second electrodes, and a floating metal part is provided between the air insulating part and the solid insulator, and the pair of electrodes A high-frequency electromagnetic wave signal generator for generating a high-frequency electromagnetic wave signal mainly in the UHF band from the VHF band to the SHF band by applying a power supply voltage therebetween. 第1の電極の上に固体絶縁物を載置し、かつ、該固体絶縁物の上に前記フローティング金属部を載置して、前記気中絶縁部を該フローティング金属部と第2の電極の間の空気ギャップにより構成した請求項4に記載の高周波電磁波信号発生装置。 A solid insulator is placed on the first electrode, and the floating metal portion is placed on the solid insulator, and the air insulation portion is placed between the floating metal portion and the second electrode. The high frequency electromagnetic wave signal generator of Claim 4 comprised by the air gap between. 電圧分担用のコンデンサ或いは抵抗を用いて、第1及び第2の電極間に印加される電圧を分割して、この分割電圧を前記フローティング金属部に印加する請求項5に記載の高周波電磁波信号発生装置。 6. The high frequency electromagnetic wave signal generation according to claim 5, wherein the voltage applied between the first and second electrodes is divided using a voltage sharing capacitor or resistor, and the divided voltage is applied to the floating metal part. apparatus. 前記フローティング金属部は、前記固体絶縁物に固定するか、あるいは自由に動けるように構成した請求項6に記載の高周波電磁波信号発生装置。 The high-frequency electromagnetic wave signal generator according to claim 6, wherein the floating metal part is fixed to the solid insulator or configured to move freely. 第1及び第2の電極のいずれか一方を接地し、かつ他方に電源電圧を印加する請求項6に記載の高周波電磁波信号発生装置。 The high frequency electromagnetic wave signal generator of Claim 6 which earth | grounds any one of a 1st and 2nd electrode, and applies a power supply voltage to the other. 前記固体絶縁物には、前記フローティング金属部の直下に穴を開けたり、傷を付け、又は電気絶縁的に劣化したものを用い、或いはこの直下の穴の中に金属異物を入れた請求項6に記載の高周波電磁波信号発生装置。 7. The solid insulator is one that has a hole directly under the floating metal portion, is scratched, or is deteriorated in electrical insulation, or a metal foreign object is put in the hole immediately below. The high frequency electromagnetic wave signal generator described in 1. 第1の電極は、平板状構成にし、かつ、第2の電極は、棒状、柱状或いは筒状形状に構成した請求項6に記載の高周波電磁波信号発生装置。 The high frequency electromagnetic wave signal generator according to claim 6, wherein the first electrode has a flat plate configuration, and the second electrode has a rod shape, a column shape, or a cylindrical shape. 第2の電極の先端部に、一つあるいは複数の針や棒を含む突起物を付けたり、あるいは表面に凹凸を付けた請求項10に記載の高周波電磁波信号発生装置。 The high frequency electromagnetic wave signal generator of Claim 10 which attached the protrusion which contains a 1 or several needle | hook and a stick | rod to the front-end | tip part of the 2nd electrode, or provided the unevenness | corrugation on the surface. 第2の電極は、電極表面を平滑にし、或いは緩和リングを取り付けた請求項10に記載の高周波電磁波信号発生装置。 The high-frequency electromagnetic wave signal generation device according to claim 10, wherein the second electrode has a surface smoothed or attached with a relaxation ring.
JP2008011700A 2008-01-22 2008-01-22 High frequency electromagnetic wave signal generation method and apparatus Expired - Fee Related JP5145525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011700A JP5145525B2 (en) 2008-01-22 2008-01-22 High frequency electromagnetic wave signal generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011700A JP5145525B2 (en) 2008-01-22 2008-01-22 High frequency electromagnetic wave signal generation method and apparatus

Publications (2)

Publication Number Publication Date
JP2009174914A true JP2009174914A (en) 2009-08-06
JP5145525B2 JP5145525B2 (en) 2013-02-20

Family

ID=41030170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011700A Expired - Fee Related JP5145525B2 (en) 2008-01-22 2008-01-22 High frequency electromagnetic wave signal generation method and apparatus

Country Status (1)

Country Link
JP (1) JP5145525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740405A (en) * 2021-09-06 2021-12-03 西南交通大学 Device and method for measuring ion concentration on surface of electrode under action of direct current electric field

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466586U (en) * 1990-10-19 1992-06-11
JPH09178789A (en) * 1995-12-27 1997-07-11 Mitsubishi Electric Corp Detector and detecting method
JPH11271385A (en) * 1998-03-23 1999-10-08 Kansai Electric Power Co Inc:The Method for diagnosing partial discharge state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466586U (en) * 1990-10-19 1992-06-11
JPH09178789A (en) * 1995-12-27 1997-07-11 Mitsubishi Electric Corp Detector and detecting method
JPH11271385A (en) * 1998-03-23 1999-10-08 Kansai Electric Power Co Inc:The Method for diagnosing partial discharge state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740405A (en) * 2021-09-06 2021-12-03 西南交通大学 Device and method for measuring ion concentration on surface of electrode under action of direct current electric field

Also Published As

Publication number Publication date
JP5145525B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
Metwally Status review on partial discharge measurement techniques in gas-insulated switchgear/lines
Sarathi et al. Understanding the partial discharge activity generated due to particle movement in a composite insulation under AC voltages
JP4470157B2 (en) Partial discharge measurement method and apparatus
Ueta et al. Insulation performance of three types of micro-defects in inner epoxy insulators
AU2007216846B2 (en) Apparatus and method for identifying the presence of high conductivity or permitivity conditions in electically insulating materials
Reid et al. Ultra-wide bandwidth measurement of partial discharge current pulses in SF6
Beroual et al. Influence of the voltage waveform and hydrostatic pressure on morphology and final length of discharges propagating over solid-liquid interfaces
Mason Discharge detection and measurements
Ji et al. Partial discharge occurrence induced by crack defect on GIS insulator operated at 1100 kV
Chen et al. Partial discharge detection by RF coil in 161 kV power transformer
Othman et al. Charge distribution measurement of solid insulator materials: A review and new approach
Itose et al. Partial discharge detection by TEV sensors and signal propagation analysis in transformer model
JP5145525B2 (en) High frequency electromagnetic wave signal generation method and apparatus
JP2009168489A (en) Insulation monitoring apparatus and insulation diagnosis method
Kunicki et al. Correlation analysis of partial discharge measurement results
JP2011237235A (en) Partial discharge detector of electric power apparatus
Azmi et al. Comparison of partial discharge behavior in mineral oil and PFAE under influence of spherical metal particle
Yoshizumi et al. Grounding effect on transient earth voltage signal induced by partial discharge in metal box model
Li et al. Partial discharge Characteristics of Submillimeter Metal Particles on the insulator surface in GIS with long-time AC stress
Sharma et al. Simulation model of partial discharge in power equipment
Ren et al. Partial discharge measurement and analysis at standard oscillating switching and lightning impulses on a GIS with artificial protrusion defects
Yao et al. Measurement and analysis of partial discharge on floating electrode defect in GIS
Rao et al. Ultra-high frequency (UHF) based partial discharge measurement in gas insulated switchgear (GIS)
Shen et al. Preliminary study on partial discharge detection technology for HV switch cabinets, part 2: acousto-optic and electromagnetic composite sensing
Arumugam et al. Application of UHF-based partial discharge detection and analysis of tar-polluted insulator of a wet ESP unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

R150 Certificate of patent or registration of utility model

Ref document number: 5145525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees