JP2009172717A - Method for manufacturing wafer - Google Patents

Method for manufacturing wafer Download PDF

Info

Publication number
JP2009172717A
JP2009172717A JP2008014042A JP2008014042A JP2009172717A JP 2009172717 A JP2009172717 A JP 2009172717A JP 2008014042 A JP2008014042 A JP 2008014042A JP 2008014042 A JP2008014042 A JP 2008014042A JP 2009172717 A JP2009172717 A JP 2009172717A
Authority
JP
Japan
Prior art keywords
wafer
silicon carbide
abrasive grains
single crystal
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008014042A
Other languages
Japanese (ja)
Inventor
Keiichi Sugimoto
敬一 杉本
Sho Kumagai
祥 熊谷
Takeshi Motoyama
剛 元山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008014042A priority Critical patent/JP2009172717A/en
Publication of JP2009172717A publication Critical patent/JP2009172717A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To process the surface of a wafer in mat finish with desired surface roughness while restricting chipping along the outer circumference of the wafer. <P>SOLUTION: Diamond paste 3 including diamond abrasive grains 3a is applied to the surface of a silicon carbide monocrystal wafer 1, and ultrasonic waves are radiated to the diamond paste 3 applied. The diamond abrasive grains 3a included in the diamond paste 3 are thus vibrated to collide with the surface of the silicon carbide monocrystal wafer 1. The surface of the silicon carbide monocrystal wafer 1 is thus processed in mat finish. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ウェハの表面を梨地状に加工するウェハの製造方法に関する。   The present invention relates to a method for manufacturing a wafer in which the surface of a wafer is processed into a satin finish.

従来、ブラスト加工を応用して、すりガラスのように光が乱反射する微細な凹凸を有する梨地状にウェハの表面を加工する技術が知られている。
特開2000−21786号公報
2. Description of the Related Art Conventionally, there has been known a technique for processing a wafer surface into a satin-like shape having fine irregularities in which light diffusely reflects like ground glass by applying blast processing.
JP 2000-21786 A

しかしながら、上記のブラスト加工による梨地加工には、ウェハの外周にチッピングが発生しやすいという問題がある。なお、この問題を解消する方法として、加工圧や粒径などのブラスト条件を変更する方法が考えられるが、この方法を用いた場合は加工面の表面粗さも同時に変化してしまう。   However, the matte processing by the above blast processing has a problem that chipping tends to occur on the outer periphery of the wafer. As a method for solving this problem, a method of changing blasting conditions such as processing pressure and particle size is conceivable. However, when this method is used, the surface roughness of the processed surface also changes at the same time.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、ウェハの外周のチッピングを抑えるとともに、任意の表面粗さの梨地状にウェハの表面を加工することができるウェハの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress chipping on the outer periphery of the wafer and to process the surface of the wafer into a satin finish having an arbitrary surface roughness. It is to provide a method for manufacturing a wafer.

本発明に係るウェハの製造方法は、上記の課題を解決するために、砥粒を含むスラリーをウェハの表面に塗布する工程と、塗布したスラリーに超音波を照射することによりスラリーに含まれる砥粒を振動させ、ウェハの表面に衝突させることでウェハの表面を梨地状に加工する工程とを含むことを特徴とする。   In order to solve the above problems, a method for producing a wafer according to the present invention includes a step of applying a slurry containing abrasive grains to the surface of a wafer, and an abrasive contained in the slurry by irradiating the applied slurry with ultrasonic waves. And a step of processing the surface of the wafer into a satin-like shape by vibrating the grains and colliding with the surface of the wafer.

本発明に係るウェハの製造方法によれば、ウェハの外周のチッピングを極めて少なく抑えるとともに、任意の表面粗さの梨地状にウェハの表面を加工することができる。   According to the wafer manufacturing method of the present invention, chipping on the outer periphery of the wafer can be suppressed to an extremely low level, and the surface of the wafer can be processed into a satin finish having an arbitrary surface roughness.

以下、本発明に係るウェハの製造方法を実施例に基づき説明する。   Hereinafter, a method for manufacturing a wafer according to the present invention will be described based on examples.

[実施例1]
実施例1では、図1に示すように、φ2inchの炭化ケイ素単結晶ウェハ1をウェハ支持台2にワックスなどで固定し、平均粒径6μmのダイヤモンド砥粒3aを含むダイヤモンドペースト3を炭化ケイ素単結晶ウェハ1の表面に塗布し、塗布したダイヤモンドペースト3に超音波を照射することによりダイヤモンドペースト3に含まれるダイヤモンド砥粒3aを振動させ、炭化ケイ素単結晶ウェハ1の表面に衝突させることで表面粗さRa(中心線平均粗さ)=0.19μmの図2に示すような梨地状に炭化ケイ素単結晶ウェハ1の表面を加工した。なお、超音波の照射は、超音波振動子4により発生させ、コーン5及びホーン6により増幅させた超音波を炭化ケイ素単結晶ウェハ1の面内方向を所定の周期及び速度で移動するホーン6の先端からダイヤモンドペースト3に照射することで行った。
[Example 1]
In Example 1, as shown in FIG. 1, a φ2 inch silicon carbide single crystal wafer 1 is fixed to a wafer support 2 with wax or the like, and a diamond paste 3 containing diamond abrasive grains 3a having an average particle diameter of 6 μm is applied to a silicon carbide single crystal. By applying ultrasonic waves to the surface of the crystal wafer 1 and irradiating the applied diamond paste 3 with ultrasonic waves, the diamond abrasive grains 3 a included in the diamond paste 3 are vibrated and collided with the surface of the silicon carbide single crystal wafer 1. The surface of the silicon carbide single crystal wafer 1 was processed into a satin finish as shown in FIG. 2 with a roughness Ra (centerline average roughness) = 0.19 μm. Irradiation of ultrasonic waves is generated by the ultrasonic transducer 4, and the horn 6 that moves the ultrasonic waves amplified by the cone 5 and the horn 6 in the in-plane direction of the silicon carbide single crystal wafer 1 at a predetermined cycle and speed. It was performed by irradiating the diamond paste 3 from the tip of the above.

[実施例2]
実施例2では、ダイヤモンドペースト3に含まれるダイヤモンド砥粒3aを平均粒径9μmのものとした以外は上記の実施例1と同様であり、表面粗さRa=0.23μmの梨地状に炭化ケイ素単結晶ウェハ1の表面を加工した。
[Example 2]
Example 2 is the same as Example 1 except that the diamond abrasive grains 3a contained in the diamond paste 3 have an average particle diameter of 9 μm, and has a satin finish with a surface roughness Ra = 0.23 μm. The surface of the single crystal wafer 1 was processed.

[実施例3]
実施例3では、ダイヤモンドペースト3に含まれるダイヤモンド砥粒3aを平均粒径12μmのものとした以外は上記の実施例1と同様であり、表面粗さRa=0.33μmの梨地状に炭化ケイ素単結晶ウェハ1の表面を加工した。
[Example 3]
Example 3 is the same as Example 1 except that the diamond abrasive grains 3a contained in the diamond paste 3 have an average particle diameter of 12 μm, and has a satin finish with a surface roughness Ra = 0.33 μm. The surface of the single crystal wafer 1 was processed.

[実施例4]
実施例4では、ダイヤモンドペースト3に含まれるダイヤモンド砥粒3aを平均粒径20μmのものとした以外は上記の実施例1と同様であり、表面粗さRa=0.42μmの梨地状に炭化ケイ素単結晶ウェハ1の表面を加工した。
[Example 4]
Example 4 is the same as Example 1 except that the diamond abrasive grains 3a contained in the diamond paste 3 have an average particle diameter of 20 μm, and has a satin finish with a surface roughness Ra = 0.42 μm. The surface of the single crystal wafer 1 was processed.

[比較例]
比較例では、平均粒径50μmの炭化ケイ素砥粒を用いてφ2inchの炭化ケイ素単結晶ウェハ1の表面をブラスト加工することで表面粗さRa=0.43μmの梨地状に炭化ケイ素単結晶ウェハ1の表面を加工した。
[Comparative example]
In the comparative example, the surface of the φ2 inch silicon carbide single crystal wafer 1 is blasted using silicon carbide abrasive grains having an average particle size of 50 μm to form a satin-like silicon carbide single crystal wafer 1 having a surface roughness Ra = 0.43 μm. The surface of was processed.

[評価]
実施例1〜4及び比較例の炭化ケイ素単結晶ウェハ1についてウェハ1枚当たりのチッピング不良数(以降、欠点率と表記)をウェハ枚数10枚で測定した結果を以下の表1に示す。なお、測定に当たっては、チッピングを、ウェハ半径方向に250μm以上又はウェハ縁周方向に250μm以上欠けているものと定義した。
[Evaluation]
Table 1 below shows the results of measuring the number of chipping defects per wafer (hereinafter referred to as defect rate) with 10 wafers for the silicon carbide single crystal wafers 1 of Examples 1 to 4 and the comparative example. In the measurement, the chipping was defined as missing 250 μm or more in the wafer radial direction or 250 μm or more in the wafer edge circumferential direction.

表1に示すとおり、実施例1〜4の炭化ケイ素単結晶ウェハ1の欠点率はすべて0.00であった。これに対して、比較例の炭化ケイ素単結晶ウェハ1の欠点率は0.59であった。このことから、炭化ケイ素単結晶ウェハ1の表面にダイヤモンドペースト3を塗布し、塗布したダイヤモンドペースト3に超音波を照射することで炭化ケイ素単結晶ウェハ1の表面を梨地状に加工するウェハの製造方法によれば、炭化ケイ素単結晶ウェハ1の外周のチッピングを極めて少なく抑えるとともに、炭化ケイ素単結晶ウェハ1の表面を任意の表面粗さの梨地状に加工することができることが知見された。なお、上記の各実施例では、ダイヤモンドペースト3を用いたが、これに限らず、炭化ケイ素砥粒や炭化ホウ素砥粒などを含むスラリーとしても同様の効果が発揮される。   As shown in Table 1, all defect rates of the silicon carbide single crystal wafers 1 of Examples 1 to 4 were 0.00. In contrast, the defect rate of the silicon carbide single crystal wafer 1 of the comparative example was 0.59. From this, the manufacturing of the wafer which applies the diamond paste 3 to the surface of the silicon carbide single crystal wafer 1 and processes the surface of the silicon carbide single crystal wafer 1 into a satin finish by irradiating the applied diamond paste 3 with ultrasonic waves. According to the method, it has been found that chipping on the outer periphery of the silicon carbide single crystal wafer 1 can be suppressed to an extremely low level and that the surface of the silicon carbide single crystal wafer 1 can be processed into a satin finish having an arbitrary surface roughness. In each of the above-described embodiments, the diamond paste 3 is used. However, the present invention is not limited to this, and the same effect can be obtained as a slurry containing silicon carbide abrasive grains or boron carbide abrasive grains.

本発明に係るウェハの製造方法を示す図である。It is a figure which shows the manufacturing method of the wafer which concerns on this invention. 本発明に係るウェハの製造方法によって所定の表面粗さの梨地状に加工された炭化ケイ素単結晶ウェハの表面を例示する図である。It is a figure which illustrates the surface of the silicon carbide single crystal wafer processed into the matte form of predetermined surface roughness with the manufacturing method of the wafer concerning the present invention.

符号の説明Explanation of symbols

1 炭化ケイ素単結晶ウェハ
2 ウェハ支持台
3 ダイヤモンドペースト
3a ダイヤモンド砥粒
4 超音波振動子
5 コーン
6 ホーン
DESCRIPTION OF SYMBOLS 1 Silicon carbide single crystal wafer 2 Wafer support 3 Diamond paste 3a Diamond abrasive grain 4 Ultrasonic vibrator 5 Cone 6 Horn

Claims (3)

砥粒を含むスラリーをウェハの表面に塗布する工程と、
前記スラリーに超音波を照射することにより前記スラリーに含まれる砥粒を振動させ、前記ウェハの表面に衝突させることで梨地状に前記ウェハの表面を加工する工程と
を含むことを特徴とするウェハの製造方法。
Applying a slurry containing abrasive grains to the surface of the wafer;
And a step of oscillating the abrasive grains contained in the slurry by irradiating the slurry with ultrasonic waves and colliding with the surface of the wafer to process the surface of the wafer in a satin state. Manufacturing method.
前記ウェハが炭化ケイ素単結晶ウェハであることを特徴とする請求項1に記載のウェハの製造方法。   The method for producing a wafer according to claim 1, wherein the wafer is a silicon carbide single crystal wafer. 前記砥粒が、ダイヤモンド砥粒、炭化ホウ素砥粒、及び炭化ケイ素砥粒のいずれかであることを特徴とする請求項1又は2に記載のウェハの製造方法。   The method for producing a wafer according to claim 1, wherein the abrasive grains are diamond abrasive grains, boron carbide abrasive grains, or silicon carbide abrasive grains.
JP2008014042A 2008-01-24 2008-01-24 Method for manufacturing wafer Pending JP2009172717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014042A JP2009172717A (en) 2008-01-24 2008-01-24 Method for manufacturing wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014042A JP2009172717A (en) 2008-01-24 2008-01-24 Method for manufacturing wafer

Publications (1)

Publication Number Publication Date
JP2009172717A true JP2009172717A (en) 2009-08-06

Family

ID=41028413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014042A Pending JP2009172717A (en) 2008-01-24 2008-01-24 Method for manufacturing wafer

Country Status (1)

Country Link
JP (1) JP2009172717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104039A (en) * 2016-02-23 2017-08-29 松下知识产权经营株式会社 RAMO4Substrate and its manufacture method
JP2017149634A (en) * 2016-02-23 2017-08-31 パナソニックIpマネジメント株式会社 Ramo4 substrate and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104039A (en) * 2016-02-23 2017-08-29 松下知识产权经营株式会社 RAMO4Substrate and its manufacture method
JP2017149634A (en) * 2016-02-23 2017-08-31 パナソニックIpマネジメント株式会社 Ramo4 substrate and method for manufacturing the same
US11370076B2 (en) 2016-02-23 2022-06-28 Panasonic Intellectual Property Management Co., Ltd. RAMO4 substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6282613B2 (en) Dicing blade
JP6360750B2 (en) Wafer processing method
JP6412538B2 (en) Dicing machine
TWI782163B (en) How to trim the cutting blade
JP2015164215A (en) Dicing device and dicing method
JP2011031386A (en) Electro-deposition fixed abrasive grain wire and crystal slicing method using the same
JP2009172717A (en) Method for manufacturing wafer
JP5976228B2 (en) Dicing blade
JP2012081623A (en) Scribing wheel and method of manufacturing the same
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
TWI732823B (en) Method for manufacturing composite particles
JP2005205543A (en) Wafer grinding method and wafer
JP2016007739A (en) Scribing wheel and manufacturing method of the same
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
Makarov et al. Optimal cutting time and speed in abrasive lapping of ceramic
CN108231568A (en) A kind of device and processing method for being used to process silicon ring
JP2011031387A (en) Crystal slicing method
JP2015009293A (en) Dress-processing method
JP2008124383A (en) Surface working method for silicon wafer
JP2002224943A (en) Beveling operation cylinder and operation method
JP2014128878A (en) Thin-edged blade
JP2007090510A (en) Working method of quartz wafer
JP2010253651A (en) Method of machining using abrasive grain, abrasive machining apparatus, substrate holding member, and method for manufacturing substrate holding member
RU2015148614A (en) METHOD OF ULTRASONIC GRINDING OF SURFACE OF POLYCRYSTALLINE DIAMONDS
JPH06170703A (en) Residual stress control type grinding method for ceramic surface