JP2009174426A - Exhaust emission control device and temperature control method for exhaust emission control device - Google Patents

Exhaust emission control device and temperature control method for exhaust emission control device Download PDF

Info

Publication number
JP2009174426A
JP2009174426A JP2008013799A JP2008013799A JP2009174426A JP 2009174426 A JP2009174426 A JP 2009174426A JP 2008013799 A JP2008013799 A JP 2008013799A JP 2008013799 A JP2008013799 A JP 2008013799A JP 2009174426 A JP2009174426 A JP 2009174426A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
fluid
hollow portion
purification device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013799A
Other languages
Japanese (ja)
Inventor
Takayuki Sakamoto
隆行 坂本
Teruo Nakada
輝男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008013799A priority Critical patent/JP2009174426A/en
Publication of JP2009174426A publication Critical patent/JP2009174426A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device and a temperature control method for the exhaust emission control device, raising the temperature of the exhaust emission control device such as a NOx cleaning catalyst and a DPF in a short time, maintaining the temperature thereof in a range of high cleaning performance, and improving a cleaning function. <P>SOLUTION: This exhaust emission control device 3 cleaning exhaust gas G from an internal combustion engine is provided with: a hollow portion 4 formed in a part of or the whole of the surface or inside of the exhaust emission control device 3 and circulating fluid A; fluid flow rate regulating mechanisms 5, 5a, 6, 6a, 7, 11 regulating a flow rate of fluid A in the hollow portion 4; and fluid pressure regulating mechanisms 5a, 6a, 7, 11 sealing the hollow portion 4 to regulate pressure of the fluid A in the hollow portion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、NOx吸蔵還元型触媒やDPF等の排気ガス浄化装置で排気ガス浄化を行う際に、速やかに昇温可能で、かつ、浄化性能の高い温度範囲内に温度維持が容易な排気ガス浄化装置及び排気ガス浄化装置の温度管理方法に関する。   The present invention provides an exhaust gas that can be quickly heated when exhaust gas purification is performed by an exhaust gas purification device such as a NOx occlusion reduction catalyst or a DPF, and that the temperature can be easily maintained within a temperature range with high purification performance. The present invention relates to a temperature control method for a purification device and an exhaust gas purification device.

排気ガス中のNOx(窒素酸化物)の浄化のためにNOx浄化触媒がある。このNOx浄化触媒の一つに、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して、酸素過剰な排気ガス中のNO(一酸化窒素)を酸化して硝酸塩として触媒上に吸着させて、NOxを浄化するNOx吸蔵還元型触媒がある。このNOx吸蔵還元型触媒は、排気ガスが酸素濃度が高いリーン空燃比状態では、NOxを吸蔵し、酸素濃度が低いかゼロのリッチ空燃比状態では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。   There is a NOx purification catalyst for purifying NOx (nitrogen oxide) in exhaust gas. In one of these NOx purification catalysts, an alkali metal or alkaline earth metal is supported together with a noble metal, and NO (nitrogen monoxide) in exhaust gas containing excess oxygen is oxidized and adsorbed on the catalyst as nitrate. There is a NOx occlusion reduction type catalyst for purifying gas. This NOx occlusion reduction type catalyst occludes NOx when the exhaust gas is in a lean air-fuel ratio state where the oxygen concentration is high, and releases the occluded NOx and releases it in a rich air-fuel ratio state where the oxygen concentration is low or zero. NOx is reduced in a reducing atmosphere to reduce NOx.

このNOx吸蔵還元型触媒を備えたNOx浄化装置においては、図5に示すように、そのNOx浄化機能は触媒温度に依存する。この触媒温度がNOx浄化性能に与える影響は大きく、その浄化性能が発揮できるのは、200℃より高い温度であり、300℃から400℃の温度範囲で浄化能力が最も高くなる。また、触媒温度が高くなるほどNOx中のNO(二酸化窒素)の割合が低下し、硝酸塩に変化し難いNOの割合が増加するというNOxの化学特性があるため、触媒温度が400℃を超える状態では、NOx浄化割合が低下してしまう。従って、NOx吸蔵還元型触媒の排気ガス浄化装置で排気ガス浄化を行う際には、触媒の性能を十分に発揮するという点で、触媒温度を約250℃から400℃の温度範囲Rに保つことが好ましい。なお、他のNOx浄化触媒や酸化触媒等においても、適正な浄化能力を発揮できる温度範囲が限定されることが多い。 In the NOx purification device provided with this NOx occlusion reduction type catalyst, as shown in FIG. 5, the NOx purification function depends on the catalyst temperature. The effect of the catalyst temperature on the NOx purification performance is great, and the purification performance can be exerted at a temperature higher than 200 ° C., and the purification performance becomes the highest in the temperature range of 300 ° C. to 400 ° C. In addition, as the catalyst temperature increases, the ratio of NO 2 (nitrogen dioxide) in NOx decreases, and the ratio of NO that hardly changes to nitrate increases. Therefore, the catalyst temperature exceeds 400 ° C. Then, the NOx purification rate is reduced. Therefore, when exhaust gas purification is performed by the exhaust gas purification device of the NOx occlusion reduction type catalyst, the catalyst temperature should be kept in the temperature range R of about 250 ° C. to 400 ° C. in that the catalyst performance is fully exhibited. Is preferred. In addition, in other NOx purification catalysts, oxidation catalysts, and the like, the temperature range in which proper purification ability can be exhibited is often limited.

しかしながら、多目的に使用される自動車に搭載された内燃機関では、排気ガスの温度の範囲が広いにも係らず、NOxを浄化できる温度範囲が限定されているNOx吸蔵還元型触媒を使用する場合には、制限された温度範囲でしかNOxを十分に浄化できないという問題がある。   However, in an internal combustion engine mounted on an automobile used for multiple purposes, a NOx occlusion reduction type catalyst that has a limited temperature range that can purify NOx despite the wide exhaust gas temperature range is used. Has a problem that NOx can be sufficiently purified only in a limited temperature range.

例えば、エンジン始動後においては、排気ガス温度は低く、触媒温度も250℃以下と低い温度状態が続く。その後、エンジンの出力が増加すると排気ガス温度が高くなるが、必然的にNOx濃度も上昇する。しかしながら、触媒の担体に気孔の多いセラミックスを使用している場合には、触媒温度の上昇は、NOx濃度や排気ガス温度の上昇に比べて遅くなる。そのため、触媒温度が触媒の浄化能力が十分に発揮できる温度範囲に入るまでは、浄化能力が十分に発揮されず、比較的高濃度のNOxが大気中へ排出されてしまう。また、エンジン出力の高い状態が続くと排気ガス温度が高い状態が継続するため、触媒温度も高温となる。そのため、触媒温度が400℃を超える状態では、NOx浄化率が低下し、比較的高濃度のNOxが大気中へ排出されてしまう。   For example, after the engine is started, the exhaust gas temperature is low, and the catalyst temperature is kept at a low temperature of 250 ° C. or lower. Thereafter, as the engine output increases, the exhaust gas temperature increases, but the NOx concentration inevitably increases. However, when ceramics with many pores are used for the catalyst carrier, the catalyst temperature rises slower than the NOx concentration and exhaust gas temperature rise. Therefore, until the catalyst temperature is in a temperature range where the purification capability of the catalyst can be sufficiently exhibited, the purification capability is not sufficiently exhibited, and relatively high concentration of NOx is discharged into the atmosphere. Further, when the engine output continues to be high, the exhaust gas temperature continues to be high, so the catalyst temperature also becomes high. Therefore, when the catalyst temperature exceeds 400 ° C., the NOx purification rate decreases, and a relatively high concentration of NOx is discharged into the atmosphere.

また、排気ガス中のPM(微粒子状物質)を捕集するDPF(ディーゼルパティキュレートフィルタ)を備えた排気ガス浄化装置においては、その再生時には、DPFの温度をPMの燃焼温度以上に速やかに上昇してPMを燃焼すると共に、DPFが高温で破損しないように所定の温度範囲内にDPFの温度を維持する必要がある。   Also, in an exhaust gas purification device equipped with a DPF (diesel particulate filter) that collects PM (particulate matter) in the exhaust gas, the temperature of the DPF rises quickly above the combustion temperature of the PM during regeneration. Thus, it is necessary to burn the PM and maintain the temperature of the DPF within a predetermined temperature range so that the DPF is not damaged at a high temperature.

従って、車両に搭載されるNOx吸蔵還元型触媒等の触媒やDPF等を備えた排気ガス浄化装置では、運転条件によって排気ガス浄化装置の温度を短時間で所定の温度範囲まで上昇させることが重要であると共に、排気ガス温度の高くなる負荷の高いエンジン運転条件では、排気ガス浄化装置の温度を所定の温度範囲内に維持することが重要となる。   Therefore, in an exhaust gas purification device equipped with a catalyst such as a NOx storage reduction catalyst or a DPF mounted on a vehicle, it is important to raise the temperature of the exhaust gas purification device to a predetermined temperature range in a short time depending on operating conditions. In addition, it is important to maintain the temperature of the exhaust gas purification device within a predetermined temperature range under high-load engine operating conditions where the exhaust gas temperature becomes high.

この排気ガス浄化装置の温度管理に関して、選択的接触還元法のNOx浄化触媒であるが、排ガスの流路の途中に、多孔質の排ガス浄化材を設置すると共に、この排ガス浄化材とこの排ガス浄化材の上流側の排ガス導管に、外層及び内管からなる二重構造の排ガス導管と冷媒循環装置とからなる冷却手段を設けて、外層又は内管のいずれかに、冷媒を循環させたり、排ガス浄化材の表面に送風したりして、排ガス浄化材の表面温度を下げる排ガス浄化装置が提案されている(例えば、特許文献1参照。)。   Regarding the temperature control of this exhaust gas purification device, it is a NOx purification catalyst of the selective catalytic reduction method, but a porous exhaust gas purification material is installed in the middle of the exhaust gas flow path, and this exhaust gas purification material and this exhaust gas purification catalyst are installed. Cooling means consisting of a dual structure exhaust gas conduit consisting of an outer layer and an inner pipe and a refrigerant circulation device is provided in the exhaust gas conduit on the upstream side of the material to circulate the refrigerant in either the outer layer or the inner pipe, There has been proposed an exhaust gas purification device that lowers the surface temperature of an exhaust gas purification material by blowing air on the surface of the purification material (see, for example, Patent Document 1).

この排ガス浄化装置では、冷媒には冷却水等を用いて、冷媒の熱を放熱器で放熱したり、排ガス中に空気を導入したり、排ガス導管の外表面に面積可変の放熱材を設けたりして、排ガス浄化装置を降温すると共に、その一方で、ヒータによる加熱や排ガス流量の減少で排ガス浄化装置を昇温している。   In this exhaust gas purification device, cooling water or the like is used as the refrigerant, the heat of the refrigerant is dissipated by a radiator, air is introduced into the exhaust gas, or a variable area heat dissipating material is provided on the outer surface of the exhaust gas conduit. Then, the temperature of the exhaust gas purification device is lowered, while the temperature of the exhaust gas purification device is raised by heating with a heater or a reduction in the flow rate of the exhaust gas.

また、DPFやNOx還元触媒等のエンジンの排ガス処理装置と上流側の排気通路の少なくとも一方を二重構造にして、二重構造内の空気と置換ガスに置き換えて、この置換ガスをガス吸収剤で吸収することにより、この二重構造内を真空にした排ガス処理装置及び排気通路の保温構造が提案されている(例えば、特許文献2参照。)。   Further, at least one of the exhaust gas treatment device of the engine such as DPF or NOx reduction catalyst and the upstream exhaust passage is made into a double structure, and the replacement gas is replaced with the air and the replacement gas in the double structure. In this case, an exhaust gas treatment apparatus that evacuates the double structure and a heat insulation structure of the exhaust passage have been proposed (for example, see Patent Document 2).

この保温構造では、二重構造の真空により対流伝熱を減少し、輻射遮熱板により放射伝熱(輻射伝熱)を減少することにより、優れた保温性を持つ装置としている。この保温性の向上により、放熱による排ガス温度の低下の減少と、フィルタ再生のための排ガス昇温時の燃費の悪化の抑制を図っている。   In this heat insulation structure, the convection heat transfer is reduced by the vacuum of the double structure, and the radiation heat transfer (radiation heat transfer) is reduced by the radiation heat shield plate, so that the apparatus has excellent heat retention. By improving the heat retention, the reduction of the exhaust gas temperature due to heat dissipation is reduced, and the deterioration of the fuel consumption when the exhaust gas temperature rises for filter regeneration is suppressed.

しかしながら、前者の排ガス浄化装置は放熱が中心であるので降温に適しているが、昇温が不十分であるという問題があり、後者の排ガス処理装置及び排気通路の保温構造は、保温が中心であるので、昇温に適しているが、降温には適していないという問題がある。
特開平07−284636号公報 特開2002−349259号公報
However, the former exhaust gas purification device is suitable for lowering the temperature because it mainly dissipates heat, but there is a problem that the temperature rise is insufficient, and the latter exhaust gas treatment device and the heat insulation structure of the exhaust passage are mainly for heat insulation. Therefore, there is a problem that it is suitable for raising the temperature but not suitable for lowering the temperature.
JP 07-284636 A JP 2002-349259 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、NOx浄化触媒やDPF等の排気ガス浄化装置の温度を、短時間で昇温させることができ、しかも、浄化性能の高い温度範囲内に維持できて、浄化機能を向上することができる排気ガス浄化装置と排気ガス浄化装置の温度管理方法を提供することにある。   The present invention has been made in view of the above-described situation, and an object of the present invention is to increase the temperature of an exhaust gas purification device such as a NOx purification catalyst and a DPF in a short time, and to achieve purification performance. An object of the present invention is to provide an exhaust gas purification device and a temperature management method for the exhaust gas purification device that can be maintained within a high temperature range and can improve the purification function.

上記のような目的を達成するための排気ガス浄化装置は、内燃機関の排気ガスを浄化する排気ガス浄化装置において、この排気ガス浄化装置の表面又は内部の、一部又は全体に、流体が流通する中空部を設け、この中空部内の流体の流量の調整を行う流体流量調整機構を設けると共に、この中空部を密閉して内部の流体の圧力の調整を行う流体圧力調整機構を設けて構成する。この流体流量調整機構と流体圧力調整機構は、全部の機構が兼用であっても、一部の機構が共通使用であっても、まったく別の機構であってもよい。   An exhaust gas purifying apparatus for achieving the above object is an exhaust gas purifying apparatus for purifying exhaust gas of an internal combustion engine, wherein fluid flows through a part or all of the surface or inside of the exhaust gas purifying apparatus. And a fluid flow rate adjusting mechanism for adjusting the flow rate of the fluid in the hollow portion, and a fluid pressure adjusting mechanism for adjusting the pressure of the internal fluid by sealing the hollow portion. . The fluid flow rate adjusting mechanism and the fluid pressure adjusting mechanism may be used as a whole mechanism, a part of the mechanisms in common use, or a completely different mechanism.

この流体の流量調整と流体の圧力調整の両方の機能を備えた構成、即ち、流体の導入とその排出が可能な構成としては、例えば、中空部の流体入口側に設けた電磁弁と、流体出口側に設けた電磁弁と、流体出口側の電磁弁の下流側に設けた真空ポンプとの組み合わせの構成があり、両方の電磁弁を開いて真空ポンプを作動させることで、流体の流量を調整できる。また、流体入口側の電磁弁を閉じて、流体出口側の電磁弁を開いて真空ポンプを作動させることで、流体の圧力を低下させて真空にすることができ、所定の真空度に達した時に、流体出口側の電磁弁を閉じて真空ポンプを止めることで、中空部を所定の真空度の状態のまま維持できる。   As a configuration having both functions of adjusting the flow rate of the fluid and adjusting the pressure of the fluid, that is, a configuration capable of introducing and discharging the fluid, for example, an electromagnetic valve provided on the fluid inlet side of the hollow portion, and a fluid There is a combination of a solenoid valve provided on the outlet side and a vacuum pump provided on the downstream side of the solenoid valve on the fluid outlet side, and by opening both solenoid valves and operating the vacuum pump, the fluid flow rate can be reduced. Can be adjusted. Also, by closing the solenoid valve on the fluid inlet side, opening the solenoid valve on the fluid outlet side and operating the vacuum pump, the pressure of the fluid can be reduced to a vacuum, and a predetermined degree of vacuum has been reached. Sometimes, by closing the solenoid valve on the fluid outlet side and stopping the vacuum pump, the hollow portion can be maintained at a predetermined vacuum level.

この排気ガス浄化装置の構成によれば、NOx浄化触媒やDPF等の容器の中空部内に気体や液体等の流体を流すことにより、この流体とNOx浄化触媒やDPFとの間で効率よく熱交換することができるようになると共に、この中空部内の流体の圧力を減少したり、または、流体を抜いてして、真空状態にすることにより、効率よく保温することができるようになる。   According to the configuration of this exhaust gas purification device, a fluid such as a gas or a liquid is allowed to flow through the hollow portion of a container such as a NOx purification catalyst or a DPF, thereby efficiently exchanging heat between the fluid and the NOx purification catalyst or the DPF. In addition, the temperature of the fluid in the hollow portion can be reduced, or the fluid can be removed and the vacuum can be established to efficiently maintain the temperature.

上記の排気ガス浄化システムにおいて、前記流体流量調整機構が、前記中空部を流通する流体を排気ガスと空気に切り替える流体切り替え機構を有するように構成すると、この構成により、高温の排気ガスで中空部を介して排気ガス浄化装置を温めて、保温効果を上げることができるようになると共に、低温の空気で中空部を介して排気ガス浄化装置を冷却することができるようになる。   In the exhaust gas purification system, when the fluid flow rate adjustment mechanism is configured to have a fluid switching mechanism that switches the fluid flowing through the hollow portion between the exhaust gas and the air, the configuration allows the hollow portion to be heated with the high-temperature exhaust gas. Thus, the exhaust gas purification device can be warmed through the air and the heat retention effect can be increased, and the exhaust gas purification device can be cooled through the hollow portion with low-temperature air.

上記の排気ガス浄化システムにおいて、前記中空部内の流体流量と流体圧力の少なくとも一方の調整を、内燃機関の運転状態に応じて行うように構成すると、この構成により、内燃機関から排出される排気ガスの温度に対応した放熱量と受熱量の調整制御を行うことができ、排気ガス浄化装置の温度管理をより適切に行うことができるようになる。   In the above exhaust gas purification system, when at least one of the fluid flow rate and the fluid pressure in the hollow portion is adjusted according to the operating state of the internal combustion engine, the exhaust gas discharged from the internal combustion engine can be obtained by this configuration. It is possible to perform adjustment control of the heat radiation amount and the heat reception amount corresponding to the temperature of the exhaust gas, and it becomes possible to more appropriately manage the temperature of the exhaust gas purification device.

そして、上記のような目的を達成するための排気ガス浄化装置の温度管理方法は、内燃機関の排気ガスを浄化する排気ガス浄化装置の温度管理方法において、この排気ガス浄化装置の表面又は内部の、一部又は全体に設けた中空部に、流体を流通させると共に、この流体の流量の調整と、前記中空部を密閉したときの流体の圧力の調整をして、この排気ガス浄化装置の熱の出入を調整することを特徴とする温度管理方法である。   And the temperature management method of the exhaust gas purification apparatus for achieving the above object is the temperature management method of the exhaust gas purification apparatus for purifying the exhaust gas of the internal combustion engine. The fluid of the exhaust gas purifier is adjusted by adjusting the flow rate of the fluid and adjusting the pressure of the fluid when the hollow portion is sealed, while allowing the fluid to flow through the hollow portion provided in part or in whole. It is a temperature management method characterized by adjusting the entrance and exit.

この方法によれば、NOx浄化触媒やDPF等の排気ガス浄化装置の容器の中空部内に流体を流して、この流体とNOx浄化触媒やDPFとの間で熱交換することができると共に、この中空部内の流体の圧力を減少して又は流体を抜いて真空状態にして保温することができる。   According to this method, a fluid can be passed through the hollow portion of the container of the exhaust gas purification apparatus such as the NOx purification catalyst and the DPF, and heat can be exchanged between the fluid and the NOx purification catalyst and the DPF. It is possible to keep the temperature in a vacuum state by reducing the pressure of the fluid in the section or removing the fluid.

上記の排気ガス浄化装置の温度管理方法において、前記中空部に流通させる流体を排気ガスと空気に切り替えると、この方法により、高温の排気ガスで中空部を介して排気ガス浄化装置を温めて、保温効果を上げることができると共に、低温の空気で中空部を介して排気ガス浄化装置を冷却することができる。   In the temperature management method of the exhaust gas purification device described above, when the fluid to be circulated in the hollow portion is switched to exhaust gas and air, the exhaust gas purification device is warmed through the hollow portion with high-temperature exhaust gas by this method, The heat retention effect can be increased, and the exhaust gas purification device can be cooled through the hollow portion with low-temperature air.

上記の排気ガス浄化装置の温度管理方法において、前記内燃機関の運転状態に応じて、前記中空部内の流体流量と流体圧力の少なくとも一方を調整すると、この方法により、内燃機関から排出される排気ガスの温度に対応した放熱量と受熱量の調整制御を行うことができ、排気ガス浄化装置の温度管理をより適切に行うことができる。   In the temperature management method of the exhaust gas purifying apparatus described above, when at least one of the fluid flow rate and the fluid pressure in the hollow portion is adjusted according to the operating state of the internal combustion engine, the exhaust gas discharged from the internal combustion engine by this method The amount of heat radiation and the amount of heat received corresponding to the temperature can be adjusted, and the temperature management of the exhaust gas purification device can be performed more appropriately.

上記の排気ガス浄化装置の温度管理方法において、前記排気ガス浄化装置の温度が低い場合には、所定の温度範囲に達するまでは、前記中空部を真空状態にして前記中空部を経由して伝熱される熱量を減らし、前記排気ガス浄化装置の温度が前記所定の温度範囲内にある場合、又は、前記所定の温度範囲になると予測される場合には、中空部を真空状態のまま維持し、更に、前記排気ガス浄化装置の温度が前記所定の温度範囲を超える場合、又は、前記排気ガス浄化装置の温度が前記所定の温度範囲を超えると予測される場合には、中空部に流体を流通させる。   In the temperature management method for an exhaust gas purifying apparatus described above, when the temperature of the exhaust gas purifying apparatus is low, the hollow portion is evacuated and transmitted through the hollow portion until reaching a predetermined temperature range. When the amount of heat to be heated is reduced and the temperature of the exhaust gas purifying device is within the predetermined temperature range, or when predicted to be within the predetermined temperature range, the hollow portion is maintained in a vacuum state, Further, when the temperature of the exhaust gas purification device exceeds the predetermined temperature range, or when the temperature of the exhaust gas purification device is predicted to exceed the predetermined temperature range, the fluid is circulated through the hollow portion. Let

この制御によれば、排気ガス浄化装置の温度が低い場合には、中空部を真空状態にして放熱量を小さくして、所定の温度範囲に達するまでの時間を減らすことができる。また、排気ガス浄化装置の温度が所定の温度範囲内にある場合、又は、排気ガス浄化装置の温度が所定の温度範囲内にあると予測される場合も、中空部を真空状態のまま維持して、排気ガス浄化装置の温度を所定の温度範囲内に維持することができる。更に、排気ガス浄化装置の温度が所定の温度範囲を超える場合、又は、排気ガス浄化装置の温度が所定の温度範囲内に超えると予測される場合には、中空部の対流伝熱等により、排気ガス浄化装置から熱を奪って、排気ガス浄化装置を冷却することができる。なお、この冷却度合いの調整は流体の流量調整により、対流伝熱量に大きく影響する中空部内の流体の流速を調整することでできる。従って、NOx浄化触媒やDPF等の排気ガス浄化装置の温度を、容易に昇温、調整及び管理することができる。   According to this control, when the temperature of the exhaust gas purifying device is low, it is possible to reduce the time required to reach a predetermined temperature range by making the hollow portion in a vacuum state and reducing the heat radiation amount. Also, when the temperature of the exhaust gas purification device is within a predetermined temperature range, or when the temperature of the exhaust gas purification device is predicted to be within the predetermined temperature range, the hollow portion is maintained in a vacuum state. Thus, the temperature of the exhaust gas purification device can be maintained within a predetermined temperature range. Furthermore, when the temperature of the exhaust gas purification device exceeds a predetermined temperature range, or when the temperature of the exhaust gas purification device is predicted to exceed the predetermined temperature range, by convection heat transfer of the hollow portion, Heat can be taken from the exhaust gas purification device to cool the exhaust gas purification device. The degree of cooling can be adjusted by adjusting the flow rate of the fluid in the hollow portion, which greatly affects the amount of convection heat transfer, by adjusting the flow rate of the fluid. Therefore, the temperature of the exhaust gas purification device such as the NOx purification catalyst and the DPF can be easily raised, adjusted and managed.

本発明に係る排気ガス浄化装置及び排気ガス浄化装置の温度管理方法によれば、排気ガス浄化装置から放熱される熱量を、中空部を流れる流体の流量によって調整できる上に、中空部の流体の圧力低下状態により、言い換えれば、真空状態により放熱量を著しく低減できるので、この放熱量の調整機能により排気ガス浄化装置の温度管理が容易にできるようになる。   According to the exhaust gas purification device and the temperature management method of the exhaust gas purification device according to the present invention, the amount of heat radiated from the exhaust gas purification device can be adjusted by the flow rate of the fluid flowing through the hollow portion, and Since the heat radiation amount can be significantly reduced by the pressure drop state, in other words, by the vacuum state, the temperature management of the exhaust gas purifying device can be easily performed by the function of adjusting the heat radiation amount.

従って、排気ガス浄化装置の温度を、短時間で浄化性能の高い温度範囲内に昇温させることが効率よくできると共に、浄化性能の高い温度範囲内に維持することが容易にできるので、排気ガス浄化装置の浄化機能を向上させることができる。また、この浄化能力の向上により、浄化に必要な排気ガス浄化装置の容積を減らすことができるので、小型化でき、この小型化による車両への搭載性も向上することができる。   Therefore, the temperature of the exhaust gas purification device can be efficiently raised within a temperature range with high purification performance in a short time, and can easily be maintained within the temperature range with high purification performance. The purification function of the purification device can be improved. Moreover, since the volume of the exhaust gas purification device required for purification can be reduced by improving the purification capability, the size can be reduced, and the mountability on the vehicle can also be improved by the reduction in size.

以下、本発明に係る実施の形態の排気ガス浄化システム及び排気ガス浄化法について、図面を参照しながら説明する。なお、ここでは、流体として気体について説明するが、流体として冷却水等の液体を使用することもできる。また、ここで用いる「真空」「真空状態」とは、絶対気圧ゼロである必要はなく、大気圧よりも低く、中空部において断熱効果があればよい。この真空状態は、中空部を密閉して真空ポンプ(バキュームポンプ)で吸引することによって容易に実施できる。また、真空度合いは、中空部の構造的強度や密閉用の弁や真空ポンプの性能によって決まるが、これらは、中空部における断熱要求と効果等とのバランスで決まる。   Hereinafter, an exhaust gas purification system and an exhaust gas purification method according to embodiments of the present invention will be described with reference to the drawings. In addition, although gas is demonstrated as a fluid here, liquids, such as cooling water, can also be used as a fluid. In addition, the “vacuum” and “vacuum state” used here do not need to be absolute atmospheric pressure zero, but may be lower than atmospheric pressure and have a heat insulating effect in the hollow portion. This vacuum state can be easily implemented by sealing the hollow portion and sucking it with a vacuum pump (vacuum pump). The degree of vacuum is determined by the structural strength of the hollow part and the performance of the sealing valve or vacuum pump, but these are determined by the balance between the heat insulation requirement and the effect in the hollow part.

図1に、本発明の実施の形態の排気ガス浄化装置を用いた排気ガス浄化システム1の構成を示し、図2に排気ガス浄化装置の横断面図を示す。この排気ガス浄化システム1は、エンジンの排気通路2に、酸化触媒(DOC)、NOx吸蔵還元型触媒(LNT)、ディーゼルパティキュレートフィルタ(DPF)等の一つ又は幾つかの組み合わせで形成される排気ガス浄化装置3を配置して構成される。なお、ここでは、この排気ガス浄化装置3はNOx吸蔵還元型触媒を備えて構成されているものとして説明する。   FIG. 1 shows a configuration of an exhaust gas purification system 1 using an exhaust gas purification device according to an embodiment of the present invention, and FIG. 2 shows a cross-sectional view of the exhaust gas purification device. The exhaust gas purification system 1 is formed in an engine exhaust passage 2 by one or several combinations of an oxidation catalyst (DOC), a NOx storage reduction catalyst (LNT), a diesel particulate filter (DPF), and the like. An exhaust gas purification device 3 is arranged. Here, the exhaust gas purification device 3 will be described as including a NOx storage reduction catalyst.

このNOx吸蔵還元型触媒は、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して形成され、酸素過剰な排気ガス中のNOを酸化して硝酸塩として触媒上に吸着させて、NOxを浄化する。このNOx吸蔵還元型触媒は、排気ガスが酸素濃度の高いリーン空燃比状態ではNOxを吸蔵し、酸素濃度が低いかゼロのリッチ空燃比状態では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。   This NOx occlusion reduction type catalyst is formed by supporting an alkali metal or alkaline earth metal together with a noble metal, and purifies NOx by oxidizing NO in exhaust gas containing excess oxygen and adsorbing it as a nitrate on the catalyst. The NOx occlusion reduction type catalyst occludes NOx when the exhaust gas is in a lean air-fuel ratio with a high oxygen concentration, and releases the occluded NOx and releases it in a rich air-fuel ratio with a low or zero oxygen concentration. NOx is reduced in a reducing atmosphere to reduce NOx.

この排気ガス浄化装置3の表面の一部又は全体に、排気ガスG又は空気(外気)Bの流体(ここでは気体)Aが流通する中空部4を設ける。この中空部4は、通常は排気ガス浄化装置3の外周部に設けるが、排気ガス浄化装置3に内部通路がある場合などでは内部に設けてもよい。この中空部は、排気ガス浄化装置3の排気ガスGの入口側に設けると、この排気ガスGに対する温度管理効果を発揮でき、排気ガスGの出口側に設けると、排気ガス浄化装置3の後端部に対する温度管理効果を発揮できる。また、この中空部4を排気ガス浄化装置3の上流側の排気通路2にも設けると、排気ガス浄化装置3に流入する排気ガスGに対する温度管理効果をより大きくすることができる。   A hollow portion 4 through which a fluid (here, gas) A of exhaust gas G or air (outside air) B flows is provided on a part or the whole of the surface of the exhaust gas purification device 3. The hollow portion 4 is normally provided in the outer peripheral portion of the exhaust gas purification device 3, but may be provided in the interior when the exhaust gas purification device 3 has an internal passage. If this hollow portion is provided on the inlet side of the exhaust gas G of the exhaust gas purification device 3, it can exert a temperature management effect on the exhaust gas G, and if it is provided on the outlet side of the exhaust gas G, the rear portion of the exhaust gas purification device 3 The temperature control effect on the edge can be demonstrated. If this hollow portion 4 is also provided in the exhaust passage 2 on the upstream side of the exhaust gas purification device 3, the temperature management effect on the exhaust gas G flowing into the exhaust gas purification device 3 can be further increased.

この中空部4には、流体Aの供給部としての入口側配管5と、流体Aの排出部としての出口側配管6とを接続して設け、この入口側配管5に入口側電磁弁5aを、この出口側配管6に出口側電磁弁6aを設ける。更に、出口側電磁弁6aの下流側に真空ポンプ7を設ける。また、入口側配管5は、排気ガス浄化装置3の排気ガスGに関して下流側に設け、出口側配管6は上流側に設ける。これらにより、中空部4内の流体Aの流量の調整を行う流体流量調整機構と、この中空部4を密閉して内部の流体Aの圧力の調整を行う流体圧力調整機構を構成する。   In this hollow portion 4, an inlet side pipe 5 as a fluid A supply part and an outlet side pipe 6 as a fluid A discharge part are connected, and an inlet side electromagnetic valve 5 a is provided in the inlet side pipe 5. The outlet side solenoid valve 6 a is provided in the outlet side pipe 6. Further, a vacuum pump 7 is provided on the downstream side of the outlet side solenoid valve 6a. Further, the inlet side pipe 5 is provided on the downstream side with respect to the exhaust gas G of the exhaust gas purification device 3, and the outlet side pipe 6 is provided on the upstream side. Thus, a fluid flow rate adjusting mechanism for adjusting the flow rate of the fluid A in the hollow portion 4 and a fluid pressure adjusting mechanism for sealing the hollow portion 4 and adjusting the pressure of the fluid A inside are configured.

この入口側配管5の上流側は、排気ガスGと空気Bとを選択して導入できるように構成する。つまり、入口側配管5の上流側を2つに分岐して、一方の入口側配管5bを大気中に開放し、他方の入口側配管5cを排気ガス浄化装置3の下流側の排気通路2に接続する。それと共に、この分岐部位に切り替え弁8を設ける。この構成により、流体流量調整機構が、中空部4を流通する流体Aを排気ガスGと空気Bに切り替える流体切り替え機構を有するようになる。この構成により、高温の排気ガスGで中空部4を介して排気ガス浄化装置3を効率よく温めて、保温効果を上げることができると共に、低温の空気である流体Aで中空部4を介して排気ガス浄化装置3を効率よく冷却することができるようになる。   The upstream side of the inlet side pipe 5 is configured so that the exhaust gas G and the air B can be selected and introduced. That is, the upstream side of the inlet side pipe 5 is branched into two, one inlet side pipe 5b is opened to the atmosphere, and the other inlet side pipe 5c is connected to the exhaust passage 2 on the downstream side of the exhaust gas purification device 3. Connecting. At the same time, a switching valve 8 is provided at this branch portion. With this configuration, the fluid flow rate adjustment mechanism has a fluid switching mechanism that switches the fluid A flowing through the hollow portion 4 to the exhaust gas G and the air B. With this configuration, the exhaust gas purifying device 3 can be efficiently warmed with the high-temperature exhaust gas G through the hollow portion 4, and the heat retention effect can be increased. The exhaust gas purification device 3 can be efficiently cooled.

また、排気ガス浄化装置3の温度Tmを測定する温度センサ9を排気ガス浄化装置3の内部に設ける。なお、温度センサ9を内部に設けるのが難しい場合には、排気ガス浄化装置3の上流側に排気ガスGの温度Tgを測定する温度センサ9aを設けて、この温度センサの検出温度Tgaを温度Tmの代用とする。更に、中空部4の圧力Pmを計測する圧力センサ10を設ける。また、必要に応じて、排気ガス浄化装置3の下流側に排気ガスGの温度Tgbを測定する温度センサ9bを設けて、排気ガスGによる排気ガス浄化装置3の暖機の可否の判断に用いる。   Further, a temperature sensor 9 for measuring the temperature Tm of the exhaust gas purification device 3 is provided inside the exhaust gas purification device 3. When it is difficult to provide the temperature sensor 9 inside, a temperature sensor 9a for measuring the temperature Tg of the exhaust gas G is provided on the upstream side of the exhaust gas purification device 3, and the detected temperature Tga of this temperature sensor is set as the temperature. Substitute for Tm. Furthermore, a pressure sensor 10 for measuring the pressure Pm of the hollow portion 4 is provided. Further, if necessary, a temperature sensor 9b that measures the temperature Tgb of the exhaust gas G is provided on the downstream side of the exhaust gas purification device 3, and is used to determine whether the exhaust gas G can be warmed up. .

この温度センサ9(9a)、9bの検出値Tm(Tga)、Tgbと圧力センサ10の検出値Pmは、排気ガス浄化装置3の制御装置11に入力される。この制御装置11には、エンジンの運転状態を示すエンジン回転数Neと負荷(又は燃料噴射量)Qも入力され、入口側電磁弁5aと出口側電磁弁6aと真空ポンプ7と切り替え弁8を制御する。通常、この制御装置11はエンジンの運転を制御するECM(エンジンコントロールモジュール)又はECU(エンジンコントロールユニット)と呼ばれるエンジン制御装置20に組込まれて構成される。   The detected values Tm (Tga) and Tgb of the temperature sensors 9 (9a) and 9b and the detected value Pm of the pressure sensor 10 are input to the control device 11 of the exhaust gas purification device 3. The control device 11 also receives an engine speed Ne and a load (or fuel injection amount) Q that indicate the operating state of the engine, and controls the inlet side solenoid valve 5a, the outlet side solenoid valve 6a, the vacuum pump 7, and the switching valve 8. Control. Normally, the control device 11 is built in an engine control device 20 called an ECM (engine control module) or ECU (engine control unit) that controls the operation of the engine.

両方の電磁弁5a,6aを開いて真空ポンプ7を作動させれば、真空ポンプ7の調整により流体Aの流量を調整でき、また、流体入口側の電磁弁5aを閉じて、流体出口側の電磁弁6aを開いて真空ポンプ7を作動させれば、流体Aの圧力を低下させて真空にすることができ、所定の真空度に達したら、真空ポンプ7を止める。この真空状態を圧力センサ10で常時検知し、所定の真空度(所定の圧力)よりも上昇したら再び真空ポンプ7を作動させる。言い換えれば、所定の圧力値以下であることが圧力センサ10で検知されるまでは真空ポンプ7を止めておく。これにより、中空部4を真空状態のまま維持することができる。これらの制御を、エンジンの運転状態に応じて行う。   If both the solenoid valves 5a and 6a are opened and the vacuum pump 7 is operated, the flow rate of the fluid A can be adjusted by adjusting the vacuum pump 7, and the solenoid valve 5a on the fluid inlet side is closed and the fluid outlet side is closed. When the electromagnetic valve 6a is opened and the vacuum pump 7 is operated, the pressure of the fluid A can be reduced to make a vacuum, and when the predetermined vacuum degree is reached, the vacuum pump 7 is stopped. This vacuum state is always detected by the pressure sensor 10, and the vacuum pump 7 is operated again when the vacuum level rises above a predetermined degree of vacuum (predetermined pressure). In other words, the vacuum pump 7 is stopped until the pressure sensor 10 detects that the pressure is equal to or lower than the predetermined pressure value. Thereby, the hollow part 4 can be maintained with a vacuum state. These controls are performed according to the operating state of the engine.

次に、上記の排気ガス浄化装置の温度管理方法について、第1の実施の形態について図3の制御フローを参照しながら説明する。この図3の制御フローはエンジンの運転開始と共にスタートし、エンジンの運転制御と並行して実施され、エンジンの運転終了と共にリターンして終了するものとして示してある。   Next, the temperature management method for the exhaust gas purifying apparatus will be described with reference to the control flow of FIG. 3 for the first embodiment. The control flow of FIG. 3 is shown as starting with the start of engine operation, being executed in parallel with the engine operation control, and returning and ending with the end of engine operation.

この図3の制御フローがスタートすると、ステップS11で、触媒温度Tmが所定の温度範囲の下限(例えば、250℃)Tc1より低いか(YES)、否か(NO)を判定する。ステップS11の判定で低い場合(YES)は、ステップS12に行く。このステップS12では、真空化に先立って、中空部4の圧力Pmが所定の圧力Pcより低いか(YES)、否か(NO)を判定する。低い場合(YES)には、既に真空化されているとして、ステップS11に戻る。低くない場合(NO)は、ステップS13に行き、真空化を行う。この真空化は、入口側電磁弁5aを閉じて、出口側電磁弁6aを開き、真空ポンプ7を作動させることにより、所定の時間(圧力Pmの判定のインターバルに関係する時間)の間行う。   When the control flow of FIG. 3 starts, it is determined in step S11 whether the catalyst temperature Tm is lower than a lower limit (for example, 250 ° C.) Tc1 of a predetermined temperature range (YES) or not (NO). If the determination in step S11 is low (YES), go to step S12. In step S12, prior to evacuation, it is determined whether the pressure Pm of the hollow portion 4 is lower than a predetermined pressure Pc (YES) or not (NO). If it is low (YES), it is determined that the vacuum has already been reached, and the process returns to step S11. When it is not low (NO), the process goes to step S13 to evacuate. This evacuation is performed for a predetermined time (time related to the pressure Pm determination interval) by closing the inlet side electromagnetic valve 5a, opening the outlet side electromagnetic valve 6a, and operating the vacuum pump 7.

この真空化の後は、ステップS14で、再度、中空部4の圧力Pmが所定の圧力Pcより低いか(YES)、否か(NO)を判定する。低い場合(YES)はステップS15に行き、真空ポンプ7の作動を停止して真空化を停止し、ステップS11に戻る。低くない場合(NO)は、ステップS13に戻り、中空部4の圧力Pmが所定の圧力Pcより低くなるまで、ステップS13の真空化を継続する。この中空部4の真空化により、中空部4の断熱効果が高められ、排気ガス浄化装置3の昇温を効率よく行えるようになる。   After this evacuation, in step S14, it is determined again whether the pressure Pm of the hollow portion 4 is lower than the predetermined pressure Pc (YES) or not (NO). When it is low (YES), the process goes to Step S15, the operation of the vacuum pump 7 is stopped, the evacuation is stopped, and the process returns to Step S11. If not (NO), the process returns to step S13, and the evacuation in step S13 is continued until the pressure Pm of the hollow portion 4 becomes lower than the predetermined pressure Pc. By evacuating the hollow portion 4, the heat insulating effect of the hollow portion 4 is enhanced, and the temperature of the exhaust gas purification device 3 can be efficiently increased.

ステップS11の判定で、触媒温度Tmが、所定の温度範囲の下限Tc1より低くない場合(NO)は、ステップS16で、触媒温度Tmが所定の温度範囲の上限(例えば、400℃)Tc2より高いか(YES)、否か(NO)を判定する。高くない場合(NO)は、ステップS12に行き、中空部4を真空にするか、真空状態を維持する。高い場合(YES)は、ステップS17に行き、中空部4に流体Aを流通させる。この流通は、入口側電磁弁5aと出口側電磁弁6aの両方を開き、真空ポンプ7を作動させることにより、の所定の時間(触媒温度の判定のインターバルに関係する時間)の間行う。ここでは、冷却のためであるので、切り替え弁8を切り替えて空気Bを流通させる。   If it is determined in step S11 that the catalyst temperature Tm is not lower than the lower limit Tc1 of the predetermined temperature range (NO), the catalyst temperature Tm is higher than the upper limit (eg, 400 ° C.) Tc2 of the predetermined temperature range in step S16. (YES) or not (NO). When it is not high (NO), the process goes to step S12, and the hollow portion 4 is evacuated or maintained in a vacuum state. When it is high (YES), the process goes to step S17, and the fluid A is circulated through the hollow portion 4. This circulation is performed for a predetermined time (time related to the determination interval of the catalyst temperature) by opening both the inlet side electromagnetic valve 5a and the outlet side electromagnetic valve 6a and operating the vacuum pump 7. Here, since it is for cooling, the switching valve 8 is switched and the air B is distribute | circulated.

また、エンジンの運転が終了した時には、制御途中であっても割り込みが発生して、リターンし、エンジンの運転の終了と共に、この制御フローも終了する。   Further, when the operation of the engine is finished, an interrupt is generated even during the control, and the routine returns, and this control flow is finished together with the end of the operation of the engine.

この第1の実施の形態の排気ガス浄化装置の温度管理方法によれば、排気ガス浄化装置3の温度Tmが低い場合には、所定の温度範囲(Tc1〜Tc2)に達するまでは、中空部4を真空状態にして中空部4を経由しては熱される熱量を減らし、排気ガス浄化装置の温度Tmが所定の温度範囲(Tc1〜Tc2)内にある場合には、中空部4を真空状態のまま維持し、更に、排気ガス浄化装置3の温度Tmが所定の温度範囲(Tc1〜Tc2)を超える場合には、中空部4に流体A(空気B)を流通させる。   According to the temperature management method for the exhaust gas purifying device of the first embodiment, when the temperature Tm of the exhaust gas purifying device 3 is low, the hollow portion is reached until it reaches a predetermined temperature range (Tc1 to Tc2). If the temperature Tm of the exhaust gas purification device is within a predetermined temperature range (Tc1 to Tc2), the amount of heat heated through the hollow portion 4 is reduced by making the vacuum state 4 and the hollow portion 4 is in a vacuum state. If the temperature Tm of the exhaust gas purification device 3 exceeds a predetermined temperature range (Tc1 to Tc2), the fluid A (air B) is circulated through the hollow portion 4.

なお、制御の判定を温度Tmと所定の温度範囲の下限Tc1と上限Tc2で行っているが、温度Tmの増減速度を加味した判定にすることで、温度Tmの変化を予測できるので、温度Tmが所定の温度範囲になると予測される場合や、温度Tmが所定の温度範囲を超えると予測される場合にも容易に拡張できる。また、エンジンから排出される排気ガスGの温度Tgaに密接な関係を持つ、エンジン回転数Neや燃料噴射量Qを基に排気ガスの温度を予測すれば、あるいは、エンジン回転数Neや燃料噴射量Qを判定の基準に用いれば、排気ガス温度Tgaが変化するのに先立って、排気ガス浄化装置3からの放熱と保温の制御を行うことができ、これらの制御の時間遅れを減らすことができる。   Although the control determination is performed at the temperature Tm, the lower limit Tc1 and the upper limit Tc2 of the predetermined temperature range, the change of the temperature Tm can be predicted by making the determination taking into account the increase / decrease speed of the temperature Tm. Can be easily expanded even when the temperature is predicted to fall within a predetermined temperature range or when the temperature Tm is predicted to exceed the predetermined temperature range. Further, if the exhaust gas temperature is predicted based on the engine speed Ne and the fuel injection amount Q, which are closely related to the temperature Tga of the exhaust gas G exhausted from the engine, or the engine speed Ne and the fuel injection If the quantity Q is used as a criterion for determination, it is possible to control heat dissipation and heat retention from the exhaust gas purification device 3 before the exhaust gas temperature Tga changes, and to reduce the time delay of these controls. it can.

従って、この温度管理方法によれば、排気ガス浄化装置3の温度Tmが低い場合には、中空部4を真空状態にして放熱量を小さくして、所定の温度範囲(Tc1〜Tc2)に達するまでの時間を減らすことができる。また、排気ガス浄化装置3の温度Tmが所定の温度範囲(Tc1〜Tc2)内にある場合や所定の温度範囲(Tc1〜Tc2)内になると予測される場合も、中空部4を真空状態のまま維持して、排気ガス浄化装置3の温度Tmを所定の温度範囲(Tc1〜Tc2)内に維持することができる。更に、排気ガス浄化装置3の温度Tmが所定の温度範囲(Tc1〜Tc2)を超える場合や超えると予測される場合には、中空部4の対流伝熱等により、排気ガス浄化装置3から熱を奪って、排気ガス浄化装置3を冷却することができる。なお、この冷却度合いは流体Aの流量調整で調整することができる。従って、NOx浄化触媒やDPF等の排気ガス浄化装置3の温度Tmを、容易に調整及び管理することができる。   Therefore, according to this temperature management method, when the temperature Tm of the exhaust gas purifying device 3 is low, the hollow portion 4 is evacuated to reduce the heat radiation amount and reach a predetermined temperature range (Tc1 to Tc2). The time until can be reduced. Further, when the temperature Tm of the exhaust gas purification device 3 is within the predetermined temperature range (Tc1 to Tc2) or when it is predicted to be within the predetermined temperature range (Tc1 to Tc2), the hollow portion 4 is kept in the vacuum state. The temperature Tm of the exhaust gas purification device 3 can be maintained within a predetermined temperature range (Tc1 to Tc2). Further, when the temperature Tm of the exhaust gas purification device 3 exceeds or is predicted to exceed a predetermined temperature range (Tc1 to Tc2), heat is generated from the exhaust gas purification device 3 by convection heat transfer or the like of the hollow portion 4. The exhaust gas purification device 3 can be cooled. This degree of cooling can be adjusted by adjusting the flow rate of the fluid A. Therefore, the temperature Tm of the exhaust gas purification device 3 such as a NOx purification catalyst or DPF can be easily adjusted and managed.

次に、第2の実施の形態の排気ガス浄化装置の温度管理方法について、図4の制御フローを参照しながら説明する。この図4の制御フローは、図3の制御フローにステップS21とステップS22を加えたものである。   Next, a temperature management method for the exhaust gas purifying apparatus according to the second embodiment will be described with reference to the control flow of FIG. The control flow of FIG. 4 is obtained by adding steps S21 and S22 to the control flow of FIG.

この図4の制御フローでは、ステップS11で触媒温度Tmが所定の温度範囲の下限Tc1より低い時に、ステップS21で、排気ガス浄化装置3の下流側の排気ガスGの温度Tgbが所定の判定温度Tc3より高いか(YES)、否か(NO)を判定し、高い場合(YES)のみ、ステップS22に行って、比較的温度が高い排気ガスGを中空部4に流通させて、排気ガス浄化装置3を暖める。   In the control flow of FIG. 4, when the catalyst temperature Tm is lower than the lower limit Tc1 of the predetermined temperature range in step S11, the temperature Tgb of the exhaust gas G on the downstream side of the exhaust gas purification device 3 is the predetermined determination temperature in step S21. It is determined whether it is higher than Tc3 (YES) or not (NO), and only when it is higher (YES), the process goes to step S22 to circulate the exhaust gas G having a relatively high temperature through the hollow portion 4 to purify the exhaust gas. The device 3 is warmed.

この流通は、入口側電磁弁5aと出口側電磁弁6aの両方を開き、真空ポンプ7を作動させることにより行うが、ここでは、暖機のためであるので、切り替え弁8を切り替えて排気ガスGを流通させる。この排気ガスGの流量、流速の調整を真空ポンプ7の調整で行うことにより、暖機の度合いを調整することができる。   This distribution is performed by opening both the inlet side solenoid valve 5a and the outlet side solenoid valve 6a and operating the vacuum pump 7. Here, because of warming up, the switching valve 8 is switched to exhaust gas. G is distributed. By adjusting the flow rate and flow velocity of the exhaust gas G by adjusting the vacuum pump 7, the degree of warm-up can be adjusted.

この所定の判定温度Tc3は、効率よく排気ガス浄化装置3を暖めることができる温度とする。この所定の判定温度Tc3には、触媒温度Tmによって変化する値(例えば、触媒温度Tmに一定の温度を加えた値)を用いることもできる。   The predetermined determination temperature Tc3 is a temperature at which the exhaust gas purification device 3 can be efficiently warmed. As the predetermined determination temperature Tc3, a value that varies depending on the catalyst temperature Tm (for example, a value obtained by adding a constant temperature to the catalyst temperature Tm) may be used.

また、ステップS21の判定で、排気ガスGの温度Tgbが所定の判定温度Tc3より高くない場合(NO)は、ステップS12に行く。その他は、図3の制御フローと同様な制御が行われる。   If it is determined at step S21 that the temperature Tgb of the exhaust gas G is not higher than the predetermined determination temperature Tc3 (NO), the process goes to step S12. Otherwise, the same control as in the control flow of FIG. 3 is performed.

この第2の実施の形態の温度管理方法によれば、第1の実施の形態の温度管理方法の作用効果に加えて、触媒温度Tmが所定の温度範囲の下限Tc1より低い場合に、排気ガスGの温度Tabが高い時には、中空部4に排気ガスGを流通させて暖機することができるようになる。   According to the temperature management method of the second embodiment, in addition to the operational effects of the temperature management method of the first embodiment, when the catalyst temperature Tm is lower than the lower limit Tc1 of the predetermined temperature range, the exhaust gas When the temperature Tab of G is high, the exhaust gas G can be circulated through the hollow portion 4 to warm up.

上記の排気ガス浄化装置及び排気ガス浄化装置の温度管理方法によれば、排気ガス浄化装置3から放熱される熱量を、中空部4を流れる流体Aの流量によって調整できる上に、中空部4の流体Aの圧力低下状態により、言い換えれば、真空状態により放熱量を著しく低減できるので、この放熱量の調整機能により排気ガス浄化装置3の温度管理が容易にできるようになる。   According to the exhaust gas purification device and the temperature management method of the exhaust gas purification device, the amount of heat radiated from the exhaust gas purification device 3 can be adjusted by the flow rate of the fluid A flowing through the hollow portion 4, and Since the heat radiation amount can be remarkably reduced by the pressure drop state of the fluid A, in other words, in the vacuum state, the temperature management of the exhaust gas purification device 3 can be easily performed by this heat radiation amount adjustment function.

従って、排気ガス浄化装置3の温度Tmを、短時間で浄化性能の高い温度範囲(Tc1〜Tc2)内に昇温させることが効率よくできると共に、浄化性能の高い温度範(Tc1〜Tc2)囲内に維持することが容易にでき、排気ガス浄化装置3の浄化機能を向上させることができる。   Therefore, the temperature Tm of the exhaust gas purification device 3 can be efficiently raised within a temperature range (Tc1 to Tc2) with high purification performance in a short time, and within the temperature range (Tc1 to Tc2) with high purification performance. Therefore, the purification function of the exhaust gas purification device 3 can be improved.

その結果、触媒機能に必要な温度範囲(Tc1〜Tc2)に対して触媒温度Tmが低い場合に、排気ガス温度Tgaの上昇に対する触媒温度Tmの時間遅れを減少できるので、エンジンからのNOx排出量の更なる抑制が可能となる。また、触媒温度Tmが触媒機能発現に必要な温度範囲(Tc1〜Tc2)に対して高い場合に、触媒からの放熱を増やして冷却を促進することでエンジンからのNOx排出量の抑制が可能となる。   As a result, when the catalyst temperature Tm is lower than the temperature range (Tc1 to Tc2) required for the catalyst function, the time delay of the catalyst temperature Tm with respect to the rise of the exhaust gas temperature Tga can be reduced, so the amount of NOx emitted from the engine Can be further suppressed. Further, when the catalyst temperature Tm is higher than the temperature range (Tc1 to Tc2) necessary for the catalyst function to be expressed, it is possible to suppress the NOx emission from the engine by increasing the heat release from the catalyst and promoting the cooling. Become.

更に、放熱と保温の制御をエンジン排気ガス温度が変化するのに先立って対応させると、制御時間遅れを減らすことができ、更に、触媒の浄化効率が向上するので、NOx排出量の更なる抑制が可能となる。   Furthermore, if heat dissipation and heat insulation control are handled prior to the change in engine exhaust gas temperature, the control time delay can be reduced, and further, the purification efficiency of the catalyst is improved, so that NOx emissions are further suppressed. Is possible.

本発明の実施の形態の排気ガス浄化装置を用いた排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system using the exhaust-gas purification apparatus of embodiment of this invention. 本発明の実施の形態の排気ガス浄化装置の横断面図である。1 is a cross-sectional view of an exhaust gas purification device according to an embodiment of the present invention. 本発明の第1の実施の形態の排気ガス浄化装置の温度管理方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the temperature management method of the exhaust-gas purification apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態の排気ガス浄化装置の温度管理方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the temperature management method of the exhaust-gas purification apparatus of the 2nd Embodiment of this invention. NOx吸蔵還元型触媒の触媒温度と浄化性能の関係を示す図である。It is a figure which shows the relationship between the catalyst temperature of NOx storage reduction type catalyst, and purification performance.

符号の説明Explanation of symbols

1 排気ガス浄化システム
2 エンジンの排気通路
3 排気ガス浄化装置
4 中空部
5 入口側配管
5a 入口側電磁弁
5b 一方の入口側配管
5c 他方の入口側配管
6a 出口側電磁弁
6 出口側配管
7 真空ポンプ
8 切り替え弁
9,9a,9b 温度センサ
10 圧力センサ
11 制御装置
20 エンジン制御装置
A 流体
B 空気(大気)
G 排気ガス
Ne エンジン回転数
Q 負荷(又は燃料噴射量)
Tc1 所定の温度範囲の下限
Tc2 所定の温度範囲の上限
Tc3 所定の判定温度
Tga 排気ガス浄化装置の上流側の排気ガスの温度
Tgb 排気ガス浄化装置の下流側の排気ガスの温度
Tm 排気ガス浄化装置の温度(触媒温度)
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 2 Engine exhaust passage 3 Exhaust gas purification apparatus 4 Hollow part 5 Inlet side piping 5a Inlet side solenoid valve 5b One inlet side piping 5c The other inlet side piping 6a Outlet side solenoid valve 6 Outlet side piping 7 Vacuum Pump 8 Switching valve 9, 9a, 9b Temperature sensor 10 Pressure sensor 11 Controller 20 Engine controller A Fluid B Air (atmosphere)
G Exhaust gas Ne Engine speed Q Load (or fuel injection amount)
Tc1 Lower limit of the predetermined temperature range Tc2 Upper limit of the predetermined temperature range Tc3 Predetermined determination temperature Tga Temperature of the exhaust gas upstream of the exhaust gas purification device Tgb Temperature of the exhaust gas downstream of the exhaust gas purification device Tm Exhaust gas purification device Temperature (catalyst temperature)

Claims (7)

内燃機関の排気ガスを浄化する排気ガス浄化装置において、この排気ガス浄化装置の表面又は内部の、一部又は全体に、流体が流通する中空部を設け、この中空部内の流体の流量の調整を行う流体流量調整機構を設けると共に、この中空部を密閉して内部の流体の圧力の調整を行う流体圧力調整機構を設けたことを特徴とする排気ガス浄化装置。   In an exhaust gas purification device for purifying exhaust gas of an internal combustion engine, a hollow portion through which a fluid flows is provided on a part or all of the surface or inside of the exhaust gas purification device, and the flow rate of the fluid in the hollow portion is adjusted. An exhaust gas purifying apparatus characterized in that a fluid flow rate adjusting mechanism is provided and a fluid pressure adjusting mechanism is provided for adjusting the pressure of the internal fluid by sealing the hollow portion. 前記流体流量調整機構が、前記中空部を流通する流体を排気ガスと空気に切り替える流体切り替え機構を有することを特徴とする請求項1記載の排気ガス浄化装置。   The exhaust gas purifying apparatus according to claim 1, wherein the fluid flow rate adjusting mechanism includes a fluid switching mechanism that switches a fluid flowing through the hollow portion between exhaust gas and air. 前記中空部内の流体流量と流体圧力の少なくとも一方の調整を、内燃機関の運転状態に応じて行うことを特徴とする請求項1又は2記載の排気ガス浄化装置。   The exhaust gas purification device according to claim 1 or 2, wherein at least one of a fluid flow rate and a fluid pressure in the hollow portion is adjusted according to an operating state of the internal combustion engine. 内燃機関の排気ガスを浄化する排気ガス浄化装置の温度管理方法において、この排気ガス浄化装置の表面又は内部の、一部又は全体に設けた中空部に、流体を流通させると共に、この流体の流量の調整と、前記中空部を密閉したときの流体の圧力の調整をして、この排気ガス浄化装置の熱の出入を調整することを特徴とする排気ガス浄化装置の温度管理方法。   In a temperature management method for an exhaust gas purification device for purifying exhaust gas of an internal combustion engine, a fluid is circulated through a hollow portion provided in a part or the whole of the surface or inside of the exhaust gas purification device, and the flow rate of the fluid And adjusting the pressure of the fluid when the hollow portion is sealed to adjust the heat input and output of the exhaust gas purification device. 前記中空部に流通させる流体を排気ガスと空気に切り替えることを特徴とする請求項4記載の排気ガス浄化装置の温度管理方法。   The temperature management method for an exhaust gas purification device according to claim 4, wherein the fluid flowing through the hollow portion is switched between exhaust gas and air. 前記内燃機関の運転状態に応じて、前記中空部内の流体流量と流体圧力の少なくとも一方を調整することを特徴とする請求項4又は5に記載の排気ガス浄化装置の温度管理方法。   6. The temperature management method for an exhaust gas purification device according to claim 4, wherein at least one of a fluid flow rate and a fluid pressure in the hollow portion is adjusted according to an operating state of the internal combustion engine. 前記排気ガス浄化装置の温度が低い場合には、所定の温度範囲に達するまでは、前記中空部を真空状態にして前記中空部を経由して伝熱される熱量を減らし、
前記排気ガス浄化装置の温度が前記所定の温度範囲内にある場合、又は、前記所定の温度範囲になると予測される場合には、中空部を真空状態のまま維持し、
更に、前記排気ガス浄化装置の温度が前記所定の温度範囲を超える場合、又は、前記排気ガス浄化装置の温度が前記所定の温度範囲を超えると予測される場合には、中空部に流体を流通させることを特徴とする請求項4、5又は6に記載の排気ガス浄化装置の温度管理方法。
When the temperature of the exhaust gas purifying device is low, the amount of heat transferred through the hollow portion is reduced in a vacuum state until the temperature reaches a predetermined temperature range,
When the temperature of the exhaust gas purifying device is within the predetermined temperature range, or when predicted to be within the predetermined temperature range, the hollow portion is maintained in a vacuum state,
Further, when the temperature of the exhaust gas purification device exceeds the predetermined temperature range, or when the temperature of the exhaust gas purification device is predicted to exceed the predetermined temperature range, the fluid is circulated through the hollow portion. The temperature management method for an exhaust gas purifying apparatus according to claim 4, wherein:
JP2008013799A 2008-01-24 2008-01-24 Exhaust emission control device and temperature control method for exhaust emission control device Pending JP2009174426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013799A JP2009174426A (en) 2008-01-24 2008-01-24 Exhaust emission control device and temperature control method for exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013799A JP2009174426A (en) 2008-01-24 2008-01-24 Exhaust emission control device and temperature control method for exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009174426A true JP2009174426A (en) 2009-08-06

Family

ID=41029771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013799A Pending JP2009174426A (en) 2008-01-24 2008-01-24 Exhaust emission control device and temperature control method for exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2009174426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504749A (en) * 2013-12-13 2017-02-09 周向▲進▼ZHOU, Xiangjin Combustion control method that mixes homogeneous compression ignition and diffusion compression ignition with low octane gasoline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504749A (en) * 2013-12-13 2017-02-09 周向▲進▼ZHOU, Xiangjin Combustion control method that mixes homogeneous compression ignition and diffusion compression ignition with low octane gasoline

Similar Documents

Publication Publication Date Title
JP5256881B2 (en) Exhaust gas purification device
JP5992992B2 (en) Exhaust purification device for watercraft and method of operating the exhaust purification device
JP2006274838A (en) Exhaust gas purifying system of internal combustion engine
JP5233499B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5799886B2 (en) Control device for cooling system
JP5141479B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2010038072A (en) Exhaust treatment device for internal combustion engine
JP5239719B2 (en) Vehicle heat storage device
JP2009174426A (en) Exhaust emission control device and temperature control method for exhaust emission control device
WO2009016896A1 (en) Exhaust purification device for internal combustion engine
JP2010185434A (en) Exhaust emission control device for internal combustion engine
JP5604912B2 (en) Automotive exhaust purification system
JP2007255262A (en) Intercooler temperature control device
JP2005127137A (en) Egr system of engine
JP2006226231A (en) Exhaust emission control device of internal combustion engine
JP2011032921A (en) Exhaust emission control device in diesel engine
JP2005226474A (en) Heat exchange system for engine
JP2015068266A (en) Exhaust emission control system and exhaust emission control method
JP2005098141A (en) Exhaust emission control device
CN113027577B (en) Engine exhaust device and engine exhaust method
JPH03222810A (en) Exhaust gas leading out device for vehicle
JP7283457B2 (en) Reducing agent supply device
JPH06346724A (en) Exhaust gas purifying device
JP2008019764A (en) Exhaust emission control system of internal combustion engine
JP2008286112A (en) Exhaust emission control system and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120508