JP2009173611A - METHOD FOR PRODUCING beta-BRANCHED ALCOHOL - Google Patents

METHOD FOR PRODUCING beta-BRANCHED ALCOHOL Download PDF

Info

Publication number
JP2009173611A
JP2009173611A JP2008016174A JP2008016174A JP2009173611A JP 2009173611 A JP2009173611 A JP 2009173611A JP 2008016174 A JP2008016174 A JP 2008016174A JP 2008016174 A JP2008016174 A JP 2008016174A JP 2009173611 A JP2009173611 A JP 2009173611A
Authority
JP
Japan
Prior art keywords
reaction
group
branched alcohol
internal olefin
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008016174A
Other languages
Japanese (ja)
Inventor
Hideo Tawara
秀雄 田原
Hiroshi Mimura
拓 三村
Hiroshi Danjo
洋 檀上
Nichikei Yanagi
日馨 柳
Takahide Fukuyama
高英 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Kao Corp
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Osaka University NUC, Osaka Prefecture University PUC filed Critical Kao Corp
Priority to JP2008016174A priority Critical patent/JP2009173611A/en
Publication of JP2009173611A publication Critical patent/JP2009173611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a β-branched alcohol getting a β-branched alcohol having desired chain length in high yield from a natural raw material without using a special apparatus. <P>SOLUTION: The method for producing a β-branched alcohol comprises subjecting a saturated carboxylic acid to a decarboxylation reaction in the presence of a catalyst containing an element selected from group 8, group 9 and group 10 metals and copper, to obtain an internal olefin, and subjecting the internal olefin to the hydroformylation reaction and hydrogen reduction reaction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、飽和カルボン酸を原料とするβ分岐アルコールの製造法に関する。   The present invention relates to a method for producing a β-branched alcohol using a saturated carboxylic acid as a raw material.

β分岐アルコールの製造法として、1種類もしくは2種類の天然原料由来のアルコールを脱水縮合反応(ゲルベ反応)することにより得る方法が知られている(特許文献1)。しかしながら、この脱水縮合反応は反応温度が高く、界面活性剤の原料として有用な側鎖の短いβ分岐アルコールを得るためには、原料アルコールの沸点以上の温度で脱水縮合反応を行わなければならない。そこで、高圧下での脱水操作が必要になり、特別な設備が必要とされていた。   As a method for producing a β-branched alcohol, there is known a method obtained by subjecting alcohols derived from one or two kinds of natural raw materials to dehydration condensation reaction (Guerbe reaction) (Patent Document 1). However, this dehydration condensation reaction has a high reaction temperature, and in order to obtain a β-branched alcohol having a short side chain useful as a raw material for the surfactant, the dehydration condensation reaction must be performed at a temperature equal to or higher than the boiling point of the raw material alcohol. Therefore, dehydration operation under high pressure is required, and special equipment is required.

また、その他のβ分岐アルコールの製造法として、エチレンなどの低鎖長オレフィンをオリゴマー化し、αオレフィンを合成し、異性化触媒により二重結合位置を移動させた後、ヒドロホルミル化する方法が知られている(非特許文献1)。しかし、原料が天然原料由来ではなく、かつ、低鎖長オレフィン(エチレンなど)のオリゴマー化経由による合成では、重合度に分布を有するため、目的とする鎖長のオレフィンのみを高収率で得ることができない等の問題があった。
そして、近年、環境問題の観点から、非石油系、つまり再生可能原料から、有用化合物を合成する方法が注目されている。
特開平9−227424号公報 J.C.Mol/Journal of Molecular Catalysis A:Chemical 213(2004)39-45
Another known method for producing β-branched alcohols is to oligomerize low-chain olefins such as ethylene, synthesize α-olefins, move double bond positions with an isomerization catalyst, and then hydroformylate. (Non-Patent Document 1). However, since the raw materials are not derived from natural raw materials and the synthesis via oligomerization of low chain length olefins (such as ethylene) has a distribution in the degree of polymerization, only the desired chain length olefins are obtained in high yield. There were problems such as being unable to do so.
In recent years, a method for synthesizing useful compounds from non-petroleum, that is, renewable raw materials has attracted attention from the viewpoint of environmental problems.
JP-A-9-227424 JCMol / Journal of Molecular Catalysis A: Chemical 213 (2004) 39-45

本発明の課題は、天然の原料を用い、特別な装置を必要とせずに、目的とする鎖長のβ分岐アルコールを高収率で得ることができる、β分岐アルコールの製造法を提供することにある。   An object of the present invention is to provide a method for producing a β-branched alcohol, which can obtain a β-branched alcohol having a target chain length in a high yield without using a special apparatus using a natural raw material. It is in.

本発明は、8族、9族、10族金属及び銅から選ばれる元素を含む触媒の存在下、飽和カルボン酸の脱炭酸反応を行うことにより内部オレフィンを得た後、得られた内部オレフィンにヒドロホルミル化反応、さらに水素還元反応を行う、β分岐アルコールの製造法を提供する。   In the present invention, an internal olefin is obtained by decarboxylation of a saturated carboxylic acid in the presence of a catalyst containing an element selected from Group 8, Group 9, Group 10 metal and copper. Provided is a method for producing a β-branched alcohol in which a hydroformylation reaction and further a hydrogen reduction reaction are performed.

本発明の製造法により、界面活性剤などの基剤及び種々の化合物の中間原料として好適に用いられるβ分岐アルコールを、天然から入手可能な飽和カルボン酸を原料として高収率で合成することができる。   By the production method of the present invention, it is possible to synthesize a β-branched alcohol that is suitably used as a base material such as a surfactant and an intermediate raw material for various compounds in a high yield using a naturally-available saturated carboxylic acid as a raw material. it can.

[脱炭酸反応]
本発明における脱炭酸反応は、飽和カルボン酸から内部オレフィンを得る反応である。
[Decarboxylation]
The decarboxylation reaction in the present invention is a reaction for obtaining an internal olefin from a saturated carboxylic acid.

本発明に用いられる飽和カルボン酸としては、炭素数6〜22の飽和カルボン酸が好ましく、一般式(I)で表される炭素数6〜22の直鎖飽和カルボン酸がより好ましく、炭素数12〜18の直鎖飽和カルボン酸が更に好ましい。   As saturated carboxylic acid used for this invention, C6-C22 saturated carboxylic acid is preferable, C6-C22 linear saturated carboxylic acid represented by general formula (I) is more preferable, and C12 More preferred are -18 linear saturated carboxylic acids.

CH3−(CH2a−COOH (I)
(式中、aは4〜20の整数を示す。)
本発明に用いられる飽和カルボン酸の具体例としては、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸等が挙げられる。
CH 3 - (CH 2) a -COOH (I)
(In the formula, a represents an integer of 4 to 20.)
Specific examples of the saturated carboxylic acid used in the present invention include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid and the like.

本発明の脱炭酸反応により得られる内部オレフィンとは、分子の両末端以外の場所に炭素炭素二重結合を1つ有し、原料の飽和カルボン酸より炭素数が1つ少ない化合物を言い、一般式(II)で表される内部オレフィンが好ましい。   The internal olefin obtained by the decarboxylation reaction of the present invention refers to a compound having one carbon-carbon double bond at a place other than both ends of the molecule and having one fewer carbon atoms than the saturated carboxylic acid of the raw material. An internal olefin represented by the formula (II) is preferred.

H−(CH2b−CH=CH−(CH2c−H (II)
(式中、b及びcはそれぞれ独立に、1〜18の整数を示し、bとcの和は3〜19である。)
本発明の脱炭酸反応においては、飽和カルボン酸から一段階で高選択的に内部オレフィンを得る観点から、触媒として8族、9族、10族金属及び銅から選ばれる元素を含む触媒を用いる。8族、9族及び10族金属としては、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt等が挙げられ、Ni、Rh、Pd、Ir、Ptが好ましく、Rhがより好ましい。8族、9族、10族金属及び銅から選ばれる元素を含む触媒としては、具体的には、[RhCl(CO)22、(Ph3P)2Rh(CO)Cl、(Ph3P)2NiCl2、(Ph3P)2PdCl2、(Ph3P)2PtCl2、(Ph3P)2Ir(CO)Cl、(Ph3P)3CuCl(式中、Phはフェニル基を示す、以下同様)などが挙げられ、[RhCl(CO)22、(Ph3P)2PdCl2等が好ましい。
H- (CH 2) b -CH = CH- (CH 2) c -H (II)
(In the formula, b and c each independently represent an integer of 1 to 18, and the sum of b and c is 3 to 19.)
In the decarboxylation reaction of the present invention, from the viewpoint of obtaining an internal olefin with high selectivity from a saturated carboxylic acid in one step, a catalyst containing an element selected from Group 8, Group 9, Group 10 metal and copper is used. Examples of the Group 8, 9 and 10 metals include Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, etc., Ni, Rh, Pd, Ir, Pt are preferable, and Rh is more preferable. . Specific examples of the catalyst containing an element selected from Group 8, Group 9, Group 10 metal and copper include [RhCl (CO) 2 ] 2 , (Ph 3 P) 2 Rh (CO) Cl, (Ph 3 P) 2 NiCl 2 , (Ph 3 P) 2 PdCl 2 , (Ph 3 P) 2 PtCl 2 , (Ph 3 P) 2 Ir (CO) Cl, (Ph 3 P) 3 CuCl (wherein Ph is phenyl [RhCl (CO) 2 ] 2 , (Ph 3 P) 2 PdCl 2 and the like are preferable.

更にこれらの触媒は、N−ヘテロサイクリックカルベンなどのN−複素環カルベン系配位子、2,2−ビピリジルやピリジン等のピリジン系配位子、ヒ素系配位子、アセトニトリルやベンゾニトリル等のニトリル系配位子、イソニトリル系の配位子、有機リン系配位子等の配位子と組み合わせて用いることが好ましく、有機リン系配位子がより好ましい。有機リン系配位子としては、例えばジメチルフェニルホスフィン、ジエチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、シクロヘキシルジフェニルホスフィン、トリシクロヘキシルホスフィン、トリイソプロピルホスフィン、トリブチルホスフィン、トリ−t−ブチルホスフィン、トリベンジルホスフィン、トリフェニルホスフィン、トリス(パラ−メトキシフェニル)ホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン等が挙げられ、ジメチルフェニルホスフィン、ジエチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、1,2−ビス(ジフェニルホスフィノ)エタンが好ましい。これらの配位子は単独で用いても、2種類以上を組み合わせて用いてもよい。   Further, these catalysts include N-heterocyclic carbene-based ligands such as N-heterocyclic carbene, pyridine-based ligands such as 2,2-bipyridyl and pyridine, arsenic-based ligands, acetonitrile, benzonitrile, and the like. It is preferably used in combination with a ligand such as a nitrile ligand, an isonitrile-based ligand, or an organophosphorus ligand, and more preferably an organophosphorus ligand. Examples of organophosphorus ligands include dimethylphenylphosphine, diethylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, cyclohexyldiphenylphosphine, tricyclohexylphosphine, triisopropylphosphine, tributylphosphine, tri-t-butylphosphine, and tribenzyl. Examples include phosphine, triphenylphosphine, tris (para-methoxyphenyl) phosphine, 1,2-bis (diphenylphosphino) ethane, dimethylphenylphosphine, diethylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, 1,2 -Bis (diphenylphosphino) ethane is preferred. These ligands may be used alone or in combination of two or more.

配位子の使用量は、良好な触媒の安定性及び反応速度を得る観点から、8族、9族、10族金属及び銅から選ばれる元素換算で8族、9族、10族金属又は銅化合物1モルに対して、配位子分子換算で0.1〜1000モルの範囲であるのが好ましく、0.2〜500モルの範囲であるのがより好ましい。   From the viewpoint of obtaining good catalyst stability and reaction rate, the amount of the ligand used is a group 8, group 9, group 10, metal or copper in terms of an element selected from group 8, group 10, group 10 metal and copper. It is preferably in the range of 0.1 to 1000 mol in terms of ligand molecule, and more preferably in the range of 0.2 to 500 mol, with respect to 1 mol of the compound.

本発明において、内部オレフィンの良好な選択性を得る観点から、脱炭酸反応を酸無水物の存在下で行うことが好ましい。酸無水物としては、例えば、無水酢酸、無水プロピオン酸などが挙げられ、無水酢酸が好ましい。酸無水物の使用量は、内部オレフィンの良好な選択性を得る観点から、飽和カルボン酸1モルに対して、酸無水物0.01〜10モルの範囲が好ましく、0.2〜2モルの範囲がより好ましい。   In the present invention, from the viewpoint of obtaining good selectivity of the internal olefin, it is preferable to perform the decarboxylation reaction in the presence of an acid anhydride. Examples of the acid anhydride include acetic anhydride and propionic anhydride, and acetic anhydride is preferable. The amount of acid anhydride used is preferably in the range of 0.01 to 10 mol, preferably 0.2 to 2 mol, per mol of saturated carboxylic acid, from the viewpoint of obtaining good selectivity for internal olefins. A range is more preferred.

脱炭酸反応の反応温度は、内部オレフィンの良好な選択性を得る観点から、100〜300℃が好ましく、180〜300℃がより好ましい。内部オレフィンの収率向上のため、脱炭酸反応中に生成オレフィンを系内に維持させる条件を採用することが望ましい。このため、反応を密閉系で行うことが好ましく、反応圧力は常圧ないし加圧が好ましい。   The reaction temperature for the decarboxylation reaction is preferably from 100 to 300 ° C, more preferably from 180 to 300 ° C, from the viewpoint of obtaining good selectivity for the internal olefin. In order to improve the yield of internal olefins, it is desirable to employ conditions that maintain the produced olefin in the system during the decarboxylation reaction. For this reason, the reaction is preferably carried out in a closed system, and the reaction pressure is preferably normal or pressurized.

[ヒドロホルミル化反応]
本発明におけるヒドロホルミル化反応としては、特に限定されず、例えば、脱炭酸反応により得られた内部オレフィンに対し、8族、9族、10族金属化合物を有機リン化合物などの配位子で修飾してなる8族、9族、10族金属錯体からなる触媒の存在下に水素および一酸化炭素と反応させてアルデヒドに変換する方法が挙げられる。
[Hydroformylation reaction]
The hydroformylation reaction in the present invention is not particularly limited. For example, the internal olefin obtained by the decarboxylation reaction is modified with a ligand such as an organophosphorus compound such as a group 8, 9, or 10 metal compound. And a method of reacting with hydrogen and carbon monoxide in the presence of a catalyst comprising a Group 8, Group 9, or Group 10 metal complex and converting it to an aldehyde.

ヒドロホルミル化反応に用いられる8族、9族、10族金属化合物としては、内部オレフィンのヒドロホルミル化反応を促進させる触媒能を当初から有するか、またはヒドロホルミル化反応条件下でそのような触媒能を獲得する化合物であり、従来からヒドロホルミル化反応において触媒として使用されているロジウム化合物、コバルト化合物、ルテニウム化合物、鉄化合物などが挙げられる。これら化合物の中では、ヒドロホルミル化反応の反応条件が温和である観点から、コバルト化合物やロジウム化合物を使用するのが好ましい。   The Group 8, 9, and 10 metal compounds used in the hydroformylation reaction have catalytic ability to promote the hydroformylation reaction of internal olefins from the beginning, or acquire such catalytic ability under hydroformylation reaction conditions Examples thereof include rhodium compounds, cobalt compounds, ruthenium compounds, iron compounds and the like that have been conventionally used as catalysts in hydroformylation reactions. Among these compounds, it is preferable to use a cobalt compound or a rhodium compound from the viewpoint that the reaction conditions of the hydroformylation reaction are mild.

コバルト化合物としては、例えば、Co2(CO)8があり、ロジウム化合物としては、例えば、RhO、Rh2O、Rh23、RhO2などの酸化ロジウム;硝酸ロジウム、硫酸ロジウム、塩化ロジウム、ヨウ化ロジウム、酢酸ロジウムなどのロジウム塩;Rh4(CO)12、Rh6(CO)16、RhCl(CO)(PPh32、RhCl(PPh33、RhBr(CO)(PPh32、RhCl(CO)(AsPPh32、Rh(acac)(CO)2(ここで、acacはアセチルアセトナト配位子を示す。以下同様)などのロジウム錯化合物などが挙げられ、Rh(acac)(CO)2[ロジウムアセチルアセトナトジカルボニル]がより好ましい。 Examples of the cobalt compound include Co 2 (CO) 8 , and examples of the rhodium compound include rhodium oxides such as RhO, Rh 2 O, Rh 2 O 3 , and RhO 2 ; rhodium nitrate, rhodium sulfate, rhodium chloride, Rhodium salts such as rhodium iodide and rhodium acetate; Rh 4 (CO) 12 , Rh 6 (CO) 16 , RhCl (CO) (PPh 3 ) 2 , RhCl (PPh 3 ) 3 , RhBr (CO) (PPh 3 ) 2 , rhodium complex compounds such as RhCl (CO) (AsPPh 3 ) 2 , Rh (acac) (CO) 2 (where acac represents an acetylacetonato ligand; the same shall apply hereinafter) and the like. acac) (CO) 2 [rhodium acetylacetonatodicarbonyl] is more preferred.

ヒドロホルミル化反応に用いられる有機リン化合物としては、特に限定されないが、例えば、トリシクロヘキシルホスフィン、トリイソプロピルホスフィン、トリブチルホスフィン、トリ−t−ブチルホスフィン、トリベンジルホスフィン、トリフェニルホスフィン、トリス(パラ−メトキシフェニル)ホスフィン、トリス(パラ−N,N−ジメチルアミノフェニル)ホスフィン、トリス(パラ−フルオロフェニル)ホスフィン、トリス(パラ−クロロフェニル)ホスフィン、トリ−オルト−トルイルホスフィン、トリ−メタ−トルイルホスフィン、トリ−パラ−トルイルホスフィン、トリス(ペンタフルオロフェニル)ホスフィン、ビス(ペンタフルオロフェニル)フェニルホスフィン、ジフェニル(ペンタフルオロフェニル)ホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、シクロヘキシルジフェニルホスフィン、ジメチルフェニルホスフィン、ジエチルフェニルホスフィン、2−フリルジフェニルホスフィン、2−ピリジルジフェニルホスフィン、4−ピリジルジフェニルホスフィン、メタ−ジフェニルホスフィノベンゼンスルホン酸またはその金属塩、パラ−ジフェニルホスフィノ安息香酸またはその金属塩、パラ−ジフェニルホスフィノフェニルホスホン酸またはその金属塩などが挙げられ、トリシクロヘキシルホスフィン、トリイソプロピルホスフィン等が好ましい。これらの有機リン化合物は単独で用いても、2種類以上を組み合わせて用いてもよい。   The organophosphorus compound used in the hydroformylation reaction is not particularly limited. For example, tricyclohexylphosphine, triisopropylphosphine, tributylphosphine, tri-t-butylphosphine, tribenzylphosphine, triphenylphosphine, tris (para-methoxy). Phenyl) phosphine, tris (para-N, N-dimethylaminophenyl) phosphine, tris (para-fluorophenyl) phosphine, tris (para-chlorophenyl) phosphine, tri-ortho-tolylphosphine, tri-meta-tolylphosphine, tri -Para-toluylphosphine, tris (pentafluorophenyl) phosphine, bis (pentafluorophenyl) phenylphosphine, diphenyl (pentafluorophenyl) phosphine Methyldiphenylphosphine, ethyldiphenylphosphine, cyclohexyldiphenylphosphine, dimethylphenylphosphine, diethylphenylphosphine, 2-furyldiphenylphosphine, 2-pyridyldiphenylphosphine, 4-pyridyldiphenylphosphine, meta-diphenylphosphinobenzenesulfonic acid or metal salts thereof , Para-diphenylphosphinobenzoic acid or a metal salt thereof, para-diphenylphosphinophenylphosphonic acid or a metal salt thereof, and tricyclohexylphosphine, triisopropylphosphine and the like are preferable. These organophosphorus compounds may be used alone or in combination of two or more.

有機リン化合物の使用量は、良好な触媒の安定性及び反応速度を得る観点から、8族、9族、10族金属原子換算で8族、9族、10族金属化合物1モルに対して、リン原子換算で1〜10000モルの範囲であるのが好ましく、1〜1000モルの範囲であるのがより好ましく、1.5〜100モルの範囲がさらに好ましい。   From the viewpoint of obtaining good catalyst stability and reaction rate, the amount of the organophosphorus compound used is 8 groups, 9 groups, 10 groups metal atoms in terms of 8 moles, 9 groups, 10 moles of metal compound, It is preferably in the range of 1 to 10000 mol in terms of phosphorus atom, more preferably in the range of 1 to 1000 mol, and still more preferably in the range of 1.5 to 100 mol.

8族、9族、10族金属錯体の調製方法は特に制限はないが、例えばヒドロホルミル化反応に影響を及ぼさない溶媒を用いて別途調製された、8族、9族、10族金属化合物溶液および有機リン化合物溶液をヒドロホルミル化反応系に別個に導入し、その系中で両者を反応させて錯体化することにより調製することができる。また、上記の8族、9族、10族金属化合物溶液に有機リン化合物を入れ、次いでヒドロホルミル化反応に影響を及ぼさない溶媒を添加して均一な溶液とすることにより調製することもできる。   There are no particular restrictions on the method for preparing the Group 8, Group 9, or Group 10 metal complex. For example, the Group 8, Group 9, or Group 10 metal compound solution prepared separately using a solvent that does not affect the hydroformylation reaction, and It can be prepared by separately introducing an organophosphorus compound solution into a hydroformylation reaction system and reacting both in the system to form a complex. It can also be prepared by putting an organophosphorus compound in the above-mentioned group 8, 9, or 10 metal compound solution and then adding a solvent that does not affect the hydroformylation reaction to obtain a uniform solution.

ヒドロホルミル化反応に使用される水素と一酸化炭素との混合ガスのH2/COモル比は、仕込み時のガス組成として、0.1〜10の範囲が好ましく、0.5〜2の範囲が混合ガス組成の維持が容易である観点からより好ましい。反応圧力は、0.1〜10MPaの範囲が好ましく、0.5〜5MPaの範囲が反応速度の観点から好ましい。反応温度は、40〜150℃の範囲が好ましく、60〜130℃の範囲が触媒の失活を抑制する観点などからより好ましい。 The H 2 / CO molar ratio of the mixed gas of hydrogen and carbon monoxide used in the hydroformylation reaction is preferably in the range of 0.1 to 10 and preferably in the range of 0.5 to 2 as the gas composition at the time of charging. It is more preferable from the viewpoint of easy maintenance of the mixed gas composition. The reaction pressure is preferably in the range of 0.1 to 10 MPa, and more preferably in the range of 0.5 to 5 MPa from the viewpoint of the reaction rate. The reaction temperature is preferably in the range of 40 to 150 ° C, and more preferably in the range of 60 to 130 ° C from the viewpoint of suppressing the deactivation of the catalyst.

ヒドロホルミル化反応は、攪拌型反応槽、液循環型反応槽、ガス循環型反応槽、気泡塔型反応槽などを用いて行うことができる。また、反応は、連続方式またはバッチ方式で行うことができる。   The hydroformylation reaction can be performed using a stirring reaction tank, a liquid circulation reaction tank, a gas circulation reaction tank, a bubble column reaction tank, or the like. The reaction can be performed in a continuous manner or a batch manner.

8族、9族、10族金属錯体の使用量は、反応速度及び触媒コストの観点から、原料1000g当たり、8族、9族、10族金属原子換算で0.1〜1000mmolの範囲となるような量を選択するのが好ましく、1〜100mmolの範囲となるような量を選択するのがより好ましい。   From the viewpoint of reaction rate and catalyst cost, the amount of Group 8, Group 9, or Group 10 metal complex used is in the range of 0.1 to 1000 mmol in terms of Group 8, Group 9, or Group 10 metal atoms per 1000 g of raw material. It is preferable to select such an amount, and it is more preferable to select an amount that is in the range of 1 to 100 mmol.

本発明の8族、9族、10族金属錯体を用いて内部オレフィンをヒドロホルミル化する場合には、反応系に溶媒を存在させるのが好ましい。溶媒としては、例えば、トルエン、ジメチルスルホキシド、1−メチル−2−ピロリジノン、スルホラン、ジメチルホルムアミド、アセトニトリル、アセトン、1,4−ジオキサン、テトラヒドロフランのような非プロトン性極性溶媒;メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、s−ブチルアルコール、t−ブチルアルコールなどのアルコール類;エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル、テトラエチレングリコール、テトラエチレングリコールジメチルエーテルなどのグリコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテルなどのポリアルキレングリコール類などを挙げることができる。これらの溶媒は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、トルエン、ジメチルスルホキシド、アセトン、テトラヒドロフラン等の非プロトン性極性溶媒を用いるのが好ましい。これらの溶媒の使用量は、ヒドロホルミル化反応混合液中2〜50容量%の範囲となるような量を選択するのが好ましく、5〜20容量%の範囲となるような量を選択するのがより好ましい。   When the internal olefin is hydroformylated using the Group 8, 9, or 10 metal complex of the present invention, it is preferable that a solvent be present in the reaction system. Examples of the solvent include aprotic polar solvents such as toluene, dimethyl sulfoxide, 1-methyl-2-pyrrolidinone, sulfolane, dimethylformamide, acetonitrile, acetone, 1,4-dioxane, tetrahydrofuran; methyl alcohol, ethyl alcohol, Alcohols such as propyl alcohol, isopropyl alcohol, butyl alcohol, s-butyl alcohol, t-butyl alcohol; ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol, triethylene Glycol dimethyl ether, tetraethylene glycol, tetraethylene glycol dimethyl Glycols such as ethers, polyethylene glycol, polypropylene glycol, polyethylene glycol monomethyl ether, polyethylene glycol dimethyl ether, etc. may be mentioned polyalkylene glycols such as polyethylene glycol dimethyl ether. These solvents may be used alone or in combination of two or more. Among these, it is preferable to use an aprotic polar solvent such as toluene, dimethyl sulfoxide, acetone or tetrahydrofuran. The amount of these solvents used is preferably selected such that it is in the range of 2-50% by volume in the hydroformylation reaction mixture, and is selected in such a range that it is in the range of 5-20% by volume. More preferred.

ヒドロホルミル化反応における原料の仕込み方法に特に制限はないが、内部オレフィン、別途調製された8族、9族、10族金属錯体溶液および必要に応じて溶媒を仕込み、次いで、水素と一酸化炭素との混合ガスを所定圧力で導入し、所定温度で撹拌して均一系で反応を行うのが好ましい。   There are no particular restrictions on the raw material charging method in the hydroformylation reaction, but an internal olefin, separately prepared group 8, 9, 10 metal complex solution and a solvent as necessary are charged, and then hydrogen, carbon monoxide, It is preferable that the mixed gas is introduced at a predetermined pressure and stirred at a predetermined temperature to carry out the reaction in a homogeneous system.

[水素還元反応]
本発明における水素還元反応は、上記ヒドロホルミル化反応により得られたアルデヒドを水素還元してβ分岐アルコールを得る反応である。この反応は、特に限定されず、公知の方法で水素還元を行えばよく、例えば、NaBH4(水素化ホウ素ナトリウム)を加え、還元する方法、金属触媒の存在下、水素ガスにより還元する方法などが挙げられる。
[Hydrogen reduction reaction]
The hydrogen reduction reaction in the present invention is a reaction for obtaining a β-branched alcohol by hydrogen reduction of the aldehyde obtained by the hydroformylation reaction. This reaction is not particularly limited, and hydrogen reduction may be performed by a known method. For example, NaBH 4 (sodium borohydride) is added for reduction, reduction using hydrogen gas in the presence of a metal catalyst, etc. Is mentioned.

NaBH4を加えて水素還元する方法では、NaBH4の添加量は、アルデヒドに対して等モル以上加えるのが好ましく、1〜3倍モル添加がより好ましく、1.2〜1.5倍モル添加がさらに好ましい。また、反応温度は0〜100℃が好ましく、10〜50℃がより好ましく、10〜30℃がさらに好ましい。 In the method of hydrogen reduction by adding NaBH 4, the addition amount of NaBH 4 is preferably added equimolar or more to the aldehyde, more preferably from 1 to 3 moles added, 1.2 to 1.5 moles additive Is more preferable. Moreover, 0-100 degreeC is preferable, as for reaction temperature, 10-50 degreeC is more preferable, and 10-30 degreeC is further more preferable.

金属触媒を用い水素ガスにより還元する方法において、水素還元に用いる金属触媒としては、特に限定されないが、Ru、Pd、Rh、Ptをアルミナ、活性炭、シリカ、ジルコニア、シリカアルミナなどに担持した触媒や、Cu−Cr、Cu−Fe、Cu−ZnなどCu系触媒やRaneyニッケル、ニッケル/ケイソウ土、ニッケル/シリカアルミナなどNi系触媒などが好ましい。また、金属触媒の添加量はアルデヒドに対し20重量%以下が好ましく、0.1〜5重量%がより好ましい。反応温度は使用する触媒により異なるが、300℃以下が好ましく、20〜250℃がより好ましく、20〜150℃がさらに好ましい。水素ガスの圧力は常圧〜30MPaが好ましく、常圧〜25MPaがより好ましい。   In the method of reducing with hydrogen gas using a metal catalyst, the metal catalyst used for hydrogen reduction is not particularly limited. However, a catalyst in which Ru, Pd, Rh, Pt is supported on alumina, activated carbon, silica, zirconia, silica alumina or the like Cu-based catalysts such as Cu-Cr, Cu-Fe, and Cu-Zn, and Ni-based catalysts such as Raney nickel, nickel / diatomaceous earth, and nickel / silica alumina are preferable. The amount of the metal catalyst added is preferably 20% by weight or less, more preferably 0.1 to 5% by weight, based on the aldehyde. Although reaction temperature changes with the catalysts to be used, 300 degrees C or less is preferable, 20-250 degreeC is more preferable, 20-150 degreeC is further more preferable. The pressure of hydrogen gas is preferably normal pressure to 30 MPa, more preferably normal pressure to 25 MPa.

本発明の方法により得られるβ分岐アルコールとしては、一般式(III)で表される化合物が好ましい。   The β-branched alcohol obtained by the method of the present invention is preferably a compound represented by the general formula (III).

Figure 2009173611
Figure 2009173611

(式中、d及びeはそれぞれ独立に、1〜19の整数を示し、dとeの和は4〜20である。)
本発明の方法により得られるβ分岐アルコールは、界面活性剤、種々の化学薬品、医薬品の中間原料として好適に用いることができる。
(In formula, d and e show the integer of 1-19 each independently, and the sum of d and e is 4-20.)
The β-branched alcohol obtained by the method of the present invention can be suitably used as an intermediate material for surfactants, various chemicals, and pharmaceuticals.

以下、特に断らない限り、「%」は「重量%」を表す。   Hereinafter, “%” represents “% by weight” unless otherwise specified.

合成例1(内部オレフィンの製造)
10mLナス型フラスコに攪拌子を入れ、ステアリン酸568.7mg(2.0mmol)、ロジウム触媒[RhCl(CO)22 7.8mg(0.02mmol)、ジメチルフェニルホスフィン31.8mg(0.08mmol)、無水酢酸215.1mg(2.10mmol)を加え、250℃で攪拌を行った。加熱後、すぐに、固体のステアリン酸は融解し、反応溶液は均一になり泡立ち始めた。3時間後、加熱をやめ、室温(25℃)になるまで放置した。そして、エチルエーテルで洗いながら、ろ過した後、内部標準としてn−ノナデカン95.9mgを加え、ガスクロマトグラフィー(GC)測定を行った(なお、GC収率は、内部標準と目的生成物の感度比を1として計算した。)。次にエチルエーテルを減圧留去したのち、内部標準としてアニソール105.9mgを加え、1H−NMRを測定した(収率の算出方法は、末端オレフィンのビニルプロトン、内部オレフィンのビニルプロトン、内部標準であるアニソールのメチル基との積分比を比較することにより求めた。)。
Synthesis Example 1 (Production of internal olefin)
A stirrer was placed in a 10 mL eggplant type flask, stearic acid 568.7 mg (2.0 mmol), rhodium catalyst [RhCl (CO) 2 ] 2 7.8 mg (0.02 mmol), dimethylphenylphosphine 31.8 mg (0.08 mmol). ) And acetic anhydride (215.1 mg, 2.10 mmol) were added, and the mixture was stirred at 250 ° C. Immediately after heating, the solid stearic acid melted and the reaction solution became homogeneous and began to bubble. After 3 hours, the heating was stopped and the mixture was allowed to stand until it reached room temperature (25 ° C.). Then, after filtration while washing with ethyl ether, 95.9 mg of n-nonadecane was added as an internal standard, and gas chromatography (GC) measurement was performed (the GC yield is the sensitivity of the internal standard and the target product). The ratio was calculated as 1.) Next, after distilling off ethyl ether under reduced pressure, 105.9 mg of anisole was added as an internal standard, and 1 H-NMR was measured (the yield was calculated by vinyl proton of terminal olefin, vinyl proton of internal olefin, internal standard). It was obtained by comparing the integral ratio of anisole with the methyl group.

GC測定の結果より、原料のステアリン酸がわずかに残存していた。そして、脱炭酸の生成物と考えられるピークが非常に近い位置に複数見られた。そして、1H−NMRの測定結果より、原料ステアリン酸が6%残存し、末端オレフィンが6%、内部オレフィンが82%存在していることが分かった。 As a result of GC measurement, the raw material stearic acid remained slightly. A plurality of peaks considered to be products of decarboxylation were seen at positions very close. And from the measurement result of 1 H-NMR, it was found that 6% of the raw material stearic acid remained, 6% of the terminal olefin and 82% of the internal olefin were present.

合成例2(内部オレフィンの製造)
10mLナス型フラスコに攪拌子を入れ、ステアリン酸579.4mg(2.0mmol)、ロジウム触媒[RhCl(CO)22 7.6mg(0.02mmol)、ジメチルフェニルホスフィン31.8mg(0.08mmol)、無水酢酸224.2mg(2.19mmol)を加え、200℃で攪拌を行った。加熱後、すぐに、固体のステアリン酸は融解し、反応溶液は均一になり泡立ち始めた。3時間後、加熱をやめ、室温(25℃)になるまで放置した。そして、エチルエーテルで洗いながら、ろ過した後、内部標準としてn−ノナデカン95.9mgを加え、GC測定を行った(なお、GC収率は、内部標準と目的生成物の感度比を1として計算した。)。次にエチルエーテルを減圧留去したのち、内部標準としてアニソール109.9mgを加え、1H−NMRを測定した(収率の算出方法は、末端オレフィンのビニルプロトン、内部オレフィンのビニルプロトン、内部標準であるアニソールのメチル基との積分比を比較することにより求めた。)。
Synthesis example 2 (production of internal olefin)
A stirrer was placed in a 10 mL eggplant-shaped flask, and stearic acid 579.4 mg (2.0 mmol), rhodium catalyst [RhCl (CO) 2 ] 2 7.6 mg (0.02 mmol), dimethylphenylphosphine 31.8 mg (0.08 mmol) ), Acetic anhydride (224.2 mg, 2.19 mmol) was added, and the mixture was stirred at 200 ° C. Immediately after heating, the solid stearic acid melted and the reaction solution became homogeneous and began to bubble. After 3 hours, the heating was stopped and the mixture was allowed to stand until it reached room temperature (25 ° C.). Then, after filtration while washing with ethyl ether, 95.9 mg of n-nonadecane was added as an internal standard, and GC measurement was performed (GC yield was calculated with the sensitivity ratio of the internal standard and target product as 1). did.). Next, after distilling off ethyl ether under reduced pressure, 109.9 mg of anisole was added as an internal standard, and 1 H-NMR was measured (the yield was calculated by vinyl proton of terminal olefin, vinyl proton of internal olefin, internal standard). It was obtained by comparing the integral ratio of anisole with the methyl group.

GC測定の結果より、原料のステアリン酸がわずかに残存していた。そして、脱炭酸の生成物と考えられるピークが非常に近い位置に複数見られた。そして、1H−NMRの測定結果より、原料ステアリン酸が10%残存し、末端オレフィンが20%、内部オレフィンが49%存在していることが分かった。 As a result of GC measurement, the raw material stearic acid remained slightly. A plurality of peaks considered to be products of decarboxylation were seen at positions very close. And from the measurement result of 1 H-NMR, it was found that 10% of raw material stearic acid remained, 20% of terminal olefin and 49% of internal olefin were present.

合成例3(内部オレフィンの製造)
10mLナス型フラスコに攪拌子を入れ、ステアリン酸568.9mg(2.0mmol)、ロジウム触媒[RhCl(CO)22 7.8mg(0.02mmol)、ジメチルフェニルホスフィン15.9mg(0.04mmol)を加え、250℃で攪拌を行った。加熱後、すぐに、固体のステアリン酸は融解し、反応溶液は均一になり泡立ち始めた。3時間後、加熱をやめ、室温(25℃)になるまで放置した。そして、エチルエーテルで洗いながら、ろ過した後、内部標準としてn−ノナデカンを加え、GC測定を行った(なお、GC収率は、内部標準と目的生成物の感度比を1として計算した。)。次にエチルエーテルを減圧留去したのち、内部標準としてアニソールを加え、1H−NMRを測定した(収率の算出方法は、末端オレフィンのビニルプロトン、内部オレフィンのビニルプロトン、内部標準であるアニソールのメチル基との積分比を比較することにより求めた。)。
Synthesis Example 3 (Production of internal olefin)
A stirrer was placed in a 10 mL eggplant-shaped flask, and stearic acid 568.9 mg (2.0 mmol), rhodium catalyst [RhCl (CO) 2 ] 2 7.8 mg (0.02 mmol), dimethylphenylphosphine 15.9 mg (0.04 mmol) ) Was added and stirred at 250 ° C. Immediately after heating, the solid stearic acid melted and the reaction solution became homogeneous and began to bubble. After 3 hours, the heating was stopped and the mixture was allowed to stand until it reached room temperature (25 ° C.). Then, after washing with ethyl ether and filtering, n-nonadecane was added as an internal standard, and GC measurement was performed (GC yield was calculated with the sensitivity ratio of the internal standard and the target product as 1). . Next, after ethyl ether was distilled off under reduced pressure, anisole was added as an internal standard, and 1 H-NMR was measured (the yield was calculated by vinyl protons of terminal olefins, vinyl protons of internal olefins, anisole as internal standard). Was obtained by comparing the integration ratio with the methyl group.

GC測定の結果より、原料のステアリン酸が61%残存していた。そして、1H−NMRの測定結果より、末端オレフィンが21%、内部オレフィンが14%存在していることが分かった。 As a result of GC measurement, 61% of the raw material stearic acid remained. From the measurement results of 1 H-NMR, it was found that 21% of the terminal olefin and 14% of the internal olefin were present.

比較合成例1
10mLナス型フラスコに攪拌子を入れ、ステアリン酸568mg(2.0mmol)、VII族金属であるマンガン触媒Mn2(CO)10 4mg(0.01mmol)、ジメチルフェニルホスフィン8mg(0.02mmol)、無水酢酸224mg(2mmol)を加え、250℃で攪拌を行った。加熱後、すぐに、固体のステアリン酸は融解し、反応溶液は均一になり泡立ち始めた。3時間後、加熱をやめ、室温(25℃)になるまで放置した。そして、エチルエーテルで洗いながら、ろ過した後、ガスクロマトグラフィー(GC)測定を行ったが、オレフィンは生成していなかった。
Comparative Synthesis Example 1
A stirrer was placed in a 10 mL eggplant-shaped flask, stearic acid 568 mg (2.0 mmol), manganese catalyst Mn 2 (CO) 10 4 mg (0.01 mmol), dimethylphenylphosphine 8 mg (0.02 mmol), anhydrous Acetic acid 224 mg (2 mmol) was added, and the mixture was stirred at 250 ° C. Immediately after heating, the solid stearic acid melted and the reaction solution became homogeneous and began to bubble. After 3 hours, the heating was stopped and the mixture was allowed to stand until it reached room temperature (25 ° C.). Then, after filtration with washing with ethyl ether, gas chromatography (GC) measurement was performed, but no olefin was produced.

実施例1
(1)脱炭酸反応
ガラス製内挿管に、ステアリン酸を5.69g(20mmol)、ロジウム触媒[RhCl(CO)22を38.8mg(0.1mmol)、DPPE(1,2−ビス(ジフェニルホスフィノ)エタン)を39.8mg(0.1mmol)、無水酢酸を2.04g(20mmol)入れ、ステンレス製オートクレーブ内をアルゴン置換し密閉した。250℃のソルトバスにつけ3時間加熱撹拌した。室温(25℃)に戻した後、反応混合物をヘキサンに溶解させシリカゲルを用いて濾過した。ろ液を濃縮後、1H−NMR測定を行った。収量4.7g、ステアリン酸転化率99%、末端オレフィン:内部オレフィン=1:1.37であった。
Example 1
(1) Decarboxylation reaction In a glass intubation tube, 5.69 g (20 mmol) of stearic acid, 38.8 mg (0.1 mmol) of rhodium catalyst [RhCl (CO) 2 ] 2 , DPPE (1,2-bis ( 39.8 mg (0.1 mmol) of diphenylphosphino) ethane) and 2.04 g (20 mmol) of acetic anhydride were added, and the inside of the stainless steel autoclave was purged with argon and sealed. The mixture was placed in a 250 ° C. salt bath and stirred for 3 hours. After returning to room temperature (25 ° C.), the reaction mixture was dissolved in hexane and filtered using silica gel. After the filtrate was concentrated, 1 H-NMR measurement was performed. Yield 4.7 g, stearic acid conversion 99%, terminal olefin: internal olefin = 1: 1.37.

(2)ヒドロホルミル化反応
ガラス製内挿管に、(1)で得られたオレフィン混合物を2.96g(12.44mmol)入れ、さらに、ロジウム触媒Rh(acac)(CO)2を10.7mg(0.041mmol)、トルエンを4mL、トリシクロヘキシルホスフィンを23mg(0.082mmol)入れ、オートクレーブ内を一酸化炭素で置換した。一酸化炭素を1.5MPa加圧し、さらに水素を1.5MPa加圧した(トータル3.0MPa)。オートクレーブをオイルバスにつけ、110℃で1時間加熱撹拌した。室温(25℃)に戻した後、残った一酸化炭素、水素を抜き溶媒を減圧留去し、粗収量4.5gを得た。1H−NMR測定したところ、原料は消失しており、4種類のアルデヒドピークを確認した。末端アルデヒド:内部アルデヒド=1:3.3であった。
(2) Hydroformylation reaction 2.96 g (12.44 mmol) of the olefin mixture obtained in (1) was placed in a glass inner tube, and 10.7 mg (0) of rhodium catalyst Rh (acac) (CO) 2 was added. 0.041 mmol), 4 mL of toluene and 23 mg (0.082 mmol) of tricyclohexylphosphine were added, and the inside of the autoclave was replaced with carbon monoxide. Carbon monoxide was pressurized by 1.5 MPa, and hydrogen was further pressurized by 1.5 MPa (total 3.0 MPa). The autoclave was attached to an oil bath and heated and stirred at 110 ° C. for 1 hour. After returning to room temperature (25 ° C.), the remaining carbon monoxide and hydrogen were removed, and the solvent was distilled off under reduced pressure to obtain a crude yield of 4.5 g. As a result of 1 H-NMR measurement, the raw materials disappeared, and four types of aldehyde peaks were confirmed. Terminal aldehyde: internal aldehyde = 1: 3.3.

(3)水素還元反応
(2)で得られたアルデヒド混合物4.5gをエタノール20mLに溶解し、NaBH4 610mg(1.3当量)を加え室温(25℃)で2日間撹拌した。反応混合物に水を加えエチルエーテルで抽出し、MgSO4で乾燥した後、溶媒を減圧留去し、1H−NMRを測定した。粗収量3.02g、原料消失、その後、シリカゲルカラムクロマトグラフィーで単離を行い(ヘキサン/酢酸エチル=5/1,Rf=0.3付近)、β分岐アルコール2.585gを得た。白色固体。直鎖アルコール:β分岐アルコール=1/3.39であった。
(3) Hydrogen reduction reaction 4.5 g of the aldehyde mixture obtained in (2) was dissolved in 20 mL of ethanol, 610 mg (1.3 equivalents) of NaBH 4 was added, and the mixture was stirred at room temperature (25 ° C.) for 2 days. Water was added to the reaction mixture, and the mixture was extracted with ethyl ether and dried over MgSO 4. Then , the solvent was distilled off under reduced pressure, and 1 H-NMR was measured. The crude yield was 3.02 g, the raw material disappeared, and then isolated by silica gel column chromatography (hexane / ethyl acetate = 5/1, Rf = near 0.3) to obtain 2.585 g of β-branched alcohol. White solid. Linear alcohol: β-branched alcohol = 1 / 3.39.

Claims (4)

8族、9族、10族金属及び銅から選ばれる元素を含む触媒の存在下、飽和カルボン酸の脱炭酸反応を行うことにより内部オレフィンを得た後、得られた内部オレフィンにヒドロホルミル化反応、さらに水素還元反応を行う、β分岐アルコールの製造法。   After obtaining an internal olefin by decarboxylation of a saturated carboxylic acid in the presence of a catalyst containing an element selected from Group 8, Group 9, Group 10 metal and copper, hydroformylation reaction is performed on the obtained internal olefin. A method for producing a β-branched alcohol, which further performs a hydrogen reduction reaction. 飽和カルボン酸の炭素数が6〜22である請求項1記載の製造法。   The process according to claim 1, wherein the saturated carboxylic acid has 6 to 22 carbon atoms. 脱炭酸反応を、酸無水物の存在下で行う、請求項1又は2記載の製造法。   The production method according to claim 1 or 2, wherein the decarboxylation reaction is carried out in the presence of an acid anhydride. 脱炭酸反応を、100〜300℃の温度で行う、請求項1〜3いずれかに記載の製造法。   The manufacturing method in any one of Claims 1-3 which performs a decarboxylation reaction at the temperature of 100-300 degreeC.
JP2008016174A 2008-01-28 2008-01-28 METHOD FOR PRODUCING beta-BRANCHED ALCOHOL Pending JP2009173611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016174A JP2009173611A (en) 2008-01-28 2008-01-28 METHOD FOR PRODUCING beta-BRANCHED ALCOHOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016174A JP2009173611A (en) 2008-01-28 2008-01-28 METHOD FOR PRODUCING beta-BRANCHED ALCOHOL

Publications (1)

Publication Number Publication Date
JP2009173611A true JP2009173611A (en) 2009-08-06

Family

ID=41029108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016174A Pending JP2009173611A (en) 2008-01-28 2008-01-28 METHOD FOR PRODUCING beta-BRANCHED ALCOHOL

Country Status (1)

Country Link
JP (1) JP2009173611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058990A1 (en) * 2009-11-12 2011-05-19 花王株式会社 Method for producing olefins
US9056811B2 (en) 2010-09-15 2015-06-16 Kabushiki Kaisha Sangi Method for producing alcohol by guerbet reaction
EP3888790A1 (en) * 2020-04-01 2021-10-06 V. Mane Fils Hydroformylation catalyst system with syngas surrogate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058990A1 (en) * 2009-11-12 2011-05-19 花王株式会社 Method for producing olefins
US9024103B2 (en) 2009-11-12 2015-05-05 Kao Corporation Method for producing olefin
US9056811B2 (en) 2010-09-15 2015-06-16 Kabushiki Kaisha Sangi Method for producing alcohol by guerbet reaction
EP3888790A1 (en) * 2020-04-01 2021-10-06 V. Mane Fils Hydroformylation catalyst system with syngas surrogate
WO2021198113A1 (en) * 2020-04-01 2021-10-07 V. Mane Fils Hydroformylation catalyst system with syngas surrogate
CN115702041A (en) * 2020-04-01 2023-02-14 V.马内菲尔斯 Hydroformylation catalyst system with syngas substitute

Similar Documents

Publication Publication Date Title
Qian et al. Synthesis of ethanol via a reaction of dimethyl ether with CO 2 and H 2
EP3281931A1 (en) Methods of making organic compounds by metathesis
EP3142995A1 (en) Process for preparing an unsaturated carboxylic acid salt using an aryloxide
EP3294701A1 (en) Process for preparing an unsaturated carboxylic acid salt
Queirolo et al. Neutral vs anionic palladium iodide-catalyzed carbonylation of terminal arylacetylenes
BRPI1010643B1 (en) “PROCESS FOR ALLYL ALCOHOL HYDROPHORMILATION TO PRODUCE 4-HYDROXYBUTYLDEIDE”
JP5083909B2 (en) Process for producing carboxylic acid ester and ether compound
CN103987690B (en) The method being prepared ester by formic acid esters and alefinically unsaturated compounds
WO2019165367A1 (en) Producing bdo via hydroformylation of allyl alcohol made from glycerin
JP2009173611A (en) METHOD FOR PRODUCING beta-BRANCHED ALCOHOL
CN107497493B (en) Catalyst composition for synthesizing methyl propionate from ethylene and synthesis method thereof
US9260367B2 (en) Methods of converting polyols
Liu et al. Hydrocarboxylation of alkynes with formic acid over multifunctional ligand modified Pd-catalyst with co-catalytic effect
CN107805201B (en) Preparation method of methyl dihydrojasmonate
CN107986943B (en) Synthesis method of cyclohexanedimethanol, catalyst and application thereof
CN111875637B (en) Phosphine ligand and synthesis method and application thereof
JP5487537B2 (en) Method for producing alcohol
CN110372513B (en) Vinyl acetate hydroformylation method
Liu et al. Hydrogenation of biodiesel using thermoregulated phase-transfer catalyst for production of fatty alcohols
CN111004102A (en) Method for preparing optical activity citronellal and catalyst used in method
CN107497494B (en) Catalyst composition for synthesizing methyl propionate from ethylene and synthesis method thereof
CN116023249A (en) Method for preparing carboxylic acid from isoamylene
WO2023070761A1 (en) Iridium-based catalyst and preparation method therefor, and hydroformylation method
JP7227585B2 (en) Method for producing ketones
JP4396068B2 (en) Method for producing carbonyl compound