JP2009174725A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2009174725A
JP2009174725A JP2008011035A JP2008011035A JP2009174725A JP 2009174725 A JP2009174725 A JP 2009174725A JP 2008011035 A JP2008011035 A JP 2008011035A JP 2008011035 A JP2008011035 A JP 2008011035A JP 2009174725 A JP2009174725 A JP 2009174725A
Authority
JP
Japan
Prior art keywords
air
low oxygen
storage chamber
oxygen concentration
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008011035A
Other languages
Japanese (ja)
Inventor
Atsuko Funayama
敦子 船山
Kuninari Araki
邦成 荒木
Mikio Tanaka
幹夫 田中
Yukihiro Endo
幸広 遠藤
Hideyuki Kimura
秀行 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008011035A priority Critical patent/JP2009174725A/en
Publication of JP2009174725A publication Critical patent/JP2009174725A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of keeping freshness of food for a long period by the air of low concentration of oxygen (air of high concentration of nitrogen), and effectively utilizing the air of high concentration of oxygen or the water produced in separating oxygen. <P>SOLUTION: A pipe for distributing the air of high concentration of oxygen from which oxygen is separated, is connected with a gas separator, and the pipe has openings at both or one of a door side front face and a side face near a door, of the refrigerator, and is disposed to supply the air of high concentration of oxygen to an external space of the refrigerator, or this refrigerator comprises a pipe for supplying the water produced in separating oxygen, to a water diffusing member disposed at a position of comparatively high temperature, inside of the low oxygen storage compartment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は冷蔵庫に係る。   The present invention relates to a refrigerator.

従来の冷蔵庫として、酸素分離膜を利用した気体分離装置を用いて、貯蔵装置に酸素濃度の低くなった空気を供給するものがあった。このように貯蔵装置に酸素濃度の低くなった空気を供給することにより、食品の酸化を抑制して鮮度を保ち長期間保存することができる。   Some conventional refrigerators use a gas separation device using an oxygen separation membrane to supply air having a low oxygen concentration to a storage device. By supplying air with a low oxygen concentration to the storage device in this way, it is possible to suppress the oxidation of the food and keep it fresh for a long period of time.

上記気体分離装置は、空気(酸素濃度約21%,窒素濃度78%,その他約1%)を吸込み、酸素分離膜に対して酸素分子は窒素分子よりも膜に溶け込む速度が速いことを利用して、高濃度酸素の空気と高濃度窒素の空気を作る。このうちの高濃度窒素の空気、すなわち酸素濃度の低くなった空気を供給するものである。   The gas separation device takes in air (oxygen concentration of about 21%, nitrogen concentration of 78%, and other about 1%) and uses the fact that oxygen molecules dissolve faster into the membrane than oxygen molecules in the oxygen separation membrane. Make high-concentration oxygen air and high-concentration nitrogen air. Of these, high-concentration nitrogen air, that is, air with a low oxygen concentration is supplied.

このような酸素分離膜を利用した気体分離装置を用いて、食品の酸化を抑制して鮮度を保ち長期間保存する従来文献としては、次の特許文献が挙げられる。   The following patent documents are listed as conventional literatures that preserve the freshness for a long period of time by suppressing the oxidation of foods using such a gas separation device using an oxygen separation membrane.

特に、特許文献1には、気体分離装置生じた水分を冷蔵庫内の湿度を保つことに利用する旨の文言の記載がある。特許文献2には、容器内が過湿状態のときに容器内から過剰な水分を吸収し、容器内が低湿状態のときに容器内に放出する調湿部材が記載されている。また、特許文献3には、冷蔵庫本体の上部に、居住室内の空気を浄化するフィルタを着脱可能に内蔵した空気清浄機を戴置した開示がある。   In particular, Patent Document 1 includes a statement that the moisture generated in the gas separation device is used to maintain the humidity in the refrigerator. Patent Document 2 describes a humidity control member that absorbs excess moisture from the inside of the container when the inside of the container is in an overhumid state and releases the moisture into the container when the inside of the container is in a low humidity state. Further, Patent Document 3 discloses that an air purifier in which a filter for purifying air in a living room is detachably built in an upper part of a refrigerator main body.

特開2007−40578号公報JP 2007-40578 A 特開2004−360948号公報JP 2004-360948 A 特開2006−23075号公報JP 2006-23075 A

上記特許文献は、いずれも酸素濃度の低くなった空気を用いて食品の酸化を抑制して鮮度を保ち長期間保存することを記載している。しかし、酸素を分離した酸素濃度の高い高酸素濃度空気の有効利用、若しくは、酸素を分離した際に生成された水を具体的且つ効果的に有効利用することが考慮されてないものである。   The above-mentioned patent documents all describe that foods are preserved for a long period of time by maintaining the freshness by suppressing the oxidation of foods using air with a low oxygen concentration. However, the effective use of high oxygen concentration air having a high oxygen concentration from which oxygen has been separated, or the specific and effective use of water generated when oxygen is separated is not considered.

上記課題を解決する為に、本発明の目的は、低濃度酸素の空気(高濃度窒素の空気)による食品の保存性能を充分発揮して、食品の鮮度を従来よりも長い期間保つことができると共に、酸素濃度の高い高酸素濃度空気の有効利用、若しくは、酸素を分離した際に生成された水を効果的に有効利用できる冷蔵庫を提供することにある。   In order to solve the above-mentioned problems, the object of the present invention is to sufficiently exhibit the preservation performance of food by air of low concentration oxygen (air of high concentration nitrogen) and to maintain the freshness of food for a longer period than before. Another object of the present invention is to provide a refrigerator capable of effectively using high oxygen concentration air having a high oxygen concentration or effectively using water generated when oxygen is separated.

本発明は上記目的の、酸素濃度の高い高酸素濃度空気を有効利用する手段としては、複数の貯蔵室に区画された冷蔵庫本体と、空気中の酸素を分離する気体分離装置とを備え、前記貯蔵室の少なくとも一つの貯蔵室が、前記酸素を分離した後の酸素濃度の低くなった空気を導入して内部が低酸素状態になる低酸素貯蔵室であり、気体分離装置は、酸素を分離した酸素濃度の高い高酸素濃度空気を送出するパイプを接続され、この高酸素濃度空気送出パイプが冷蔵庫の扉側前面及び扉近くの側面の両方若しくは一方に開口を有し、冷蔵庫の外部空間に高酸素濃度空気を吹出すように設けられている冷蔵庫とした。   The present invention, as a means for effectively utilizing high oxygen concentration air having a high oxygen concentration for the above purpose, comprises a refrigerator main body partitioned into a plurality of storage chambers, and a gas separation device for separating oxygen in the air, At least one storage chamber of the storage chamber is a low oxygen storage chamber that introduces air with a low oxygen concentration after separating the oxygen and the inside becomes a low oxygen state, and the gas separation device separates oxygen A pipe that sends out high oxygen concentration air with a high oxygen concentration is connected, and this high oxygen concentration air delivery pipe has an opening on both or one of the front side and the side near the door of the refrigerator, It was set as the refrigerator provided so that high oxygen concentration air might be blown out.

係る本発明のより好ましい具体的な構成例は次の通りである。
(1)上記高酸素濃度空気を送出するパイプの開口が、冷蔵庫下端から90cm以上の高さ位置から冷蔵庫本体の上面の範囲に取付けられてなること。
(2)上記高酸素濃度空気を送出するパイプの扉側前面及び扉近くの側面の両方若しくは一方に開口するのを選択する手段を備えたこと。
A more preferable specific configuration example of the present invention is as follows.
(1) The opening of the pipe that sends out the high oxygen concentration air is attached to the upper surface of the refrigerator main body from a height position of 90 cm or more from the lower end of the refrigerator.
(2) Provided with means for selecting opening on both or one of the door-side front surface and the side surface near the door of the pipe that sends out the high oxygen concentration air.

次に、酸素を分離した際に生成された水を有効利用する手段としては、複数の貯蔵室に区画された冷蔵庫本体と、空気中の酸素を分離する気体分離装置とを備え、前記貯蔵室の少なくとも一つの貯蔵室が、前記酸素を分離した後の酸素濃度の低くなった空気を導入して内部が低酸素状態になる低酸素貯蔵室であり、気体分離装置は、酸素を分離した際に生成された水を低酸素貯蔵室内に導くパイプを接続され、低酸素貯蔵室は、その内部の比較的温度の高い位置に水を拡散させるための水拡散部材を備え、この水拡散部材に前記パイプからの水が供給される冷蔵庫とした。   Next, as means for effectively using water generated when oxygen is separated, the storage room includes a refrigerator main body partitioned into a plurality of storage rooms, and a gas separation device for separating oxygen in the air. At least one of the storage chambers is a low oxygen storage chamber that introduces air with a low oxygen concentration after separating the oxygen and the inside becomes a low oxygen state. A pipe that guides the generated water to the low-oxygen storage chamber is connected, and the low-oxygen storage chamber includes a water diffusion member for diffusing water to a relatively high temperature position inside the low-oxygen storage chamber. The refrigerator was supplied with water from the pipe.

かかる構成の本発明の冷蔵庫によれば、低濃度酸素の空気(高濃度窒素の空気)による食品の保存性能を充分発揮して、食品の鮮度を従来よりも長い期間保つことができると共に、酸素濃度の高い高酸素濃度空気の有効利用、若しくは、酸素を分離した際に生成された水を効果的に有効利用できる冷蔵庫を提供することができる。   According to the refrigerator of the present invention configured as described above, the food preservation performance with low-concentration oxygen air (high-concentration nitrogen air) can be sufficiently exerted, and the freshness of the food can be maintained for a longer period of time than before. It is possible to provide a refrigerator that can effectively use high-concentration air having a high concentration, or can effectively use water generated when oxygen is separated.

以下、本発明の一実施形態の冷蔵庫について図を用いて説明する。   Hereinafter, the refrigerator of one Embodiment of this invention is demonstrated using figures.

まず、図1から図3を参照しながら冷蔵庫全体に関して説明する。図1は本実施形態の冷蔵庫の正面図、図2は図1の冷蔵庫の中央縦断面図、図3は図1の冷蔵庫本体の正面図である。   First, the whole refrigerator will be described with reference to FIGS. 1 is a front view of the refrigerator of the present embodiment, FIG. 2 is a central longitudinal sectional view of the refrigerator of FIG. 1, and FIG. 3 is a front view of the refrigerator body of FIG.

冷蔵庫は、冷蔵庫本体1及び扉6〜10を備えて構成されている。冷蔵庫本体1は、鋼板製の外箱11と樹脂製の内箱12との間にウレタン発泡断熱材13及び真空断熱材(図示せず)を有して構成され、上から冷蔵室2,冷凍室3,4,野菜室5の順に複数の貯蔵室を有している。換言すれば、最上段に冷蔵室2が、最下段に野菜室5が、それぞれ区画して配置されており、冷蔵室2と野菜室5との間には、これらの両室と断熱的に仕切られた冷凍室3,4が配設されている。冷蔵室2及び野菜室5は冷蔵温度帯の貯蔵室であり、冷凍室3,4は、0℃以下の冷凍温度帯(例えば、約−20℃〜−18℃の温度帯)の貯蔵室である。なお、冷凍室3は製氷室3aと急冷凍室3bとに区画されている。これらの貯蔵室2〜5は仕切り壁34,35,36により区画されている。   The refrigerator includes a refrigerator body 1 and doors 6 to 10. The refrigerator body 1 includes a urethane foam heat insulating material 13 and a vacuum heat insulating material (not shown) between a steel plate outer box 11 and a resin inner box 12. A plurality of storage rooms are provided in the order of the rooms 3 and 4 and the vegetable room 5. In other words, the refrigerator compartment 2 is arranged at the uppermost stage, and the vegetable compartment 5 is arranged at the lowermost stage, and between the refrigerator compartment 2 and the vegetable compartment 5, the two rooms are insulated from each other. Partitioned freezer compartments 3 and 4 are provided. The refrigerator compartment 2 and the vegetable compartment 5 are storage compartments in a refrigeration temperature zone, and the freezer compartments 3 and 4 are storage compartments in a freezing temperature zone of 0 ° C. or less (for example, a temperature zone of about −20 ° C. to −18 ° C.). is there. The freezer compartment 3 is divided into an ice making chamber 3a and a quick freezer compartment 3b. These storage chambers 2 to 5 are partitioned by partition walls 34, 35, and 36.

冷蔵庫本体1の前面には、貯蔵室2〜5の前面開口部を閉塞する扉6〜10が設けられている。冷蔵室扉6は冷蔵室2の前面開口部を閉塞する扉、製氷室扉7は製氷室3aの前面開口部を閉塞する扉、急冷凍室扉8は急冷凍室3bの前面開口部を閉塞する扉、冷凍室扉9は冷凍室4の前面開口部を閉塞する扉、野菜室扉10は野菜室5の前面開口部を閉塞する扉である。冷蔵室扉6は観音開き式の両開きの扉で構成され、製氷室3a,急冷凍室3b,冷凍室4,野菜室5は、引き出し式の扉によって構成され、引き出し扉とともに貯蔵室内の容器が引き出される。   On the front surface of the refrigerator main body 1, doors 6 to 10 that close the front opening portions of the storage chambers 2 to 5 are provided. The refrigerator compartment door 6 closes the front opening of the refrigerator compartment 2, the ice making compartment door 7 closes the front opening of the ice making compartment 3a, and the quick freezing compartment door 8 closes the front opening of the quick freezing compartment 3b. The freezing room door 9 is a door that closes the front opening of the freezing room 4, and the vegetable room door 10 is a door that closes the front opening of the vegetable room 5. The refrigerator compartment door 6 is constituted by a double door with double doors, and the ice making chamber 3a, the quick freezing compartment 3b, the freezing compartment 4 and the vegetable compartment 5 are constituted by a drawer type door, and a container in the storage room is pulled out together with the drawer door. It is.

冷蔵庫本体1には、冷凍サイクルが設置されている。この冷凍サイクルは、圧縮機14,凝縮器(図示せず),キャピラリチューブ(図示せず)及び蒸発器15、そして再び圧縮機14の順に接続して構成されている。圧縮機14及び凝縮器は冷蔵庫本体1の背面下部に設けられた機械室に設置されている。蒸発器15は冷凍室3,4の後方に設けられた冷却器室に設置され、この冷却器室における蒸発器15の上方に送風ファン16が設置されている。   The refrigerator body 1 is provided with a refrigeration cycle. This refrigeration cycle is configured by connecting a compressor 14, a condenser (not shown), a capillary tube (not shown) and an evaporator 15, and then the compressor 14 again. The compressor 14 and the condenser are installed in a machine room provided at the lower back of the refrigerator body 1. The evaporator 15 is installed in a cooler room provided behind the freezing rooms 3 and 4, and a blower fan 16 is installed above the evaporator 15 in the cooler room.

蒸発器15によって冷却された冷気は、送風ファン16によって冷蔵室2,製氷室3a,急冷凍室3b,冷凍室4及び野菜室5の各貯蔵室へと送られる。具体的には、送風ファン16によって送られる冷気は、開閉可能なダンパー装置を介して、その一部が冷蔵室2及び野菜室5の冷蔵温度帯の貯蔵室へと送られ、他の一部が製氷室3a,急冷凍室3b及び冷凍室4の冷凍温度帯の貯蔵室へと送られる。   The cold air cooled by the evaporator 15 is sent by the blower fan 16 to the storage rooms of the refrigerator compartment 2, the ice making compartment 3 a, the quick freeze compartment 3 b, the freezer compartment 4 and the vegetable compartment 5. Specifically, a part of the cool air sent by the blower fan 16 is sent to a storage room in the refrigerator temperature zone of the refrigerator room 2 and the vegetable room 5 through a damper device that can be opened and closed, and the other part. Are sent to the ice making room 3a, the quick freezing room 3b, and the freezing room 4 storage room.

送風ファン16によって冷蔵室2,製氷室3a,急冷凍室3b,冷凍室4及び野菜室5の各貯蔵室へと送られる冷気は、各貯蔵室を冷却した後、冷気戻り通路を通って冷却器室へと戻される。このように、本実施形態の冷蔵庫は冷気の循環構造を有しており、各貯蔵室2〜5を適切な温度に維持する。   The cool air sent to the storage rooms of the refrigerator compartment 2, the ice making room 3a, the quick freezing room 3b, the freezing room 4 and the vegetable room 5 by the blower fan 16 is cooled through the cold air return passage after cooling each storage room. Returned to the chamber. Thus, the refrigerator of this embodiment has a cold air circulation structure, and maintains each of the storage chambers 2 to 5 at an appropriate temperature.

冷蔵室2内には、透明な板で構成される複数段の棚17〜20が取り外し可能に設置されている。最下段の棚20は、内箱12の背面及び両側面に接するように設置され、その下方空間である最下段空間21を上方空間と区画している。また、各冷蔵室扉6の内側には複数段の扉ポケット25〜27が設置され、これらの扉ポケット25〜27は冷蔵室扉6が閉じられた状態で冷蔵室2内に突出するように設けられている。   A plurality of shelves 17 to 20 made of transparent plates are detachably installed in the refrigerator compartment 2. The lowermost shelf 20 is installed in contact with the back surface and both side surfaces of the inner box 12, and divides the lowermost space 21, which is the lower space, from the upper space. Further, a plurality of door pockets 25 to 27 are installed inside each refrigerator compartment door 6, and these door pockets 25 to 27 protrude into the refrigerator compartment 2 with the refrigerator compartment door 6 closed. Is provided.

図1から図5に図示の高酸素濃度空気送出パイプ29bは、図5に図示の気体分離装置29で空気中の酸素を分離した酸素濃度の高い高酸素濃度空気を送出するパイプである。気体分離装置29は、酸素を分離した残りの酸素濃度の低い低酸素濃度空気を低酸素貯蔵室24に供給するため導管29aを備えている。   The high oxygen concentration air delivery pipe 29b shown in FIGS. 1 to 5 is a pipe that delivers high oxygen concentration air having a high oxygen concentration obtained by separating oxygen in the air by the gas separation device 29 shown in FIG. The gas separation device 29 includes a conduit 29 a for supplying the remaining low oxygen concentration air having a low oxygen concentration from which oxygen has been separated to the low oxygen storage chamber 24.

次に、図2から図5を参照しながら、冷蔵室2の最下段空間21における機器の配置に関して説明する。図4は図1の冷蔵庫本体の冷蔵室部分の正面図、図5は図4の冷蔵室の最下段空間部分の平面図である。   Next, the arrangement of devices in the lowermost space 21 of the refrigerator compartment 2 will be described with reference to FIGS. 4 is a front view of the refrigerator compartment portion of the refrigerator main body of FIG. 1, and FIG. 5 is a plan view of the lowermost space portion of the refrigerator compartment of FIG.

最下段空間21には、左から順に、製氷室3aの製氷皿に製氷水を供給するための製氷水タンク22,デザートなどの食品を収納するための収納ケース23,室内を低酸素にして食品の鮮度保持及び長期保存するための低酸素貯蔵室24が設置されている。低酸素貯蔵室24は、冷蔵室2の横幅より狭い横幅を有し、冷蔵室2の側面に隣接して配置されている。   In the lowermost space 21, in order from the left, an ice making water tank 22 for supplying ice making water to the ice making tray of the ice making room 3a, a storage case 23 for storing food such as dessert, and the room with low oxygen in the room A low-oxygen storage chamber 24 is installed for maintaining the freshness and long-term storage. The low oxygen storage chamber 24 has a width that is narrower than the width of the refrigerator compartment 2 and is disposed adjacent to the side surface of the refrigerator compartment 2.

このように、低酸素貯蔵室24は、冷蔵庫の冷凍室3,4及び野菜室5の上に配置された冷蔵室2の最下段空間21に配置されているので、使い勝手が良好である。   Thus, since the low oxygen storage room 24 is arrange | positioned in the lowest space 21 of the refrigerator compartment 2 arrange | positioned on the freezer compartments 3 and 4 and the vegetable compartment 5 of a refrigerator, it is convenient.

製氷水タンク22及び収納ケース23は、左側の冷蔵室扉6の後方に配置されている。また、低酸素貯蔵室24は右側の冷蔵室扉6の後方に配置されている。これによって、右側の冷蔵室扉6を開くのみで、低酸素貯蔵室24の食品トレイ60(図6参照)を引き出すことができる。なお、製氷水タンク22及び収納ケース23は左側の冷蔵室扉6の最下段の扉ポケット27の後方に位置することとなり、低酸素貯蔵室24は右側の冷蔵室扉6の最下段の扉ポケット27の後方に位置することとなる。製氷水タンク22の後方には、図5及び図6に示すように、製氷水ポンプ28が設置されている。   The ice making water tank 22 and the storage case 23 are disposed behind the left refrigerator compartment door 6. The low oxygen storage chamber 24 is disposed behind the right refrigeration chamber door 6. Thereby, the food tray 60 (see FIG. 6) of the low oxygen storage chamber 24 can be pulled out only by opening the right refrigerator compartment door 6. The ice-making water tank 22 and the storage case 23 are located behind the lowermost door pocket 27 of the left refrigeration chamber door 6, and the low oxygen storage chamber 24 is the lowermost door pocket of the right refrigeration chamber door 6. 27 is located behind. As shown in FIGS. 5 and 6, an ice making water pump 28 is installed behind the ice making water tank 22.

収納ケース23の後方で且つ低酸素貯蔵室24の後部側方の空間には、図5及び図6に示すように、低酸素貯蔵室24に低酸素濃度空気を供給するための気体分離装置29が配置されている。これによって、気体分離装置29は、低酸素貯蔵室24の側面に設けられた低酸素濃度空気導入口42i(図10参照)に導管29a(図9参照)を容易に接続することができると共に、収納ケース23を取り出すことにより前方から簡単にメンテナンスすることができる。   As shown in FIGS. 5 and 6, a gas separation device 29 for supplying low oxygen concentration air to the low oxygen storage chamber 24 in the space behind the storage case 23 and on the rear side of the low oxygen storage chamber 24. Is arranged. Thus, the gas separation device 29 can easily connect the conduit 29a (see FIG. 9) to the low oxygen concentration air inlet 42i (see FIG. 10) provided on the side surface of the low oxygen storage chamber 24, and By taking out the storage case 23, maintenance can be easily performed from the front.

気体分離装置29は、酸素を分離した酸素濃度の高い高酸素濃度空気を送出するパイプ29bを図5のように接続されている。この高酸素濃度空気送出パイプ29bの先端部分は、図1から図4に図示のとおり、冷蔵庫の扉側前面に開口を有し、冷蔵庫の外部空間に高酸素濃度空気を吹出すように配置されている。冷蔵庫の設置位置がキッチンの作業空間の横方向位置である場合は、高酸素濃度空気送出パイプ29b先端部分の扉近くの側面に開口するようにして、作業者の方向に高酸素濃度空気を吹出すようにする。この開口は、高酸素濃度空気送出パイプ29bの先端部分に扉側前面および扉近くの側面の両方に形成し、いずれか一方の開口を塞いで選択できるようにしてもよい(図示省略)。   The gas separation device 29 is connected to a pipe 29b for delivering high oxygen concentration air having a high oxygen concentration separated from oxygen as shown in FIG. As shown in FIGS. 1 to 4, the tip portion of the high oxygen concentration air delivery pipe 29b has an opening on the front side of the refrigerator door, and is arranged to blow out the high oxygen concentration air to the external space of the refrigerator. ing. When the refrigerator is installed in the horizontal position of the work space of the kitchen, the high oxygen concentration air delivery pipe 29b opens at the side near the door and blows high oxygen concentration air toward the operator. Try to put out. This opening may be formed on the front end portion of the high oxygen concentration air delivery pipe 29b on both the door side front surface and the side surface near the door so that either one of the openings can be closed (not shown).

これにより、キッチンの作業空間で作業者が、調理若しくは食器等を洗っているときに、作業者の吸込む空気が高酸素濃度空気を吹出されていることによって、ガス、その他の燃焼調理機器により酸素濃度が低下するのを抑制されて、快適な酸素濃度の環境で作業が行える。しかも、酸素欠乏の環境での作業による健康上の悪影響を、防止することもできる。また、燃焼調理機器を使用していない場合は、通常の空気の酸素濃度よりも僅かに高い酸素濃度の環境で作業できるので、長時間の作業でも疲れ難く、快適に作業できる効果を得られる。   As a result, when the worker is cooking or washing dishes in the work space of the kitchen, the air sucked by the worker is blown out of high oxygen concentration air, so that oxygen is generated by gas or other combustion cooking equipment. It is possible to work in an environment with a comfortable oxygen concentration by suppressing the decrease in concentration. In addition, adverse health effects caused by working in an oxygen-deficient environment can be prevented. Moreover, when the combustion cooking appliance is not used, the work can be performed in an environment having an oxygen concentration slightly higher than the oxygen concentration of normal air.

本実施例のように冷蔵庫の貯蔵室に対応した気体分離装置29の場合は、高酸素濃度空気の供給量はキッチンの作業空間の空気の量に対して極めて僅かである為、作業者の作業時における頭部方向に高酸素濃度空気を送出するように高酸素濃度空気送出パイプ29bの開口を向けるようにした。具体的には、次のとおりに構成した。
(1)高酸素濃度空気を送出するパイプ29bの開口が、冷蔵庫下端から90cm以上の高さ位置から冷蔵庫本体の上面の範囲に取付けた。
(2)高酸素濃度空気を送出するパイプ29bの扉側前面及び扉近くの側面の両方若しくは一方に開口する(吹出す)のを選択する手段を備えた。
In the case of the gas separation device 29 corresponding to the storage room of the refrigerator as in the present embodiment, the supply amount of the high oxygen concentration air is extremely small relative to the amount of air in the kitchen work space. The opening of the high oxygen concentration air delivery pipe 29b is directed so as to deliver the high oxygen concentration air toward the head at the time. Specifically, it was configured as follows.
(1) The opening of the pipe 29b for sending the high oxygen concentration air was attached to the upper surface of the refrigerator main body from a height position of 90 cm or more from the lower end of the refrigerator.
(2) The pipe 29b for sending high oxygen concentration air is provided with a means for selecting opening (blowing) to both or one of the door side front surface and the side surface near the door.

上記気体分離装置29は一般に知られたものであるが、簡単に説明する。気体分離装置29は、孔のない高分子膜よりなる気体分離膜の空気導出側空間を減圧し、これによって空気導入側から導出側に空気を通過させる。この高分子膜を空気が通過する際に、空気を構成する成分の分子によって、膜を通過し易い気体とし難い気体との通過速度の差を利用して気体を分離するものである。すなわち、高分子膜の特性として、膜に溶解しやすい酸素は窒素に比較して2.2−5倍の速度で膜を通過する。この通過する速度の差によって、酸素濃度の高い空気と酸素濃度の低い空気(窒素濃度の高い空気)とに分離されるものである。   The gas separation device 29 is generally known and will be briefly described. The gas separation device 29 depressurizes the air outlet side space of the gas separation membrane made of a polymer membrane without holes, and thereby allows air to pass from the air inlet side to the outlet side. When air passes through the polymer membrane, the gas is separated by utilizing the difference in passage speed from the gas that is difficult to pass through the membrane by the molecules of the components constituting the air. That is, as a characteristic of the polymer film, oxygen that is easily dissolved in the film passes through the film at a rate of 2.2 to 5 times that of nitrogen. Due to the difference in passing speed, the air is separated into air having a high oxygen concentration and air having a low oxygen concentration (air having a high nitrogen concentration).

この気体分離膜を、用途により酸素分離膜,酸素富化膜,窒素分離膜,窒素富化膜などと称している。この気体分離膜で酸素濃度の高い空気と酸素濃度の低い空気(窒素濃度の高い空気)とに分離する際には、水が生成される。尚、従来はこの水を有効利用することを考慮しておらず、水の生成についてすら記載されているものは少ない。   This gas separation membrane is referred to as an oxygen separation membrane, an oxygen-enriched membrane, a nitrogen separation membrane, a nitrogen-rich membrane, or the like depending on the application. When this gas separation membrane separates into air having a high oxygen concentration and air having a low oxygen concentration (air having a high nitrogen concentration), water is generated. Conventionally, the effective use of this water is not taken into consideration, and there are few things even described about the generation of water.

低酸素濃度空気(窒素濃度の高い空気)を、実施例の貯蔵室に供給した実験結果を説明する。平地における通常空気は、78%の窒素と21%の酸素、その他1%からなる気体である。これに対し実験では、前記通常空気を上記気体分離装置29内を通過させると、67%の窒素と32%の酸素、その他1%からなる酸素濃度の高い空気を取り出せることを確認した。上記実測結果は、気体分離装置29の導出側を−74kPaに減圧した場合である。酸素濃度の高い空気を取り出した後の、低酸素濃度の空気を貯蔵室に供給して、内部の酸素濃度が18%から19%になるまで気体分離装置29を運転した。この実施例を以下のとおり説明する。   An experimental result of supplying low oxygen concentration air (air with high nitrogen concentration) to the storage chamber of the example will be described. Normal air on flat ground is a gas composed of 78% nitrogen, 21% oxygen, and 1%. On the other hand, in the experiment, it was confirmed that when the normal air was passed through the gas separation device 29, 67% nitrogen, 32% oxygen, and 1% other oxygen-rich air could be taken out. The actual measurement results are obtained when the outlet side of the gas separation device 29 is depressurized to -74 kPa. After the air with a high oxygen concentration was taken out, the low oxygen concentration air was supplied to the storage chamber, and the gas separation device 29 was operated until the internal oxygen concentration became 18% to 19%. This embodiment will be described as follows.

まず、図6から図9を参照しながら、低酸素貯蔵室24の基本的な構成及びその冷却方法に関して説明する。図6は図4の冷蔵室の最下段空間部分の断面斜視図、図7は図4の冷蔵室の背面パネルの正面図、図8は図4の冷蔵室の低酸素貯蔵室付近の縦断面図、図9は図4の冷蔵室の低酸素貯蔵室の斜視図である。   First, a basic configuration of the low oxygen storage chamber 24 and a cooling method thereof will be described with reference to FIGS. 6 is a cross-sectional perspective view of the lowermost space portion of the refrigerator compartment of FIG. 4, FIG. 7 is a front view of the rear panel of the refrigerator compartment of FIG. 4, and FIG. FIG. 9 and FIG. 9 are perspective views of the low oxygen storage chamber of the refrigerator compartment of FIG.

低酸素貯蔵室24は、食品出し入れ用開口部を有する箱状の低酸素貯蔵室本体40と、低酸素貯蔵室本体40の食品出し入れ用開口部を開閉する低酸素貯蔵室ドア50と、食品を収納して低酸素貯蔵室ドア50に出し入れする食品トレイ60とを備えて構成されている。低酸素貯蔵室本体40で低酸素貯蔵室ドア50の食品出し入れ用開口部42aを閉じることにより、低酸素貯蔵室ドア50と食品トレイ60とで囲まれた空間が低酸素にされる低酸素濃度空間41として形成される。食品トレイ60は、低酸素貯蔵室ドア50の背面側に取付けられ、低酸素貯蔵室ドア50の移動に伴って前後に移動可能である。   The low oxygen storage chamber 24 includes a box-shaped low oxygen storage chamber main body 40 having an opening for food access, a low oxygen storage chamber door 50 for opening and closing the food access opening of the low oxygen storage chamber main body 40, and food. A food tray 60 that is housed and puts in and out of the low oxygen storage chamber door 50 is provided. The low oxygen concentration at which the space surrounded by the low oxygen storage chamber door 50 and the food tray 60 is reduced to low oxygen by closing the food access opening 42a of the low oxygen storage chamber door 50 with the low oxygen storage chamber main body 40. A space 41 is formed. The food tray 60 is attached to the back side of the low oxygen storage chamber door 50 and can be moved back and forth as the low oxygen storage chamber door 50 moves.

低酸素貯蔵室本体40は、耐薬品性,耐衝撃性及び成形性に優れた樹脂製の外郭42と、透明な強化ガラスで構成されたガラス板43(例えば強化ガラス)と、鋼板などの金属製の補強部材44と、樹脂製のドア係合部材48とを備えて構成されている。前記補強部材44は、図示のとおり側面から底面に連続した絞り成形部を設けて強度を大きくしている。   The low oxygen storage chamber main body 40 is made of a resin outer shell 42 having excellent chemical resistance, impact resistance and moldability, a glass plate 43 (for example, tempered glass) made of transparent tempered glass, and a metal such as a steel plate. A reinforcing member 44 made of resin and a door engaging member 48 made of resin are provided. As shown in the drawing, the reinforcing member 44 is provided with a continuous drawn portion from the side surface to the bottom surface to increase the strength.

外郭42は略直方体の基本形状を有しており、前面に食品出し入れ用開口部42aが形成され、上面にガラス板載置用開口部42bが形成されている。この外郭42を構成する側壁42c,底面部42d及び背壁42eの外面には、外郭42の強度アップを図るために、外郭補強リブ42fが突出して形成されている。   The outer shell 42 has a substantially rectangular parallelepiped basic shape. A food loading / unloading opening 42a is formed on the front surface, and a glass plate mounting opening 42b is formed on the upper surface. On the outer surfaces of the side wall 42c, the bottom surface portion 42d, and the back wall 42e constituting the outer shell 42, outer reinforcing ribs 42f are formed so as to protrude in order to increase the strength of the outer shell 42.

ガラス板43は、ガラス板載置用開口部42bに環状パッキング45を介して気密的に載置され、低酸素貯蔵室本体40の上壁を形成している。このガラス板43は、ガラス板載置用開口部42bとの間に設けるが内側に変形するのを防止する強度を備える。また、透明なガラス板43を外郭42の上面に設けたことにより、低酸素貯蔵室24内を透視することができる。   The glass plate 43 is airtightly placed on the glass plate placement opening 42 b via the annular packing 45, and forms the upper wall of the low oxygen storage chamber body 40. Although this glass plate 43 is provided between the glass plate mounting opening 42b, it has a strength to prevent deformation to the inside. Further, by providing the transparent glass plate 43 on the upper surface of the outer shell 42, the inside of the low oxygen storage chamber 24 can be seen through.

図8及び図15に図示のとおり、金属製の補強部材44は、外郭42の両側壁,底面部及び背壁に沿うように形成されて、樹脂一体成形時,冷蔵庫本体への組み付け時,食品の収納量が多い時などの様々な外力が加わることによる外郭42の両側壁及び底面部及び背壁の変形を防止若しくは抑制している。   As shown in FIGS. 8 and 15, the metal reinforcing member 44 is formed along both side walls, the bottom surface portion, and the back wall of the outer shell 42, and when the resin is integrally molded, when assembled to the refrigerator body, The deformation of both side walls, the bottom surface portion, and the back wall of the outer shell 42 due to the application of various external forces such as when there is a large amount of storage is prevented or suppressed.

低酸素貯蔵室本体40は、食品出し入れ用開口部42aを前面に形成した箱状の樹脂製外郭42と、外郭42の両側壁42c,底面部42d及び背壁42eに沿って延びる金属製の補強部材44を有しているので、外郭42全体を金属板で形成する場合に比較して、大幅に軽量且つ安価な構造とすることができる。また、外郭42を樹脂製にできることにより、取付け構造などを簡略化することができる。   The low-oxygen storage chamber body 40 has a box-shaped resin outer shell 42 with a food access opening 42a formed on the front surface, and a metal reinforcement extending along both side walls 42c, the bottom surface portion 42d and the back wall 42e of the outer shell 42. Since the member 44 is provided, the structure can be significantly lighter and cheaper than the case where the entire outer shell 42 is formed of a metal plate. Further, since the outer shell 42 can be made of resin, the mounting structure and the like can be simplified.

しかも、補強部材44の両側壁と底面部とは円弧状角部から、僅かな円弧形状を有して上方に延びるように形成されている。また、補強部材44の底面部は、両側壁との円弧状角部から、僅かな円弧形状を有して中央部に延びるように形成されている。これによって、両側壁及び底面部の剛性を高め、補強部材の板厚を薄くしても充分な強度を得ることができ、収容量の増大を図ることが出来且つ、補強部材44自体の変形の抑制は勿論のこと、低酸素貯蔵室24の外郭42の上記した変形の抑制効果を大きくしている。   In addition, the side walls and the bottom surface of the reinforcing member 44 are formed so as to extend upward from the arcuate corners with a slight arc shape. Further, the bottom surface portion of the reinforcing member 44 is formed so as to have a slight arc shape and extend to the center portion from the arc corner portion with both side walls. As a result, the rigidity of both side walls and the bottom surface can be increased, sufficient strength can be obtained even if the thickness of the reinforcing member is reduced, the capacity can be increased, and the deformation of the reinforcing member 44 itself can be reduced. In addition to suppression, the above-described deformation suppression effect of the outer shell 42 of the low oxygen storage chamber 24 is increased.

また、補強部材44は、両側壁及び底面部にまたがって左右に延びる凸部44dと、底面部に前後に延びる凸部44eとを備えている。これらの複数種類の凸部44d・44eの組み合わせにより剛性を高め、補強部材44の板厚を薄くしても充分な強度を得ることができる。   The reinforcing member 44 includes a convex portion 44d extending left and right across both side walls and the bottom surface portion, and a convex portion 44e extending front and rear on the bottom surface portion. The combination of the plurality of types of convex portions 44d and 44e increases the rigidity, and a sufficient strength can be obtained even if the plate thickness of the reinforcing member 44 is reduced.

ドア係合部材48は、図9に示すように、食品出し入れ用開口部42aの上面に設置されている。ドア係合部材48は、食品出し入れ用開口部42aの上面に形成された凹部内に収納されるコ字状部48aと、コ字状部48aから前方に延びるドア係止爪部48bとが一体に成形されている。ドア係止爪部48bは、ドアハンドル52の幅と略同じ幅で設けられており、前後位置決め上端部51eに係合されている。低酸素貯蔵室ドア50を開ける場合は、ドアハンドル52を引くとヒンジ部52aを中心に上方に回転して、ドアハンドル52の上部がドア係止爪部48bを押し上げる。これによって、ドア係止爪部48bと前後位置決め上端部51eとの係合が外れる。更にドアハンドル52を引くと、低酸素貯蔵室ドア50を開くことができる。   As shown in FIG. 9, the door engaging member 48 is installed on the upper surface of the food loading / unloading opening 42a. In the door engaging member 48, a U-shaped portion 48a housed in a recess formed on the upper surface of the food loading / unloading opening 42a and a door locking claw portion 48b extending forward from the U-shaped portion 48a are integrated. It is molded into. The door latching claw portion 48b is provided with substantially the same width as the door handle 52, and is engaged with the front / rear positioning upper end 51e. When opening the low oxygen storage chamber door 50, when the door handle 52 is pulled, the door handle 52 rotates upward about the hinge portion 52a, and the upper portion of the door handle 52 pushes up the door locking claw portion 48b. As a result, the engagement between the door locking claw 48b and the front / rear positioning upper end 51e is released. When the door handle 52 is further pulled, the low oxygen storage chamber door 50 can be opened.

冷蔵室2の背面には、送風ファン16から供給された冷気を通す通路を形成する背面パネル30が設けられている。背面パネル30には、冷蔵室2に冷気を供給する冷蔵室冷却用の冷気吐出口(第1の冷気吐出口)31と、冷蔵室2の最下段空間21に冷気を供給する低酸素貯蔵室冷却用の冷気吐出口(第2の冷気吐出口)32と、冷気戻り口33とが設けられている。冷気戻り口33は低酸素貯蔵室24の背面後方で冷蔵室2の側面に近い側に位置して設けられている。   A back panel 30 that forms a passage through which the cool air supplied from the blower fan 16 passes is provided on the back of the refrigerator compartment 2. The rear panel 30 includes a cold air discharge port (first cold air discharge port) 31 for supplying cold air to the cold room 2 and a low oxygen storage chamber for supplying cold air to the lowermost space 21 of the cold room 2. A cooling air discharge port (second cold air discharge port) 32 for cooling and a cold air return port 33 are provided. The cold air return port 33 is provided behind the low oxygen storage chamber 24 on the side close to the side surface of the refrigerator compartment 2.

冷気吐出口32は低酸素貯蔵室24の上面と棚20の下面との隙間に向けて設けられている。冷気吐出口32から吐出された冷気は、低酸素貯蔵室24の上面と棚20の下面との隙間を冷気通路37として流れ、低酸素貯蔵室24を上面から冷却する。従って低酸素貯蔵室24内を間接冷却する。   The cold air discharge port 32 is provided toward the gap between the upper surface of the low oxygen storage chamber 24 and the lower surface of the shelf 20. The cold air discharged from the cold air discharge port 32 flows through the gap between the upper surface of the low oxygen storage chamber 24 and the lower surface of the shelf 20 as a cold air passage 37 to cool the low oxygen storage chamber 24 from the upper surface. Therefore, the inside of the low oxygen storage chamber 24 is indirectly cooled.

ここで、低酸素貯蔵室24を冷蔵室2の右側面に近接して配置して低酸素貯蔵室24の右側の隙間をなくしてあると共に、低酸素貯蔵室24の上面の左端部に図示していない棚(仕切り壁)を設けて低酸素貯蔵室24の左側の隙間をなくしてあるので、冷気吐出口32から吐出された冷気は低酸素貯蔵室24の左右の側方に分流することなく低酸素貯蔵室24の上面を流れる。これによって、低酸素貯蔵室24の上面を冷却する冷気量を増大し、低酸素貯蔵室24内を短時間に冷却することができる。低酸素貯蔵室24の上面を冷却した冷気は、低酸素貯蔵室24の前方から低酸素貯蔵室24の左側面を通って冷気戻り口33に吸込まれ、冷気戻り通路を通って冷却器室へと戻される。冷気戻り口33は低酸素貯蔵室24の背面後方で冷蔵室2の側面に近い側に位置して設けられているので、冷気は低酸素貯蔵室24の背面及び左側面に接触して冷却する。   Here, the low oxygen storage chamber 24 is arranged close to the right side surface of the refrigerator compartment 2 to eliminate the gap on the right side of the low oxygen storage chamber 24, and is illustrated at the left end of the upper surface of the low oxygen storage chamber 24. Since the left-side gap of the low oxygen storage chamber 24 is eliminated by providing a non-shelf (partition wall), the cold air discharged from the cold air discharge port 32 does not flow to the left and right sides of the low oxygen storage chamber 24 It flows over the upper surface of the low oxygen storage chamber 24. Thereby, the amount of cool air for cooling the upper surface of the low oxygen storage chamber 24 can be increased, and the inside of the low oxygen storage chamber 24 can be cooled in a short time. The cold air that has cooled the upper surface of the low oxygen storage chamber 24 is sucked into the cold air return port 33 from the front of the low oxygen storage chamber 24 through the left side surface of the low oxygen storage chamber 24, and passes through the cold air return passage to the cooler chamber. Is returned. Since the cold air return port 33 is provided on the rear side of the low oxygen storage chamber 24 and on the side close to the side surface of the refrigerator compartment 2, the cold air contacts the back surface and the left side surface of the low oxygen storage chamber 24 and cools it. .

このように、低酸素貯蔵室24は冷気が外部を通ることにより間接的に冷却される。なお、冷蔵室2の全体を冷却した冷気も冷気戻り口33に吸込まれる。   In this way, the low oxygen storage chamber 24 is indirectly cooled by the cold air passing outside. The cold air that has cooled the entire refrigerator compartment 2 is also sucked into the cold air return port 33.

次に、図10を参照しながら、外郭42に関して具体的に説明する。図10は図9の外郭42を左上方から見た斜視図である。   Next, the outer shell 42 will be specifically described with reference to FIG. FIG. 10 is a perspective view of the outer shell 42 of FIG. 9 as viewed from the upper left.

外郭42は、上端に組み込み用爪42gと、両側壁42c及び背壁42eに設けた係止用突部42hと、側壁42cに設けた低酸素濃度空気導入口42i及び酸素濃度センサ接続部42jとを有している。この酸素濃度センサ接続部42jの近くに、低酸素貯蔵室内の空気を排出する排出口42kを設けている。   The outer shell 42 includes an insertion claw 42g at the upper end, a locking projection 42h provided on the side walls 42c and the back wall 42e, a low oxygen concentration air inlet 42i and an oxygen concentration sensor connection portion 42j provided on the side wall 42c. have. A discharge port 42k for discharging the air in the low oxygen storage chamber is provided near the oxygen concentration sensor connection portion 42j.

低酸素濃度空気導入口42iは、外郭42の内部と外部とを連通する通路を有し、導管29a(図9参照)を介して気体分離装置29と接続される。この気体分離装置29から低酸素濃度空気導入口42iを通して、外郭42の内部に低酸素濃度空気が供給される。尚、気体分離装置29で通常空気を上記気体分離装置29内を通過させて分離された高酸素濃度の空気(67%の窒素と32%の酸素、その他1%)は、冷蔵室2に排出される。   The low oxygen concentration air inlet 42i has a passage that communicates the inside and the outside of the outer shell 42, and is connected to the gas separation device 29 via a conduit 29a (see FIG. 9). Low oxygen concentration air is supplied into the outer shell 42 from the gas separation device 29 through the low oxygen concentration air inlet 42i. Note that air with high oxygen concentration (67% nitrogen and 32% oxygen, and other 1%) separated by passing normal air through the gas separation device 29 in the gas separation device 29 is discharged to the refrigerator compartment 2. Is done.

冷蔵室2内は、酸素の濃度がわずかに高くなるが、容積が大きいため、低酸素貯蔵室24内が所定の低酸素濃度空気になる時間では、食品の鮮度に悪影響を与える程の酸素濃度に至らない。しかも、酸素濃度に鮮度が影響を受け易いものについては、低酸素貯蔵室24内に収納する冷蔵庫であるため何等問題は無い。   In the refrigerator compartment 2, the oxygen concentration is slightly higher, but the volume is large, so that the oxygen concentration is such that the freshness of the food is adversely affected in the time when the low oxygen storage chamber 24 is at a predetermined low oxygen concentration air. Not reached. In addition, a product whose freshness is easily affected by the oxygen concentration is not a problem because it is a refrigerator housed in the low oxygen storage chamber 24.

前記低酸素濃度空気導入口42iは、外郭42の側壁後部の補強部材44上端よりも高い位置に開口するように設けられている。これにより、低酸素濃度空気導入口42iと補強部材44との間の空隙に低酸素濃度空気が殆ど流れてしまうことを防止し、食品を収納する食品トレイ60の内部に低酸素濃度空気を供給することができる。   The low oxygen concentration air inlet 42i is provided to open at a position higher than the upper end of the reinforcing member 44 at the rear side of the side wall of the outer shell 42. This prevents the low oxygen concentration air from almost flowing into the gap between the low oxygen concentration air inlet 42i and the reinforcing member 44, and supplies the low oxygen concentration air to the inside of the food tray 60 for storing food. can do.

また、運転する時間の経過により排出口42kから排出される空気は徐々に低酸素濃度空気になり、この徐々に低酸素濃度空気になっていく空気を気体分離装置29に吸込んで更に酸素を分離してより低い再び低酸素濃度空気にして外郭42の内部に低酸素濃度空気を供給するため、短時間で所定の低酸素濃度空気にすることができる。   Further, the air discharged from the discharge port 42k gradually becomes low oxygen concentration air as the operation time elapses, and the air that gradually becomes low oxygen concentration air is sucked into the gas separation device 29 to further separate oxygen. As a result, the air is again reduced to a low oxygen concentration air and supplied to the inside of the outer shell 42. Therefore, the predetermined low oxygen concentration air can be obtained in a short time.

しかも、この低酸素濃度空気導入口42iが、低酸素貯蔵室内の空気を排出する排出口42kの高さ位置よりも高い位置に設けられている。これにより、低酸素濃度空気(高窒素濃度空気)と低酸素貯蔵室24内の空気(通常酸素濃度空気)とが混合するのを抑制できる。すなわち、窒素の比重(空気比0.97)が酸素の比重(空気比1.11)より比重が軽いことを考慮した配置としたものである。これによって低酸素貯蔵室24内の上方位置から供給した比重の軽い低酸素濃度空気(高窒素濃度空気)が低酸素貯蔵室24内の上方空間から満たされ、低酸素貯蔵室24内の通常酸素濃度空気若しくは通常酸素濃度に近づいた比重の重い空気が低酸素貯蔵室24内の下方空間に移動し、排出口42kから排出される。   Moreover, the low oxygen concentration air inlet 42i is provided at a position higher than the height of the outlet 42k for discharging the air in the low oxygen storage chamber. Thereby, it can suppress that low oxygen concentration air (high nitrogen concentration air) and the air (normal oxygen concentration air) in the low oxygen storage chamber 24 mix. That is, the arrangement takes into account that the specific gravity of nitrogen (air ratio 0.97) is lighter than the specific gravity of oxygen (air ratio 1.11). As a result, the low oxygen concentration air (high nitrogen concentration air) having a low specific gravity supplied from the upper position in the low oxygen storage chamber 24 is filled from the upper space in the low oxygen storage chamber 24, and normal oxygen in the low oxygen storage chamber 24 is filled. Concentrated air or air having a high specific gravity approaching the normal oxygen concentration moves to a lower space in the low oxygen storage chamber 24 and is discharged from the discharge port 42k.

このように、低酸素貯蔵室24内に供給した低酸素濃度空気(高窒素濃度空気)は、低酸素貯蔵室24内の空気(通常酸素濃度空気)と混合するのを抑制される。若しくは低酸素濃度空気(高窒素濃度空気)が低酸素貯蔵室24内に充満する前に気体分離装置29に吸込まれてしまうことを抑制できる。このことから、貯蔵室内の食品を保存する性能を充分発揮して、食品の鮮度を従来よりも長い期間保つことができる。   Thus, the low oxygen concentration air (high nitrogen concentration air) supplied into the low oxygen storage chamber 24 is suppressed from being mixed with the air (normal oxygen concentration air) in the low oxygen storage chamber 24. Alternatively, it is possible to suppress the low oxygen concentration air (high nitrogen concentration air) from being sucked into the gas separation device 29 before the low oxygen storage chamber 24 is filled. Therefore, the performance of preserving the food in the storage room can be sufficiently exhibited, and the freshness of the food can be maintained for a longer period than before.

更に、本実施例の低酸素貯蔵室24は、低酸素濃度空気導入口42iと低酸素貯蔵室内の空気を排出する排出口42kとを、低酸素貯蔵室における奥側の左側壁面の上方位置と、右側壁面下方位置に別々に設けている。これによって、低酸素濃度空気(高窒素濃度空気)が低酸素貯蔵室24内に充満する前に気体分離装置29に吸込まれてしまうことを抑制している。   Further, the low oxygen storage chamber 24 of the present embodiment includes a low oxygen concentration air introduction port 42i and an exhaust port 42k that discharges air in the low oxygen storage chamber, and a position above the left side wall on the back side in the low oxygen storage chamber. Are provided separately at the lower position on the right side wall surface. As a result, low oxygen concentration air (high nitrogen concentration air) is suppressed from being sucked into the gas separation device 29 before the low oxygen storage chamber 24 is filled.

実施例では、食品トレイ60の側面壁が底面から側面上方向に向かう仕切り部材を構成している。この食品トレイ60の側面壁は、側面壁の後部上端60aが低酸素濃度空気導入口42iよりも低い。これによって、低酸素濃度空気導入口42iから導入される低酸素濃度空気の流入抵抗にならないようにしている。また、食品トレイ60の側面壁の前部上端60bが最も低い構造になっている。この最も低い側面壁の前部上端60bよりも排出口42kの高さ位置が低いので、低酸素濃度空気導入口42iから導入される低酸素濃度空気がこの側面壁の前部上端60bまではスムースに充満する。   In the embodiment, the side wall of the food tray 60 constitutes a partition member that extends in the upward direction from the bottom surface. In the side wall of the food tray 60, the rear upper end 60a of the side wall is lower than the low oxygen concentration air inlet 42i. This prevents the inflow resistance of the low oxygen concentration air introduced from the low oxygen concentration air inlet 42i. The front upper end 60b of the side wall of the food tray 60 has the lowest structure. Since the height of the discharge port 42k is lower than the front upper end 60b of the lowest side wall, the low oxygen concentration air introduced from the low oxygen concentration air introduction port 42i is smooth to the front upper end 60b of the side wall. To charge.

側面壁の前部上端60bまで充満した後は、低酸素濃度空気導入口42iの位置する低酸素貯蔵室24の奥部上方から低酸素濃度空気が供給され、前部下方に位置する排出口42kから気体分離装置29に吸込まれること及び比重の違いも影響して、対角線及び上から下方向への空気の流れが顕著になる。これによって、低酸素貯蔵室24の奥部上方から食品トレイ60の底面まで低酸素濃度空気が満たされるように緩やかに流れて側面壁の前部上端60bを乗り越え、排出口42kから気体分離装置29に吸込まれる循環流が形成される。   After filling up to the front upper end 60b of the side wall, the low oxygen concentration air is supplied from above the low oxygen storage chamber 24 where the low oxygen concentration air introduction port 42i is located, and the discharge port 42k located below the front portion. The air flow from the upper side to the lower side becomes remarkable due to the influence of the suction from the gas to the gas separation device 29 and the difference in specific gravity. As a result, the low oxygen concentration air flows slowly from above the lower portion of the low oxygen storage chamber 24 to the bottom surface of the food tray 60 so as to get over the front upper end 60b of the side wall, and from the outlet 42k to the gas separation device 29. A circulation flow is formed which is sucked into the water.

このように、食品トレイ60の側面壁で構成する仕切り部材の高さが、低酸素濃度空気導入口42iの高さより低く、低酸素貯蔵室内の空気を排出する排出口42kの高さより高い、若しくは、低酸素濃度空気導入口42iに近い位置の高さが、低酸素貯蔵室内の空気を排出する排出口42kに近い位置の高さより高くすると良い。   Thus, the height of the partition member formed by the side wall of the food tray 60 is lower than the height of the low oxygen concentration air introduction port 42i and higher than the height of the discharge port 42k for discharging the air in the low oxygen storage chamber, or The height of the position close to the low oxygen concentration air inlet 42i is preferably higher than the height of the position close to the discharge port 42k for discharging the air in the low oxygen storage chamber.

上記実施例の低酸素貯蔵室24は、低酸素濃度空気導入口42iを左側壁面の上方位置に設けているが、低酸素濃度空気導入口42iと排出口42kとが、低酸素貯蔵室24内の高さ寸法以上離して設けられていれば、低酸素濃度空気導入口42iが排出口42kよりも低い高さであっても良い(図示省略)。特に、実施例の排出口42kは、右側壁面下方位置に設けられているので、低酸素濃度空気導入口42iから導入された低酸素濃度空気(高窒素濃度空気)は、低酸素濃度空気導入口42iの設けられる高さに係わらず、この位置までは満たされる。したがって、低酸素濃度空気(高窒素濃度空気)が低酸素貯蔵室24(食品トレイ60)内に充満する前に、気体分離装置29に殆ど吸込まれてしまうことを抑制できる。   In the low oxygen storage chamber 24 of the above embodiment, the low oxygen concentration air inlet 42i is provided above the left wall surface, but the low oxygen concentration air inlet 42i and the discharge port 42k are provided in the low oxygen storage chamber 24. The low oxygen concentration air introduction port 42i may be lower than the discharge port 42k (not shown) as long as it is separated by at least the height dimension. In particular, since the discharge port 42k of the embodiment is provided at the lower position on the right wall surface, the low oxygen concentration air (high nitrogen concentration air) introduced from the low oxygen concentration air introduction port 42i is the low oxygen concentration air introduction port. This position is satisfied regardless of the height at which 42i is provided. Therefore, before the low oxygen concentration air (high nitrogen concentration air) is filled in the low oxygen storage chamber 24 (food tray 60), it can be suppressed that the gas separation device 29 is almost inhaled.

更に、酸素を分離した後の酸素濃度の低い低酸素濃度空気を導入する低酸素濃度空気導入口42iと、低酸素貯蔵室24内の空気を排出する排出口42kとの間に、低酸素濃度空気導入口42iから前記排出口42kへの空気の流れを抑制する仕切り部材を設けた場合は、低酸素濃度空気導入口42iと排出口42kの高さ位置は、殆ど影響なくなる。特に、低酸素貯蔵室24の天井面から下方に向かって仕切り部材を設けた場合(図示省略)は、低酸素濃度空気(高窒素濃度空気)が低酸素貯蔵室24内の空気(通常酸素濃度空気)よりも比重が軽いため、仕切り部材の下端位置より上方の空間を、低酸素濃度空気(高窒素濃度空気)が充満することになる。   Further, a low oxygen concentration between the low oxygen concentration air inlet 42i for introducing the low oxygen concentration air having a low oxygen concentration after the oxygen is separated and the discharge port 42k for discharging the air in the low oxygen storage chamber 24. When a partition member that suppresses the flow of air from the air inlet 42i to the outlet 42k is provided, the height positions of the low oxygen concentration air inlet 42i and the outlet 42k have almost no effect. In particular, when a partition member is provided downward from the ceiling surface of the low oxygen storage chamber 24 (not shown), the low oxygen concentration air (high nitrogen concentration air) is the air in the low oxygen storage chamber 24 (normal oxygen concentration). Since the specific gravity is lighter than air), the space above the lower end position of the partition member is filled with low oxygen concentration air (high nitrogen concentration air).

この側面壁の前部上端60bよりも排出口42kの高さ位置が低いので、低酸素濃度空気導入口42iを食品トレイ60の側面壁の前部上端60bより低くして良い。これは、低酸素濃度空気(高窒素濃度空気)は比重が軽いため上昇し、低酸素貯蔵室24内上部から充満させることができるからである。但し、排出口42kから気体分離装置29に吸込まれる流量が、低酸素濃度空気導入口42iから低酸素貯蔵室24内に導入される低酸素濃度空気(高窒素濃度空気)の流量より大幅に大きい場合は、低酸素濃度空気導入口42iを食品トレイ60の側面壁の前部上端60bより高くしないと上昇しない低酸素濃度空気(高窒素濃度空気)を一部生じる場合がある。これは、食品トレイ60の外周面と低酸素貯蔵室24の内側との間の隙間空間の大きさが大きい場合に発生する。すなわち、この隙間空間が低酸素濃度空気導入口42iから排出口42kまで連続して大きいと、この隙間空間が低酸素濃度空気導入口42iから排出口42kまでの空気の流路を形成してしまう。   Since the height of the outlet 42k is lower than the front upper end 60b of the side wall, the low oxygen concentration air inlet 42i may be lower than the front upper end 60b of the side wall of the food tray 60. This is because low oxygen concentration air (high nitrogen concentration air) rises due to its low specific gravity and can be filled from the upper part of the low oxygen storage chamber 24. However, the flow rate sucked into the gas separation device 29 from the discharge port 42k is significantly higher than the flow rate of low oxygen concentration air (high nitrogen concentration air) introduced into the low oxygen storage chamber 24 from the low oxygen concentration air introduction port 42i. If it is large, there may be some low oxygen concentration air (high nitrogen concentration air) that does not rise unless the low oxygen concentration air inlet 42i is made higher than the front upper end 60b of the side wall of the food tray 60. This occurs when the size of the gap space between the outer peripheral surface of the food tray 60 and the inside of the low oxygen storage chamber 24 is large. That is, if this gap space is continuously large from the low oxygen concentration air introduction port 42i to the discharge port 42k, this gap space forms an air flow path from the low oxygen concentration air introduction port 42i to the discharge port 42k. .

したがって本実施例は、前記隙間空間を、低酸素濃度空気導入口42iから排出口42kまで連続して大きくしない構造としている。   Accordingly, in this embodiment, the gap space is not continuously increased from the low oxygen concentration air inlet 42i to the outlet 42k.

具体的には、食品トレイ60と低酸素貯蔵室24との間に介在させる補強部材44に、両側壁及び底面部にまたがって左右に延びる凸部44dと、底面部に前後に延びる凸部44eとの少なくとも一方を備えることにより、食品トレイ60の外周面と低酸素貯蔵室24の内側との間に連続する大きな隙間空間が形成されない。   Specifically, the reinforcing member 44 interposed between the food tray 60 and the low oxygen storage chamber 24 is provided with a convex portion 44d extending left and right across both side walls and the bottom surface portion, and a convex portion 44e extending front and rear on the bottom surface portion. The large gap space which continues between the outer peripheral surface of the food tray 60 and the inside of the low oxygen storage chamber 24 is not formed.

このように補強部材44に、両側壁及び底面部にまたがって左右に延びる凸部44dと、底面部に前後に延びる凸部44eの両方を備えた実施例の場合は、低酸素濃度空気導入口42iを設ける高さを、食品トレイ60の側面壁の前部上端60bより低く且つ、排出口42kよりも低くしても低酸素貯蔵室24内に低酸素濃度空気を満たすことができた(図示省略)。   Thus, in the case of the embodiment in which the reinforcing member 44 is provided with both the convex portion 44d extending left and right across both side walls and the bottom surface portion and the convex portion 44e extending front and rear on the bottom surface portion, the low oxygen concentration air inlet port Even if the height for providing 42i is lower than the front upper end 60b of the side wall of the food tray 60 and lower than the discharge port 42k, the low oxygen storage chamber 24 can be filled with low oxygen concentration air (illustration). (Omitted).

尚、上記実施例では、低酸素貯蔵室24内の空気を排出する排出口42kが、気体分離装置29の空気吸込み口に連通するように接続したが、気体分離装置29の空気吸込み口に連通させなくても良い。すなわち、実施例のように低酸素濃度空気導入口42iが、低酸素貯蔵室24内の空気を排出する排出口の高さ位置よりも高い位置で且つ排出口42kから距離的に離れた位置(仕切り部材で実質的に離れているのを含む)に設けられていれば、気体分離装置29の動作中の低酸素濃度空気導入口42iからの比重の軽い低酸素濃度空気の導入によって排出口42kから相対的に比重の重い低酸素貯蔵室24内の空気が押し出される。   In the above embodiment, the discharge port 42k for discharging the air in the low oxygen storage chamber 24 is connected so as to communicate with the air suction port of the gas separation device 29, but it communicates with the air suction port of the gas separation device 29. You don't have to. That is, as in the embodiment, the low oxygen concentration air introduction port 42i is located at a position higher than the height position of the discharge port for discharging the air in the low oxygen storage chamber 24 and at a distance from the discharge port 42k ( If the gas separation device 29 is in operation, the discharge port 42k is introduced by introduction of low oxygen concentration air having a low specific gravity from the low oxygen concentration air introduction port 42i during operation of the gas separation device 29. The air in the low oxygen storage chamber 24 having a relatively high specific gravity is pushed out.

この低酸素濃度空気導入口42iから導入される低酸素濃度空気と、低酸素濃度空気導入口42iより低い位置の排出口42kから押し出される流れ、すなわち高い位置から低い位置への空気の流れが形成されるので、低酸素濃度空気(高窒素濃度空気)が低酸素貯蔵室24内の空気(通常酸素濃度空気)と混合され難く、若しくは低酸素濃度空気(高窒素濃度空気)が貯蔵室内の空気よりも気体分離装置に吸込まれる流れが形成されるのを防止できる。このことから、貯蔵室内の食品を保存する性能を充分発揮して、食品の鮮度を従来よりも長い期間保つことができる。   The low oxygen concentration air introduced from the low oxygen concentration air introduction port 42i and the flow pushed out from the discharge port 42k at a position lower than the low oxygen concentration air introduction port 42i, that is, the flow of air from a high position to a low position are formed. Therefore, the low oxygen concentration air (high nitrogen concentration air) is difficult to be mixed with the air in the low oxygen storage chamber 24 (normal oxygen concentration air), or the low oxygen concentration air (high nitrogen concentration air) is air in the storage chamber. It is possible to prevent the flow sucked into the gas separation device from being formed. Therefore, the performance of preserving the food in the storage room can be sufficiently exhibited, and the freshness of the food can be maintained for a longer period than before.

次に酸素濃度センサ接続部42jは、外郭42の内部と外部とを連通する孔を有し、酸素濃度センサと接続されている。外郭42の内部の圧力は酸素濃度センサ接続部42jを通して酸素濃度センサにより検出される。   Next, the oxygen concentration sensor connecting portion 42j has a hole that communicates the inside and the outside of the outer shell 42, and is connected to the oxygen concentration sensor. The pressure inside the outer shell 42 is detected by the oxygen concentration sensor through the oxygen concentration sensor connecting portion 42j.

次に、図11を参照しながら、ガラス板43に関して具体的に説明する。図11は図9の低酸素貯蔵室本体40の上壁を形成しているガラス板43と環状パッキング45を分解して示す斜視図である。   Next, the glass plate 43 will be specifically described with reference to FIG. 11 is an exploded perspective view showing the glass plate 43 and the annular packing 45 forming the upper wall of the low oxygen storage chamber body 40 of FIG.

ガラス板43は、透明な矩形平板で形成され、充分な剛性及び強度を有するものである。環状パッキング45は、内周面にガラス板43を挿入する凹溝45aを有し、ガラス板43とガラス板載置用開口部42bと間の気密を保持するのに適した弾力性を有している。   The glass plate 43 is formed of a transparent rectangular flat plate and has sufficient rigidity and strength. The annular packing 45 has a concave groove 45a for inserting the glass plate 43 on the inner peripheral surface, and has elasticity suitable for maintaining an airtightness between the glass plate 43 and the glass plate mounting opening 42b. ing.

また、図12に示すように、図10の構成に加えて、低酸素貯蔵室24の内部の比較的温度の高い位置に水を拡散させるための水拡散部材38を配置している。この水拡散部材38に、前記気体分離装置29で酸素を分離した際に生成される水を供給するように、水配管39を設けている(図5・図8・図12参照)。   As shown in FIG. 12, in addition to the configuration of FIG. 10, a water diffusion member 38 for diffusing water is disposed at a relatively high temperature inside the low oxygen storage chamber 24. A water pipe 39 is provided to the water diffusing member 38 so as to supply water generated when oxygen is separated by the gas separation device 29 (see FIGS. 5, 8, and 12).

すなわち、酸素を分離した際に生成された水を効果的に有効利用するために、気体分離装置29には、気体分離装置29で酸素を分離した際に生成された水を低酸素貯蔵室24内に導く水配管39を接続し、低酸素貯蔵室24には、その内部の比較的温度の高い位置に水を拡散させるための水拡散部材を設け、この水拡散部材に前記水配管39からの水が供給されるように水配管39に先端開口39aを設けた。このように低酸素貯蔵室24内の比較的温度の高い位置に水拡散部材38を設けることにより、低酸素貯蔵室24内の食品から水分が蒸発するのを抑制若しくは防止でき、食品の鮮度が水分管理の面でも保持できる。   That is, in order to effectively use the water generated when oxygen is separated, the gas separator 29 is supplied with water generated when oxygen is separated by the gas separator 29 in the low oxygen storage chamber 24. A water pipe 39 that leads to the inside is connected, and the low oxygen storage chamber 24 is provided with a water diffusion member for diffusing water at a relatively high temperature position in the low oxygen storage chamber 24. The water pipe 39 is provided with a tip opening 39a so that the water is supplied. Thus, by providing the water diffusion member 38 at a relatively high temperature position in the low oxygen storage chamber 24, it is possible to suppress or prevent moisture from evaporating from the food in the low oxygen storage chamber 24. It can also be retained in terms of moisture management.

つまり、低酸素貯蔵室24は、図8に示す冷気吐出口32から吹出された冷気により冷却され低温になりやすい部分(低酸素貯蔵室24の上面)があり、この低温になりやすい部分の特に冷気吐出口32に近い部分には低酸素貯蔵室24内の空気の水分が結露し易い。この低酸素貯蔵室24内の低温に冷却された部分に空気の水分が結露しても、低酸素貯蔵室24内の空気の水分が結露した分を水拡散部材38から水分が蒸発して補給する。これによって、低酸素貯蔵室24内の食品から水分が蒸発するのを抑制若しくは防止でき、食品の鮮度が水分管理の面でも保持できるものである。   That is, the low-oxygen storage chamber 24 has a portion (the upper surface of the low-oxygen storage chamber 24) that is cooled by the cold air blown out from the cold air discharge port 32 shown in FIG. Moisture in the air in the low oxygen storage chamber 24 is likely to condense in a portion close to the cold air outlet 32. Even if moisture in the air condenses on the portion of the low oxygen storage chamber 24 cooled to a low temperature, the moisture diffused from the water diffusing member 38 replenishes the amount of moisture in the air in the low oxygen storage chamber 24. To do. Thereby, it is possible to suppress or prevent moisture from evaporating from the food in the low oxygen storage chamber 24, and the freshness of the food can be maintained in terms of moisture management.

図12の実施例では、水拡散部材38を食品出し入れ用開口部42aの図示の右側に配置したが、これは左側であっても比較的温度の高い位置であればよい(図示省略)。   In the embodiment of FIG. 12, the water diffusing member 38 is disposed on the right side of the opening / closing portion 42a for food in and out, but it may be on the left side as long as the temperature is relatively high (not shown).

上記冷気吐出口32からの吹出冷気による低酸素貯蔵室24内の冷却を、以下のとおり具体的に説明する。低酸素貯蔵室24の上面と棚20の下面との隙間を冷気通路37として流れ、低酸素貯蔵室24を上面から冷却する。従って低酸素貯蔵室24内を間接冷却する。   The cooling in the low oxygen storage chamber 24 by the cold air blown out from the cold air discharge port 32 will be specifically described as follows. A gap between the upper surface of the low oxygen storage chamber 24 and the lower surface of the shelf 20 flows as a cool air passage 37 to cool the low oxygen storage chamber 24 from the upper surface. Therefore, the inside of the low oxygen storage chamber 24 is indirectly cooled.

ここで、低酸素貯蔵室24を冷蔵室2の右側面に近接して配置して低酸素貯蔵室24の右側の隙間をなくしてあると共に、低酸素貯蔵室24の上面の左端部に図示していない棚(仕切り壁)を設けて低酸素貯蔵室24の左側の隙間をなくしてあるので、冷気吐出口32から吐出された冷気は低酸素貯蔵室24の左右の側方に分流することなく低酸素貯蔵室24の上面を流れる。これによって、低酸素貯蔵室24の上面を冷却する冷気量を増大し、低酸素貯蔵室24内を短時間に冷却することができる。低酸素貯蔵室24の上面を冷却した冷気は、低酸素貯蔵室24の前方から低酸素貯蔵室24の左側面を通って冷気戻り口33に吸込まれ、冷気戻り通路を通って冷却器室へと戻される。   Here, the low oxygen storage chamber 24 is arranged close to the right side surface of the refrigerator compartment 2 to eliminate the gap on the right side of the low oxygen storage chamber 24, and is illustrated at the left end of the upper surface of the low oxygen storage chamber 24. Since the left-side gap of the low oxygen storage chamber 24 is eliminated by providing a non-shelf (partition wall), the cold air discharged from the cold air discharge port 32 does not flow to the left and right sides of the low oxygen storage chamber 24 It flows over the upper surface of the low oxygen storage chamber 24. Thereby, the amount of cool air for cooling the upper surface of the low oxygen storage chamber 24 can be increased, and the inside of the low oxygen storage chamber 24 can be cooled in a short time. The cold air that has cooled the upper surface of the low oxygen storage chamber 24 is sucked into the cold air return port 33 from the front of the low oxygen storage chamber 24 through the left side surface of the low oxygen storage chamber 24, and passes through the cold air return passage to the cooler chamber. Is returned.

次に、図8,図9を参照しながら、低酸素貯蔵室ドア50に関して説明する。低酸素貯蔵室ドア50は、樹脂製のドア本体51,樹脂製のドアハンドル52,密閉状態解除バルブ53,ゴム製のインジケータ54,低酸素濃度空気が洩れないように密閉性を高くするゴム製のガスケット55を備えている。なお、低酸素貯蔵室ドア50は、リンク機構70と接続されており、回動可能及び前後動可能となっている。上記密閉状態解除バルブ53は、気体分離装置29により低酸素貯蔵室内の空気を吸引し酸素の少なくなった空気を戻すことから内部が僅かに減圧すること、若しくは内部に収納した食品及び空気が冷却されて収縮することによっても内部が僅かに減圧することから、指の力の小さい消費者でも容易に開閉できるように設けたものである。   Next, the low oxygen storage chamber door 50 will be described with reference to FIGS. The low-oxygen storage chamber door 50 is made of a resin door body 51, a resin door handle 52, a sealing state release valve 53, a rubber indicator 54, and a rubber that enhances sealing so that low oxygen concentration air does not leak. The gasket 55 is provided. Note that the low oxygen storage chamber door 50 is connected to the link mechanism 70 and is rotatable and movable back and forth. The sealed state release valve 53 sucks the air in the low oxygen storage chamber by the gas separation device 29 and returns the air with less oxygen, so that the inside is slightly decompressed, or the food and air stored in the inside are cooled. Since the inside is slightly depressurized by contraction, it is provided so that even a consumer with a small finger strength can easily open and close.

ドア本体51は、外郭42の前面外形とほぼ同じ外形を有し、ハンドル凹部51a,補強突部を構成するドア補強リブ51b,ハンドルヒンジ受け51c,リンク機構接続部51d,前後位置決め上端部51e,前後位置決め下端部51fなどを備えている。   The door main body 51 has substantially the same outer shape as the front outer shape of the outer shell 42, and includes a handle recess 51a, a door reinforcing rib 51b constituting a reinforcing protrusion, a handle hinge receiver 51c, a link mechanism connecting portion 51d, a front and rear positioning upper end 51e, A front-rear positioning lower end 51f and the like are provided.

次に、図9及び図15を参照しながら、リンク機構70に関して説明する。図15は図9の低酸素貯蔵室ドアを前方に引き出した状態の斜視図である。   Next, the link mechanism 70 will be described with reference to FIGS. 9 and 15. FIG. 15 is a perspective view showing a state in which the low oxygen storage chamber door of FIG. 9 is pulled forward.

リンク機構70は、隣接する冷蔵室2の側面と低酸素貯蔵室本体40の側面との間に配置されている。   The link mechanism 70 is disposed between the side surface of the adjacent refrigerator compartment 2 and the side surface of the low oxygen storage chamber body 40.

次に、図9及び図15を参照しながら、低酸素貯蔵室24の操作に関して説明する。   Next, the operation of the low oxygen storage chamber 24 will be described with reference to FIGS. 9 and 15.

ドア本体51を開く際には、図9の状態で、ハンドル凹部51a内に指を入れ、ドアハンドル52の下部を引くことにより、まず図14の密閉状態解除バルブ53が動作して低酸素貯蔵室24の密閉状態が解除される。従って、使用者が特に意識しなくても、ドア本体51の開放動作の最初に低酸素貯蔵室24の密閉状態の解除を行うことができる。   When opening the door body 51, in the state shown in FIG. 9, a finger is put into the handle recess 51a and the lower part of the door handle 52 is pulled, so that the sealed state release valve 53 shown in FIG. The sealed state of the chamber 24 is released. Therefore, even if the user is not particularly conscious, the sealed state of the low oxygen storage chamber 24 can be released at the beginning of the opening operation of the door body 51.

さらに、ドアハンドル52を引くことにより、ドア本体51を介して上リンク辺70aが前方に引かれ、上リンク辺70aと後リンク辺70dとの接続部がリンク用上支持部42kの傾斜に沿って前方下方へ移動され、ドア本体51が傾斜された状態となる。これによって、図13のドア本体51の前後位置決め下端部51fが図8の仕切り壁34の前後位置決め溝34aから開放され、ドア本体51を前方に引き出すことが可能となる。   Further, by pulling the door handle 52, the upper link side 70a is pulled forward through the door body 51, and the connecting portion between the upper link side 70a and the rear link side 70d follows the inclination of the upper support portion 42k for the link. Thus, the door body 51 is inclined and moved forward and downward. Accordingly, the front / rear positioning lower end 51f of the door main body 51 of FIG. 13 is released from the front / rear positioning groove 34a of the partition wall 34 of FIG. 8, and the door main body 51 can be pulled out forward.

さらに、ドアハンドル52を引くことによりドア本体51を介して上リンク辺70aが前方に引かれるので、上リンク辺70aに近接して配置され、低酸素貯蔵室24のドア本体51の開閉状態を検出するドアスイッチ83が、低酸素貯蔵室24のドア本体51の開状態を検出することになる。   Further, by pulling the door handle 52, the upper link side 70a is pulled forward via the door main body 51. Therefore, the door link 51 is arranged close to the upper link side 70a, and the open / closed state of the door main body 51 of the low oxygen storage chamber 24 is changed. The door switch 83 to detect detects the open state of the door main body 51 of the low oxygen storage chamber 24.

さらに、ドアハンドル52を引くことにより、ドア本体51が傾斜した状態でリンク機構70及び食品トレイ60と共に前方に移動され、これらが図15に示すように引き出され、食品トレイ60の上面が開放される。   Further, by pulling the door handle 52, the door main body 51 is moved forward together with the link mechanism 70 and the food tray 60 in a tilted state, and these are pulled out as shown in FIG. 15, and the upper surface of the food tray 60 is opened. The

これらの操作は、ドアハンドル52を引くという単一操作でよく、各機器の一連の動作を行うことができ、使い勝手が良好である。   These operations may be a single operation of pulling the door handle 52, and a series of operations of each device can be performed, which is convenient.

なお、ドア本体51を閉じる際には、図15の状態でドアハンドル52の上部を押すことにより、上述した開動作の逆の動作が行われ、ドアスイッチ83が、低酸素貯蔵室24のドア本体51の閉状態を検出することになる。   When the door body 51 is closed, by pushing the upper part of the door handle 52 in the state shown in FIG. 15, the reverse operation of the opening operation described above is performed, and the door switch 83 is connected to the door of the low oxygen storage chamber 24. The closed state of the main body 51 is detected.

図16は本実施形態における制御装置80であるマイコンと各機器との入出力を説明する図である。制御装置80は、図16に示すように、冷蔵室扉6の前面に配置されて使用者によって操作される操作スイッチ81,冷蔵室扉6の開閉状態を検出する冷蔵室扉スイッチ82,低酸素貯蔵室24のドア本体51の開閉状態を検出するドアスイッチ83,低酸素貯蔵室24内部の酸素濃度を検知する酸素濃度センサ84,冷蔵室2の温度を検出する冷蔵室温度センサ85の操作・検出信号を受けて所定の処理を行い、その結果に基づいて気体分離装置29を制御する。   FIG. 16 is a diagram for explaining input / output between the microcomputer, which is the control device 80 in the present embodiment, and each device. As shown in FIG. 16, the control device 80 includes an operation switch 81 disposed on the front face of the refrigerator compartment door 6 and operated by the user, a refrigerator compartment door switch 82 for detecting the open / closed state of the refrigerator compartment door 6, low oxygen Operation of the door switch 83 for detecting the open / close state of the door body 51 of the storage chamber 24, the oxygen concentration sensor 84 for detecting the oxygen concentration in the low oxygen storage chamber 24, and the refrigerator temperature sensor 85 for detecting the temperature of the refrigerator compartment 2 The detection signal is received and predetermined processing is performed, and the gas separation device 29 is controlled based on the result.

本発明の一実施形態の冷蔵庫の正面図。The front view of the refrigerator of one Embodiment of this invention. 図1の冷蔵庫の縦断面図。The longitudinal cross-sectional view of the refrigerator of FIG. 図1の冷蔵庫本体の正面図。The front view of the refrigerator main body of FIG. 図1の冷蔵庫本体の冷蔵室部分の正面図。The front view of the refrigerator compartment part of the refrigerator main body of FIG. 図4の冷蔵室の最下段空間部分の平面図。The top view of the lowest space part of the refrigerator compartment of FIG. 図4の冷蔵室の最下段空間部分の断面斜視図。FIG. 5 is a cross-sectional perspective view of the lowermost space portion of the refrigerator compartment of FIG. 4. 図4の冷蔵室の背面パネルの正面図。The front view of the back panel of the refrigerator compartment of FIG. 図4の冷蔵室の低酸素貯蔵室付近の縦断面図。The longitudinal cross-sectional view of the low oxygen storage chamber vicinity of the refrigerator compartment of FIG. 図4の冷蔵室の低酸素貯蔵室の斜視図。FIG. 5 is a perspective view of a low oxygen storage chamber of the refrigerator compartment of FIG. 4. 低酸素貯蔵室の外郭を左上方から見た斜視図。The perspective view which looked at the outline of a hypoxia store room from the upper left. 図9の低酸素貯蔵室の補強ガラス板と環状パッキングを示す斜視図。FIG. 10 is a perspective view showing a reinforcing glass plate and an annular packing of the low oxygen storage chamber of FIG. 9. 図10の実施例に水拡散部材を配置した斜視図。The perspective view which has arrange | positioned the water-diffusion member to the Example of FIG. 図9の低酸素貯蔵室ドアの斜視図。FIG. 10 is a perspective view of the low oxygen storage chamber door of FIG. 9. 図13のハンドルを取り外した状態の斜視図。The perspective view of the state which removed the handle | steering_wheel of FIG. 図9の低酸素貯蔵室ドアを前方に引き出した状態の斜視図。The perspective view of the state which pulled out the low oxygen store room door of Drawing 9 ahead. 本実施形態における制御装置と各機器との入出力を説明する図。The figure explaining the input / output with the control apparatus and each apparatus in this embodiment.

符号の説明Explanation of symbols

1 冷蔵庫本体
2 冷蔵室
3,4 冷凍室
3a 製氷室
3b 急冷凍室
5 野菜室
6 冷蔵室扉
7 製氷室扉
8 急冷凍室扉
9 冷凍室扉
10 野菜室扉
11 外箱
12 内箱
13 発泡断熱材
14 圧縮機
15 蒸発器
16 送風ファン
17〜20 棚
21 最下段空間
22 製氷水タンク
23 収納ケース
24 低酸素貯蔵室
25〜27 扉ポケット
28 製氷水ポンプ
29 気体分離装置
29a 導管
29b 高酸素濃度空気送出パイプ
30 背面パネル
31,32 冷気吐出口
33 冷気戻り口
34〜36 仕切り壁
34a 前後位置決め溝
34b 低酸素貯蔵室嵌合爪
37 冷気通路
38 水拡散部材
39 水配管
39a 先端開口
40 低酸素貯蔵室本体
41 低酸素濃度空間
42 外郭
42a 食品出し入れ用開口部
42b ガラス板載置用開口部
42c,44a 側壁
42d,44b 底面部
42e,44c 背壁
42f 外郭補強リブ
42g 組み込み用爪
42h 係止用突部
42i 低酸素濃度空気導入口
42j 酸素濃度センサ接続部
42k 排出口
42l リンク用下支持部
43 ガラス板
44 補強部材
44d〜44f 凸部
44g 係止部
45 環状パッキング
45a 凹溝
48 ドア係合部材
48a コ字状部
48b ドア係止爪部
50 低酸素貯蔵室ドア
51 ドア本体
51a ハンドル凹部
51b ドア補強リブ(補強手段,補強突部)
51c ハンドルヒンジ受け
51d リンク機構接続部
51e 前後位置決め上端部
51f 前後位置決め下端部
51g,51h,52b 貫通孔
52 ドアハンドル
52a ヒンジ部
53 密閉状態解除バルブ
53a 弁座
53b 弁体
54 インジケータ
55 ガスケット
60 食品トレイ
60a 後部上端
60b 前部上端
70 リンク機構
70a〜70d リンク辺
80 制御装置
81 操作スイッチ
82 冷蔵室扉スイッチ
83 ドアスイッチ
84 酸素濃度センサ
85 冷蔵室温度センサ
DESCRIPTION OF SYMBOLS 1 Refrigerator body 2 Refrigeration room 3, 4 Freezing room 3a Ice making room 3b Quick freezing room 5 Vegetable room 6 Refrigeration room door 7 Ice making room door 8 Quick freezing room door 9 Freezing room door 10 Vegetable room door 11 Outer box 12 Inner box 13 Foaming Insulating material 14 Compressor 15 Evaporator 16 Blowers 17-20 Shelf 21 Bottom space 22 Ice making water tank 23 Storage case 24 Low oxygen storage room 25-27 Door pocket 28 Ice making water pump 29 Gas separation device 29a Conduit 29b High oxygen concentration Air delivery pipe 30 Rear panel 31, 32 Cold air discharge port 33 Cold air return port 34-36 Partition wall 34a Front / rear positioning groove 34b Low oxygen storage chamber fitting claw 37 Cold air passage 38 Water diffusion member 39 Water pipe 39a Tip opening 40 Low oxygen storage Chamber body 41 Low oxygen concentration space 42 Outer shell 42a Food loading / unloading opening 42b Glass plate mounting opening 42c, 44a Side wall 42d, 44b Bottom 42e, 44c Back wall 42f Outer reinforcement rib 42g Assembling claw 42h Locking projection 42i Low oxygen concentration air inlet 42j Oxygen concentration sensor connection 42k Discharge port 42l Link lower support 43 Glass plate 44 Reinforcing member 44d 44f Protruding portion 44g Locking portion 45 Annular packing 45a Groove 48 Door engaging member 48a U-shaped portion 48b Door locking claw portion 50 Low oxygen storage chamber door 51 Door main body 51a Handle recessed portion 51b Door reinforcing rib (reinforcing means, reinforcing) Protrusion)
51c Handle hinge receiver 51d Link mechanism connecting portion 51e Front / rear positioning upper end 51f Front / rear positioning lower end 51g, 51h, 52b Through hole 52 Door handle 52a Hinge portion 53 Sealed state release valve 53a Valve seat 53b Valve body 54 Indicator 55 Gasket 60 Food tray 60a Rear upper end 60b Front upper end 70 Link mechanism 70a to 70d Link side 80 Control device 81 Operation switch 82 Refrigerating room door switch 83 Door switch 84 Oxygen concentration sensor 85 Refrigerating room temperature sensor

Claims (4)

複数の貯蔵室に区画された冷蔵庫本体と、
空気中の酸素を分離する気体分離装置とを備え、
前記貯蔵室の少なくとも一つの貯蔵室が、前記酸素を分離した後の酸素濃度の低くなった空気を導入して内部が低酸素状態になる低酸素貯蔵室であり、気体分離装置は、酸素を分離した酸素濃度の高い高酸素濃度空気を送出するパイプを接続され、この高酸素濃度空気送出パイプが冷蔵庫の扉側前面及び扉近くの側面の両方若しくは一方に開口を有し、冷蔵庫の外部空間に高酸素濃度空気を吹出すように設けられていることを特徴とする冷蔵庫。
A refrigerator body partitioned into a plurality of storage rooms;
A gas separation device for separating oxygen in the air,
At least one storage chamber of the storage chamber is a low oxygen storage chamber that introduces air with a low oxygen concentration after separating the oxygen and the inside becomes a low oxygen state, and the gas separation device contains oxygen. A pipe that sends out the separated high oxygen concentration air with high oxygen concentration is connected, and this high oxygen concentration air delivery pipe has an opening on both or one of the front side and the side near the door of the refrigerator, and the external space of the refrigerator A refrigerator characterized by being provided with high oxygen concentration air.
請求項1において、高酸素濃度空気を送出する高酸素濃度空気送出パイプの開口が、冷蔵庫下端から90cm以上の高さ位置から冷蔵庫本体の上面の範囲の位置に取付けられてなることを特徴とする冷蔵庫。   The opening of the high oxygen concentration air delivery pipe for delivering high oxygen concentration air according to claim 1 is attached to a position in a range from a height position of 90 cm or more from the lower end of the refrigerator to an upper surface of the refrigerator main body. refrigerator. 請求項1において、高酸素濃度空気を送出する高酸素濃度空気送出パイプの扉側前面及び扉近くの側面の両方若しくは一方に開口するのを選択する手段を備えたことを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, further comprising means for selecting opening to both or one of the door side front surface and the side surface near the door of the high oxygen concentration air delivery pipe for delivering the high oxygen concentration air. 複数の貯蔵室に区画された冷蔵庫本体と、
空気中の酸素を分離する気体分離装置とを備え、
前記貯蔵室の少なくとも一つの貯蔵室が、前記酸素を分離した後の酸素濃度の低くなった空気を導入して内部が低酸素状態になる低酸素貯蔵室であり、気体分離装置は、酸素を分離した際に生成された水を低酸素貯蔵室内に導くパイプを接続され、低酸素貯蔵室は、その内部の比較的温度の高い位置に水を拡散させるための水拡散部材を備え、この水拡散部材に前記パイプからの水が供給されることを特徴とする冷蔵庫。
A refrigerator body partitioned into a plurality of storage rooms;
A gas separation device for separating oxygen in the air,
At least one storage chamber of the storage chamber is a low oxygen storage chamber that introduces air with a low oxygen concentration after separating the oxygen and the inside becomes a low oxygen state, and the gas separation device contains oxygen. A pipe that guides the water generated during the separation into the low oxygen storage chamber is connected, and the low oxygen storage chamber includes a water diffusion member for diffusing water to a relatively high temperature position inside the water storage chamber. A refrigerator characterized in that water from the pipe is supplied to a diffusion member.
JP2008011035A 2008-01-22 2008-01-22 Refrigerator Withdrawn JP2009174725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011035A JP2009174725A (en) 2008-01-22 2008-01-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011035A JP2009174725A (en) 2008-01-22 2008-01-22 Refrigerator

Publications (1)

Publication Number Publication Date
JP2009174725A true JP2009174725A (en) 2009-08-06

Family

ID=41030005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011035A Withdrawn JP2009174725A (en) 2008-01-22 2008-01-22 Refrigerator

Country Status (1)

Country Link
JP (1) JP2009174725A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486817A (en) * 2013-09-23 2014-01-01 海信容声(广东)冰箱有限公司 Vacuum refreshing drawer
CN103575050A (en) * 2013-11-15 2014-02-12 海信容声(广东)冰箱有限公司 Nitrogen freshness preservation drawer
JP2014206306A (en) * 2013-04-11 2014-10-30 株式会社東芝 Refrigerator
CN106642910A (en) * 2016-11-11 2017-05-10 青岛海尔股份有限公司 Temperature control method for refrigerating and freezing equipment and refrigerating and freezing equipment
CN106871542A (en) * 2017-03-22 2017-06-20 青岛海尔股份有限公司 Refrigerating device and its drawer appliance
CN106979644A (en) * 2017-03-22 2017-07-25 青岛海尔股份有限公司 Refrigerating device and its drawer appliance
WO2019194575A1 (en) * 2018-04-05 2019-10-10 한양대학교 산학협력단 Gas supply device and method for operating same
CN113251724A (en) * 2020-02-13 2021-08-13 东芝生活电器株式会社 Refrigerator with a door
WO2021223455A1 (en) * 2020-05-08 2021-11-11 海信容声(广东)冰箱有限公司 Refrigerator
US11471826B2 (en) 2017-09-29 2022-10-18 Daikin Industries, Ltd. Air composition adjusting device
US11490628B2 (en) 2017-09-29 2022-11-08 Daikin Industries, Ltd. Air composition adjusting device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206306A (en) * 2013-04-11 2014-10-30 株式会社東芝 Refrigerator
CN103486817A (en) * 2013-09-23 2014-01-01 海信容声(广东)冰箱有限公司 Vacuum refreshing drawer
CN103486817B (en) * 2013-09-23 2016-06-29 海信容声(广东)冰箱有限公司 A kind of vacuum refreshing drawer
CN103575050A (en) * 2013-11-15 2014-02-12 海信容声(广东)冰箱有限公司 Nitrogen freshness preservation drawer
WO2015070526A1 (en) * 2013-11-15 2015-05-21 海信容声(广东)冰箱有限公司 Nitrogen preservation drawer
CN106642910B (en) * 2016-11-11 2019-08-02 青岛海尔股份有限公司 Temprature control method and refrigerating equipment for refrigerating equipment
CN106642910A (en) * 2016-11-11 2017-05-10 青岛海尔股份有限公司 Temperature control method for refrigerating and freezing equipment and refrigerating and freezing equipment
CN106871542A (en) * 2017-03-22 2017-06-20 青岛海尔股份有限公司 Refrigerating device and its drawer appliance
CN106979644A (en) * 2017-03-22 2017-07-25 青岛海尔股份有限公司 Refrigerating device and its drawer appliance
CN106979644B (en) * 2017-03-22 2019-10-01 青岛海尔股份有限公司 Refrigerating device and its drawer appliance
US11666856B2 (en) 2017-09-29 2023-06-06 Daikin Industries, Ltd. Air composition adjusting device
US11471826B2 (en) 2017-09-29 2022-10-18 Daikin Industries, Ltd. Air composition adjusting device
US11490628B2 (en) 2017-09-29 2022-11-08 Daikin Industries, Ltd. Air composition adjusting device
WO2019194575A1 (en) * 2018-04-05 2019-10-10 한양대학교 산학협력단 Gas supply device and method for operating same
CN113251724A (en) * 2020-02-13 2021-08-13 东芝生活电器株式会社 Refrigerator with a door
JP7453011B2 (en) 2020-02-13 2024-03-19 東芝ライフスタイル株式会社 refrigerator
CN113251724B (en) * 2020-02-13 2024-05-28 东芝生活电器株式会社 Refrigerator with a refrigerator body
WO2021223455A1 (en) * 2020-05-08 2021-11-11 海信容声(广东)冰箱有限公司 Refrigerator
JP7473682B2 (en) 2020-05-08 2024-04-23 海信容声(広東)氷箱有限公司 refrigerator

Similar Documents

Publication Publication Date Title
JP2009174725A (en) Refrigerator
JP4961274B2 (en) refrigerator
JP4940046B2 (en) refrigerator
JP4961295B2 (en) refrigerator
KR100884865B1 (en) Refrigerator
CN107178949A (en) Refrigerator
JP2005083687A (en) Refrigerator
JP4988613B2 (en) refrigerator
JP4218742B1 (en) refrigerator
JP4015687B1 (en) refrigerator
JP2010014295A (en) Refrigerator
JP4423319B2 (en) refrigerator
JP2008309424A (en) Refrigerator
JP4728287B2 (en) refrigerator
JP4015688B1 (en) refrigerator
JP2009036443A (en) Refrigerator
KR100943566B1 (en) Refrigerator
JP4940045B2 (en) refrigerator
JP4054842B1 (en) refrigerator
JP4988473B2 (en) refrigerator
CN108204699B (en) Storage case
JP2009036442A (en) Refrigerator
JP6138627B2 (en) refrigerator
JP2009036446A (en) Refrigerator
JP5142619B2 (en) refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405