JP2009174888A - Diaphragm type pressure sensor - Google Patents

Diaphragm type pressure sensor Download PDF

Info

Publication number
JP2009174888A
JP2009174888A JP2008011116A JP2008011116A JP2009174888A JP 2009174888 A JP2009174888 A JP 2009174888A JP 2008011116 A JP2008011116 A JP 2008011116A JP 2008011116 A JP2008011116 A JP 2008011116A JP 2009174888 A JP2009174888 A JP 2009174888A
Authority
JP
Japan
Prior art keywords
pressure
chamber
housing
pressure sensor
receiving film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011116A
Other languages
Japanese (ja)
Other versions
JP4468996B2 (en
Inventor
Yukio Honmo
行雄 本望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALTO ASSOCIATES KK
GIJUTSU KAIHATSU SOGO KENKYUSH
GIJUTSU KAIHATSU SOGO KENKYUSHO KK
Original Assignee
ALTO ASSOCIATES KK
GIJUTSU KAIHATSU SOGO KENKYUSH
GIJUTSU KAIHATSU SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALTO ASSOCIATES KK, GIJUTSU KAIHATSU SOGO KENKYUSH, GIJUTSU KAIHATSU SOGO KENKYUSHO KK filed Critical ALTO ASSOCIATES KK
Priority to JP2008011116A priority Critical patent/JP4468996B2/en
Priority to KR1020080096552A priority patent/KR101016495B1/en
Publication of JP2009174888A publication Critical patent/JP2009174888A/en
Application granted granted Critical
Publication of JP4468996B2 publication Critical patent/JP4468996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/04Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges in the form of flexible, deformable tubes, e.g. Bourdon gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0046Fluidic connecting means using isolation membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/022Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges constructional details, e.g. mounting of elastically-deformable gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diaphragm type pressure sensor having excellent response performance, a small measurement error, and a constitution capable of using a thin pressure-receiving film. <P>SOLUTION: In this diaphragm type pressure sensor, the inside of a housing 1 is partitioned into the first chamber 31 and the second chamber 32 by the pressure receiving film 30, and a pressure transfer medium is filled in the first chamber 31, and a pressure sensor 9 capable of measuring a pressure of the pressure transfer medium is mounted in the first chamber 31, and a pressure of a measuring object fluid is supplied into the second chamber 32, and the pressure of the pressure transfer medium in the first chamber 31 changing by displacement of the pressure receiving film 30 is detected by the pressure sensor 9, to thereby measure the pressure of a measuring object fluid. In the sensor, the thickness of the pressure receiving film 30 is 0.2 mm or less, and each shape of an inner wall 31A of the first chamber 31 in the housing and an inner wall 32A of the second chamber 32 is formed approximately coincidently with a shape acquired when the pressure receiving film 30 is deformed maximumly, and a plurality of pores 33 are provided in the inner wall 31A of the first chamber linking to the pressure sensor 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は圧力計測分野に属し、ブルドン管式圧力計や電気式圧力センサ等の市販の圧力センサを、酸やアルカリ性流体での適応、コンタミを嫌う分野、金属イオン溶出を嫌う分野での適応を可能としたもので、機械、化学、電気(半導体)、食品等々、極めて、多岐に渡る隔膜式圧力センサに関する。   The present invention belongs to the field of pressure measurement, and is suitable for use in commercially available pressure sensors such as Bourdon tube pressure gauges and electrical pressure sensors in fields where acid and alkaline fluids are not used, in areas where contamination is abolished, and where metal ions are not eluted. The present invention relates to a wide variety of diaphragm type pressure sensors, such as machinery, chemistry, electricity (semiconductor), food, etc.

一般に、ハウジング内を受圧膜によって第一室と第二室とに仕切り、前記第一室には圧力伝達媒体を充填すると共に、該第一室には圧力伝達媒体の圧力を計測可能に圧力センサを取り付け、前記第二室には計測対象流体の圧力を供給し、前記受圧膜の変位により変化する圧力伝達媒体の圧力を前記圧力センサで検出して計測対象流体の圧力を計測可能とした隔膜式圧力センサが知られている。
この種の隔膜式圧力センサで、硫酸や塩酸、あるいはアンモニア等の腐食性流体の圧力計測を行う場合には、受圧膜等の接液部に耐食性を有するハステロイ(登録商標)Cやタンタル等の特殊な金属を使用し、あるいは、金属イオンの溶出やコンタミを嫌う半導体工業関係等では、受圧膜にテフロン(登録商標)等の樹脂を使用したものが提案されている(例えば、特許文献1参照)。
特開2006−275702
In general, the housing is partitioned into a first chamber and a second chamber by a pressure receiving membrane, and the first chamber is filled with a pressure transmission medium, and the pressure sensor can measure the pressure of the pressure transmission medium in the first chamber. A diaphragm capable of measuring the pressure of the fluid to be measured by supplying the pressure of the fluid to be measured to the second chamber and detecting the pressure of the pressure transmission medium that changes due to the displacement of the pressure receiving membrane with the pressure sensor. A type pressure sensor is known.
When measuring pressure of corrosive fluids such as sulfuric acid, hydrochloric acid, or ammonia with this type of diaphragm type pressure sensor, Hastelloy (registered trademark) C, tantalum or the like having corrosion resistance in the wetted part such as the pressure receiving membrane is used. In the semiconductor industry or the like that uses special metals or dislikes elution and contamination of metal ions, a material using a resin such as Teflon (registered trademark) as a pressure receiving film has been proposed (for example, see Patent Document 1). ).
JP 2006-275702 A

しかし、従来の構成では、受圧膜の厚さtが強度的に「t≧0.5mm」と厚いため、その質量が大きくなり応答性能に劣る問題があった。
また、ハウジングを第一室側の第一ハウジングと第二室側の第二ハウジングとに分割して構成した場合には、第一ハウジングおよび第二ハウジングの各合わせ面の間に、シール部材として、例えばOリングを介装しなければならず、従来、これが隔膜式圧力センサの小型化を阻む要因となっていた。
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、厚さが薄い受圧膜を使用できる構成を備えると共に、応答性能に優れ、計測誤差の少ない隔膜式圧力センサを提供することにある。
また、ハウジングを第一、第二ハウジングに分割して構成した場合に、各ハウジングの合わせ面間にOリング等を改装することなく、合わせ面をシールできる隔膜式圧力センサを提供することにある。
However, in the conventional configuration, since the thickness t of the pressure receiving film is high in strength, “t ≧ 0.5 mm”, there is a problem that the mass is increased and the response performance is poor.
Further, when the housing is divided into a first housing on the first chamber side and a second housing on the second chamber side, a sealing member is provided between the mating surfaces of the first housing and the second housing. For example, an O-ring must be interposed, and this has been a factor that hinders the downsizing of the diaphragm type pressure sensor.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a diaphragm type pressure sensor that eliminates the problems of the conventional techniques described above, has a configuration that can use a thin pressure receiving membrane, has excellent response performance, and has little measurement error. There is.
It is another object of the present invention to provide a diaphragm type pressure sensor that can seal a mating surface without refurbishing an O-ring between the mating surfaces of each housing when the housing is divided into first and second housings. .

本発明は、ハウジング内を受圧膜によって第一室と第二室とに仕切り、前記第一室には圧力伝達媒体を充填すると共に、該第一室には圧力伝達媒体の圧力を計測可能に圧力センサを取り付け、前記第二室には計測対象流体の圧力を供給し、前記受圧膜の変位により変化する第一室内の圧力伝達媒体の圧力を前記圧力センサで検出して計測対象流体の圧力を計測可能とした隔膜式圧力センサにおいて、前記受圧膜の厚さを0.2mm以下とすると共に、前記ハウジングの第一室の内壁、および第二室の内壁の形状を、前記受圧膜が最大変形したときの形状と略一致させ、前記圧力センサに通じる前記第一室の内壁には複数の細孔を設けたことを特徴とする。   In the present invention, the interior of the housing is divided into a first chamber and a second chamber by a pressure receiving membrane, the first chamber is filled with a pressure transmission medium, and the pressure of the pressure transmission medium can be measured in the first chamber. A pressure sensor is attached, the pressure of the fluid to be measured is supplied to the second chamber, and the pressure of the pressure transmission medium in the first chamber, which changes due to the displacement of the pressure receiving film, is detected by the pressure sensor. In the diaphragm type pressure sensor, the thickness of the pressure receiving membrane is 0.2 mm or less, and the shape of the inner wall of the first chamber and the inner wall of the second chamber of the housing is maximized. A plurality of pores are provided in the inner wall of the first chamber that substantially matches the shape when deformed and communicates with the pressure sensor.

本発明では、ハウジングの第一室の内壁、および第二室の内壁の形状を、受圧膜が最大変形したときの形状と略一致させたため、仮に計測対象流体の圧力が過大で、その圧力が受圧膜に付与されて、該受圧膜が最大変形したとしても、受圧膜は第一室の内壁面に均等に当接するため、受圧膜への応力集中はなく、該膜圧を0.2mm以下と薄くしても破損せず、強度的に耐え得るものとなる。
また、第一室の内壁には圧力センサに通じる複数の細孔を有するため、仮に、受圧膜が最大変形して、該受圧膜が第一室の内壁に当接しても、該受圧膜には細孔に対応する部分にのみ圧力が加わる。従って、第一室の内壁に圧力センサに通じる大きな孔をあけたものと比較して、受圧膜に加わる圧力が減少し、該膜圧を0.2mm以下と薄くしても破損せず、強度的に耐え得るものとなる。
In the present invention, since the shape of the inner wall of the first chamber of the housing and the shape of the inner wall of the second chamber are substantially matched with the shape when the pressure receiving membrane is deformed to the maximum, the pressure of the fluid to be measured is excessively large, Even if the pressure receiving film is applied to the pressure receiving film and the pressure receiving film is maximally deformed, the pressure receiving film uniformly contacts the inner wall surface of the first chamber, so there is no stress concentration on the pressure receiving film, and the film pressure is 0.2 mm or less. Even if it is thin, it will not be damaged, and it will be durable.
In addition, since the inner wall of the first chamber has a plurality of pores that communicate with the pressure sensor, even if the pressure receiving membrane is deformed to the maximum and the pressure receiving membrane contacts the inner wall of the first chamber, the pressure receiving membrane The pressure is applied only to the portion corresponding to the pores. Therefore, the pressure applied to the pressure-receiving membrane is reduced compared to a case where a large hole leading to the pressure sensor is formed in the inner wall of the first chamber, and even if the membrane pressure is reduced to 0.2 mm or less, the pressure does not break. Can endure.

前記受圧膜が前記内壁の形状と略同一形状に塑性変形し、前記第二室に予め変形した状態で支持されていてもよい。
また、前記ハウジングを第一室側の第一ハウジングと第二室側の第二ハウジングとに分割して構成し、第一ハウジングおよび第二ハウジングの一方の合わせ面に断面略楔形状の突起を形成し、他方の合わせ面には該突起が嵌まる断面略楔形状の溝を形成し、これら突起および溝間に前記受圧膜の周縁部を挟持してもよい。
さらに、前記第二ハウジングを耐食性に優れる樹脂材料で形成すると共に、前記第一ハウジングを該樹脂材料よりも硬度の高い材料で形成し、第一ハウジングに前記突起を形成し、第二ハウジングに前記溝を形成してもよい。
前記受圧膜が樹脂薄膜により金属薄膜、樹脂製のシール剤、あるいは耐液性を有したグリースのいずれかをサンドイッチして構成されていてもよい。
The pressure-receiving film may be plastically deformed to have substantially the same shape as the inner wall, and may be supported in a state of being deformed in advance in the second chamber.
The housing is divided into a first housing on the first chamber side and a second housing on the second chamber side, and a projection having a substantially wedge-shaped cross section is formed on one mating surface of the first housing and the second housing. It is also possible to form a groove having a substantially wedge-shaped cross section into which the protrusion fits, and sandwich the peripheral edge of the pressure receiving film between the protrusion and the groove.
Furthermore, the second housing is formed of a resin material having excellent corrosion resistance, the first housing is formed of a material having a higher hardness than the resin material, the protrusion is formed on the first housing, and the second housing is A groove may be formed.
The pressure receiving film may be configured by sandwiching any one of a metal thin film, a resin sealant, and a liquid-resistant grease by a resin thin film.

本発明は、ハウジングの第一室の内壁、および第二室の内壁の形状を、受圧膜が最大変形したときの形状と略一致させたため、仮に計測対象流体の圧力が過大で、その圧力が受圧膜に付与されて、該受圧膜が最大変形したとしても、受圧膜は第一室の内壁面に均等に当接するため、受圧膜への応力集中はなく、該膜圧を0.2mm以下と薄くしても破損せず、強度的に耐え得るものとなる。
また、第一室の内壁には圧力センサに通じる複数の細孔を有するため、仮に、受圧膜が最大変形して、該受圧膜が第一室の内壁に当接しても、該受圧膜には細孔に対応する部分にのみ圧力が加わる。従って、第一室の内壁に圧力センサに通じる大きな孔をあけたものと比較して、受圧膜に加わる圧力が減少し、該膜圧を0.2mm以下と薄くしても破損せず、強度的に耐え得るものとなる。
In the present invention, since the shape of the inner wall of the first chamber of the housing and the shape of the inner wall of the second chamber are substantially matched with the shape when the pressure receiving film is deformed to the maximum, the pressure of the fluid to be measured is excessively large and the pressure is Even if the pressure receiving film is applied to the pressure receiving film and the pressure receiving film is maximally deformed, the pressure receiving film uniformly contacts the inner wall surface of the first chamber, so there is no stress concentration on the pressure receiving film, and the film pressure is 0.2 mm or less. Even if it is thin, it will not be damaged, and it will be durable.
In addition, since the inner wall of the first chamber has a plurality of pores that communicate with the pressure sensor, even if the pressure receiving membrane is deformed to the maximum and the pressure receiving membrane contacts the inner wall of the first chamber, the pressure receiving membrane The pressure is applied only to the portion corresponding to the pores. Therefore, the pressure applied to the pressure-receiving membrane is reduced compared to a case where a large hole leading to the pressure sensor is formed in the inner wall of the first chamber, and even if the membrane pressure is reduced to 0.2 mm or less, the pressure does not break. Can endure.

以下、本発明の一実施の形態を添付の図面を参照して説明する。
図1Aにおいて、1はハウジングを示し、このハウジング1は、上部ハウジング(第一ハウジング)3と下部ハウジング5(第二ハウジング)とに分割して構成される。
上部ハウジング3の上部には取り付け孔7が設けられ、取り付け孔7には市販のブルドン管式の圧力センサ9が螺合される。また、上部ハウジング3の両側部には充填孔11およびニードル弁孔13が同一軸線上に設けられ、ニードル弁孔13にはOリングでシールした状態でニードル弁体15が軸方向に進退自在に嵌合し、ニードル弁体15の先端15Aは充填孔11の内端11Aを閉塞自在である。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
In FIG. 1A, 1 shows a housing, and this housing 1 is divided into an upper housing (first housing) 3 and a lower housing 5 (second housing).
A mounting hole 7 is provided in the upper portion of the upper housing 3, and a commercially available Bourdon tube type pressure sensor 9 is screwed into the mounting hole 7. Further, a filling hole 11 and a needle valve hole 13 are provided on both sides of the upper housing 3 on the same axis, and the needle valve body 15 can be moved forward and backward in the axial direction while being sealed with an O-ring in the needle valve hole 13. The tip 15A of the needle valve body 15 can be freely closed with the inner end 11A of the filling hole 11.

上部ハウジング3の下部には合わせ面3Aが設けられ、合わせ面3Aには下部ハウジング5の合わせ面5Aが当接し、上部ハウジング3と下部ハウジング5とは複数のボルト17(図1B)で締結されている。下部ハウジング5はテフロン樹脂製であり、上部ハウジング3は、テフロン樹脂よりも硬度の大きい材質(例えば、PBT、POMやPPS樹脂等や、金属)製である。
上部ハウジング3の合わせ面3Aには、図2に示すように、内周側に一段高くなった合わせ面3Bが設けられ、該合わせ面3Bには、断面略楔形状の突起21が環状に形成されている。下部ハウジング5の合わせ面5Aには、上記合わせ面3Bに対応して内周側に一段低くなった合わせ面5Bが設けられ、該合わせ面5Bには、突起21が嵌まり合う断面略楔形状の溝23が環状に形成されている。
下部ハウジング5の下部には接続孔25が設けられ、接続孔25には管(図示せず)が接続され、該管を通じて計測対象流体が供給される。
A mating surface 3A is provided at the lower part of the upper housing 3, and the mating surface 5A of the lower housing 5 abuts on the mating surface 3A. The upper housing 3 and the lower housing 5 are fastened by a plurality of bolts 17 (FIG. 1B). ing. The lower housing 5 is made of Teflon resin, and the upper housing 3 is made of a material (for example, PBT, POM, PPS resin, or metal) having a hardness higher than that of Teflon resin.
As shown in FIG. 2, the mating surface 3 </ b> A of the upper housing 3 is provided with a mating surface 3 </ b> B that is one step higher on the inner peripheral side, and a protrusion 21 having a substantially wedge-shaped cross section is formed on the mating surface 3 </ b> B in an annular shape. Has been. The mating surface 5A of the lower housing 5 is provided with a mating surface 5B that is one step lower on the inner peripheral side corresponding to the mating surface 3B, and the mating surface 5B has a substantially wedge-shaped cross section in which the protrusion 21 fits. The groove 23 is formed in an annular shape.
A connection hole 25 is provided in the lower part of the lower housing 5, and a pipe (not shown) is connected to the connection hole 25, and a measurement target fluid is supplied through the pipe.

受圧膜30は、図1に示すように、ハウジング1の内部を第一室31と第二室32とに仕切っており、第一室31および第二室32のそれぞれの容積は受圧膜30の変位によって変化する。受圧膜30は、図2に示すように、中央部30Aが、受圧膜30の最大変形時の形状まで、第二室32側に予め塑性変形しており、平板状の周縁部30Bが、図1に示すように、合わせ面3A,3B,5A,5B、および突起21と溝23間に挟持され、これによって、上部ハウジング3および下部ハウジング5間に支持されている。この場合、受圧膜30が合わせ面3A,3B,5A,5B間をシールするため、Oリング等のシール部材が不要になる。溝23のV字のなす角度を、突起21のV字のなす角度よりも大きく設定し、締結時の受圧膜30の破損を防止している。   As shown in FIG. 1, the pressure receiving membrane 30 divides the interior of the housing 1 into a first chamber 31 and a second chamber 32, and the volumes of the first chamber 31 and the second chamber 32 are the same as those of the pressure receiving membrane 30. It changes with displacement. As shown in FIG. 2, the pressure receiving membrane 30 is plastically deformed in advance to the second chamber 32 side until the central portion 30A reaches the shape at the time of maximum deformation of the pressure receiving membrane 30, and the flat peripheral portion 30B is shown in FIG. 1, the mating surfaces 3 </ b> A, 3 </ b> B, 5 </ b> A, 5 </ b> B, and the protrusions 21 and the grooves 23 are held between the upper housing 3 and the lower housing 5. In this case, since the pressure receiving film 30 seals between the mating surfaces 3A, 3B, 5A, 5B, a seal member such as an O-ring is not necessary. The angle formed by the V shape of the groove 23 is set to be larger than the angle formed by the V shape of the protrusion 21 to prevent the pressure receiving film 30 from being damaged during fastening.

受圧膜30は、接液部側の受圧膜材質として、例えば、テフロン系樹脂を用い、圧力センサ9側の受圧膜材質として、金やタンタル、チタン、SUS316等の金属箔を用い、その上に、PTFEや、FEP、PFA、FTFE樹脂等の薄膜を配置し、2種類以上の受圧膜材料でサンドイッチ構成され、その厚さtは「t≦0.2mm」と薄く形成されている。受圧膜30はサンドイッチ構造に限定されず、樹脂薄膜によって樹脂製のシール剤(例えばニチアス株式会社製のNAFKON PASTE)、テフロンと同等の耐液性を有したグリース(例えばダイキン工業株式会社製のDAIFLO GREASE)等をサンドイッチしてもよい。受圧膜30を、テフロン系の樹脂薄膜のみで構成した場合には、測定対象流体が通過する可能性を有するが、本構成では金属薄膜、樹脂製のシール剤、あるいは耐液性を有したグリースのいずれかをサンドイッチして構成するため、測定対象流体の通過率を低減でき、安全計測が可能になる。   The pressure receiving film 30 uses, for example, a Teflon-based resin as a pressure receiving film material on the liquid contact portion side, and uses a metal foil such as gold, tantalum, titanium, SUS316, etc. as a pressure receiving film material on the pressure sensor 9 side. A thin film of PTFE, FEP, PFA, FTFE resin or the like is disposed and sandwiched by two or more pressure-receiving film materials, and the thickness t is thinly formed as “t ≦ 0.2 mm”. The pressure-receiving membrane 30 is not limited to a sandwich structure, but is a resin sealant (for example, NAFKON PASTE manufactured by NICHIAS CORPORATION) or grease having liquid resistance equivalent to that of Teflon (for example, DAIFLO manufactured by Daikin Industries, Ltd.). GREASE) or the like may be sandwiched. When the pressure receiving film 30 is composed only of a Teflon-based resin thin film, there is a possibility that a fluid to be measured passes through. However, in this structure, a metal thin film, a resin sealant, or a liquid-resistant grease Since any one of the above is sandwiched, the passage rate of the fluid to be measured can be reduced, and safe measurement can be performed.

ハウジング1の第一室31の内壁31A、および第二室31の内壁32Aの形状は、受圧膜30が最大変形したときの形状(例えば、カテナリー曲線の形状)と略一致するよう形成されている。第一室31の内壁31Aには、第一室31と取り付け孔7とを連通する複数の細孔33(「径d1≦2mm」)が形成され、細孔33は、図3に示すように、取り付け孔7の孔径の範囲内に密に形成される。
また、第二室31の内壁32Aには、第二室31と接続孔25とを連通する細孔34(「径d2≦1mm」)が形成される。
The shapes of the inner wall 31A of the first chamber 31 and the inner wall 32A of the second chamber 31 of the housing 1 are formed so as to substantially coincide with the shape (for example, the shape of the catenary curve) when the pressure receiving membrane 30 is deformed to the maximum. . A plurality of pores 33 (“diameter d1 ≦ 2 mm”) communicating the first chamber 31 and the mounting hole 7 are formed in the inner wall 31A of the first chamber 31, and the pores 33 are formed as shown in FIG. The mounting hole 7 is densely formed within the range of the hole diameter.
The inner wall 32A of the second chamber 31 is formed with a pore 34 (“diameter d2 ≦ 1 mm”) that allows the second chamber 31 and the connection hole 25 to communicate with each other.

図1Aを参照し、上部ハウジング3と下部ハウジング5との間に受圧膜30を挟み、ハウジング3,5間を締結した後、上部ハウジング3の取り付け孔7に圧力センサ9を連結する。ついで、ニードル弁体15を後退し、充填孔11、取り付け孔7、および第一室31を連通した後に、充填孔11を通じて第一室31内にシリコーン・オイル等の圧力伝達媒体を充填する。充填時には、充填孔11から「真空、充填、真空、充填…」の反復作用を行い、液中の気泡を排除して充填を行う。充填後は、ニードル弁体15を前進し、該ニードル弁体15の先端15Aで、充填孔11の内端11Aを閉塞する。そして、充填孔11に閉塞プラグ(図示せず)を螺合する。
ブルドン管式の圧力センサ9は、外部振動や脈動計測に弱く、定期的に交換されることが多い。このような場合、圧力伝達媒体を真空充填し直さなければならないが、従来、充填孔はそのまま開放していたため、充填完了後、プラグを締め付ける際に、圧力伝達媒体の液体中に、空気が再混入し、また、プラグ捻じ込みの際に、内部加圧を生じて、ゼロ点調整の作業がし難かった。
本構成では、ニードル弁体15で、充填孔11の内端11Aを閉塞した後に、充填孔11を閉塞プラグで閉塞するため、閉塞プラグ締結時の空気混入、内部加圧を防止でき、高度な調整を実現できる。
Referring to FIG. 1A, a pressure receiving film 30 is sandwiched between the upper housing 3 and the lower housing 5, and the housings 3 and 5 are fastened, and then the pressure sensor 9 is connected to the mounting hole 7 of the upper housing 3. Next, the needle valve body 15 is retracted, and the filling hole 11, the attachment hole 7, and the first chamber 31 are communicated, and then the first chamber 31 is filled with a pressure transmission medium such as silicone oil through the filling hole 11. At the time of filling, the repetitive action of “vacuum, filling, vacuum, filling,...” Is performed from the filling hole 11 to eliminate the bubbles in the liquid and perform filling. After the filling, the needle valve body 15 is advanced, and the inner end 11A of the filling hole 11 is closed with the tip 15A of the needle valve body 15. Then, a closing plug (not shown) is screwed into the filling hole 11.
The Bourdon tube pressure sensor 9 is vulnerable to external vibration and pulsation measurement, and is often replaced periodically. In such a case, the pressure transmission medium has to be refilled with vacuum, but conventionally, the filling hole has been opened as it is, so that when the plug is tightened after filling is completed, air is re-applied in the liquid of the pressure transmission medium. In addition, internal pressure was generated when the plug was screwed in, making it difficult to adjust the zero point.
In this configuration, the needle valve body 15 closes the inner end 11A of the filling hole 11 and then closes the filling hole 11 with the closing plug, so that air mixing and internal pressurization when the closing plug is fastened can be prevented. Adjustment can be realized.

上記受圧膜30を形成する場合、例えば組立時に塑性変形すればよい。この場合、上記のようにサンドイッチ構成した平板状の「1〜複数枚の薄膜」からなる受圧膜の素材を準備し、この平板状の受圧膜を、上部ハウジング3と下部ハウジング5との間に挟み込み、下部ハウジング5の接続孔25より、任意の圧力を負荷させて放置する。これにより、受圧膜の中央部を、上部ハウジング3の内壁31Aに設けた「受圧膜が変形する最大変形状態のカテナリー曲線形状」に密着させて、過大圧力で塑性変形する。この構成では、カテナリー曲線形状を簡単に形成できる。   When the pressure receiving film 30 is formed, it may be plastically deformed at the time of assembly, for example. In this case, a material for a pressure-receiving film composed of flat plate “one or more thin films” sandwiched as described above is prepared, and this flat plate-shaped pressure receiving film is placed between the upper housing 3 and the lower housing 5. An arbitrary pressure is applied through the connection hole 25 of the lower housing 5 and left to stand. Thus, the central portion of the pressure receiving film is brought into close contact with the “maximum deformed catenary curve shape in which the pressure receiving film is deformed” provided on the inner wall 31 </ b> A of the upper housing 3, and plastically deforms due to excessive pressure. In this configuration, a catenary curve shape can be easily formed.

隔膜式圧力センサでは、圧力伝達媒体(充填液体)が、圧力センサ9と圧力平衡状態にある場合に、例え、その圧力が100MPaという過大圧力状態であっても、鉄筋コンクリート壁に押し付けられた「紙」のように、受圧膜30の厚さtが1μmであっても破損することはない。このような考えで、受圧膜30として、「t≦0.2mm」の膜を使用した。このような従来を越える薄い受圧膜30の適用により、質量の削減による運動エネルギー軽減が図れ、圧力計測の応答性能が大幅に向上し、その結果、応答性能に優れる電気式のトランスデューサーの適用を可能とした。
受圧膜30の運動エネルギーEは、その質量をm、速度をVとすると、E=mV2/2で表される。圧力を受ける有効面積をA、受圧膜の厚さをt、受圧膜材質の比重量をγとすると、E=(A・t)γ・V2/2で表される。
作動圧力(≒誤差圧力)を一定とすると、圧力を受ける有効面積Aの小型化は困難である。一方の厚さtについては、市販のテフロン・ゴム(FPM)製ダイアフラムの厚さ「t=0.5mm」を、例えば「t=0.1mm」とすれば、応答性能を、凡そ「0.5/0.1=5」倍向上できる。
In the diaphragm type pressure sensor, when the pressure transmission medium (filled liquid) is in a pressure equilibrium state with the pressure sensor 9, even if the pressure is an excessive pressure state of 100 MPa, the “paper” pressed against the reinforced concrete wall As described above, even if the thickness t of the pressure receiving film 30 is 1 μm, it is not damaged. In view of this, a film of “t ≦ 0.2 mm” was used as the pressure receiving film 30. The application of such a thin pressure-receiving film 30 exceeding the conventional one can reduce the kinetic energy by reducing the mass and greatly improve the response performance of pressure measurement. As a result, the application of an electric transducer with excellent response performance can be achieved. It was possible.
Kinetic energy E of the pressure receiving membrane 30, when the mass m, velocity is V, represented by E = mV 2/2. When the effective area for receiving the pressure A, the thickness of the pressure-receiving membrane t, and the specific weight of the pressure-receiving membrane material gamma, represented by E = (A · t) γ · V 2/2.
If the operating pressure (≈error pressure) is constant, it is difficult to reduce the effective area A that receives the pressure. On the other hand, regarding the thickness t, if the thickness “t = 0.5 mm” of a commercially available diaphragm made of Teflon rubber (FPM) is, for example, “t = 0.1 mm”, the response performance is approximately “0. 5 / 0.1 = 5 ”times.

また、過大圧力が負荷された場合でも、受圧膜が破損しないように、第一室31の内壁31Aの形状を、受圧膜30が最大変形したときの形状(例えば、カテナリー曲線の形状)と略一致させた。そのため、過大圧力が付与されて、受圧膜30が最大変形した場合には、第一室31の内壁31Aに均等に当接する。要するに、過大圧力が受圧膜に負荷された場合でも、内壁31Aに保持・密着され、受圧膜30への応力集中がなく、「t≦0.2mm」の薄い受圧膜でも膜が破損しない。
受圧膜30を支持するハウジングにおいて、圧力センサ9と受圧膜30との間を連通する流路を、複数個の細孔33としたため、過大圧力が負荷されても、該受圧膜30には細孔33に対応する部分にのみ圧力が加わる。
細孔33の内径を、例えば1μmとした場合、1MPaの過大圧力時に、該細孔33に負荷される力Fは、F≒π・10(kg/cm2)(1/10000)2/4≒7.9×10-2mgと、受圧膜30には微小な力しか作用しない。従って、第一室31の内壁31Aに圧力センサ9に通じる大きな孔をあけたものと比較して、「t≦0.2mm」の薄い受圧膜でも破損せず、安全に計測可能とした。第一室31の内壁31Aの細孔33が、「径d1≦2mm」であるため、「t≦0.2mm」の薄い受圧膜30に、例えば10MPa以上の過大圧力が負荷されても膜が破損しない。
Further, the shape of the inner wall 31A of the first chamber 31 is substantially the same as the shape when the pressure receiving membrane 30 is deformed to the maximum (for example, the shape of a catenary curve) so that the pressure receiving membrane is not damaged even when an excessive pressure is applied. Matched. Therefore, when an excessive pressure is applied and the pressure receiving film 30 is deformed to the maximum extent, the pressure receiving film 30 contacts the inner wall 31A of the first chamber 31 evenly. In short, even when an excessive pressure is applied to the pressure receiving membrane, it is held and adhered to the inner wall 31A, there is no stress concentration on the pressure receiving membrane 30, and even a thin pressure receiving membrane with “t ≦ 0.2 mm” does not break.
In the housing that supports the pressure receiving membrane 30, the flow path that communicates between the pressure sensor 9 and the pressure receiving membrane 30 has a plurality of pores 33, so that even if an excessive pressure is applied, the pressure receiving membrane 30 is thin. Pressure is applied only to the portion corresponding to the hole 33.
When the inner diameter of the pore 33 is, for example, 1 μm, the force F applied to the pore 33 at an excessive pressure of 1 MPa is F≈π · 10 (kg / cm 2 ) (1/10000) 2/4. Only a very small force acts on the pressure receiving film 30 as ≈7.9 × 10 −2 mg. Therefore, as compared with a case where a large hole leading to the pressure sensor 9 is formed in the inner wall 31A of the first chamber 31, even a thin pressure receiving film of “t ≦ 0.2 mm” is not damaged and can be measured safely. Since the pore 33 of the inner wall 31A of the first chamber 31 has a “diameter d1 ≦ 2 mm”, the membrane is formed even when an excessive pressure of, for example, 10 MPa or more is applied to the thin pressure-receiving membrane 30 of “t ≦ 0.2 mm”. Does not break.

接液部である下部ハウジング5に、テフロン系材料を用いると共に、非接液部である上部ハウジング3には、強度的に強い材料を用い、しかも、剛性が高い上部ハウジング3の合わせ面に突起21を設けたことで、両ハウジング3,5の締結時には、上部ハウジング3のV字形状の突起21が、受圧膜30を介して、下部ハウジング5のV字形状の溝23に食い込み、漏洩のない確実なシールを機能させて、Oリング等のシール材を不要にして、計測器の小型化が図られる。
また、テフロンやポリエチレン等の樹脂製受圧膜30は、気体を透過するため、長時間、受圧膜30に圧力を負荷させていると、受圧膜30を介して圧力伝達媒体(充填液体)に、負荷気体が溶出し、負荷圧力がゼロとなっても、溶出気体の圧力により、圧力センサ9のゼロ点が移動する恐れがある。
本構成では、受圧膜30においては、接液側にテフロン系薄膜を使用し、圧力センサ9側には芯材として、例えば金、タンタル、チタン、SUS316等の金属箔を配置し、更には、その上に、テフロン系薄膜を配置してサンドイッチ構造としたため、計測対象流体として例えば気体が、接液側のテフロン系薄膜を浸透しても、芯材により阻止され、それが第一室31に至ることがない。
A Teflon-based material is used for the lower housing 5 that is a wetted part, and a strong material is used for the upper housing 3 that is not a wetted part. 21 is provided, the V-shaped protrusion 21 of the upper housing 3 bites into the V-shaped groove 23 of the lower housing 5 via the pressure receiving film 30 when both the housings 3 and 5 are fastened. A reliable seal is made to function, eliminating the need for a sealing material such as an O-ring, and reducing the size of the measuring instrument.
In addition, since the resin pressure-receiving membrane 30 such as Teflon or polyethylene is permeable to gas, if pressure is applied to the pressure-receiving membrane 30 for a long time, the pressure transmission medium (filling liquid) passes through the pressure-receiving membrane 30. Even if the load gas is eluted and the load pressure becomes zero, the zero point of the pressure sensor 9 may move due to the pressure of the eluted gas.
In this configuration, in the pressure receiving film 30, a Teflon-based thin film is used on the liquid contact side, and a metal foil such as gold, tantalum, titanium, SUS316, or the like is disposed on the pressure sensor 9 side as a core material. In addition, since a Teflon-based thin film is disposed to form a sandwich structure, even if, for example, a gas as a measurement target fluid penetrates the Teflon-based thin film on the liquid contact side, it is blocked by the core material. It wo n’t happen.

圧力センサ9が、容積変化の大きい「ブルドン管式圧力計」である場合、受圧膜30が平板であれば、受圧膜30の外径を大きくせざるを得ない。
この構成では、受圧膜30の中央部30Aが、該受圧膜30の最大変形時の形状まで、第二室32側に予め塑性変形し、計測対象流体の圧力が付加された場合には、第一室31側に反転し変位するため、平板状の膜と比較して、受圧膜30の外径を大きくすることなく、大きい容積変化を実現できる。
When the pressure sensor 9 is a “Bourdon tube pressure gauge” having a large volume change, if the pressure receiving film 30 is a flat plate, the outer diameter of the pressure receiving film 30 must be increased.
In this configuration, when the central portion 30A of the pressure receiving film 30 is plastically deformed in advance to the second chamber 32 side to the shape at the time of maximum deformation of the pressure receiving film 30, and the pressure of the fluid to be measured is applied, Since it is reversed and displaced toward the one chamber 31 side, a large volume change can be realized without increasing the outer diameter of the pressure receiving membrane 30 compared to the flat membrane.

図4において、横軸は、圧力センサ9をハウジング1に装着し、圧力を負荷したときの圧力センサ9の計測値を示し、縦軸は、圧力センサ9をハウジング1に装着せずに、直接、圧力を負荷したときの圧力センサ9の計測値を示す。このハウジング1に設けた受圧膜30の厚さtは、「t=0.1mm」である。図5から明らかなように、両者の相関係数Rは「R2=1」と完全一致し、比例常数は、「0.9997」と、0.003の差異があるが、この差異は、圧力センサ9の精度から個体差と考えられるため、ハウジング1装着による誤差は「ゼロ」であった。 In FIG. 4, the horizontal axis indicates the measured value of the pressure sensor 9 when the pressure sensor 9 is mounted on the housing 1 and a pressure is applied, and the vertical axis indicates that the pressure sensor 9 is not directly mounted on the housing 1. The measured value of the pressure sensor 9 when a pressure is applied is shown. The thickness t of the pressure receiving film 30 provided in the housing 1 is “t = 0.1 mm”. As is clear from FIG. 5, the correlation coefficient R between the two is completely in agreement with “R 2 = 1”, and the proportionality constant is “0.9997”, which is a difference of 0.003. Since the accuracy of the pressure sensor 9 is considered to be an individual difference, the error due to the mounting of the housing 1 was “zero”.

図5は、別の実施の形態を示す。なお、図5において、図1と同一部分には同一符号を付して示し、その説明を省略する。厚さ「t≦0.2mm」の受圧膜30を適用し、応答性能をよくした結果、図5に示すように、圧力センサに、応答性能に優れる脈動計測可能な電気式圧力センサ「電気式トランスデューサー」9Aを用いることが可能となった。応答性能重視の場合は、計測部位に連通する流路36の内径d2が、「d2≧8mm」に形成される。また、細孔33の内径d1が、「d1≧2mm」に形成される。脈動やウォーター・ハンマー現象に弱いブルドン管式の圧力センサ9を使用した場合、圧力センサ9が破損する恐れがある。そこで、脈動平滑化のため、細孔34の径が、「d2≦1mm」に絞られ、脈動抑制が図られる。計測部の細孔34を「d2≦1mm」とすることにより、脈動圧力の平均圧力計測を可能とし、ウォーター・ハンマー現象時でも、圧力計の損傷を回避して、高精度・高耐久性能を実現できた。この結果、径d2の異なる2種類の下部ハウジング5を用いることにより、ブルドン管式の圧力センサを含む、市販のあらゆる圧力センサの適用が可能となった。   FIG. 5 shows another embodiment. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. As a result of applying the pressure receiving film 30 having a thickness of “t ≦ 0.2 mm” and improving the response performance, as shown in FIG. 5, as shown in FIG. It became possible to use a "transducer" 9A. When the response performance is emphasized, the inner diameter d2 of the flow path 36 communicating with the measurement site is formed so that “d2 ≧ 8 mm”. Further, the inner diameter d1 of the pore 33 is formed as “d1 ≧ 2 mm”. When the Bourdon tube type pressure sensor 9 which is weak against pulsation and water hammer phenomenon is used, the pressure sensor 9 may be damaged. Therefore, for smoothing the pulsation, the diameter of the pore 34 is reduced to “d2 ≦ 1 mm” to suppress the pulsation. By setting the pore 34 of the measurement part to “d2 ≦ 1 mm”, it is possible to measure the average pressure of the pulsation pressure, avoiding damage to the pressure gauge even at the time of water hammer phenomenon, high accuracy and high durability performance Realized. As a result, by using two types of lower housings 5 having different diameters d2, all commercially available pressure sensors including a Bourdon tube type pressure sensor can be applied.

Aは、本発明の一実施の形態を示す断面図、Bは底面図である。A is a cross-sectional view showing an embodiment of the present invention, and B is a bottom view. ハウジングの断面図である。It is sectional drawing of a housing. 上部ハウジングの底面図である。It is a bottom view of an upper housing. 隔膜式圧力センサの計測精度を示す図である。It is a figure which shows the measurement precision of a diaphragm type pressure sensor. Aは、本発明の別実施の形態を示す断面図、Bは底面図である。A is a cross-sectional view showing another embodiment of the present invention, and B is a bottom view.

符号の説明Explanation of symbols

1 ハウジング
3 上部ハウジング(第一ハウジング)
5 下部ハウジング(第二ハウジング)
9 圧力センサ
11 充填孔
13 ニードル弁孔
15 ニードル弁体
21 突起
23 溝
30 受圧膜
31 第一室
32 第二室
1 Housing 3 Upper housing (first housing)
5 Lower housing (second housing)
9 Pressure sensor 11 Filling hole 13 Needle valve hole 15 Needle valve element 21 Protrusion 23 Groove 30 Pressure receiving film 31 First chamber 32 Second chamber

Claims (5)

ハウジング内を受圧膜によって第一室と第二室とに仕切り、前記第一室には圧力伝達媒体を充填すると共に、該第一室には圧力伝達媒体の圧力を計測可能に圧力センサを取り付け、前記第二室には計測対象流体の圧力を供給し、前記受圧膜の変位により変化する第一室内の圧力伝達媒体の圧力を前記圧力センサで検出して計測対象流体の圧力を計測可能とした隔膜式圧力センサにおいて、
前記受圧膜の厚さを0.2mm以下とすると共に、
前記ハウジングの第一室の内壁、および第二室の内壁の形状を、前記受圧膜が最大変形したときの形状と略一致させ、
前記圧力センサに通じる前記第一室の内壁には複数の細孔を設けたことを特徴とする隔膜式圧力センサ。
The housing is divided into a first chamber and a second chamber by a pressure receiving membrane, and the first chamber is filled with a pressure transmission medium, and a pressure sensor is attached to the first chamber so that the pressure of the pressure transmission medium can be measured. The pressure of the fluid to be measured can be measured by supplying the pressure of the fluid to be measured to the second chamber and detecting the pressure of the pressure transmission medium in the first chamber, which changes due to the displacement of the pressure receiving film, by the pressure sensor. In the diaphragm type pressure sensor
While the thickness of the pressure receiving film is 0.2 mm or less,
The shape of the inner wall of the first chamber of the housing and the shape of the inner wall of the second chamber are substantially matched with the shape when the pressure receiving membrane is deformed to the maximum extent,
A diaphragm type pressure sensor, wherein a plurality of pores are provided in an inner wall of the first chamber communicating with the pressure sensor.
前記受圧膜が前記内壁の形状と略同一形状に塑性変形し、
前記第二室側に予め変形した状態で支持されていることを特徴とする請求項1に記載の隔膜式圧力センサ。
The pressure-receiving film is plastically deformed to substantially the same shape as the inner wall;
The diaphragm type pressure sensor according to claim 1, wherein the diaphragm type pressure sensor is supported in a deformed state in advance on the second chamber side.
前記ハウジングを第一室側の第一ハウジングと第二室側の第二ハウジングとに分割して構成し、第一ハウジングおよび第二ハウジングの一方の合わせ面に断面略楔形状の突起を形成し、他方の合わせ面には該突起が嵌まる断面略楔形状の溝を形成し、これら突起および溝間に前記受圧膜の周縁部を挟持したことを特徴とする請求項1または2に記載の隔膜式圧力センサ。   The housing is divided into a first housing on the first chamber side and a second housing on the second chamber side, and a projection having a substantially wedge-shaped cross section is formed on one mating surface of the first housing and the second housing. 3. The groove according to claim 1, wherein a groove having a substantially wedge-shaped cross-section into which the protrusion fits is formed on the other mating surface, and a peripheral edge of the pressure-receiving film is sandwiched between the protrusion and the groove. Diaphragm pressure sensor. 前記第二ハウジングを耐食性に優れる樹脂材料で形成すると共に、
前記第一ハウジングを該樹脂材料よりも硬度の高い材料で形成し、
第一ハウジングに前記突起を形成し、第二ハウジングに前記溝を形成したことを特徴とする請求項3に記載の隔膜式圧力センサ。
While forming the second housing with a resin material having excellent corrosion resistance,
Forming the first housing with a material having a higher hardness than the resin material;
The diaphragm type pressure sensor according to claim 3, wherein the protrusion is formed in the first housing and the groove is formed in the second housing.
前記受圧膜が樹脂薄膜により金属薄膜、樹脂製のシール剤、あるいは耐液性を有したグリースのいずれかをサンドイッチして構成されていることを特徴とする請求項1ないし4のいずれかに記載の隔膜式圧力センサ。   5. The pressure receiving film according to any one of claims 1 to 4, wherein the pressure receiving film is configured by sandwiching any one of a metal thin film, a resin sealant, and a liquid-resistant grease with a resin thin film. Diaphragm type pressure sensor.
JP2008011116A 2008-01-22 2008-01-22 Diaphragm pressure sensor Expired - Fee Related JP4468996B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008011116A JP4468996B2 (en) 2008-01-22 2008-01-22 Diaphragm pressure sensor
KR1020080096552A KR101016495B1 (en) 2008-01-22 2008-10-01 Diaphragm pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011116A JP4468996B2 (en) 2008-01-22 2008-01-22 Diaphragm pressure sensor

Publications (2)

Publication Number Publication Date
JP2009174888A true JP2009174888A (en) 2009-08-06
JP4468996B2 JP4468996B2 (en) 2010-05-26

Family

ID=41030148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011116A Expired - Fee Related JP4468996B2 (en) 2008-01-22 2008-01-22 Diaphragm pressure sensor

Country Status (2)

Country Link
JP (1) JP4468996B2 (en)
KR (1) KR101016495B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186576A1 (en) * 2014-06-03 2015-12-10 株式会社日立製作所 Pressure sensor, and blood pressure measurement system or vehicle mounted system provided with same
CN110688721A (en) * 2019-10-14 2020-01-14 重庆大学 Assembly error attribute analysis method for parallel joint plane
JP2020180926A (en) * 2019-04-26 2020-11-05 株式会社鷺宮製作所 Pressure sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200476991Y1 (en) * 2013-10-16 2015-04-22 주식회사 협성히스코 Diaphragm type pressure gauge having pressure leakage cutoff function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09138177A (en) * 1995-11-14 1997-05-27 Yokogawa Electric Corp Pressure reception diaphragm
KR0177910B1 (en) * 1996-09-25 1999-05-15 노관호 A pressure sensor
KR100899557B1 (en) * 2000-03-09 2009-05-27 마이클 패트릭 딕손 Homogeneous or premixed charge auto-ignition engine
US20040077261A1 (en) * 2002-02-11 2004-04-22 Fitzgerald David J. Children's toy waterslide
KR200277528Y1 (en) 2002-02-19 2002-06-05 윤홍태 Gauge Guards with Corrosion Protect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186576A1 (en) * 2014-06-03 2015-12-10 株式会社日立製作所 Pressure sensor, and blood pressure measurement system or vehicle mounted system provided with same
JP2015227856A (en) * 2014-06-03 2015-12-17 株式会社日立製作所 Pressure sensor and blood pressure measuring system with the same or on-vehicle system
JP2020180926A (en) * 2019-04-26 2020-11-05 株式会社鷺宮製作所 Pressure sensor
CN110688721A (en) * 2019-10-14 2020-01-14 重庆大学 Assembly error attribute analysis method for parallel joint plane
CN110688721B (en) * 2019-10-14 2021-03-09 重庆大学 Assembly error transfer attribute analysis method of parallel joint plane

Also Published As

Publication number Publication date
KR20090080884A (en) 2009-07-27
KR101016495B1 (en) 2011-02-24
JP4468996B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
US7624642B2 (en) Differential pressure sensor isolation in a process fluid pressure transmitter
KR102436790B1 (en) pressure sensor
JP6089067B2 (en) Pressure detection and flow control in diffusion bonded planar devices for fluid chromatography
JP4468996B2 (en) Diaphragm pressure sensor
US20200056954A1 (en) Overpressure protection system
JP2013160747A (en) Pressure detector
TW438968B (en) Plastic pressure medium for semiconductor industry
US5022271A (en) Pressure sensing device for pipes
US10345174B2 (en) Device for measuring a pressure in a fluid and pump provided with such a device
US20160033350A1 (en) Fully swept pressure sensor
KR20160086337A (en) Pressure sensor arrangement for detecting a pressure of a fluid medium in a measurement chamber
JP5343837B2 (en) Diaphragm seal type differential pressure measuring device
JPH08313379A (en) Pressure sensor
JP4278569B2 (en) Pressure measuring instrument
CN111157166B (en) Liquid chromatography pump pressure measuring device and pump head
JP2002022589A (en) Anticorrosive diaphragm pressure sensor
US10030775B2 (en) Sealing ring and pressure measuring transducer having at least one such sealing ring
KR20170023836A (en) Pressure sensor for detecting a pressure of a liquid medium in a measuring chamber
JP2013160693A (en) Pressure type level meter
JP2009085931A (en) Pressure sensor
RU2525659C1 (en) Corrosion-resistant small-size pressure sensor
JPS6017720Y2 (en) Differential pressure measuring device
EP2531828B1 (en) Media-isolated measurements of pressurized media
JPH10213504A (en) Pressure sensor
JP2011226354A (en) Diaphragm pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Ref document number: 4468996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160305

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees