JP2009174092A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2009174092A
JP2009174092A JP2008014794A JP2008014794A JP2009174092A JP 2009174092 A JP2009174092 A JP 2009174092A JP 2008014794 A JP2008014794 A JP 2008014794A JP 2008014794 A JP2008014794 A JP 2008014794A JP 2009174092 A JP2009174092 A JP 2009174092A
Authority
JP
Japan
Prior art keywords
catalyst
gas
substrate
carbon
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008014794A
Other languages
Japanese (ja)
Inventor
Takuji Komukai
拓治 小向
Tomomoto Yamazaki
智基 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonac KK
Original Assignee
Sonac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonac KK filed Critical Sonac KK
Priority to JP2008014794A priority Critical patent/JP2009174092A/en
Publication of JP2009174092A publication Critical patent/JP2009174092A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber, by which the highly pure carbon fiber can be mass-produced in an effective utilization rate of high raw material gas. <P>SOLUTION: The method for producing the carbon fiber, includes: when annealing and activating a catalyst in a process for traveling a catalyst-attached substrate 16 in a reaction tube 12 and decomposing C<SB>2</SB>H<SB>2</SB>gas flowed in the direction opposite to the travel direction to grow CNT22 on the substrate 16, enhancing the concentration of H<SB>2</SB>gas at the substrate 16-traveling position where the catalyst 20 is annealed; and inhibiting the production of impure carbon with the C<SB>2</SB>H<SB>2</SB>gas having a high H<SB>2</SB>gas concentration in a high active catalyst region C, and enhancing the high C<SB>2</SB>H<SB>2</SB>gas concentration in a low active catalyst region D to maximize the ability of the catalyst 20 to grow the CNT22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反応炉内で基板上の触媒に原料ガスを作用させて触媒を成長核として基板上にカーボンファイバを成長させて製造するカーボンファイバ製造方法に関するものである。   The present invention relates to a carbon fiber manufacturing method in which a raw material gas is allowed to act on a catalyst on a substrate in a reaction furnace to grow carbon fiber on the substrate using the catalyst as a growth nucleus.

カーボンファイバ、例えばカーボンナノチューブは、ナノオーダーで細くかつ高アスペクト比であり、電子エミッタ材料等に汎用されつつある。このようなカーボンナノチューブは、触媒に原料ガスを作用させてカーボンナノチューブを成長させるようにしている(特許文献1参照)。   Carbon fibers, such as carbon nanotubes, are nano-order thin and have a high aspect ratio, and are being widely used as electron emitter materials. In such a carbon nanotube, a raw material gas is allowed to act on the catalyst to grow the carbon nanotube (see Patent Document 1).

このようなカーボンナノチューブを製造する製造装置としては、反応炉外のヒータで反応炉を加熱しつつ反応炉中に配置した基板上に原料ガスを導入すると共に触媒で原料ガスを分解して基板上にカーボンナノチューブを製造する、いわゆる熱CVD法による製造装置がある。   As a manufacturing apparatus for manufacturing such a carbon nanotube, a raw material gas is introduced onto a substrate placed in the reaction furnace while heating the reaction furnace with a heater outside the reaction furnace, and the raw material gas is decomposed with a catalyst to be on the substrate. There is a manufacturing apparatus using a so-called thermal CVD method for manufacturing carbon nanotubes.

しかしながら、このような製造装置を用いた従来の製造方法では触媒活性によりカーボンナノチューブの成長は促進されるが、同時に、カーボンナノチューブ以外のアモルファスカーボン等のカーボン不純物が生成され易くなり、カーボンナノチューブの収量が低下する結果、カーボンナノチューブの量産が困難化してくる。また、上記カーボンナノチューブ以外にも同時にカーボン不純物が生成されたのでは、高純度なカーボンナノチューブを生成し難くなる。加えて、カーボンナノチューブの収量に比較して反応炉内で消費されてしまう原料ガスのガス流量が多く必要となり、多量の原料ガスが無駄に消費されてしまう結果、原料ガスの有効利用率が低い、という課題があった。
特開2005−145743号公報
However, in the conventional manufacturing method using such a manufacturing apparatus, the growth of carbon nanotubes is promoted by catalytic activity, but at the same time, carbon impurities such as amorphous carbon other than carbon nanotubes are easily generated, and the yield of carbon nanotubes is increased. As a result, the mass production of carbon nanotubes becomes difficult. Further, if carbon impurities are simultaneously generated in addition to the carbon nanotubes, it becomes difficult to generate high-purity carbon nanotubes. In addition, the gas flow rate of the raw material gas that is consumed in the reaction furnace is larger than the yield of carbon nanotubes, and a large amount of raw material gas is wasted, resulting in a low effective utilization rate of the raw material gas. There was a problem.
JP 2005-145743 A

本発明により解決すべき課題は、高純度なカーボンファイバを高い収量で量産することができ、かつ、原料ガスの有効利用率が高いカーボンファイバ製造方法を提供することである。   The problem to be solved by the present invention is to provide a carbon fiber manufacturing method capable of mass-producing high-purity carbon fibers at a high yield and having a high effective utilization rate of raw material gas.

本発明に係るカーボンファイバ製造方法は、加熱雰囲気内を触媒付き基板を進行させる過程で触媒をアニールして活性化すると共にこの進行方向に対向して流入されてくる原料ガスを分解させて基板上にカーボンファイバを成長させるカーボンファイバ製造方法であり、かつ、加熱雰囲気内において上記触媒がアニールされる基板の進行位置では当該触媒のアニール進行に有効な水素ガス濃度を高くし、基板の進行途上における触媒活性が高い領域では水素ガス濃度が高めの原料ガスにてアモルファスカーボン等のカーボン不純物の生成を抑制し、さらに基板の進行が進んで触媒活性が低くなる領域では高濃度の原料ガス供給により当該触媒の能力を最大限にしてカーボンファイバを成長させることを特徴とするものである。   In the carbon fiber manufacturing method according to the present invention, the catalyst is annealed and activated in the course of advancing the substrate with the catalyst in a heated atmosphere, and the raw material gas flowing in opposite to the traveling direction is decomposed on the substrate. The carbon fiber manufacturing method is for growing carbon fiber at the same time, and the hydrogen gas concentration effective for annealing of the catalyst is increased at the progress position of the substrate where the catalyst is annealed in a heated atmosphere, and the substrate is in the process of progressing. In the region where the catalytic activity is high, the generation of carbon impurities such as amorphous carbon is suppressed by the source gas having a high hydrogen gas concentration, and in the region where the catalytic activity is low due to further progress of the substrate, the high concentration source gas is supplied. It is characterized by growing the carbon fiber by maximizing the capacity of the catalyst.

本発明では、加熱雰囲気内を、触媒付き基板を進行させる一方、この進行方向に対向して原料ガスを流入させていくに際して、原料ガスが基板の進行方向とは逆方向へ流入していく過程で、原料ガスが触媒と反応して分解されてカーボンファイバが基板上に成長されて消費され、その一方、その分解で生成される水素ガス濃度が増加していく。そして、触媒がアニールされる基板の初期進行位置では原料ガスがカーボンファイバの成長にほぼ消費されつくして水素ガス濃度が高くなっていて触媒のアニール進行が効率的に行われる。一方、基板の進行途上において触媒活性が高い領域では原料ガスの分解は相当に進んで水素ガス濃度が高めになっているので、原料ガスでカーボンファイバの成長が行われると同時にアモルファスカーボン等のカーボン不純物は高濃度の水素ガスでその生成が抑制される。次いで、さらに基板の進行が進むと触媒活性が低くなり、その触媒活性が低い領域では原料ガスが流入される側でその供給濃度が高いので触媒活性が低くても高濃度の原料ガスで触媒能力が最大限にされてカーボンファイバが成長する。   In the present invention, while the catalyst-carrying substrate is advanced in the heating atmosphere, the raw material gas flows in the direction opposite to the traveling direction of the substrate when the raw material gas flows in opposite to the traveling direction. Thus, the raw material gas reacts with the catalyst and is decomposed, and the carbon fiber is grown on the substrate and consumed. On the other hand, the concentration of hydrogen gas generated by the decomposition increases. At the initial progress position of the substrate where the catalyst is annealed, the source gas is almost consumed for the growth of the carbon fiber, and the hydrogen gas concentration is high, so that the annealing of the catalyst is efficiently performed. On the other hand, in the region where the catalytic activity is high in the course of the substrate, the decomposition of the raw material gas has progressed considerably, and the hydrogen gas concentration has increased, so that carbon fibers such as amorphous carbon are grown simultaneously with the growth of the carbon fiber with the raw material gas. The generation of impurities is suppressed by high-concentration hydrogen gas. Next, as the substrate progresses further, the catalytic activity decreases, and in the region where the catalytic activity is low, the supply concentration is high on the side where the raw material gas flows in. The carbon fiber grows with maximum.

以上により、本発明では、製造方法としては、単に、加熱雰囲気内を触媒付き基板を進行させる一方、この進行方向に対向して原料ガスを流入させていくだけであるので、カーボンファイバを量産することができる製造方法である。同時に本発明では原料ガスが触媒との反応で分解しカーボンファイバの成長に消費されるときに生成する水素ガスの濃度が高くなっていき、基板上に不要なカーボン不純物の生成を抑制することができるので高純度なカーボンファイバを成長させることができると共に、原料ガスの消費が十分に進んだ段階では水素ガスが高濃度であり、触媒のアニール進行に効果的であるので、原料ガスを効果的に有効利用することができるようになる。   As described above, in the present invention, as the manufacturing method, the substrate with the catalyst is simply advanced in the heating atmosphere, and the raw material gas is simply allowed to flow in the direction of travel, so that the carbon fiber is mass-produced. It is a manufacturing method that can At the same time, in the present invention, the concentration of hydrogen gas generated when the raw material gas is decomposed by the reaction with the catalyst and consumed for the growth of the carbon fiber increases, thereby suppressing the generation of unnecessary carbon impurities on the substrate. As a result, it is possible to grow high-purity carbon fiber, and at the stage where the consumption of the source gas is sufficiently advanced, the hydrogen gas has a high concentration and is effective for the annealing of the catalyst. Can be used effectively.

本発明の好ましい一態様は、加熱雰囲気内を基板が触媒活性が高くなっている領域から触媒活性が低くなっている領域へと進行する過程で、この進行方向と逆方向に流入する原料ガスが触媒との反応で分解することにより原料ガス中のカーボンが、カーボンファイバや上記カーボン不純物に変換して固定化されて消費される消費率が90%以上である。   In a preferred embodiment of the present invention, the source gas flowing in the direction opposite to the advancing direction is a process in which the substrate proceeds from a region where the catalytic activity is high to a region where the catalytic activity is low in the heating atmosphere. The consumption rate in which carbon in the raw material gas is converted into carbon fibers and the carbon impurities and immobilized after being decomposed by reaction with the catalyst is 90% or more.

なお、上記カーボンファイバは、カーボンナノチューブ、カーボンナノホーン、カーボンナノコーン、カーボンナノバンブ、グラファイトナノファイバを含むことができる。   The carbon fiber may include carbon nanotubes, carbon nanohorns, carbon nanocones, carbon nanobumps, and graphite nanofibers.

なお、触媒の材料は、その構成要素に炭素を含有する化合物ガスに作用する材料であれば特に限定されず、例えば、鉄、コバルト、ニッケル等およびこれらの酸化物を例示することができる。   The material of the catalyst is not particularly limited as long as it is a material that acts on a compound gas containing carbon as a constituent element, and examples thereof include iron, cobalt, nickel, and oxides thereof.

本発明によれば、高純度なカーボンファイバの量産性が高くかつ原料ガスの有効利用率が高いカーボンファイバ製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the carbon fiber manufacturing method with high mass productivity of a high purity carbon fiber and a high effective utilization factor of source gas can be provided.

以下、添付した図面を参照して、本発明の実施の形態に係るカーボンファイバ製造方法を説明する。このカーボンファイバ製造装置ではカーボンナノチューブ(以下CNTと称する)を製造する。図1は実施の形態に係る製造方法の実施に用いるカーボンファイバ製造装置の概略構成を示し、図2(a)は同カーボンファイバ製造装置を用いてCNTを製造する場合の原料ガスであるアセチレンガス濃度とキャリアガスである水素ガス濃度との変化を示し、図2(b)は触媒活性の変化を示し、図2(c)はCNTの基板上での成長速度を示す。カーボン不純物は製造目的であるCNT以外のカーボン化合物のことであり、アモルファスカーボンやグラファイトカーボンはそれの参考例である。   Hereinafter, a carbon fiber manufacturing method according to an embodiment of the present invention will be described with reference to the accompanying drawings. This carbon fiber manufacturing apparatus manufactures carbon nanotubes (hereinafter referred to as CNT). FIG. 1 shows a schematic configuration of a carbon fiber manufacturing apparatus used for carrying out the manufacturing method according to the embodiment, and FIG. 2 (a) is an acetylene gas which is a raw material gas when manufacturing CNTs using the carbon fiber manufacturing apparatus. FIG. 2 (b) shows the change in the catalytic activity, and FIG. 2 (c) shows the growth rate of the CNTs on the substrate. Carbon impurities are carbon compounds other than CNT, which is the production purpose, and amorphous carbon and graphite carbon are reference examples.

これらの図を参照して実施の形態のカーボンファイバ製造装置10は、一方向に長手の反応管12と、この反応管12を取り囲んで反応管12を外部から加熱することにより当該反応管12内部全体に一様な温度の加熱雰囲気を形成する加熱炉14と、を備える。反応管12は説明の都合で両端が開口した状態で示される。反応管の一方開口側122から複数枚の基板16を等間隔に縦方向に配置収納した基板搬送台18が搬入されてくる。基板搬送台18に搭載されて上記基板16は反応管12内部を一方開口側122から他方開口側121に向けて矢印方向Pへと進行してくることになる。また、反応管12の長さや、管形状も説明の都合で図示の形状で示しているものであり、直管形状でなくてもよく、曲管形状でもよいし、内径が長手方向に一様な管形状に限定されない。基板搬送台18の搬送機構はその図示を略している。加熱炉14は例えば内部にヒータを内蔵していて反応管12をその長手方向に一様な温度で加熱し、反応管12内部の温度をCNTの成長に必要な雰囲気温度に制御している。   With reference to these drawings, a carbon fiber manufacturing apparatus 10 according to an embodiment includes a reaction tube 12 that is long in one direction, and the reaction tube 12 that surrounds the reaction tube 12 and heats the reaction tube 12 from the outside. And a heating furnace 14 that forms a heating atmosphere having a uniform temperature throughout. The reaction tube 12 is shown with both ends open for convenience of explanation. A substrate transfer table 18 in which a plurality of substrates 16 are arranged and stored in the vertical direction at equal intervals from one opening side 122 of the reaction tube is carried in. The substrate 16 mounted on the substrate carrier 18 advances in the reaction tube 12 from the one opening side 122 toward the other opening side 121 in the arrow direction P. Further, the length and the tube shape of the reaction tube 12 are also shown in the shape shown in the figure for convenience of explanation, and may not be a straight tube shape, may be a curved tube shape, and the inner diameter is uniform in the longitudinal direction. It is not limited to a simple tube shape. The illustration of the transport mechanism of the substrate transport base 18 is omitted. The heating furnace 14 has, for example, a built-in heater, and heats the reaction tube 12 at a uniform temperature in the longitudinal direction thereof, and controls the temperature inside the reaction tube 12 to an atmospheric temperature necessary for CNT growth.

反応管12内部にはその他方開口側121から図外の原料ガス供給部からの原料ガスが基板16の進行方向に対向して矢印方向Qへと流入してくる。この原料ガスは一例としてアセチレン(C22)ガスである。原料ガスはこのC22ガスに限定されるものではなく炭化水素化合物ガスであればよい。なお、上記反応管12内における基板16の移動方向やC22ガスの流入方向を示す上記矢印方向P,Qは便宜的に示したものであり、基板16やC22ガスは連続的に移動するものであり、また、基板16の移動速度やC22ガスの流速、流入量を示すものではない。 A source gas from a source gas supply unit (not shown) flows into the reaction tube 12 from the other opening side 121 in the arrow direction Q so as to face the traveling direction of the substrate 16. This source gas is, for example, acetylene (C 2 H 2 ) gas. The source gas is not limited to this C 2 H 2 gas, but may be a hydrocarbon compound gas. The arrow directions P and Q indicating the moving direction of the substrate 16 and the inflow direction of the C 2 H 2 gas in the reaction tube 12 are shown for convenience, and the substrate 16 and the C 2 H 2 gas are continuous. It does not indicate the moving speed of the substrate 16, the flow rate of the C 2 H 2 gas, or the inflow amount.

本実施の形態によるカーボンファイバ製造方法では、以下説明するように、反応管12の他方開口側121でのC22濃度は高濃度であり例えば100%であり、キャリアガスである水素(H2)ガス濃度は0%であるが、反応管12の中央側でのC2H2ガス濃度は50%、H2ガス濃度は50%となり、反応管12の一方開口側121でのC22ガス濃度は低濃度例えば0%、H2ガス濃度は100%となる。そのため、実施の形態のカーボンファイバ製造方法では原料ガスであるC22ガスの有効利用率がほぼ100%となる。 In the carbon fiber manufacturing method according to the present embodiment, as will be described below, the C 2 H 2 concentration on the other opening side 121 of the reaction tube 12 is high, for example, 100%, and hydrogen (H 2) the gas concentration is 0%, C2H2 gas concentration is 50% at the center side of the reaction tube 12, H2 gas concentration becomes 50%, C 2 H 2 gas concentration in the one open side 121 of the reaction tube 12 Becomes a low concentration, for example, 0%, and the H 2 gas concentration becomes 100%. Therefore, in the carbon fiber manufacturing method of the embodiment, the effective utilization rate of the C 2 H 2 gas that is the raw material gas is almost 100%.

すなわち、図2(a)のC2H2、H2濃度線で示すように反応管他方開口側121から反応管12内部には濃度100%のC22ガスが流入される。一方、反応管12の一方開口側122から触媒付き基板16が搬送台18に搭載されて搬入されてくると共にこの基板16は反応管12内部を矢印方向Pへと進行させられる。C22ガスは、反応管12内部を基板16の進行方向とは逆方向である矢印方向Qへ流入していく過程で、基板16上の触媒と反応して分解されてCNTが図2(c)の成長速度線Dで示す成長速度で基板16上に成長し、これに伴い、C22ガスは上記矢印方向Qへ流入していく過程で消費される。一方、このC22ガスの分解で反応管12内部を流入するC22ガスの濃度が低くなる一方で、C22ガスの分解に伴いH2ガスが生成され、上記矢印方向QにC22ガスが流入していく過程でH2ガス濃度が大きくなっていく。 That is, as shown by the C2H2 and H2 concentration lines in FIG. 2A, 100% C 2 H 2 gas flows into the reaction tube 12 from the other opening side 121 of the reaction tube. On the other hand, the substrate 16 with catalyst is mounted on the carrier 18 from one opening side 122 of the reaction tube 12 and is carried in, and the substrate 16 is advanced in the direction of arrow P in the reaction tube 12. The C 2 H 2 gas is decomposed by reacting with the catalyst on the substrate 16 in the process of flowing into the reaction tube 12 in the arrow direction Q opposite to the traveling direction of the substrate 16, and the CNTs are decomposed. Growing on the substrate 16 at the growth rate indicated by the growth rate line D in (c), the C 2 H 2 gas is consumed in the process of flowing in the arrow direction Q. On the other hand, the C 2 H 2 at decomposition of gas while the concentration of C 2 H 2 gas flowing inside the reaction tube 12 is lowered, H 2 gas with the decomposition of C 2 H 2 gas is generated, the direction of the arrow As the C 2 H 2 gas flows into Q, the H 2 gas concentration increases.

反応管他方開口側121ではC22ガスは濃度100%であるが、C22ガスは反応管12内を一方開口側122まで流入されるまでの過程でCNTの成長にほぼすべて100%分解されて消費されてしまい、当該反応管一方開口側122近傍領域のガスは濃度100%のH2ガスとなる。そして、反応管一方開口側122で図2(b)のハッチング領域では、図2(a)で示すように原料ガスのC22ガスが存在しており、アニール線Aで示す勾配で触媒がアニールされて活性化される。この場合、このハッチング領域では図2(a)で示すようにH2ガス濃度が高くなっているために、触媒のアニール進行が高効率に行われる。 Although the C 2 H 2 gas has a concentration of 100% on the other opening side 121 of the reaction tube, almost 100% of the C 2 H 2 gas is grown to the CNT growth until it flows into the opening side 122 through the reaction tube 12. %, The gas in the vicinity of the one opening side 122 of the reaction tube becomes H 2 gas having a concentration of 100%. In the hatching region of FIG. 2 (b) on the one opening side 122 of the reaction tube, the source gas C 2 H 2 gas exists as shown in FIG. 2 (a), and the catalyst has a gradient indicated by the annealing line A. Is annealed and activated. In this case, since the H 2 gas concentration is high in this hatching region as shown in FIG. 2A, the annealing of the catalyst proceeds with high efficiency.

一方、反応管12内部では、同じく図2(b)の縦方向点線Bで図中左側が搬送台18に搭載されて搬入された触媒付き基板16における触媒がアニールされる領域、右側がその触媒が活性な状態で基板16が搬入されていく領域に領域分けして示すように、触媒がアニールされて活性化されてから基板16が反応管12内部を一定距離進行するに伴い触媒活性が触媒活性線Cで示すように徐々に低下していくが、説明の都合で縦方向点線Bから図中右側方向における途中箇所までを触媒の活性が高い触媒高活性領域と言い、それ以降では触媒の活性が低い触媒低活性領域と称する。この触媒高活性領域や、触媒低活性領域は、ガス流量とか触媒等により定まるものである。触媒の活性が低くなってCNTが成長しにくくなる要因について1つは触媒サイズが大きくなっていったり、あるいは基板と反応したりして触媒の活性が低下するという形態と、もう1つはアモルファスカーボンやグラファイトカーボン等のカーボンが触媒の表面を覆ってしまってしまう形態とがある。   On the other hand, in the reaction tube 12, the left side in FIG. 2B is a region where the catalyst is annealed on the substrate 16 with the catalyst loaded and loaded on the carrier table 18, and the right side is the catalyst. As shown in the region where the substrate 16 is carried in the active state, the catalytic activity is increased as the substrate 16 advances through the reaction tube 12 for a certain distance after the catalyst is annealed and activated. Although it gradually decreases as shown by the active line C, for the convenience of explanation, the part from the vertical dotted line B to the middle part in the right direction in the figure is called a catalyst high activity region where the activity of the catalyst is high. This is referred to as a catalyst low activity region having low activity. The catalyst high activity region and the catalyst low activity region are determined by the gas flow rate or the catalyst. One of the factors that make the CNT difficult to grow due to the low activity of the catalyst is one that the catalyst size is increased or the activity of the catalyst is reduced due to reaction with the substrate, and the other is amorphous. There is a form in which carbon such as carbon or graphite carbon covers the surface of the catalyst.

22ガスは基板16の進行方向とは逆方向から反応管12内部に矢印方向Qへと流入するので、最初は、反応管12内部の触媒低活性領域で触媒と反応するが、この場合、C22ガス濃度は例えば反応管他方開口側121近傍ではほぼ100%であり、触媒能力最大限でCNTの成長が行われる。そして、C22ガスが反応管他方開口側121から反応管12内部に流入する過程でC22ガス濃度が低下してきても触媒高活性領域では触媒と高反応する結果、図2(c)で示すようにCNTの成長が行われる。一方、カーボン不純物も触媒高活性領域で生成されようとするが、この触媒高活性領域では図2(a)で示すようにC22ガスの分解が相当に進んでH2ガス濃度が高めになっているので、図2(c)で示すようにC22ガスでCNTの成長が行われると同時にアモルファスカーボン等のカーボン不純物は高濃度のH2ガスでその生成が抑制される。これにより、触媒が上記カーボン不純物で覆われてしまって触媒活性が低下するのが抑制される。 Since the C 2 H 2 gas flows into the reaction tube 12 in the direction of the arrow Q from the direction opposite to the traveling direction of the substrate 16, initially, it reacts with the catalyst in the catalyst low activity region inside the reaction tube 12. In this case, the C 2 H 2 gas concentration is, for example, approximately 100% in the vicinity of the other opening side 121 of the reaction tube, and the CNT is grown with the maximum catalytic capacity. Then, even if the C 2 H 2 gas concentration is lowered in the process of flowing C 2 H 2 gas into the reaction tube 12 from the other opening side 121 of the reaction tube, a high reaction with the catalyst occurs in the catalyst high activity region. CNT is grown as shown in c). On the other hand, carbon impurities are also generated in the catalyst high activity region. In this catalyst high activity region, as shown in FIG. 2 (a), the decomposition of C 2 H 2 gas progresses considerably and the H 2 gas concentration increases. Therefore, as shown in FIG. 2C, CNT is grown with C 2 H 2 gas, and at the same time, generation of carbon impurities such as amorphous carbon is suppressed with high concentration of H 2 gas. Thereby, it is suppressed that a catalyst is covered with the said carbon impurity and a catalyst activity falls.

なお、図3(a)で示すように反応管一方開口側122で基板16上の触媒20はアニールされる前では膜状であり、アニールにより図3(b)で示すように微粒子化される。このアニールに際してはこの基板16上はH2ガス濃度100%であり、アニール進行が促進される。 As shown in FIG. 3A, the catalyst 20 on the substrate 16 on the one opening side 122 of the reaction tube is in a film form before being annealed, and is finely divided by annealing as shown in FIG. . During this annealing, the substrate 16 has an H 2 gas concentration of 100%, and the annealing progress is promoted.

また、触媒高活性領域では、図3(c)で示すように、C22ガスの分解が進んでH2ガス濃度が高いので、アモルファスカーボン等のカーボン不純物の生成は抑制される一方、C22ガスは成長したCNT22間に入り込んで触媒に作用する結果、CNT22は成長する。さらに、触媒低活性領域では、図3(d)で示すように、C22ガス濃度が高濃度であるので、触媒活性が低くてもその触媒能力は最大限に発揮されて、CNT22が成長する。 In the catalyst high activity region, as shown in FIG. 3C, the decomposition of C 2 H 2 gas proceeds and the H 2 gas concentration is high, so that the generation of carbon impurities such as amorphous carbon is suppressed, As a result of the C 2 H 2 gas entering between the grown CNTs 22 and acting on the catalyst, the CNTs 22 grow. Further, in the low catalyst activity region, as shown in FIG. 3 (d), since the C 2 H 2 gas concentration is high, even if the catalyst activity is low, its catalytic ability is exerted to the maximum, and the CNT 22 grow up.

以上説明した本実施の形態では、反応管12内を、基板16を進行させる一方、この進行方向に対向してC22ガスを流入させていく過程で、C22ガスが基板16上の触媒20と反応して分解されてCNT22が基板16上に成長されて消費される。その一方、C22ガスの分解で生成されるH2ガス濃度が増加していく。そして、触媒20がアニールされる基板16の進行位置ではC22ガスがCNT22の成長にほぼ消費されつくしてH2ガス濃度が高くなっていて触媒のアニール進行が効率的に行われる。 In the present embodiment described above, the reaction tube 12, while advancing the substrate 16, in the course of facing allowed to flow into C 2 H 2 gas in the direction of travel, C 2 H 2 gas substrate 16 It is decomposed by reacting with the catalyst 20 above, and the CNTs 22 are grown on the substrate 16 and consumed. Meanwhile, the H2 gas concentration generated in the decomposition of C 2 H 2 gas increases. Then, the C 2 H 2 gas is almost consumed for the growth of the CNTs 22 at the progress position of the substrate 16 where the catalyst 20 is annealed, and the H 2 gas concentration is high, so that the catalyst progresses efficiently.

一方、基板16の進行途上において触媒高活性領域ではC22ガスの分解は相当に進んでH2ガス濃度が高めになっているので、C22ガスでCNT22の成長が行われると同時にカーボン不純物は高濃度のH2ガスでその生成が抑制される。 On the other hand, the decomposition of C 2 H 2 gas progresses considerably in the catalyst high activity region in the course of the substrate 16, and the H 2 gas concentration is increased. Therefore, when the CNT 22 is grown with the C 2 H 2 gas. At the same time, the generation of carbon impurities is suppressed by a high concentration of H 2 gas.

次いで、さらに基板16の進行が進んで触媒低活性領域ではC22ガスが流入される側でその供給濃度が高いので触媒活性が低くても高濃度のC22ガスで触媒能力が最大限にされてCNT22が成長する。 Next, since the substrate 16 is further advanced and the supply concentration is high on the side where the C 2 H 2 gas is introduced in the low catalyst active region, even if the catalyst activity is low, the catalyst capacity is high with the high concentration C 2 H 2 gas. The CNT 22 grows by being maximized.

以上から本実施の形態では、製造方法としては、触媒活性によりCNT2を成長させていくに際して、CNT22以外のカーボン不純物が生成され難いので、CNT22の収量が増大し量産し易くなると同時にカーボン不純物が生成され難いので高純度なCNT22を成長させることができることに加えて、CNT22の収量に比較して反応管12で消費されてしまうC22ガスが効率的に消費され、その有効利用率が高くなる。 As described above, in the present embodiment, as the manufacturing method, when CNT2 is grown by catalytic activity, carbon impurities other than CNT22 are not easily generated. Therefore, the yield of CNT22 is increased and mass production is facilitated. In addition to being able to grow high-purity CNT22, C 2 H 2 gas consumed in the reaction tube 12 is efficiently consumed compared with the yield of CNT22, and its effective utilization rate is high. Become.

また、本実施の形態では、反応管12内を基板16が進行する過程で、この進行方向と逆方向に流入するC22ガスが触媒20との反応で分解することによりC22ガス中のカーボンが、CNT22やカーボン不純物に変換されて固定化されて消費されその消費率は90%以上、好ましくは99.9%と極めて高いものである。 In the present embodiment, C 2 H 2 gas flowing in the direction opposite to the traveling direction of the substrate 16 is decomposed by reaction with the catalyst 20 in the process of the substrate 16 traveling in the reaction tube 12, thereby causing C 2 H 2. Carbon in the gas is converted to CNT22 and carbon impurities, immobilized and consumed, and the consumption rate is 90% or more, preferably 99.9%, which is extremely high.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiment, and includes various changes or modifications within the scope described in the claims.

図1は実施の形態の製造方法の実施に用いるカーボンファイバ製造装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a carbon fiber manufacturing apparatus used for carrying out the manufacturing method of the embodiment. 図2は実施の形態の製造方法の説明に用いるもので、図2(a)はC22ガス濃度とH2ガス濃度との関係を示し、図2(b)は触媒活性を示し、図2(c)はCNTの成長速度を示す図である。FIG. 2 is used for explaining the manufacturing method of the embodiment. FIG. 2 (a) shows the relationship between the C 2 H 2 gas concentration and the H 2 gas concentration, FIG. 2 (b) shows the catalytic activity, FIG. 2C shows the growth rate of CNTs. 図3は基板上でのCNTの成長過程を示し、図3(a)は基板上に膜状に触媒が形成されている状態を示し、図3(b)はアニールにより微粒子化された触媒を示し、図3(c)は触媒高活性領域でのCNTの成長を示し、図3(d)では触媒低活性領域でのCNTの成長を示す図である。FIG. 3 shows the CNT growth process on the substrate, FIG. 3 (a) shows a state in which the catalyst is formed in a film shape on the substrate, and FIG. 3 (b) shows the catalyst finely divided by annealing. FIG. 3C shows the growth of CNTs in the high catalytic activity region, and FIG. 3D shows the growth of CNTs in the low catalytic activity region.

符号の説明Explanation of symbols

10 カーボンファイバ製造装置
12 反応管
14 加熱炉
16 基板
20 触媒
22 CNT
DESCRIPTION OF SYMBOLS 10 Carbon fiber manufacturing apparatus 12 Reaction tube 14 Heating furnace 16 Substrate 20 Catalyst 22 CNT

Claims (2)

加熱雰囲気内を触媒付き基板を進行させる過程で触媒をアニールして活性化すると共にこの進行方向に対向して流入されてくる原料ガスを分解させて基板上にカーボンファイバを成長させるカーボンファイバ製造方法であり、
かつ、加熱雰囲気内において、
上記触媒がアニールされる基板の進行位置では当該触媒のアニール進行に有効な水素ガス濃度を高くし、
基板の進行途上において触媒活性が高い触媒高活性領域では水素ガス濃度が高めの原料ガスにてアモルファスカーボン等のカーボン不純物の生成を抑制し、
さらに基板の進行が進んで触媒活性が低くなる触媒低活性領域では高濃度の原料ガス供給により当該触媒の能力を最大限にしてカーボンファイバを成長させる、ことを特徴とするカーボンファイバ製造方法。
A carbon fiber manufacturing method for growing a carbon fiber on a substrate by annealing and activating the catalyst in the process of advancing the substrate with the catalyst in a heated atmosphere and decomposing the raw material gas flowing in opposite to the traveling direction And
And in a heated atmosphere,
In the progress position of the substrate where the catalyst is annealed, the hydrogen gas concentration effective for the annealing progress of the catalyst is increased,
In the catalyst high activity region where the catalytic activity is high while the substrate is in progress, the generation of carbon impurities such as amorphous carbon is suppressed by the source gas having a high hydrogen gas concentration,
A carbon fiber manufacturing method characterized in that carbon fiber is grown by maximizing the capacity of the catalyst by supplying a high-concentration raw material gas in a catalyst low activity region where the catalytic activity is further lowered due to further progress of the substrate.
加熱雰囲気内を、基板が触媒高活性領域から触媒低活性領域へと進行する過程で、この進行方向と逆方向に流入する原料ガスが触媒との反応で分解することにより原料ガス中のカーボンが、カーボンファイバや上記カーボン不純物に変換して固定化されて消費される消費率が90%以上である、ことを特徴とする請求項1に記載のカーボンファイバ製造方法。   In the process of the substrate moving from the high catalyst active region to the low catalyst active region in the heating atmosphere, the raw material gas flowing in the direction opposite to the traveling direction is decomposed by the reaction with the catalyst, so that the carbon in the raw material gas is changed. The carbon fiber manufacturing method according to claim 1, wherein a consumption rate of carbon fiber or the carbon impurity converted into the carbon impurity and immobilized and consumed is 90% or more.
JP2008014794A 2008-01-25 2008-01-25 Method for producing carbon fiber Pending JP2009174092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014794A JP2009174092A (en) 2008-01-25 2008-01-25 Method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014794A JP2009174092A (en) 2008-01-25 2008-01-25 Method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2009174092A true JP2009174092A (en) 2009-08-06

Family

ID=41029469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014794A Pending JP2009174092A (en) 2008-01-25 2008-01-25 Method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2009174092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168418A (en) * 2010-02-17 2011-09-01 Hitachi Zosen Corp Cvd apparatus for forming carbon nanotube
WO2013073641A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Substrate with substantially vertically aligned carbon nanotubes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168418A (en) * 2010-02-17 2011-09-01 Hitachi Zosen Corp Cvd apparatus for forming carbon nanotube
WO2013073641A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Substrate with substantially vertically aligned carbon nanotubes
JP2013107781A (en) * 2011-11-17 2013-06-06 Toyota Motor Corp Substrate with substantially vertically aligned carbon nanotube
CN103998374A (en) * 2011-11-17 2014-08-20 丰田自动车株式会社 Substrate with substantially vertically aligned carbon nanotubes
EP2781484A4 (en) * 2011-11-17 2016-01-20 Toyota Motor Co Ltd Substrate with substantially vertically aligned carbon nanotubes

Similar Documents

Publication Publication Date Title
He et al. Designing catalysts for chirality‐selective synthesis of single‐walled carbon nanotubes: past success and future opportunity
Chen et al. State of the art of single‐walled carbon nanotube synthesis on surfaces
JP5629756B2 (en) Apparatus and method for producing carbon nanotubes on a continuously moving substrate
CN1994875A (en) Method of forming nitrogen-doped single-walled carbon nanotubes
JP6492598B2 (en) Method for producing carbon nanotube
US8883260B2 (en) Apparatus and method for producing carbon
JP2009155176A (en) Boron nitride nanofiber and method of manufacturing the same
Bai et al. Research on MWCNT growth process through on-line intermittent monitoring in a fluidized bed reactor
Zhang et al. Solid supported ruthenium catalyst for growing single-walled carbon nanotubes with narrow chirality distribution
Zhao et al. Growth of well-aligned carbon nanotubes with different shapes
JP2009148758A (en) Apparatus and method for manufacturing catalyst for carbon nanotube by using spray pyrolysis method
JP2009174092A (en) Method for producing carbon fiber
JP5403644B2 (en) Carbon fiber manufacturing method
JP6418690B2 (en) Carbon nanotube production equipment
An et al. Controllable synthesis of carbon nanotubes
JP5176925B2 (en) CNT synthesis substrate, method for producing the same, and method for producing CNT
JP2007091481A (en) Method for production of carbon nanofiber, and production apparatus for carrying out the method
JP2006027948A (en) Method of manufacturing monolayer carbon nanotube
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
US20070092430A1 (en) Apparatus and method for manufacturing carbon nanotubes
JP6455988B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
Hu et al. Fabrication of α-Si3N4 nanobelts assembled by Si3N4 microcrystals on the nanowires via crystallization of amorphous Si3N4 powders
KR101287890B1 (en) Method for manufacturing carbon nano tube using liquid catalyst precursor
JP2007223820A (en) Method of manufacturing carbon nano-structure, catalytic metal base material and catalytic reaction vessel
CN109573981B (en) Method for growing single-walled carbon nanotube by silicide