JP2009171421A - Mimo radio communication system, transmitter, receiver, and mimo radio communication method - Google Patents

Mimo radio communication system, transmitter, receiver, and mimo radio communication method Download PDF

Info

Publication number
JP2009171421A
JP2009171421A JP2008009325A JP2008009325A JP2009171421A JP 2009171421 A JP2009171421 A JP 2009171421A JP 2008009325 A JP2008009325 A JP 2008009325A JP 2008009325 A JP2008009325 A JP 2008009325A JP 2009171421 A JP2009171421 A JP 2009171421A
Authority
JP
Japan
Prior art keywords
receiver
transmitter
received power
wireless communication
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008009325A
Other languages
Japanese (ja)
Other versions
JP5150275B2 (en
Inventor
Yasuyuki Hatakawa
養幸 畑川
Takeo Ozeki
武雄 大関
Masayuki Nakano
雅之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Research Inc
Original Assignee
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI R&D Laboratories Inc filed Critical KDDI R&D Laboratories Inc
Priority to JP2008009325A priority Critical patent/JP5150275B2/en
Publication of JP2009171421A publication Critical patent/JP2009171421A/en
Application granted granted Critical
Publication of JP5150275B2 publication Critical patent/JP5150275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain improvement in communication efficiency when performing communication between a plurality of transmitters and one receiver in accordance with a MIMO radio communication scheme. <P>SOLUTION: In a MIMO radio communication system for performing communication between a plurality of transmitters (base stations A, B) and one receiver (mobile station) in accordance with a MIMO radio communication scheme, whether reception powers from the transmitters are strong or weak in the receiver is determined and from the transmitter of the strong reception power, transmission to the receiver is performed according to a spatial multiplexing scheme but from the transmitter of the weak reception power, transmission to the receiver is performed according to a transmission diversity scheme. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、MIMO(Multiple Input Multiple Output)無線通信システム、送信機、受信機およびMIMO無線通信方法に関する。   The present invention relates to a MIMO (Multiple Input Multiple Output) wireless communication system, a transmitter, a receiver, and a MIMO wireless communication method.

従来、セルラーシステムにおいてセル端にいる移動局の通信品質を改善するために、複数の基地局間で協調してMIMO技術を用いる方法が、例えば非特許文献1で提案されている。非特許文献1記載の従来技術では、移動局が2つの基地局の各々のセル端の重複部分にいる場合、両方の基地局が時空間符号化(STC:Space Time Coding)方式を用いて該移動局と通信を行う。STC方式は、MIMO技術を用いた無線通信方式(以下、MIMO無線通信方式と称する)の一つであり、所要信号対雑音電力比を低減することができる。STC方式以外にも、MIMO無線通信方式としては、例えば、空間多重(SM:Spatial Multiplexing)方式などが知られている。SM方式は、伝送速度を向上させることができる。
三上学,藤井輝也、“複数基地局間協調MIMOを用いたOFDMシステムにおける下りリンク伝送法の検討”、2007年電子情報通信学会ソサイエティ大会、pp.366
Conventionally, for example, Non-Patent Document 1 proposes a method of using MIMO technology in cooperation between a plurality of base stations in order to improve communication quality of a mobile station located at a cell edge in a cellular system. In the prior art described in Non-Patent Document 1, when a mobile station is located at the overlapping portion of the cell edges of two base stations, both base stations use the space time coding (STC) method. Communicate with the mobile station. The STC method is one of wireless communication methods using MIMO technology (hereinafter referred to as a MIMO wireless communication method), and can reduce a required signal-to-noise power ratio. Besides the STC method, for example, a spatial multiplexing (SM) method is known as a MIMO wireless communication method. The SM method can improve the transmission speed.
Manabu Mikami, Teruya Fujii, “Examination of downlink transmission method in OFDM system using MIMO between multiple base stations”, 2007 IEICE Society Conference, pp.366

しかし、上述した非特許文献1記載の従来技術では、移動局において、2つの基地局からの受信電力がほぼ等しい場合には効率良く通信を行うことができるが、そうではない場合には通信効率が悪くなるという欠点がある(非特許文献1の図3参照)。   However, in the conventional technique described in Non-Patent Document 1 described above, the mobile station can perform efficient communication when the received power from the two base stations is substantially equal, but otherwise, the communication efficiency. (Refer to FIG. 3 of Non-Patent Document 1).

本発明は、このような事情を考慮してなされたもので、その目的は、複数の送信機と1つの受信機の間でMIMO無線通信方式により通信を行う際の通信効率の向上を図ることのできるMIMO無線通信システム、送信機、受信機およびMIMO無線通信方法を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to improve communication efficiency when communication is performed by a MIMO wireless communication method between a plurality of transmitters and one receiver. An object is to provide a MIMO wireless communication system, a transmitter, a receiver, and a MIMO wireless communication method.

上記の課題を解決するために、本発明に係るMIMO無線通信システムは、複数の送信機と1つの受信機の間でMIMO無線通信方式により通信を行うMIMO無線通信システムにおいて、前記受信機における前記各送信機からの受信電力の強弱を判定し、受信電力が強い送信機からは空間多重方式で前記受信機への送信を行い、受信電力が弱い送信機からは送信ダイバーシティ方式で前記受信機への送信を行うことを特徴とする。   In order to solve the above problems, a MIMO wireless communication system according to the present invention is a MIMO wireless communication system in which a plurality of transmitters and one receiver communicate with each other by a MIMO wireless communication scheme. The strength of received power from each transmitter is determined, a transmitter with strong received power performs transmission to the receiver by a spatial multiplexing method, and a transmitter with weak received power transmits to the receiver by a transmit diversity method. Is transmitted.

本発明に係る送信機は、MIMO無線通信方式の送信機において、空間多重方式の送信処理手段と、送信ダイバーシティ方式の送信処理手段と、空間多重方式と送信ダイバーシティ方式を切り替えるスイッチと、受信機からの情報に基づいて前記スイッチを制御するスイッチ制御手段と、を備えたことを特徴とする。   The transmitter according to the present invention includes a transmitter for a MIMO wireless communication scheme, a spatial multiplexing scheme transmission processing means, a transmission diversity scheme transmission processing means, a switch for switching between the spatial multiplexing scheme and the transmission diversity scheme, and a receiver. Switch control means for controlling the switch on the basis of the above information.

本発明に係る送信機において、前記スイッチ制御手段は、受信機からの情報に基づいて該受信機における自送信機からの受信電力の強弱を判定し、受信電力が強い場合には空間多重方式を選択し、受信電力が弱い場合には送信ダイバーシティ方式を選択することを特徴とする。   In the transmitter according to the present invention, the switch control means determines the strength of received power from the own transmitter in the receiver based on information from the receiver, and if the received power is strong, the spatial multiplexing method is used. If the received power is weak, a transmission diversity method is selected.

本発明に係る送信機においては、受信機から受信電力情報を受け取ることを特徴とする。
本発明に係る送信機においては、受信機から位置情報を受け取ることを特徴とする。
本発明に係る送信機においては、受信機からMIMO無線通信方式の指定を受けることを特徴とする。
The transmitter according to the present invention receives received power information from a receiver.
The transmitter according to the present invention is characterized by receiving position information from a receiver.
The transmitter according to the present invention is characterized by receiving designation of a MIMO wireless communication system from a receiver.

本発明に係る受信機は、MIMO無線通信方式の受信機において、空間多重方式の受信処理手段と、送信ダイバーシティ方式の受信処理手段と、送信機に対して空間多重方式と送信ダイバーシティ方式を切り替えるための情報を送る情報送信手段と、を備えたことを特徴とする。   A receiver according to the present invention is a MIMO wireless communication system receiver for switching a spatial multiplexing system and a transmission diversity system to a spatial multiplexing system reception processing means, a transmission diversity system reception processing means, and a transmitter. And an information transmitting means for transmitting the information.

本発明に係る受信機において、前記情報送信手段は、送信機からの受信電力を示す情報を該送信機に送ることを特徴とする。
本発明に係る受信機において、前記情報送信手段は、自受信機の位置情報を送信機に送ることを特徴とする。
In the receiver according to the present invention, the information transmitting means transmits information indicating received power from the transmitter to the transmitter.
In the receiver according to the present invention, the information transmitting means transmits position information of the receiver itself to the transmitter.

本発明に係る受信機において、前記情報送信手段は、送信機からの受信電力の強弱を判定し、受信電力が強い場合には該送信機へ空間多重方式を指示し、受信電力が弱い場合には該送信機へ送信ダイバーシティ方式を指示することを特徴とする。   In the receiver according to the present invention, the information transmitting means determines the strength of received power from the transmitter, and when the received power is strong, instructs the transmitter to perform a spatial multiplexing scheme, and when the received power is weak. Is characterized by instructing the transmitter on a transmission diversity scheme.

本発明に係るMIMO無線通信方法は、複数の送信機と1つの受信機の間でMIMO無線通信方式により通信を行うMIMO無線通信方法であって、前記受信機における前記各送信機からの受信電力の強弱を判定し、受信電力が強い送信機からは空間多重方式で前記受信機への送信を行い、受信電力が弱い送信機からは送信ダイバーシティ方式で前記受信機への送信を行うことを特徴とする。   A MIMO wireless communication method according to the present invention is a MIMO wireless communication method in which a plurality of transmitters and one receiver communicate with each other by a MIMO wireless communication method, and received power from each transmitter in the receiver. A transmitter having a high reception power transmits to the receiver by a spatial multiplexing method, and a transmitter having a low reception power transmits to the receiver by a transmission diversity method. And

本発明によれば、複数の送信機と1つの受信機の間でMIMO無線通信方式により通信を行う際に、通信効率の向上を図ることができるという効果が得られる。   According to the present invention, it is possible to improve communication efficiency when communication is performed between a plurality of transmitters and one receiver using the MIMO wireless communication method.

以下、図面を参照し、本発明の実施形態について説明する。
図1は、本発明の一実施形態に係るMIMO無線通信システムの構成を示す概念図である。図1において、MIMO無線通信システムは基地局A,Bと移動局を有する。基地局Aは、移動局との無線通信が可能な範囲となるセル100Aを形成する。基地局Bは、移動局との無線通信が可能な範囲となるセル100Bを形成する。セル100A,100Bは、各々のセル端が重複するセル重複領域110を有する。基地局A,Bは、セル重複領域110にある移動局に対して、MIMO無線通信方式により同時に同一周波数で信号を送信する。移動局は、基地局A,Bの両方からの信号をMIMO無線通信方式により受信する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram showing a configuration of a MIMO wireless communication system according to an embodiment of the present invention. In FIG. 1, the MIMO wireless communication system has base stations A and B and a mobile station. The base station A forms a cell 100A that is in a range where wireless communication with the mobile station is possible. The base station B forms a cell 100B that is in a range where radio communication with a mobile station is possible. The cells 100A and 100B have a cell overlap region 110 where the cell edges overlap. Base stations A and B simultaneously transmit signals to mobile stations in the cell overlap region 110 at the same frequency using the MIMO wireless communication method. The mobile station receives signals from both base stations A and B by the MIMO wireless communication system.

図2は、本発明の概要を説明するための概念図である。図2において、セル重複領域110は、3つの領域α,β,γに分割される。領域α,β,γは、移動局における各基地局A,Bからの受信電力に応じて分割される。領域α,β,γの分割方法は、図3に示される。領域αは、当該領域にある移動局において、基地局Aからの受信電力が強く、基地局Bからの受信電力が弱い領域である。領域βは、当該領域にある移動局において、基地局Aからの受信電力も基地局Bからの受信電力も、両方とも弱い領域である。領域γは、当該領域にある移動局において、基地局Aからの受信電力が弱く、基地局Bからの受信電力が強い領域である。   FIG. 2 is a conceptual diagram for explaining the outline of the present invention. In FIG. 2, the cell overlap region 110 is divided into three regions α, β, and γ. The regions α, β, and γ are divided according to the received power from the base stations A and B in the mobile station. A method of dividing the regions α, β, and γ is shown in FIG. Area α is an area where the received power from base station A is strong and the received power from base station B is weak in the mobile station in the area. Area β is an area where both the received power from base station A and the received power from base station B are weak in the mobile station in the area. The area γ is an area where the received power from the base station A is weak and the received power from the base station B is strong in the mobile station in the area.

移動局が領域βにある場合、移動局において、基地局Aからの受信電力と基地局Bからの受信電力はほぼ等しい。このため、基地局A,B共に、STC方式を用いて移動局へ信号を送信する。これにより、所要信号対雑音電力比を低減し、通信品質の向上を図る。   When the mobile station is in the region β, the received power from the base station A and the received power from the base station B are substantially equal in the mobile station. For this reason, both base stations A and B transmit signals to the mobile station using the STC method. This reduces the required signal-to-noise power ratio and improves the communication quality.

移動局が領域α又は領域γにある場合、基地局A,Bからの各受信電力は異なる。このため、受信電力の強い方の基地局はSM方式により移動局へ信号を送信し、受信電力の弱い方の基地局はSTC方式により移動局へ信号を送信する。これにより、受信電力の強い方の基地局からSM方式により移動局へ信号を送信することによって伝送速度が向上するので、大きな受信電力を有効活用することができる。一方、受信電力の弱い方の基地局からSTC方式により移動局へ信号を送信することによって所要信号対雑音電力比を低減することができるので、受信電力の弱さを補って通信品質の向上を図ることができる。   When the mobile station is in the area α or the area γ, the received power from the base stations A and B is different. For this reason, the base station with higher received power transmits a signal to the mobile station by the SM method, and the base station with lower received power transmits a signal to the mobile station by the STC method. As a result, the transmission speed is improved by transmitting a signal from the base station having a higher received power to the mobile station by the SM method, and thus, a large received power can be effectively utilized. On the other hand, the required signal-to-noise power ratio can be reduced by transmitting a signal from the base station with the weaker received power to the mobile station using the STC method, thus improving the communication quality by compensating for the weaker received power. Can be planned.

このように、複数の基地局(送信機)と1つの移動局(受信機)の間でMIMO無線通信方式により通信を行う際に、移動局において各基地局からの受信電力に差がある場合にはSTC方式とSM方式を使い分けることで、周波数利用効率が向上し、通信効率の向上を図ることが可能になる。   As described above, when communication is performed between a plurality of base stations (transmitters) and one mobile station (receiver) using the MIMO wireless communication method, there is a difference in received power from each base station in the mobile station. By using the STC method and SM method separately, the frequency utilization efficiency can be improved and the communication efficiency can be improved.

以下、本実施形態に係る基地局(送信機)と移動局(受信機)について詳細に説明する。   Hereinafter, the base station (transmitter) and the mobile station (receiver) according to the present embodiment will be described in detail.

図4は、図1に示す基地局に備わる送信機1の構成を示すブロック図である。図1において、誤り訂正符号器2は、入力される送信データを誤り訂正符号化する。インターリーバ3は、その誤り訂正符号化データをインタリーブする。変調器(Symbol Mapping)4は、インタリーブ後のビット列を変調シンボルにマッピングする。変調方式としては、例えば、QPSK(Quadrature Phase Shift Keying)、16QAM(16-positions Quadrature Amplitude Modulation)、64QAM(64-positions Quadrature Amplitude Modulation)などが挙げられる。変調シンボルデータはスイッチ5に入力される。スイッチ5は、入力された変調シンボルデータの出力先を、シリアル−パラレル変換器(S/P)6又はSTCエンコーダ7に切り替える。   FIG. 4 is a block diagram showing a configuration of transmitter 1 provided in the base station shown in FIG. In FIG. 1, an error correction encoder 2 performs error correction encoding on input transmission data. The interleaver 3 interleaves the error correction encoded data. A modulator (Symbol Mapping) 4 maps the interleaved bit string to modulation symbols. Examples of the modulation scheme include QPSK (Quadrature Phase Shift Keying), 16QAM (16-positions Quadrature Amplitude Modulation), and 64QAM (64-positions Quadrature Amplitude Modulation). The modulation symbol data is input to the switch 5. The switch 5 switches the output destination of the input modulation symbol data to the serial-parallel converter (S / P) 6 or the STC encoder 7.

シリアル−パラレル変換器6は、変調シンボルデータをパラレル信号に変換する。この変調シンボルデータのパラレル信号はスイッチ8に入力される。STCエンコーダ7は、変調シンボルデータをSTC方式で符号化し、STC符号化データをパラレル信号として出力する。このSTC符号化データのパラレル信号はスイッチ8に入力される。   The serial-parallel converter 6 converts the modulation symbol data into a parallel signal. The parallel signal of the modulation symbol data is input to the switch 8. The STC encoder 7 encodes the modulation symbol data by the STC method and outputs the STC encoded data as a parallel signal. The parallel signal of the STC encoded data is input to the switch 8.

スイッチ8には、シリアル−パラレル変換器6の出力ポートとSTCエンコーダ7の出力ポートとがそれぞれ入力ポートに接続される。スイッチ8は、シリアル−パラレル変換器6からの入力信号又はSTCエンコーダ7からの入力信号のいずれを出力するのかを切り替える。   The switch 8 has an output port of the serial-parallel converter 6 and an output port of the STC encoder 7 connected to the input ports. The switch 8 switches whether an input signal from the serial-parallel converter 6 or an input signal from the STC encoder 7 is output.

スイッチ制御器9は、スイッチ5,8を同期して切り替える。スイッチ制御器9は、SM方式で自送信機を動作させる場合にはスイッチ5,8共にシリアル−パラレル変換器6を選択させる。一方、スイッチ制御器9は、STC方式で自送信機を動作させる場合にはスイッチ5,8共にSTCエンコーダ7を選択させる。   The switch controller 9 switches the switches 5 and 8 in synchronization. The switch controller 9 causes the switches 5 and 8 to select the serial-parallel converter 6 when operating the own transmitter in the SM system. On the other hand, the switch controller 9 causes the switches 5 and 8 to select the STC encoder 7 when operating the own transmitter in the STC method.

OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)変調器10−1,10−2及び多重器11−1,11−2は、2本の送信アンテナTx1,Tx2の各々に対応して設けられる。これにより、2つの無線送信系統を構成する。   OFDM (Orthogonal Frequency Division Multiplexing) modulators 10-1 and 10-2 and multiplexers 11-1 and 11-2 are provided corresponding to each of the two transmission antennas Tx1 and Tx2. Thus, two wireless transmission systems are configured.

スイッチ8から出力されたパラレル信号は、各無線送信系統に分配され、該当のOFDM変調器10−1,10−2に入力される。OFDM変調器10−1,10−2は、入力信号を直交周波数分割多重方式で変調する。多重器11−1,11−2は、直交周波数分割多重信号に対して、所定のパイロット信号を時間多重する。この多重信号は送信アンテナTx1,Tx2から送信される。   The parallel signal output from the switch 8 is distributed to each wireless transmission system and input to the corresponding OFDM modulators 10-1 and 10-2. The OFDM modulators 10-1 and 10-2 modulate an input signal by an orthogonal frequency division multiplexing method. Multiplexers 11-1 and 11-2 time-multiplex a predetermined pilot signal with respect to the orthogonal frequency division multiplexed signal. This multiplexed signal is transmitted from the transmission antennas Tx1 and Tx2.

本送信機がSM方式で動作する場合、変調シンボルデータはシリアル−パラレル変換器6でパラレル信号に変換されて、2つの無線送信系統を用いて送信される。これにより、無線送信速度は倍になる。一方、本送信機がSTC方式で動作する場合、変調シンボルデータはSTCエンコーダ7によりSTC符号化され、STC符号化データが2つの無線送信系統を用いて送信される。これにより、無線送信速度は元のままであるが、所要信号対雑音電力比を低減することができる。   When this transmitter operates in the SM system, the modulation symbol data is converted into a parallel signal by the serial-parallel converter 6 and transmitted using two wireless transmission systems. This doubles the wireless transmission rate. On the other hand, when this transmitter operates in the STC scheme, the modulation symbol data is STC encoded by the STC encoder 7 and the STC encoded data is transmitted using two radio transmission systems. As a result, the required signal-to-noise power ratio can be reduced while the wireless transmission speed remains unchanged.

スイッチ制御器9は、移動局(受信機)から受け取った情報に基づいて、自送信機をSM方式で動作させるか、又は、STC方式で動作させるかを決定する。以下、移動局(受信機)から受け取る情報の例を挙げて説明する。   Based on the information received from the mobile station (receiver), the switch controller 9 determines whether to operate the own transmitter in the SM system or the STC system. Hereinafter, an example of information received from a mobile station (receiver) will be described.

[移動局(受信機)から受信電力を示す情報を受け取る場合]
移動局は、受信電力の測定機能を有し、基地局に対して該基地局からの受信電力を示す受信電力情報(例えば、受信信号強度(Received Signal Strength Indicator:RSSI))を通知する。スイッチ制御器9は、移動局から受け取った受信電力情報を基準値と比較し、自基地局からの受信電力の強弱を判定する。この結果、自基地局からの受信電力が強い場合には、自送信機をSM方式で動作させる。一方、自基地局からの受信電力が弱い場合には、自送信機をSTC方式で動作させる。
[When receiving information indicating received power from a mobile station (receiver)]
The mobile station has a function of measuring received power and notifies the base station of received power information (for example, received signal strength indicator (RSSI)) indicating received power from the base station. The switch controller 9 compares the received power information received from the mobile station with a reference value, and determines the strength of the received power from the own base station. As a result, when the received power from the own base station is strong, the own transmitter is operated in the SM system. On the other hand, when the received power from the own base station is weak, the own transmitter is operated by the STC method.

[移動局(受信機)から位置を示す情報を受け取る場合]
移動局は、GPS(Global Positioning System)等の測位機能を有し、自局の位置を示す位置情報(例えば、緯度、経度)を取得し、該位置情報を基地局に通知する。スイッチ制御器9は、自基地局周辺の地図を有し、移動局から受け取った位置情報に基づいて地図上で移動局から自基地局に至る電波伝搬路のパスロス等の電波環境値を計算する。スイッチ制御器9は、その電波環境値に基づいて、移動局における自基地局からの受信電力を推定する。スイッチ制御器9は、その推定した受信電力を基準値と比較し、自基地局からの受信電力の強弱を判定する。この結果、自基地局からの受信電力が強い場合には、自送信機をSM方式で動作させる。一方、自基地局からの受信電力が弱い場合には、自送信機をSTC方式で動作させる。
[When receiving location information from a mobile station (receiver)]
The mobile station has a positioning function such as GPS (Global Positioning System), acquires position information (for example, latitude and longitude) indicating the position of the mobile station, and notifies the base station of the position information. The switch controller 9 has a map around the base station, and calculates a radio wave environment value such as a path loss of a radio wave propagation path from the mobile station to the base station on the map based on position information received from the mobile station. . The switch controller 9 estimates the received power from the base station in the mobile station based on the radio wave environment value. The switch controller 9 compares the estimated received power with a reference value, and determines the strength of the received power from the own base station. As a result, when the received power from the own base station is strong, the own transmitter is operated in the SM system. On the other hand, when the received power from the own base station is weak, the own transmitter is operated by the STC method.

[移動局(受信機)からMIMO無線通信方式の指定を受ける場合]
移動局は、受信電力の測定機能を有し、各基地局からの受信電力を測定する。移動局は、測定した各受信電力を基準値と比較し、各基地局からの受信電力の強弱を判定する。この結果、受信電力が強い基地局に対してはSM方式を指定し、受信電力が弱い基地局に対してはSTC方式を指定する。スイッチ制御器9は、移動局から指定されたMIMO無線通信方式で自送信機を動作させる。
[When receiving specification of MIMO wireless communication system from mobile station (receiver)]
The mobile station has a reception power measurement function and measures the reception power from each base station. The mobile station compares each measured received power with a reference value and determines the strength of the received power from each base station. As a result, the SM scheme is designated for base stations with high received power, and the STC scheme is designated for base stations with low received power. The switch controller 9 operates the own transmitter by the MIMO wireless communication method designated by the mobile station.

図5は、図1に示す移動局に備わる受信機30の構成を示すブロック図である。図5において、受信機30は3本の受信アンテナRx1,Rx2,Rx3を有する。受信機において必要な受信アンテナ数は、STC方式で送信している送信機の数を2で割った商と(2本の送信アンテナを一組としてSTCを行っている場合)、SM方式で送信している送信機の送信アンテナ数の総和との和となる。従って、本実施形態のように、各々2本の送信アンテナを用いる2つの送信機との間でSTC方式およびSM方式を用いて通信する場合、受信機30は3本の受信アンテナを備える必要がある。   FIG. 5 is a block diagram showing a configuration of the receiver 30 provided in the mobile station shown in FIG. In FIG. 5, the receiver 30 has three receiving antennas Rx1, Rx2, and Rx3. The required number of receiving antennas at the receiver is the quotient obtained by dividing the number of transmitters transmitting by the STC method by 2 (when STC is performed with two transmitting antennas as a set), and transmitted by the SM method. This is the sum of the total number of transmitting antennas of the transmitting transmitter. Therefore, as in the present embodiment, when communicating with two transmitters each using two transmission antennas using the STC method and the SM method, the receiver 30 needs to include three reception antennas. is there.

分離器20−1〜3およびOFDM復調器21−1〜3は、3本の受信アンテナRx1〜3の各々に対応して設けられる。これにより、3つの無線受信系統を構成する。受信アンテナRx1〜3で受信した受信信号は、分離器20−1〜3に入力される。分離器20−1〜3は、受信信号から、時間多重されたパイロット信号を分離する。分離されたパイロット信号は、受信電力計測器22に入力される。OFDM復調器21−1〜3は、パイロット信号分離後の受信信号に対して直交周波数分割多重方式の復調を行う。このOFDM復調信号は、最尤推定(MLD:Maximum Likelihood Detection)器23に入力される。   Separators 20-1 to 20-3 and OFDM demodulators 21-1 to 3 are provided corresponding to each of the three receiving antennas Rx1 to Rx1. Thus, three radio reception systems are configured. Received signals received by the receiving antennas Rx1 to Rx1 are input to the separators 20-1 to 20-3. Separators 20-1 to 20-3 separate the time-multiplexed pilot signal from the received signal. The separated pilot signal is input to the reception power meter 22. The OFDM demodulators 21-1 to 21-3 perform demodulation in the orthogonal frequency division multiplexing system on the received signal after the pilot signal separation. This OFDM demodulated signal is input to a maximum likelihood estimation (MLD) unit 23.

受信電力計測器22は、受信信号から分離されたパイロット信号に基づいて、各基地局からの受信電力を計算する。受信機30は、基地局からの受信電力を示す情報を該基地局へ送信する。   The reception power meter 22 calculates reception power from each base station based on the pilot signal separated from the reception signal. The receiver 30 transmits information indicating received power from the base station to the base station.

なお、上述した移動局から基地局へ送る情報の例に応じて、移動局から基地局へ情報を送るための構成は以下のように変更する。
[移動局から位置情報を送る場合]
移動局はGPS等の測位機能を有し、自局の位置を示す位置情報を取得し、該位置情報を基地局に通知する。
[移動局からMIMO無線通信方式を指定する場合]
移動局は、受信電力の測定機能を有し、各基地局からの受信電力を測定する。移動局は、測定した各受信電力を基準値と比較し、各基地局からの受信電力の強弱を判定する。この結果、受信電力が強い基地局に対してはSM方式を指定し、受信電力が弱い基地局に対してはSTC方式を指定する。
In addition, according to the example of the information sent from the mobile station to the base station, the configuration for sending information from the mobile station to the base station is changed as follows.
[When sending location information from a mobile station]
The mobile station has a positioning function such as GPS, acquires position information indicating the position of the mobile station, and notifies the base station of the position information.
[When specifying a MIMO wireless communication system from a mobile station]
The mobile station has a reception power measurement function and measures the reception power from each base station. The mobile station compares each measured received power with a reference value and determines the strength of the received power from each base station. As a result, the SM scheme is designated for base stations with high received power, and the STC scheme is designated for base stations with low received power.

最尤推定器23は、OFDM復調信号に対して、STC方式およびSM方式の受信処理を行う。復調器(Symbol Demapping)25は、最尤推定器23の出力信号に対してシンボルデマッピングを行い、軟判定値を得る。デインターリーバ26は、その軟判定値をデインタリーブする。誤り訂正復号器27は、そのデインタリーブ後の信号に対して誤り訂正復号を行う。   Maximum likelihood estimator 23 performs STC and SM reception processing on the OFDM demodulated signal. A demodulator (Symbol Demapping) 25 performs symbol demapping on the output signal of the maximum likelihood estimator 23 to obtain a soft decision value. The deinterleaver 26 deinterleaves the soft decision value. The error correction decoder 27 performs error correction decoding on the deinterleaved signal.

ここで、最尤推定器23が行う処理を説明する。図6は、本実施形態に係るMIMO無線通信方式の原理を説明するための概念図である。図6において、基地局Aは、2本の送信アンテナTx1,Tx2を用い、STC方式で送信動作している。基地局Bは、2本の送信アンテナTx3,Tx4を用い、SM方式で送信動作している。移動局は、3本の受信アンテナRx1,Rx2,Rx3を用い、STC方式とSM方式で受信動作している。hnmは送信アンテナTxn(nは1,2,3,4)と受信アンテナRxm(mは1,2,3)間のチャネルの周波数応答を示している。 Here, the processing performed by the maximum likelihood estimator 23 will be described. FIG. 6 is a conceptual diagram for explaining the principle of the MIMO wireless communication system according to the present embodiment. In FIG. 6, the base station A uses two transmission antennas Tx1 and Tx2 and performs a transmission operation using the STC method. The base station B uses the two transmission antennas Tx3 and Tx4 and performs a transmission operation using the SM method. The mobile station uses three receiving antennas Rx1, Rx2, and Rx3 to perform reception operation using the STC method and the SM method. h nm indicates the frequency response of the channel between the transmitting antenna Txn (n is 1, 2, 3, 4) and the receiving antenna Rxm (m is 1, 2, 3).

図7に、各時刻t,t+1における、基地局Aの送信アンテナTx1,Tx2からの送信信号と基地局Bの送信アンテナTx3,Tx4からの送信信号を示す。なお、*は複素共役を表す。この場合、移動局の受信アンテナRx1,Rx2,Rx3が受信する信号r1,t,r2,t,r3,t,r1,t+1,r2,t+1,r3,t+1は、(1)式および(2)式で表される。 FIG. 7 shows transmission signals from the transmission antennas Tx1 and Tx2 of the base station A and transmission signals from the transmission antennas Tx3 and Tx4 of the base station B at each time t and t + 1. Note that * represents a complex conjugate. In this case, signals r1 , t , r2 , t , r3 , t , r1 , t + 1 , r2 , t + 1 , r3 , t received by the receiving antennas Rx1, Rx2, and Rx3 of the mobile station. +1 is expressed by the equations (1) and (2).

Figure 2009171421
Figure 2009171421

最尤推定器23は、この受信信号r1,r2,r3に対して、参照シンボルレプリカを作成し、最尤推定(MLD)により各シンボルを復調する。 The maximum likelihood estimator 23 creates a reference symbol replica for the received signals r 1 , r 2 , r 3 and demodulates each symbol by maximum likelihood estimation (MLD).

上述した実施形態によれば、複数の基地局(送信機)と1つの移動局(受信機)の間でMIMO無線通信方式により通信を行う際に、周波数利用効率を向上させることができる。例えば、基地局Aからの受信電力が小さく、且つ基地局Bからの受信電力が大きい場合、基地局AからはSTC方式で送信することにより移動局における受信電力の弱さを補うことができ、基地局BからはSM方式で送信することにより大きな受信電力を有効利用することができる。   According to the embodiment described above, frequency communication efficiency can be improved when communication is performed between a plurality of base stations (transmitters) and one mobile station (receiver) using the MIMO wireless communication scheme. For example, when the received power from the base station A is small and the received power from the base station B is large, the weakness of the received power in the mobile station can be compensated by transmitting from the base station A by the STC method, A large received power can be effectively utilized from the base station B by transmitting in the SM system.

なお、上述の実施形態では、MIMO無線通信方式としてSTC方式とSM方式を例に挙げたが、他の方式を用いることも可能である。例えば、STC方式は送信ダイバーシティ方式の一例であり、STC方式の代わりに他の送信ダイバーシティ方式を用いてもよい。   In the above-described embodiment, the STC method and the SM method are exemplified as the MIMO wireless communication method, but other methods can also be used. For example, the STC scheme is an example of a transmission diversity scheme, and another transmission diversity scheme may be used instead of the STC scheme.

図8は、本発明の他の実施形態に係るMIMO無線通信システムの構成を示すブロック図である。図8においては、サーバ30を設ける。基地局A,Bとサーバ30の間は通信回線で接続する。基地局Aは、移動局から受け取った情報をサーバ30に送信する。サーバ30は、その情報に基づいて基地局Bで用いるMIMO無線通信方式を決定し、基地局BにMIMO無線通信方式を指示する。以下、移動局から受け取る情報の例を挙げて説明する。なお、基地局Aが自局で用いるMIMO無線通信方式については、上述の実施形態と同様にして決定する。   FIG. 8 is a block diagram showing a configuration of a MIMO wireless communication system according to another embodiment of the present invention. In FIG. 8, a server 30 is provided. The base stations A and B and the server 30 are connected by a communication line. The base station A transmits the information received from the mobile station to the server 30. The server 30 determines the MIMO wireless communication method used in the base station B based on the information, and instructs the base station B to use the MIMO wireless communication method. Hereinafter, an example of information received from a mobile station will be described. Note that the MIMO wireless communication system used by the base station A in its own station is determined in the same manner as in the above-described embodiment.

[移動局から受信電力を示す情報を受け取る場合]
基地局Aは、移動局から自基地局からの受信電力を示す受信電力情報を受け取る。基地局Aは、該受信電力情報をサーバ30へ通知する。サーバ30は、該受信電力情報に基づいて、移動局における基地局Bからの受信電力を推定する。例えば、基地局A,Bの各受信電力は反比例するとして、受信電力の推定を行う。サーバ30は、その推定した受信電力を基準値と比較し、基地局Bからの受信電力の強弱を判定する。この結果、基地局Bからの受信電力が強い場合には、基地局BへSM方式を指示する。一方、基地局Bからの受信電力が弱い場合には、基地局BへSTC方式を指示する。
[When receiving information indicating received power from a mobile station]
Base station A receives received power information indicating received power from the base station from the mobile station. The base station A notifies the server 30 of the received power information. The server 30 estimates the received power from the base station B in the mobile station based on the received power information. For example, the received power is estimated assuming that the received powers of the base stations A and B are inversely proportional. The server 30 compares the estimated received power with a reference value, and determines the strength of the received power from the base station B. As a result, when the received power from the base station B is strong, the SM system is instructed to the base station B. On the other hand, when the received power from the base station B is weak, the STC system is instructed to the base station B.

[移動局から位置を示す情報を受け取る場合]
基地局Aは、移動局から移動局の位置情報を受け取る。基地局Aは、該位置情報をサーバ30へ通知する。サーバ30は、基地局B周辺の地図を有し、移動局から受け取った位置情報に基づいて地図上で移動局から基地局Bに至る電波伝搬路のパスロス等の電波環境値を計算する。サーバ30は、その電波環境値に基づいて、移動局における基地局Bからの受信電力を推定する。サーバ30は、その推定した受信電力を基準値と比較し、基地局Bからの受信電力の強弱を判定する。この結果、基地局Bからの受信電力が強い場合には、基地局BへSM方式を指示する。一方、基地局Bからの受信電力が弱い場合には、基地局BへSTC方式を指示する。
[When receiving location information from a mobile station]
Base station A receives location information of the mobile station from the mobile station. The base station A notifies the server 30 of the position information. The server 30 has a map around the base station B, and calculates a radio wave environment value such as a path loss of a radio wave propagation path from the mobile station to the base station B on the map based on the position information received from the mobile station. Server 30 estimates the received power from base station B in the mobile station based on the radio wave environment value. The server 30 compares the estimated received power with a reference value, and determines the strength of the received power from the base station B. As a result, when the received power from the base station B is strong, the SM system is instructed to the base station B. On the other hand, when the received power from the base station B is weak, the STC system is instructed to the base station B.

なお、サーバ30は、移動局における基地局Aからの受信電力に基づいて、該移動局がセル重複領域にいる/いないを判断してもよい。サーバ30は、移動局がセル重複領域にいない場合、つまり、基地局Aからのみ通信可能であり基地局Bから通信不可能な場合には、基地局Bに対して移動局に対する送信を行わないように指示する。   Note that the server 30 may determine whether or not the mobile station is in the cell overlap area based on the received power from the base station A in the mobile station. When the mobile station is not in the cell overlap area, that is, when communication is possible only from the base station A and communication is not possible from the base station B, the server 30 does not transmit the base station B to the mobile station. To instruct.

さらに他の実施形態として、上述のサーバ30の機能を基地局Bに備えるようにしてもよい。この場合、基地局A,B間を通信回線で接続し、基地局Aがサーバ30へ送っていた情報を基地局Bへ送る。基地局Bは、基地局Aから受け取った情報に基づいて、自基地局で用いるMIMO無線通信方式を決定する。   As yet another embodiment, the base station B may be provided with the function of the server 30 described above. In this case, the base stations A and B are connected by a communication line, and the information that the base station A has sent to the server 30 is sent to the base station B. Based on the information received from the base station A, the base station B determines the MIMO wireless communication method used by the base station.

なお、これら他の実施形態において基地局Aと基地局Bの関係を逆にしてもよい。   In these other embodiments, the relationship between the base station A and the base station B may be reversed.

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、上述の実施形態では送信機を2つにしたが、送信機を3つ以上としてもよい。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, although two transmitters are used in the above-described embodiment, three or more transmitters may be used.

本発明の一実施形態に係るMIMO無線通信システムの構成を示す概念図である。It is a conceptual diagram which shows the structure of the MIMO radio | wireless communications system which concerns on one Embodiment of this invention. 本発明の概要を説明するための概念図である。It is a conceptual diagram for demonstrating the outline | summary of this invention. 本発明に係る領域α,β,γの分割方法を示す図表である。It is a graph which shows the division | segmentation method of area | region (alpha), (beta), (gamma) based on this invention. 図1に示す基地局に備わる送信機1の構成を示すブロック図である。It is a block diagram which shows the structure of the transmitter 1 with which the base station shown in FIG. 1 is equipped. 図1に示す移動局に備わる受信機30の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver 30 with which the mobile station shown in FIG. 1 is equipped. 本実施形態に係るMIMO無線通信方式の原理を説明するための概念図である。It is a conceptual diagram for demonstrating the principle of the MIMO radio | wireless communication system which concerns on this embodiment. 各時刻における各送信アンテナからの送信信号を示す図表である。It is a graph which shows the transmission signal from each transmission antenna in each time. 本発明の他の実施形態に係るMIMO無線通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the MIMO radio | wireless communications system which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1…送信機、5,8…スイッチ、6…シリアル−パラレル変換器(空間多重方式の送信処理手段)、7…STCエンコーダ(送信ダイバーシティ方式の送信処理手段)、9…スイッチ制御器、23…最尤推定器(送信ダイバーシティ方式の受信処理手段、空間多重方式の受信処理手段)、30…受信機、Rx1,Rx2,Rx3…受信アンテナ、Tx1,Tx2…送信アンテナ DESCRIPTION OF SYMBOLS 1 ... Transmitter, 5,8 ... Switch, 6 ... Serial-parallel converter (spatial multiplexing transmission processing means), 7 ... STC encoder (transmission diversity transmission processing means), 9 ... Switch controller, 23 ... Maximum likelihood estimator (transmission diversity type reception processing means, spatial multiplexing type reception processing means), 30 ... receiver, Rx1, Rx2, Rx3 ... reception antenna, Tx1, Tx2 ... transmission antenna

Claims (11)

複数の送信機と1つの受信機の間でMIMO無線通信方式により通信を行うMIMO無線通信システムにおいて、
前記受信機における前記各送信機からの受信電力の強弱を判定し、受信電力が強い送信機からは空間多重方式で前記受信機への送信を行い、受信電力が弱い送信機からは送信ダイバーシティ方式で前記受信機への送信を行う、
ことを特徴とするMIMO無線通信システム。
In a MIMO wireless communication system that communicates between a plurality of transmitters and one receiver using the MIMO wireless communication system,
The receiver determines the strength of received power from each transmitter in the receiver, performs transmission to the receiver by a spatial multiplexing method from a transmitter with strong received power, and transmits diversity from a transmitter with low received power. To send to the receiver,
A MIMO wireless communication system characterized by the above.
MIMO無線通信方式の送信機において、
空間多重方式の送信処理手段と、
送信ダイバーシティ方式の送信処理手段と、
空間多重方式と送信ダイバーシティ方式を切り替えるスイッチと、
受信機からの情報に基づいて前記スイッチを制御するスイッチ制御手段と、
を備えたことを特徴とする送信機。
In MIMO wireless communication system transmitters,
A spatial multiplexing transmission processing means;
A transmission diversity transmission processing means;
A switch for switching between the spatial multiplexing method and the transmission diversity method;
Switch control means for controlling the switch based on information from a receiver;
A transmitter characterized by comprising:
前記スイッチ制御手段は、受信機からの情報に基づいて該受信機における自送信機からの受信電力の強弱を判定し、受信電力が強い場合には空間多重方式を選択し、受信電力が弱い場合には送信ダイバーシティ方式を選択することを特徴とする請求項2に記載の送信機。   The switch control means determines the strength of received power from the own transmitter in the receiver based on information from the receiver, selects the spatial multiplexing method when the received power is strong, and the received power is weak The transmitter according to claim 2, wherein a transmission diversity scheme is selected for the transmitter. 受信機から受信電力情報を受け取ることを特徴とする請求項3に記載の送信機。   4. The transmitter according to claim 3, wherein received power information is received from the receiver. 受信機から位置情報を受け取ることを特徴とする請求項3に記載の送信機。   4. The transmitter according to claim 3, wherein the transmitter receives position information from the receiver. 受信機からMIMO無線通信方式の指定を受けることを特徴とする請求項2に記載の送信機。   The transmitter according to claim 2, wherein the transmitter receives a designation of a MIMO wireless communication system from the receiver. MIMO無線通信方式の受信機において、
空間多重方式の受信処理手段と、
送信ダイバーシティ方式の受信処理手段と、
送信機に対して空間多重方式と送信ダイバーシティ方式を切り替えるための情報を送る情報送信手段と、
を備えたことを特徴とする受信機。
In a MIMO wireless communication system receiver,
Spatial multiplexing reception processing means;
A reception diversity reception processing means;
Information transmitting means for sending information for switching between a spatial multiplexing scheme and a transmission diversity scheme to the transmitter;
A receiver comprising:
前記情報送信手段は、送信機からの受信電力を示す情報を該送信機に送ることを特徴とする請求項7に記載の受信機。   The receiver according to claim 7, wherein the information transmission unit transmits information indicating received power from the transmitter to the transmitter. 前記情報送信手段は、自受信機の位置情報を送信機に送ることを特徴とする請求項7に記載の受信機。   The receiver according to claim 7, wherein the information transmitting unit transmits position information of the receiver itself to the transmitter. 前記情報送信手段は、送信機からの受信電力の強弱を判定し、受信電力が強い場合には該送信機へ空間多重方式を指示し、受信電力が弱い場合には該送信機へ送信ダイバーシティ方式を指示することを特徴とする請求項7に記載の受信機。   The information transmission means determines the strength of received power from the transmitter, and when the received power is strong, instructs the transmitter to perform a spatial multiplexing scheme, and when the received power is weak, transmits to the transmitter a transmission diversity scheme. The receiver according to claim 7, wherein: 複数の送信機と1つの受信機の間でMIMO無線通信方式により通信を行うMIMO無線通信方法であって、
前記受信機における前記各送信機からの受信電力の強弱を判定し、
受信電力が強い送信機からは空間多重方式で前記受信機への送信を行い、
受信電力が弱い送信機からは送信ダイバーシティ方式で前記受信機への送信を行う、
ことを特徴とするMIMO無線通信方法。
A MIMO wireless communication method for communicating with a MIMO wireless communication method between a plurality of transmitters and one receiver,
Determining the strength of received power from each transmitter in the receiver;
From the transmitter with strong received power, perform transmission to the receiver by spatial multiplexing,
Transmitting from the transmitter with weak reception power to the receiver by transmission diversity method,
A MIMO wireless communication method characterized by the above.
JP2008009325A 2008-01-18 2008-01-18 Transmitter Expired - Fee Related JP5150275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009325A JP5150275B2 (en) 2008-01-18 2008-01-18 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009325A JP5150275B2 (en) 2008-01-18 2008-01-18 Transmitter

Publications (2)

Publication Number Publication Date
JP2009171421A true JP2009171421A (en) 2009-07-30
JP5150275B2 JP5150275B2 (en) 2013-02-20

Family

ID=40972071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009325A Expired - Fee Related JP5150275B2 (en) 2008-01-18 2008-01-18 Transmitter

Country Status (1)

Country Link
JP (1) JP5150275B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217231A (en) * 2010-04-01 2011-10-27 Advanced Telecommunication Research Institute International Radio communication system
WO2011155255A1 (en) * 2010-06-08 2011-12-15 三菱電機株式会社 Wireless communication system
WO2012070624A1 (en) * 2010-11-26 2012-05-31 日本電気株式会社 Communication device, circuit for use in communication device, and communication method
CN102725983A (en) * 2010-01-15 2012-10-10 京瓷株式会社 Communication apparatus and communication method
JP2013518479A (en) * 2010-01-27 2013-05-20 ゼットティーイー コーポレーション Data transmission method and system for cooperative multi-input multi-output beamforming
JP2013132053A (en) * 2011-12-20 2013-07-04 Acer Inc Mobile communication apparatuses, wireless communication systems, femtocells and methods for resource allocation using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072624A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Mobile communication system, radio receiver and radio transmitter
JP2004328521A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Radio communication system
JP2005521358A (en) * 2002-04-01 2005-07-14 インテル・コーポレーション System and method for dynamically optimizing the transmission mode of information transmitted over the air
WO2006123418A1 (en) * 2005-05-20 2006-11-23 Fujitsu Limited Radio communication device, mobile terminal device, radio communication method
JP2007189619A (en) * 2006-01-16 2007-07-26 Toshiba Corp Multi-carrier wireless communication system, control station, base station, and multi-carrier wireless communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521358A (en) * 2002-04-01 2005-07-14 インテル・コーポレーション System and method for dynamically optimizing the transmission mode of information transmitted over the air
JP2004072624A (en) * 2002-08-08 2004-03-04 Matsushita Electric Ind Co Ltd Mobile communication system, radio receiver and radio transmitter
JP2004328521A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Radio communication system
WO2006123418A1 (en) * 2005-05-20 2006-11-23 Fujitsu Limited Radio communication device, mobile terminal device, radio communication method
JP2007189619A (en) * 2006-01-16 2007-07-26 Toshiba Corp Multi-carrier wireless communication system, control station, base station, and multi-carrier wireless communication method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725983A (en) * 2010-01-15 2012-10-10 京瓷株式会社 Communication apparatus and communication method
JP2013518479A (en) * 2010-01-27 2013-05-20 ゼットティーイー コーポレーション Data transmission method and system for cooperative multi-input multi-output beamforming
JP2011217231A (en) * 2010-04-01 2011-10-27 Advanced Telecommunication Research Institute International Radio communication system
WO2011155255A1 (en) * 2010-06-08 2011-12-15 三菱電機株式会社 Wireless communication system
WO2012070624A1 (en) * 2010-11-26 2012-05-31 日本電気株式会社 Communication device, circuit for use in communication device, and communication method
US9509536B2 (en) 2010-11-26 2016-11-29 Nec Corporation Communication apparatus, circuit for communication apparatus, and communication method
JP2013132053A (en) * 2011-12-20 2013-07-04 Acer Inc Mobile communication apparatuses, wireless communication systems, femtocells and methods for resource allocation using the same

Also Published As

Publication number Publication date
JP5150275B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US10230509B2 (en) OFDM frame communication method and apparatus
WO2018201904A1 (en) Method for determining uplink transmission parameter, method and device for transmitting configuration information
EP2683096B1 (en) Base station apparatus, user apparatus and communication control method
EP2425545B1 (en) Method and apparatus for multi-antenna uplink transmission
US8208435B2 (en) Base station apparatus, user apparatus and method for use in mobile communication system
JP5150275B2 (en) Transmitter
JP4027912B2 (en) Transmission diversity system switching apparatus and method in mobile communication system using transmission diversity
KR20150087903A (en) Method of spatial modulation with polarazation and apparatus using thereof
WO2012120743A1 (en) Relay device and auxiliary relay device
US20230078501A1 (en) Joint channel state information for virtual user equipment
JP2006287669A (en) Radio communication apparatus
US8711965B2 (en) Method and apparatus for optimizing transmission diversity
JP2009218718A (en) Transmitter and receiver
JP2007067567A (en) Communication apparatus, transmitter and receiver
JP2015122564A (en) Communication device, channel estimation method, and communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Ref document number: 5150275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees