JP2009170131A - Fuel cell power generation system and its operation method - Google Patents

Fuel cell power generation system and its operation method Download PDF

Info

Publication number
JP2009170131A
JP2009170131A JP2008003999A JP2008003999A JP2009170131A JP 2009170131 A JP2009170131 A JP 2009170131A JP 2008003999 A JP2008003999 A JP 2008003999A JP 2008003999 A JP2008003999 A JP 2008003999A JP 2009170131 A JP2009170131 A JP 2009170131A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
water
power generation
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008003999A
Other languages
Japanese (ja)
Inventor
Takahiro Umeda
孝裕 梅田
Eiichi Yasumoto
栄一 安本
Shigeyuki Unoki
重幸 鵜木
Yasushi Sugawara
靖 菅原
Kiichi Shibata
礎一 柴田
Junji Morita
純司 森田
Osamu Sakai
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008003999A priority Critical patent/JP2009170131A/en
Publication of JP2009170131A publication Critical patent/JP2009170131A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system having an excellent power generation efficiency and durability. <P>SOLUTION: The fuel cell power generation system includes a fuel cell 4, a cooling water passage 5a where cooling water passes, a cooling water tank 7 for storing cooling water, a cooling water supplying pipe 5 for supplying the cooling water from the cooling water storing tank 7 to the cooling water passage 5a, and cooling water switching valves 9, 10 which are fixed in a passage of the cooling water supplying pipe 5 and switch the cooling water to cold water of a low temperature. When the cooling water switching valves 9, 10 switch the cooling water to the cold water and the cold water of a lower temperature than that of an operation temperature is supplied to the fuel cell through the cooling water passage 5a, a temperature of the fuel cell 4 is lowered quickly to generate condensed water in the fuel cell 4, and a water content of an electrolyte can be increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池の活性を回復し、システムの発電効率および耐久性の向上を図った燃料電池発電システムおよびその運転方法に関するものである。   The present invention relates to a fuel cell power generation system that recovers the activity of a fuel cell and improves the power generation efficiency and durability of the system, and an operation method thereof.

従来の一般的な燃料電池発電システムは、図5に示すように、燃料ガスを供給する燃料供給手段101と、酸化剤ガスを供給する酸化剤ガス供給手段102と、燃料供給手段101から供給された燃料ガスおよび酸化剤ガス供給手段102から供給された酸化剤ガスを加湿する加湿手段103と、加湿手段103で加湿された燃料ガスおよび酸化剤ガスが供給される燃料電池104と、燃料電池104を冷却する冷却水を循環させる冷却水供給管105とを備え、燃料ガスとしての水素および酸化剤ガスとしての空気を加湿して燃料電池104に供給することにより発電することができる。   As shown in FIG. 5, a conventional general fuel cell power generation system is supplied from a fuel supply means 101 for supplying fuel gas, an oxidant gas supply means 102 for supplying oxidant gas, and a fuel supply means 101. The humidifying means 103 for humidifying the oxidant gas supplied from the fuel gas and oxidant gas supply means 102, the fuel cell 104 to which the fuel gas and oxidant gas humidified by the humidifying means 103 are supplied, and the fuel cell 104 A cooling water supply pipe 105 that circulates cooling water that cools the fuel and supplies hydrogen to the fuel cell 104 by humidifying the hydrogen as the fuel gas and the air as the oxidant gas.

燃料電池104は、固体高分子電解質と、その両面に形成された一対の電極を備え、加湿された燃料ガスおよび酸化剤ガスを流すことにより、電解質が水素イオン伝導性を呈し、電解質中をプロトンが電極間を移動して電流が流れて発電する。   The fuel cell 104 includes a solid polymer electrolyte and a pair of electrodes formed on both sides thereof. By flowing a humidified fuel gas and oxidant gas, the electrolyte exhibits hydrogen ion conductivity, and protons pass through the electrolyte. Moves between the electrodes, and a current flows to generate electricity.

しかし、燃料ガスおよび酸化剤ガスの加湿が不十分である、あるいは燃料電池104の冷却が不十分であるなどして電解質が乾燥気味になり、燃料ガスおよび酸化剤ガスが水分を十分に含まないとき、水素イオン伝導性が低下し、出力が低下するという課題があった。   However, the humidification of the fuel gas and the oxidant gas is insufficient, or the cooling of the fuel cell 104 is insufficient, so that the electrolyte becomes dry, and the fuel gas and the oxidant gas do not contain sufficient moisture. When this occurs, there is a problem that the hydrogen ion conductivity is reduced and the output is reduced.

また、燃料電池104の製造中に使用される不純物や、システムに使用される部材に含まれる不純物、あるいは大気などの外部から混入する不純物が、燃料電池104の内部に侵入し、電極などに付着すると、発電に必要な化学反応が阻害され、出力が低下するという課題があった。   In addition, impurities used during the manufacture of the fuel cell 104, impurities contained in components used in the system, or impurities mixed from outside such as the air enter the fuel cell 104 and adhere to the electrodes, etc. Then, the chemical reaction required for electric power generation was inhibited, and there was a problem that the output decreased.

したがって、出力が低下しないように、電解質の含水率を一定に保持する、不純物を除去するなどして燃料電池104の活性を保持する必要があった。また、時間を掛けて徐々に含水率が減少する、不純物が蓄積するなどして、徐々に出力が低下する場合もあるため、定期的あるいは出力が閾値を越えた場合、燃料電池104の活性を回復する必要があった。   Therefore, it is necessary to maintain the activity of the fuel cell 104 by keeping the water content of the electrolyte constant or removing impurities so that the output does not decrease. In addition, since the output may decrease gradually due to a decrease in moisture content or accumulation of impurities over time, the activity of the fuel cell 104 may be increased periodically or when the output exceeds a threshold value. It was necessary to recover.

例えば、電解質の含水率を一定に保持するあるいは増加させる方法としては、供給する燃料ガスあるいは酸化剤ガスの加湿水分量を増加する、燃料ガスあるいは酸化剤ガスの利用率を高めて生成水の電解質との接触機会を高めるなどが挙げられる。   For example, as a method of maintaining or increasing the moisture content of the electrolyte, the amount of humidified moisture in the supplied fuel gas or oxidant gas is increased, the utilization rate of the fuel gas or oxidant gas is increased, and the generated water electrolyte is increased. Increase opportunities for contact with

また、図5に示したように電解質の含水率を増加させるため、燃料電池104に供給する冷却水の熱を、ラジエータ106などを用いて放熱し、温度を下げた冷却水を燃料電池104に供給することにより、燃料電池4の温度を低下させ、燃料ガスおよび酸化剤ガスの相対湿度を上げて電解質の含水率を増加させていた(例えば、特許文献1参照)。   Further, as shown in FIG. 5, in order to increase the moisture content of the electrolyte, the heat of the cooling water supplied to the fuel cell 104 is radiated using the radiator 106 or the like, and the cooling water whose temperature has been lowered is supplied to the fuel cell 104. By supplying, the temperature of the fuel cell 4 was lowered, the relative humidity of the fuel gas and the oxidant gas was increased, and the moisture content of the electrolyte was increased (for example, see Patent Document 1).

また、燃料電池104に不純物が混入することを防ぐ方法としては、製造する環境をクリーンに保持する、不純物を含有する部品や材料の使用を制限する、不純物を洗浄、吸着、分解などして除去するなどが挙げられる。   As a method for preventing impurities from entering the fuel cell 104, the manufacturing environment is kept clean, the use of components and materials containing impurities is restricted, and impurities are removed by washing, adsorption, decomposition, etc. And so on.

例えば、燃料電池104に脱イオン水や弱酸性水などを導入して煮沸して、不純物を洗浄除去していた(例えば、特許文献2参照)。
特許第3687530号公報 特許第3469091号公報
For example, deionized water, weakly acidic water, or the like is introduced into the fuel cell 104 and boiled to clean and remove impurities (see, for example, Patent Document 2).
Japanese Patent No. 3687530 Japanese Patent No. 3469091

しかしながら、前記従来の燃料電池104に供給する冷却水の熱を、ラジエータ106などを用いて放熱し、温度を下げた冷却水を燃料電池4に供給することにより、燃料電池104の温度を低下させ、燃料ガスおよび酸化剤ガスの相対湿度を上げて電解質の含水率を増加させる方法では、冷却水が放熱するのに多くの時間を費やすため、電解質の含水率が安定するのに時間がかかるという課題があった。   However, the heat of the cooling water supplied to the conventional fuel cell 104 is dissipated using the radiator 106 or the like, and the cooling water whose temperature has been lowered is supplied to the fuel cell 4, thereby lowering the temperature of the fuel cell 104. In the method of increasing the water content of the electrolyte by increasing the relative humidity of the fuel gas and the oxidant gas, it takes a long time for the water content of the electrolyte to stabilize because the cooling water spends a lot of time radiating heat. There was a problem.

また、前記従来の燃料電池104に脱イオン水や弱酸性水などを導入して煮沸して、不純物を洗浄除去する方法では、燃料電池発電システムに搭載した後に混入する不純物を除去することができないという課題があった。   In addition, in the conventional method in which deionized water, weakly acidic water, or the like is introduced into the fuel cell 104 and boiled to wash away impurities, the impurities mixed after being mounted on the fuel cell power generation system cannot be removed. There was a problem.

本発明は、前記従来の課題を解決するもので、燃料電池の温度を下げるため、冷却水を供給する冷却水供給管の経路に冷却水より低温の冷水に切り替える冷却水切り替え弁を備え、冷却水切り替え弁を冷水側に切り替えて、燃料電池の冷却水流路に冷水を供給し、速やかに燃料電池の温度を低下させ、生成した凝縮水で電解質の含水率を増加させ、不純物を洗浄除去することにより、燃料電池を活性化し、発電効率および耐久性に優れた燃料電池発電システムおよびその運転方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and includes a cooling water switching valve for switching to cooling water having a lower temperature than cooling water in a path of a cooling water supply pipe for supplying cooling water in order to lower the temperature of the fuel cell. Switch the water switching valve to the cold water side, supply cold water to the cooling water flow path of the fuel cell, quickly reduce the temperature of the fuel cell, increase the moisture content of the electrolyte with the generated condensed water, and wash away impurities Accordingly, an object of the present invention is to provide a fuel cell power generation system that activates a fuel cell and is excellent in power generation efficiency and durability, and an operation method thereof.

上記目的を達成するために本発明は、燃料電池と、前記燃料電池を冷却する冷却水を流通する冷却水流路と、前記冷却水を貯蔵する冷却水タンクと、前記冷却水タンクから前記冷却水流路に前記冷却水を供給する冷却水供給管と、前記冷却水供給管の経路に取り付けられ前記冷却水を前記冷却水より低温の冷水に切り替える冷却水切り替え弁とを備えたものである。   In order to achieve the above object, the present invention provides a fuel cell, a cooling water passage for circulating cooling water for cooling the fuel cell, a cooling water tank for storing the cooling water, and a cooling water flow from the cooling water tank. A cooling water supply pipe that supplies the cooling water to the passage, and a cooling water switching valve that is attached to a path of the cooling water supply pipe and switches the cooling water to cold water having a temperature lower than that of the cooling water.

本発明の構成によれば、冷却水切り替え弁が冷却水を冷水に切り替えて燃料電池に運転温度より低い温度の冷水を冷却水流路に供給して燃料電池の温度を速やかに低下させ、燃料電池内に凝縮水を生成させ、電解質の含水率を増加し、不純物を洗浄除去することができ、燃料電池を活性化し、発電効率および耐久性に優れた燃料電池発電システムを得ることができる。   According to the configuration of the present invention, the cooling water switching valve switches the cooling water to cold water, supplies cold water having a temperature lower than the operating temperature to the fuel cell to the cooling water flow path, and quickly reduces the temperature of the fuel cell, Condensed water can be generated therein, the water content of the electrolyte can be increased, impurities can be washed away, the fuel cell can be activated, and a fuel cell power generation system with excellent power generation efficiency and durability can be obtained.

本発明によれば、上記構成により燃料電池の活性を回復することができるので、発電効率および耐久性に優れた燃料電池発電システムおよびその運転方法を提供することができる。   According to the present invention, since the activity of the fuel cell can be recovered by the above-described configuration, it is possible to provide a fuel cell power generation system excellent in power generation efficiency and durability and an operation method thereof.

第1の発明は、燃料電池と、前記燃料電池を冷却する冷却水を流通する冷却水流路と、前記冷却水を貯蔵する冷却水タンクと、前記冷却水タンクから前記冷却水流路に前記冷却水を供給する冷却水供給管と、前記冷却水供給管の経路に取り付けられ前記冷却水を前記冷却水より低温の冷水に切り替える冷却水切り替え弁とを備えたことにより、冷却水切り替え弁が冷却水を冷水に切り替えて燃料電池に運転温度より低い温度の冷水を冷却水流路に供給して燃料電池の温度を速やかに低下させ、燃料電池内に凝縮水を生成させ、電解質の含水率を増加し、不純物を洗浄除去することができ、燃料電池を活性化し、発電効率および耐久性に優れた燃料電池発電システムを得ることができる。   A first aspect of the invention includes a fuel cell, a cooling water passage for circulating cooling water for cooling the fuel cell, a cooling water tank for storing the cooling water, and the cooling water from the cooling water tank to the cooling water passage. And a cooling water switching valve that is attached to a path of the cooling water supply pipe and switches the cooling water to cold water having a temperature lower than that of the cooling water. Is switched to cold water, and cold water having a temperature lower than the operating temperature is supplied to the fuel cell to the cooling water flow path, the temperature of the fuel cell is rapidly reduced, condensed water is generated in the fuel cell, and the water content of the electrolyte is increased. Impurities can be washed away, the fuel cell can be activated, and a fuel cell power generation system having excellent power generation efficiency and durability can be obtained.

第2の発明は、第1の発明において、冷水を上水道水から供給することにより、市水などの常温の上水道水をタンクなどの貯蔵設備あるいはラジエータなどの熱交換器などを介することなく、直接冷却水流路に供給することにより、燃料電池の温度を速やかに低下させることができ、システムを簡素化できるだけでなく、熱交換器などに付随するファンや、冷却設備などの補機を必要としないので、消費する電力を省力化でき、システムの発電効率を向上することができる。   According to a second aspect of the present invention, in the first aspect, by supplying cold water from tap water, room temperature tap water such as city water can be directly supplied without passing through storage equipment such as a tank or a heat exchanger such as a radiator. By supplying it to the cooling water flow path, the temperature of the fuel cell can be quickly reduced, and not only can the system be simplified, but there is no need for fans associated with heat exchangers or auxiliary equipment such as cooling equipment. Therefore, power consumption can be saved and the power generation efficiency of the system can be improved.

第3の発明は、第1の発明において、冷水を浄化する冷水浄化手段を備えて、上水道水などの冷水中に含まれる金属イオンなどの不純物を浄化して供給することにより、冷水のイオン導電率が増加することを抑制するので、カーボン製のセパレータなどが電蝕して分解することを防止することができる。   According to a third aspect of the present invention, in the first aspect of the invention, the cold water purifying means is provided for purifying the cold water, and impurities such as metal ions contained in the cold water such as tap water are purified and supplied, whereby the ionic conduction of the cold water is achieved. Since the increase in the rate is suppressed, it is possible to prevent the carbon separator or the like from being decomposed by electrolytic corrosion.

第4の発明は、第1の発明において、冷水の流量を制御する流量制御手段を備え、前記流量制御手段は冷却水流路の入口温度と出口温度の差が小さくなるように冷水の流量を制御することにより、速やかに燃料電池の温度を低下させることができるだけでなく、燃料電池の電極面内の温度分布が均一となり、面内全体が活性化されるので、発電効率の向上を図ることができる。   According to a fourth aspect, in the first aspect, the flow rate control means for controlling the flow rate of the chilled water is provided, and the flow rate control means controls the flow rate of the chilled water so that a difference between the inlet temperature and the outlet temperature of the cooling water flow path becomes small. As a result, not only can the temperature of the fuel cell be quickly reduced, but the temperature distribution in the electrode surface of the fuel cell becomes uniform and the entire surface is activated, so that the power generation efficiency can be improved. it can.

第5の発明は、第1の発明において、燃料電池に供給された冷却水と熱交換する熱交換器と、前記熱交換器で熱交換したお湯を貯蔵する貯湯タンクと、前記貯湯タンクのお湯を循環させる貯湯ポンプを備え、前記貯湯ポンプは、冷却水流路に冷水が流通している間は停止することにより、貯湯タンク内のお湯の温度を低下させることなく、熱効率ロスの少ないシステムを得ることができる。   According to a fifth invention, in the first invention, a heat exchanger for exchanging heat with the cooling water supplied to the fuel cell, a hot water storage tank for storing hot water exchanged by the heat exchanger, and hot water for the hot water storage tank The hot water storage pump is stopped while the cold water is circulating in the cooling water flow path, thereby obtaining a system with little loss of thermal efficiency without lowering the temperature of the hot water in the hot water storage tank. be able to.

第6の発明は、第1の発明において、燃料電池に供給された冷却水と熱交換する熱交換器と、前記熱交換器で熱交換したお湯を貯蔵する貯湯タンクと、前記貯湯タンクの上流側に配置した貯湯タンク切り替え弁を備え、前記貯湯タンク切り替え弁は、冷却水流路に前記冷却水が流通している間は熱交換したお湯を前記貯湯タンクの上部に導入し、前記冷却水流路に冷水が流通している間は前記熱交換器を流通したお湯を前記貯湯タンクの下部に導入するように切り替えることにより、冷たい水と熱いお湯を貯湯タンク内で上下に分離することができ、給湯するお湯の温度を低下させることなく、熱効率ロスの少ないシステムを得ることができる。   According to a sixth invention, in the first invention, a heat exchanger for exchanging heat with the cooling water supplied to the fuel cell, a hot water storage tank for storing hot water heat-exchanged by the heat exchanger, and an upstream of the hot water storage tank A hot water storage tank switching valve disposed on the side of the hot water storage tank, the hot water tank switching valve introduces hot water that is heat-exchanged into the upper part of the hot water storage tank while the cooling water is flowing through the cooling water flow path, and the cooling water flow path While cold water is circulating, by switching the hot water that has been circulated through the heat exchanger to be introduced into the lower part of the hot water storage tank, cold water and hot hot water can be separated vertically in the hot water storage tank, A system with little thermal efficiency loss can be obtained without lowering the temperature of hot water to be supplied.

第7の発明は、第1の発明において、燃料電池の電圧を検出する電圧検出手段を備え、前記電圧検出手段が前記燃料電池の電圧が予め設定した閾値を一定時間以上越えたことを検出したとき、冷却水流路に冷却水より低温の冷水が供給されるように冷却水切り替え弁を切り替えることにより、燃料電池の電圧が低下し、燃料電池の活性が低下したと判断したときだけ、冷却水流路に冷水を供給するので、温度の低い冷水による熱効率ロスを最小限に抑えることができる。   According to a seventh invention, in the first invention, there is provided voltage detecting means for detecting the voltage of the fuel cell, and the voltage detecting means detects that the voltage of the fuel cell has exceeded a preset threshold value for a predetermined time or more. When the cooling water switching valve is switched so that cold water having a temperature lower than that of the cooling water is supplied to the cooling water flow path, the voltage of the fuel cell is lowered, and only when it is determined that the activity of the fuel cell is lowered, Since cold water is supplied to the road, loss of thermal efficiency due to cold water having a low temperature can be minimized.

第8の発明は、第1の発明において、燃料電池の電圧を検出する電圧検出手段を備え、前記燃料電池が発電中で冷却水流路に冷却水より低温の冷水が供給されている間で、前記電圧検出手段が前記燃料電池の電圧が予め設定した下限値を越えたことを検出したとき、前記冷却水流路に冷却水が供給されるように冷却水切り替え弁を切り替えることにより、凝縮水の生成量が多いときは燃料電池の温度を上げて凝縮水量を減らし、フラッディングなどの特性低下を抑制することができる。   According to an eighth aspect of the present invention, in the first aspect of the invention, the fuel cell includes voltage detection means for detecting the voltage of the fuel cell, and the fuel cell is generating power and while cooling water having a temperature lower than that of the cooling water is supplied to the cooling water flow path. When the voltage detection means detects that the voltage of the fuel cell has exceeded a preset lower limit value, by switching the cooling water switching valve so that the cooling water is supplied to the cooling water flow path, When the amount of production is large, the temperature of the fuel cell can be raised to reduce the amount of condensed water, and deterioration of characteristics such as flooding can be suppressed.

第9の発明は、燃料電池と、前記燃料電池を冷却する冷却水を流通する冷却水流路と、前記冷却水を貯蔵する冷却水タンクと、前記冷却水タンクから前記冷却水流路に前記冷却水を供給する冷却水供給管と、前記冷却水供給管の経路に取り付けられ前記冷却水を前記冷却水より低温の冷水に切り替える冷却水切り替え弁と、前記燃料電池に供給される燃料ガスおよび酸化剤ガスを加湿する加湿手段とを備え、前記冷却水切り替え弁を切り替えて前記冷却水流路に供給された前記冷水により前記加湿手段で加湿された前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復する運転方法により、燃料電池の温度を速やかに低下させ、燃料電池内に凝縮水を生成させ、電解質の含水率を増加し、不純物を洗浄除去することができ、燃料電池を活性化し、発電効率および耐久性に優れた燃料電池発電システムを得ることができる。   According to a ninth aspect of the invention, there is provided a fuel cell, a cooling water passage for circulating cooling water for cooling the fuel cell, a cooling water tank for storing the cooling water, and the cooling water from the cooling water tank to the cooling water passage. A cooling water supply pipe that supplies the cooling water, a cooling water switching valve that is attached to a path of the cooling water supply pipe and switches the cooling water to cold water having a temperature lower than that of the cooling water, and a fuel gas and an oxidant supplied to the fuel cell Humidifying means for humidifying the gas, condensing the fuel gas and the oxidant gas condensed by the humidifying means with the cold water supplied to the cooling water flow path by switching the cooling water switching valve to condense water The operation method of recovering the activity of the fuel cell by supplying the condensed water to the fuel cell and rapidly reducing the temperature of the fuel cell, generating condensed water in the fuel cell, Of increasing the water content, impurities can be washed away, the fuel cell is activated, it is possible to obtain excellent fuel cell power generation system in the power generation efficiency and durability.

また、発電により生成する生成水も冷水で凝縮され、さらに相対湿度を増加させるので、さらに燃料電池が活性化され、発電効率と耐久性に優れた燃料電池発電システムを得ることができる。   Further, the generated water generated by the power generation is also condensed by the cold water, and the relative humidity is further increased. Therefore, the fuel cell is further activated, and a fuel cell power generation system excellent in power generation efficiency and durability can be obtained.

第10の発明は、第9の発明において、加湿された燃料ガスおよび酸化剤ガスの内、少なくとも前記酸化剤ガスの供給を停止して発電を停止し、燃料電池の電圧を降下させながら冷却水切り替え弁を切り替えて冷却水流路に供給された冷水で残存する前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復する運転方法により、燃料電池の発電停止時に、凝縮水が電解質の含水率を増加し、不純物を洗浄除去することができ、燃料電池を活性化すると同時に、酸化剤ガスが供給されていた電極の電位を低下させ、電極中の触媒を還元するので燃料電池をさらに活性化することができる。   According to a tenth aspect, in the ninth aspect, among the humidified fuel gas and oxidant gas, at least the supply of the oxidant gas is stopped to stop power generation, and the cooling water is reduced while lowering the voltage of the fuel cell. Switching the switching valve to condense the fuel gas and the oxidant gas remaining in the cold water supplied to the cooling water flow path to generate condensed water, and supplying the condensed water to the fuel cell to activate the fuel cell When the fuel cell power generation is stopped, the condensed water increases the water content of the electrolyte and the impurities can be removed by washing, and the fuel cell is activated and the oxidant gas is supplied at the same time. Since the potential of the electrode is lowered and the catalyst in the electrode is reduced, the fuel cell can be further activated.

第11の発明は、第9または10の発明において、負荷を切断し一旦開回路状態にした後、加湿された燃料ガスおよび酸化剤ガスの内、少なくとも前記酸化剤ガスの供給を停止して発電を停止する運転方法により、開回路状態で酸化剤ガスが供給されていた電極の電位を上昇させ、電極中の触媒に付着していた不純物を酸化し、除去しやすくして、凝縮水の洗浄効果を促進するので、燃料電池をより活性化することができる。   According to an eleventh aspect of the present invention, in the ninth or tenth aspect of the invention, after the load is cut off and the circuit is once opened, at least the supply of the oxidant gas among the humidified fuel gas and oxidant gas is stopped. In the open circuit state, the potential of the electrode to which the oxidant gas was supplied is raised, the impurities attached to the catalyst in the electrode are oxidized and easily removed, and the condensed water is washed. Since the effect is promoted, the fuel cell can be more activated.

第12の発明は、第9の発明において、冷却水切り替え弁を切り替えて冷却水流路に給して発電を開始し、前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復した後、冷却水切り替え弁を切り替えて前記冷却水流路に冷却水を供給する運転方法により、燃料電池の発電開始時に、凝縮水が停止中に乾燥した電解質の含水率を増加し、停止中に付着した不純物を洗浄除去することができ、燃料電池を活性化するので、発電開始時より高い電圧を保持することができ、発電効率と耐久性に優れた燃料電池発電システムを得ることができる。   A twelfth aspect of the invention is the ninth aspect of the invention, in which the cooling water switching valve is switched and supplied to the cooling water flow path to start power generation, the fuel gas and the oxidant gas are condensed to generate condensed water, After the condensed water is supplied to the fuel cell and the activity of the fuel cell is restored, the cooling water switching valve is switched to supply the cooling water to the cooling water flow path. Can increase the moisture content of the electrolyte that is dried during the shutdown, clean and remove impurities adhering during the shutdown, and activate the fuel cell. A fuel cell power generation system excellent in efficiency and durability can be obtained.

第13の発明は、第9または12の発明において、冷却水切り替え弁を切り替えて冷却水流路に冷却水より低温の冷水を供給し、加湿された燃料ガスおよび酸化剤ガスを供給し、一旦開回路状態にした後、発電を開始する運転方法により、開回路状態で酸化剤ガスが供給される電極の電位を上昇させ、電極中の触媒に付着していた不純物を酸化し、除去しやすくして、凝縮水の洗浄効果を促進するので、燃料電池をより活性化することができ、発電開始時より高い電圧が保持され、発電効率と耐久性に優れた燃料電池発電システムを得ることができる。   In a thirteenth invention according to the ninth or twelfth invention, the cooling water switching valve is switched to supply cold water having a temperature lower than that of the cooling water to the cooling water flow path, to supply humidified fuel gas and oxidant gas, and to open once. After switching to the circuit state, the operation method of starting power generation raises the potential of the electrode to which the oxidant gas is supplied in the open circuit state, and oxidizes impurities attached to the catalyst in the electrode to make it easier to remove. In addition, since the cleaning effect of the condensed water is promoted, the fuel cell can be more activated, a higher voltage is maintained than at the start of power generation, and a fuel cell power generation system with excellent power generation efficiency and durability can be obtained. .

第14の発明は、第9ないし13のいずれか1つの発明において、加湿された燃料ガスおよび酸化剤ガスの内、少なくとも前記酸化剤ガスの供給を停止して発電を停止し、燃料電池の電圧を降下させながら冷却水切り替え弁を切り替えて冷却水流路に供給された冷水で残存する前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給し、前記冷却水流路に前記冷水を供給したまま、加湿された前記燃料ガスおよび前記酸化剤ガスを供給して発電を開始し、前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復した後、冷却水切り替え弁を切り替えて冷却水を供給する起動停止を少なくとも一回以上行って前記燃料電池の活性を回復する運転方法により、凝縮水による含水率の増加の効率や不純物の洗浄効果が向上し、起動停止による電位の昇降が触媒を酸化還元して活性化を促進するので、発電効率と耐久性に優れた燃料電池発電システムを得ることができる。   In a fourteenth aspect based on any one of the ninth to thirteenth aspects, the power generation is stopped by stopping the supply of at least the oxidant gas out of the humidified fuel gas and oxidant gas, and the voltage of the fuel cell The cooling water switching valve is switched while the cooling water is lowered to condense the fuel gas and the oxidant gas remaining in the cooling water supplied to the cooling water flow path to generate condensed water, and supply the condensed water to the fuel cell. Then, while supplying the cold water to the cooling water flow path, the humidified fuel gas and the oxidant gas are supplied to start power generation, and the fuel gas and the oxidant gas are condensed to generate condensed water. And supplying the condensed water to the fuel cell to restore the activity of the fuel cell, and then switching the cooling water switching valve to start and stop supplying the cooling water at least once. The recovery operation method improves the efficiency of moisture content increase due to condensed water and the cleaning effect of impurities, and the increase and decrease of the potential due to start and stop promotes activation by oxidizing and reducing the catalyst, so power generation efficiency and durability are improved. An excellent fuel cell power generation system can be obtained.

第15の発明は、第9ないし14のいずれか1つの発明において、システムを設置した後、初回に発電させる時、冷却水切り替え弁を切り替えて冷却水流路に冷水を供給し、燃料ガスおよび酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を燃料電池に供給して前記燃料電池の活性を回復する起動停止を少なくとも一回以上行う運転方法により、システムを設置してから実際に使用するまでの間で、凝縮水が停止中に乾燥した電解質の含水率を増加し、停止中に付着した不純物を洗浄除去することができ、燃料電池を活性化するので、ユーザーが初めて使用するときから高い電圧を保持することができ、発電効率と耐久性に優れた燃料電池発電システムを得ることができる。   In a fifteenth aspect of the invention, according to any one of the ninth to fourteenth aspects, when power is generated for the first time after the system is installed, the cooling water switching valve is switched to supply cold water to the cooling water flow path, and the fuel gas and the oxidation are supplied. The system is actually installed after the system is installed by an operation method that condenses the agent gas to generate condensed water, supplies the condensed water to the fuel cell, and recovers the activity of the fuel cell at least once. Before use, the water content of the electrolyte dried while the condensate is stopped can be increased, the impurities attached during the stop can be removed by washing, and the fuel cell is activated so that the user can use it for the first time. A high voltage can be maintained from time to time, and a fuel cell power generation system excellent in power generation efficiency and durability can be obtained.

第16の発明は、第9ないし14のいずれか1つの発明において、長期間システムを停止した後、発電させる前に冷却水切り替え弁を切り替えて冷却水流路に冷水を供給し、燃料ガスおよび酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を燃料電池に供給して前記燃料電池の活性を回復する起動停止を少なくとも一回以上行う運転方法により、システムを使用しない期間が長期となり、その間で、凝縮水が停止中に乾燥した電解質の含水率を増加し、停止中に付着した不純物を洗浄除去することができ、燃料電池を活性化するので、長期間放置後も高い電圧を保持することができ、発電効率と耐久性に優れた燃料電池発電システムを得ることができる。   In a sixteenth aspect of the invention, according to any one of the ninth to fourteenth aspects, after the system has been stopped for a long period of time, the cooling water switching valve is switched to supply cold water to the cooling water flow path before generating power, and fuel gas and oxidation Due to the operation method of condensing the agent gas to generate condensed water, supplying the condensed water to the fuel cell and recovering the activity of the fuel cell at least once, the system is not used for a long period of time. In the meantime, the water content of the electrolyte dried while the condensate is stopped can be increased, the impurities attached during the stop can be washed away and the fuel cell can be activated. A fuel cell power generation system that can be retained and has excellent power generation efficiency and durability can be obtained.

以下本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池発電システムの概略構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a schematic configuration diagram of a fuel cell power generation system according to Embodiment 1 of the present invention.

本発明の実施の形態1の燃料電池発電システムは、メタンなどの炭化水素を含む都市ガスなどの原料ガスを改質して燃料ガスを供給する燃料供給手段1と、酸化剤ガスを供給する酸化剤ガス供給手段2と、酸化剤ガスを加湿する加湿手段3と、加湿された燃料ガスおよび酸化剤ガスが供給される燃料電池4と、燃料電池4を冷却する冷却水を循環させる冷却水供給管5を備えている。   The fuel cell power generation system according to Embodiment 1 of the present invention includes a fuel supply means 1 for reforming a raw material gas such as a city gas containing hydrocarbons such as methane and supplying a fuel gas, and an oxidation for supplying an oxidant gas. Coolant gas supply means 2, humidifying means 3 for humidifying the oxidant gas, fuel cell 4 to which the humidified fuel gas and oxidant gas are supplied, and cooling water supply for circulating the coolant for cooling the fuel cell 4 A tube 5 is provided.

燃料供給手段1は、付臭剤などに含まれる硫黄化合物を吸着除去する脱硫部1aと、メタンなどの炭化水素を含む原料ガスを改質する改質部1bと、改質反応で発生する一酸化炭素(CO)を変成するCO変成部1cと、さらにCOを酸化除去するCO除去部1dで構成され、少なくとも水素を含む燃料ガスを燃料電池4のアノード側に供給している。   The fuel supply means 1 includes a desulfurization unit 1a that adsorbs and removes sulfur compounds contained in an odorant and the like, a reforming unit 1b that reforms a raw material gas containing hydrocarbons such as methane, and the like that is generated by a reforming reaction. A CO conversion unit 1c that converts carbon oxide (CO) and a CO removal unit 1d that oxidizes and removes CO are supplied to the anode side of the fuel cell 4 at least with a fuel gas containing hydrogen.

原料ガスは、まず脱硫部1aで脱硫され、その後、改質部1bで改質されて水素を含む燃料ガスとなる。原料ガスにメタンを用いた場合、改質部1bでは、水蒸気を伴って(化学式1)で示した反応が起こり、燃料ガスである水素とともに約10%のCOを発生する。   The raw material gas is first desulfurized in the desulfurization section 1a and then reformed in the reforming section 1b to become a fuel gas containing hydrogen. When methane is used as the raw material gas, in the reforming unit 1b, the reaction shown by (Chemical Formula 1) occurs with water vapor, and about 10% of CO is generated together with hydrogen as the fuel gas.

(科学式1)CH + HO → CO + 3H
燃料電池の運転温度域においてアノードに含まれる白金触媒はわずかなCOでも被毒しその触媒活性が低下するため、改質部1bで発生したCOは(化学式2)で示すようにCO変成部1cで二酸化炭素に変成され、その濃度は約5000ppmまで減少する。下流側のCO除去部1dではCOだけでなく、燃料ガスの水素まで酸化されてしまうので、CO変成部1cにおいてできるだけCO濃度を低下させる必要がある。
(Scientific formula 1) CH 4 + H 2 O → CO + 3H 2
Since the platinum catalyst contained in the anode in the operating temperature range of the fuel cell is poisoned even by a slight amount of CO and its catalytic activity is reduced, the CO generated in the reforming unit 1b is expressed as (CO 2) as shown in (Chemical Formula 2). Is converted to carbon dioxide, and its concentration is reduced to about 5000 ppm. In the downstream CO removing unit 1d, not only CO but also hydrogen of the fuel gas is oxidized, so that the CO concentration needs to be reduced as much as possible in the CO conversion unit 1c.

(化学式2)CO + HO → CO + H
さらに残ったCOは(化学式3)で示すようにCO除去部1dで空気中に含まれる酸素と反応して酸化され、その濃度はアノードの触媒活性の劣化を抑制できる約10ppm以下まで減少する。
(Chemical formula 2) CO + H 2 O → CO 2 + H 2
Further, the remaining CO is oxidized by reacting with oxygen contained in the air in the CO removing section 1d as shown in (Chemical Formula 3), and the concentration thereof is reduced to about 10 ppm or less which can suppress the deterioration of the catalytic activity of the anode.

(化学式3)CO + 1/2O → CO
全反応式を(化学式4)に示す。
(Chemical formula 3) CO + 1/2 O 2 → CO 2
The overall reaction formula is shown in (Chemical Formula 4).

(化学式4)CH + 2HO → CO + 4H
酸化剤ガス供給手段2は、酸化剤ガスを取り込むブロワ2aと、酸化剤ガス中の不純物を除去する不純物除去手段2bで構成され、加湿手段3で加湿した酸化剤ガスを燃料電池4のカソード側に供給している。
(Chemical formula 4) CH 4 + 2H 2 O → CO 2 + 4H 2
The oxidant gas supply means 2 includes a blower 2 a that takes in the oxidant gas and an impurity removal means 2 b that removes impurities in the oxidant gas. The oxidant gas humidified by the humidification means 3 is supplied to the cathode side of the fuel cell 4. To supply.

酸化剤ガスとは、少なくとも酸素を含む(あるいは酸素を供給することのできる)ガスの総称であり、例えば、大気(空気)が挙げられる。   The oxidant gas is a general term for gases containing at least oxygen (or capable of supplying oxygen), and includes, for example, the atmosphere (air).

燃料電池4は、水素イオン伝導性を有するパーフルオロカーボンスルフォン酸ポリマーからなる膜状の固体高分子電解質4aと、電解質4aの両面に形成された一対の電極、アノード4bおよびカソード4cと、アノード4bおよびカソード4cの周囲に設けられガスの混合やリークを防止する一対のガスケット(図示せず)と、アノード4bおよびカソード4cにそれぞれ燃料ガスおよび酸化剤ガスを供給排出するガス流路を有するカーボン製の導電性の一対のセパレータ板4dおよび4eからなる単位セルと、複数の単位セルと冷却水を供給排出する冷却水流路5aを交互に積層して、両端に集電板、絶縁板および大きな荷重に耐えられる強度の高い金属からなる端板を備え、締結ロッドで強固に締結され、放熱を防止し、温度を安定して保持する断熱材を周囲に配置して構成される。   The fuel cell 4 includes a membrane-shaped solid polymer electrolyte 4a made of a perfluorocarbon sulfonic acid polymer having hydrogen ion conductivity, a pair of electrodes formed on both surfaces of the electrolyte 4a, an anode 4b and a cathode 4c, an anode 4b, A pair of gaskets (not shown) provided around the cathode 4c to prevent gas mixing and leakage, and a gas passage for supplying and discharging fuel gas and oxidant gas to and from the anode 4b and cathode 4c, respectively. A unit cell composed of a pair of conductive separator plates 4d and 4e, and a plurality of unit cells and a cooling water flow path 5a for supplying and discharging cooling water are alternately stacked, and a current collecting plate, an insulating plate and a large load are applied to both ends. Equipped with an end plate made of high-strength metal that can withstand, firmly tightened with a fastening rod to prevent heat dissipation and stabilize temperature It constituted insulation for holding placed around.

アノード4bおよびカソード4cは、多孔質カーボンに白金などの貴金属を担持した触媒および水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、その触媒層の上に積層した通気性および電子伝導性を有するガス拡散層からなる。アノード4bには、耐CO性を有する白金−ルテニウムなどの合金触媒を用いた。また、ガス拡散層には撥水処理を施したカーボンペーパーあるいはカーボンクロスを用いた。   The anode 4b and the cathode 4c are composed of a catalyst layer made of a mixture of a catalyst in which noble metal such as platinum is supported on porous carbon and a polymer electrolyte having hydrogen ion conductivity, and air permeability and electrons laminated on the catalyst layer. It consists of a gas diffusion layer having conductivity. For the anode 4b, an alloy catalyst such as platinum-ruthenium having CO resistance was used. Moreover, carbon paper or carbon cloth subjected to water repellent treatment was used for the gas diffusion layer.

冷却水供給管5の上流には、冷却水中に含まれる不純物や金属イオンを除去する冷却水浄化手段6と、冷却水を貯蔵する冷却水タンク7と、冷却水の流量を制御し循環させる冷却水ポンプ8で構成され、冷却水供給管5を介して冷却水を燃料電池4の冷却水流路5aに供給し、燃料電池4の温度を運転温度に制御している。冷却水浄化手段6は活性炭やイオン交換樹脂などを備え、冷却水を浄化して冷却水の導電率を低く保持している。   Upstream of the cooling water supply pipe 5, cooling water purification means 6 that removes impurities and metal ions contained in the cooling water, a cooling water tank 7 that stores cooling water, and cooling that controls and circulates the cooling water flow rate. The water pump 8 is configured to supply the cooling water to the cooling water flow path 5a of the fuel cell 4 through the cooling water supply pipe 5, thereby controlling the temperature of the fuel cell 4 to the operating temperature. The cooling water purification means 6 includes activated carbon, ion exchange resin, and the like, purifies the cooling water, and keeps the conductivity of the cooling water low.

さらに、本発明の実施の形態1の燃料電池発電システムは、燃料電池4の温度を運転温度より低い温度に制御する冷水を供給するために、冷却水供給管5の経路に冷却水と冷水の切り替えを行う冷却水切り替え弁9および10を備え、冷却水切り替え弁9を冷水側に切り替えて、燃料電池4の温度を速やかに低下させることができる構造としている。また、燃料電池4に冷水を供給している間は、冷却水の温度が低下しないように冷却水切り替え弁10を排出側に切り替えて、冷水の冷却水タンク7への混入を防止することができる構造としている。   Furthermore, the fuel cell power generation system according to Embodiment 1 of the present invention supplies cooling water and cold water to the path of the cooling water supply pipe 5 in order to supply cold water that controls the temperature of the fuel cell 4 to a temperature lower than the operating temperature. Cooling water switching valves 9 and 10 for switching are provided, and the cooling water switching valve 9 is switched to the cold water side so that the temperature of the fuel cell 4 can be quickly reduced. Further, while the cold water is being supplied to the fuel cell 4, the cooling water switching valve 10 is switched to the discharge side so that the temperature of the cooling water does not decrease, thereby preventing the cold water from entering the cooling water tank 7. It has a structure that can be done.

冷水には市水などの常温の上水道水を用い、タンクなどの貯蔵設備あるいはラジエータなどの熱交換器などを介することなく、冷水を燃料電池4の直接冷却水流路5aに供給しているので、燃料電池4の温度を速やかに低下させることができ、システムを簡素化できるだけでなく、熱交換器などに付随するファンや、冷却設備などの補機を必要としないので、消費する電力を省力化でき、システムの発電効率を向上することができる。   Cold water is supplied to the direct cooling water flow path 5a of the fuel cell 4 without using storage water such as a tank or a heat exchanger such as a radiator. The temperature of the fuel cell 4 can be quickly reduced, and not only can the system be simplified, but there is no need for fans such as heat exchangers or auxiliary equipment such as cooling equipment, saving power consumption. This can improve the power generation efficiency of the system.

また、冷水を供給する経路には、活性炭やイオン交換樹脂などからなる冷水浄化手段11を備え、冷水中に含まれる不純物や金属イオンを除去して冷水の導電率を低く保持しているので、カーボン製のセパレータ板4dおよび4eなどが電蝕して分解することを防止することができる。   In addition, the path for supplying cold water is equipped with cold water purification means 11 made of activated carbon, ion exchange resin, etc., and removes impurities and metal ions contained in the cold water to keep the conductivity of the cold water low. The carbon separator plates 4d and 4e can be prevented from being decomposed by electrolytic corrosion.

また、冷水浄化手段11の下流には冷水の流量を制御する流量制御手段12を備え、燃料電池4の冷却水流路5aの冷却水入口13の温度と冷却水出口14の温度の差が小さくなるように冷水の流量を制御しているので、速やかに燃料電池4の温度を低下させることができるだけでなく、電極4bおよび4cの面内の温度分布が均一となり、面内全体が活性化されるので、発電効率の向上を図ることができる。   Further, a flow rate control means 12 for controlling the flow rate of the cold water is provided downstream of the cold water purification means 11 so that the difference between the temperature of the cooling water inlet 13 of the cooling water flow path 5a of the fuel cell 4 and the temperature of the cooling water outlet 14 becomes small. Thus, not only can the temperature of the fuel cell 4 be quickly reduced, but also the temperature distribution in the surfaces of the electrodes 4b and 4c becomes uniform, and the entire surface is activated. Therefore, the power generation efficiency can be improved.

さらに、燃料電池4の冷却水出口14の下流には、冷却水と熱交換することができる熱交換器15が設けられており、熱交換器15で熱交換したお湯を貯湯する貯湯タンク16と、貯湯タンク16のお湯を循環させる貯湯ポンプ17を備え、燃料電池4に冷水が供給されている間、貯湯ポンプ17を止めて、お湯が循環しない構成とした。   Further, a heat exchanger 15 capable of exchanging heat with the cooling water is provided downstream of the cooling water outlet 14 of the fuel cell 4, and a hot water storage tank 16 for storing the hot water exchanged by the heat exchanger 15 is provided. A hot water storage pump 17 that circulates the hot water in the hot water storage tank 16 is provided, and the hot water storage pump 17 is stopped while cold water is being supplied to the fuel cell 4 so that hot water does not circulate.

貯湯ポンプ17を止めることにより、貯湯タンク16のお湯の温度が低下しないので、熱効率ロスの少ないシステムを得ることができる。   By stopping the hot water storage pump 17, the temperature of the hot water in the hot water storage tank 16 does not decrease, so that a system with little thermal efficiency loss can be obtained.

また、燃料電池4の両端に燃料電池4の電圧を検出する電圧検出手段18を接続し、電圧検出手段18が燃料電池4の電圧が予め設定した閾値を一定時間以上越えたことを検出した時、冷却水流路5aに運転温度より低い温度に制御する冷水が供給されるように冷却水切り替え弁9および10を切り替えることができるようにした。したがって、燃料電池4の電圧が低下し、燃料電池4の活性が低下したと判断したときだけ、冷却水流路5aに冷水を供給するので、温度の低い冷水による熱効率ロスを最小限に抑えることができる。   Also, voltage detecting means 18 for detecting the voltage of the fuel cell 4 is connected to both ends of the fuel cell 4, and when the voltage detecting means 18 detects that the voltage of the fuel cell 4 has exceeded a preset threshold value for a predetermined time or more. The cooling water switching valves 9 and 10 can be switched so that the cooling water flow path 5a is supplied with the cooling water controlled to a temperature lower than the operating temperature. Therefore, since the cold water is supplied to the cooling water passage 5a only when it is determined that the voltage of the fuel cell 4 is lowered and the activity of the fuel cell 4 is lowered, it is possible to minimize the thermal efficiency loss due to the cold water having a low temperature. it can.

さらに、電圧検出手段18は、燃料電池4が発電中で冷却水流路5aに運転温度より低い冷水が供給されている間、電圧検出手段18が燃料電池4の電圧が予め設定した下限値を越えたことを検出した時、冷却水流路5aに運転温度に制御する冷却水が供給されるように冷却水切り替え弁9および10を戻すことができるようにした。したがって、燃料電池4の温度が低く、凝縮水の生成量が多く、燃料電池4の電圧が下限値を越えるほど低いときは、燃料電池4の温度を上げて凝縮水量を減らすことができ、フラッディングなどの特性低下を抑制することができる。   Further, the voltage detection means 18 is configured so that the voltage of the fuel cell 4 exceeds the preset lower limit value while the fuel cell 4 is generating power and cold water lower than the operating temperature is supplied to the cooling water passage 5a. When this is detected, the cooling water switching valves 9 and 10 can be returned so that the cooling water controlled to the operating temperature is supplied to the cooling water flow path 5a. Accordingly, when the temperature of the fuel cell 4 is low, the amount of condensed water generated is large, and the voltage of the fuel cell 4 is low enough to exceed the lower limit, the temperature of the fuel cell 4 can be raised to reduce the amount of condensed water, and flooding It is possible to suppress deterioration of characteristics such as.

上記構成の本発明の燃料電池発電システムの動作について説明する。アノード4bおよびカソード4cにそれぞれ燃料ガスおよび酸化剤ガスを供給して負荷を接続すると、アノード4bに供給された燃料ガス中に含まれる水素はアノード4bと電解質4aの界面で電子を放って水素イオンとなる、この反応式は(化学式5)のようになる。   The operation of the fuel cell power generation system of the present invention having the above configuration will be described. When a fuel gas and an oxidant gas are supplied to the anode 4b and the cathode 4c, respectively, and a load is connected, hydrogen contained in the fuel gas supplied to the anode 4b emits electrons at the interface between the anode 4b and the electrolyte 4a to form hydrogen ions. This reaction formula is as shown in (Chemical Formula 5).

(化学式5)H → 2H 2e
水素イオンは電解質4aを通ってそれぞれカソード4cへと移動し、カソード4cと電解質4aの界面で電子を受け取り、カソード4cに供給された酸化剤ガス中に含まれる酸素と反応し、水を生成する。この反応式は(化学式6)のようになる。
(Chemical Formula 5) H 2 → 2H + 2e
The hydrogen ions move to the cathode 4c through the electrolyte 4a, receive electrons at the interface between the cathode 4c and the electrolyte 4a, react with oxygen contained in the oxidant gas supplied to the cathode 4c, and generate water. . This reaction formula is as shown in (Chemical Formula 6).

(化学式6)1/2O + 2H + 2e → H
全反応を(化学式7)に示す。
(Chemical formula 6) 1 / 2O 2 + 2H + + 2e → H 2 O
The total reaction is shown in (Chemical Formula 7).

(化学式7)H + 1/2O → H
このとき負荷を流れる電子の流れを直流の電気エネルギーとして利用することができる。また、一連の反応は発熱反応であるため、反応熱を熱エネルギーとして利用することができる。
(Chemical Formula 7) H 2 + 1 / 2O 2 → H 2 O
At this time, the flow of electrons flowing through the load can be used as direct current electric energy. Moreover, since a series of reactions are exothermic reactions, the reaction heat can be used as thermal energy.

ここで、燃料ガスあるいは酸化剤ガスの加湿が不十分である、燃料電池4の冷却が不十分であるなどして、電解質4aや触媒層中に含有される高分子電解質が乾燥気味になり、水分を十分に含まない場合、水素イオン伝導性が低下し、発電性能が低下することがある。また、初期運転時や、長期放置した場合なども含水率が低下して、発電性能が低下する場合がある。   Here, the humidification of the fuel gas or the oxidant gas is insufficient, the cooling of the fuel cell 4 is insufficient, and the polymer electrolyte contained in the electrolyte 4a and the catalyst layer becomes dry, When water is not sufficiently contained, hydrogen ion conductivity may be reduced and power generation performance may be reduced. In addition, the moisture content may be reduced during initial operation or when left for a long period of time, and power generation performance may be reduced.

しかし、本発明の実施の形態1の燃料電池発電システムは冷却水切り替え弁9および10が冷却水を冷水に切り替えて燃料電池4に冷水を供給するので、燃料電池4の温度を速やかに低下させることができ、燃料電池4内に凝縮水を生成し、生成した凝縮水で電解質4aの含水率を増加することができる。   However, in the fuel cell power generation system according to Embodiment 1 of the present invention, the cooling water switching valves 9 and 10 switch the cooling water to the cold water and supply the cold water to the fuel cell 4, so that the temperature of the fuel cell 4 is quickly reduced. It is possible to generate condensed water in the fuel cell 4 and increase the water content of the electrolyte 4a with the generated condensed water.

また、燃料電池4に各種有機溶剤、界面活性剤、油脂などの有機物などの不純物が混入すると、上記化学反応が阻害されるため燃料電池4の電圧が低下したり、電解質4aおよび触媒層中に含有される高分子電解質の濡れ性(水に対する濡れ性)が低下したり、イオン交換特性が低下して、発電性能が低下することがある。   Further, when impurities such as various organic solvents, surfactants, organic substances such as fats and oils are mixed in the fuel cell 4, the chemical reaction is hindered, so that the voltage of the fuel cell 4 is reduced, or the electrolyte 4a and the catalyst layer have The wettability (wetability with water) of the contained polymer electrolyte may be reduced, or the ion exchange characteristics may be reduced, thereby reducing the power generation performance.

例えば、燃料電池4の製造過程において、電極4bあるいは4cの触媒層形成用の塗工インクなどの溶媒成分であるアルコールなどの有機溶媒が触媒層内に残存した場合、製造中、大気中の油脂が電極表面などに付着した場合、あるいは燃料電池4の発電中、停止中および保存中にシール材料、樹脂材料などの構成材料から有機物などの不純物が混入する場合、外部から有機物などの不純物が酸化剤ガスと一緒に運ばれて混入する場合が挙げられる。   For example, when an organic solvent such as alcohol, which is a solvent component such as a coating ink for forming the catalyst layer of the electrode 4b or 4c, remains in the catalyst layer in the manufacturing process of the fuel cell 4, oil and fat in the atmosphere during the manufacturing process. When impurities adhere to the electrode surface, or when impurities such as organic matter are mixed in from the constituent materials such as the sealing material and resin material during power generation, stopping and storage of the fuel cell 4, impurities such as organic matter are oxidized from the outside. The case where it is carried together with the agent gas and mixed is mentioned.

しかし、本発明の実施の形態1の燃料電池発電システムは冷却水切り替え弁9および10が冷却水を冷水に切り替えて燃料電池4に冷水を供給するので、燃料電池4の温度を速やかに低下させることができ、燃料電池4内に凝縮水を生成し、生成した凝縮水で電極4bおよび4cなどに付着した不純物を洗浄除去し、排出することができる。   However, in the fuel cell power generation system according to Embodiment 1 of the present invention, the cooling water switching valves 9 and 10 switch the cooling water to the cold water and supply the cold water to the fuel cell 4, so that the temperature of the fuel cell 4 is quickly reduced. In addition, condensed water can be generated in the fuel cell 4, and impurities attached to the electrodes 4b and 4c and the like can be washed away with the generated condensed water and discharged.

次に、本発明の実施の形態1の燃料電池発電システムの運転方法について図2のフローチャートを用いて説明する。   Next, an operation method of the fuel cell power generation system according to Embodiment 1 of the present invention will be described with reference to the flowchart of FIG.

図2は、燃料電池4の発電中に燃料電池4を活性化するときのシーケンスを示している。   FIG. 2 shows a sequence when the fuel cell 4 is activated during the power generation of the fuel cell 4.

まず、燃料電池4が発電しており、冷却水流路5aには燃料電池4を運転温度に制御する冷却水が冷却水タンク7から供給されていることを確認する(ステップ101)。   First, it is confirmed that the fuel cell 4 is generating power, and that the coolant that controls the fuel cell 4 to the operating temperature is supplied from the coolant tank 7 to the coolant channel 5a (step 101).

そして、電圧検出手段18により燃料電池4の電圧が予め設定した閾値以下であることが検出されると(ステップ102)、冷却水切り替え弁9が、燃料電池4の運転温度より低い冷水側に切り替わり、燃料電池4の冷却水流路5aに冷水が供給される(ステップ103)。   When the voltage detector 18 detects that the voltage of the fuel cell 4 is equal to or lower than a preset threshold value (step 102), the cooling water switching valve 9 is switched to the cold water side lower than the operating temperature of the fuel cell 4. Then, cold water is supplied to the cooling water flow path 5a of the fuel cell 4 (step 103).

このとき冷却水出口14の冷却水切り替え弁10は、冷水が冷却水タンク7に混入しないように、排出側に切り替わる。予め設定した時間が経過したら(ステップ104)、冷却水切り替え弁9および10を冷却水側に切り替えて活性化終了としている(ステップ105)。   At this time, the cooling water switching valve 10 at the cooling water outlet 14 is switched to the discharge side so that the cooling water is not mixed into the cooling water tank 7. When a preset time has elapsed (step 104), the cooling water switching valves 9 and 10 are switched to the cooling water side to complete the activation (step 105).

上記シーケンスにより発電中に、燃料電池4に冷水を供給して速やかに温度を低下させることにより、凝縮水が生成し、燃料電池4を活性化させることができる。図3に、冷水を供給して燃料電池4を活性化する前後での電圧変化を示す。活性化後、燃料電池4の電圧は4〜5%上昇し、発電効率が上がることが判った。   Condensed water is generated and the fuel cell 4 can be activated by supplying cold water to the fuel cell 4 and rapidly reducing the temperature during power generation by the above sequence. FIG. 3 shows a voltage change before and after activating the fuel cell 4 by supplying cold water. After activation, it was found that the voltage of the fuel cell 4 increased by 4 to 5%, and the power generation efficiency increased.

したがって、本発明の実施の形態1の燃料電池発電システムおよびその運転方法により、凝縮水が生成し、電解質4aの含水率が増加し、不純物が洗浄除去されるので、燃料電池が活性化され、発電効率および耐久性に優れた燃料電池発電システムを得ることができる。   Therefore, according to the fuel cell power generation system and the operation method thereof according to the first embodiment of the present invention, condensed water is generated, the moisture content of the electrolyte 4a is increased, and impurities are washed and removed, so that the fuel cell is activated, A fuel cell power generation system having excellent power generation efficiency and durability can be obtained.

(実施の形態2)
次に、本発明の実施の形態1と同じ燃料電池発電システムを用いて、停止および起動時に燃料電池4を活性化する方法について、図4のフローチャートを用いてステップ毎に動作を説明する。
(Embodiment 2)
Next, an operation of the method for activating the fuel cell 4 at the time of stopping and starting using the same fuel cell power generation system as that of Embodiment 1 of the present invention will be described for each step using the flowchart of FIG.

図4において、まず、燃料電池4が発電しており、冷却水流路5aには燃料電池4を運転温度に制御する冷却水が冷却水タンク7から供給されていることを確認する(ステップ201)。   In FIG. 4, first, it is confirmed that the fuel cell 4 is generating electric power, and that the cooling water for controlling the fuel cell 4 to the operating temperature is supplied from the cooling water tank 7 to the cooling water channel 5a (step 201). .

そして、電圧検出手段18により燃料電池4の電圧が予め設定した閾値以下であることが検出されると(ステップ202)、冷却水切り替え弁9が、燃料電池4の運転温度より低い冷水を供給する側に切り替わり、燃料電池4の冷却水流路5aに冷水が供給される(ステップ203)。このとき冷却水出口14の冷却水切り替え弁10は、冷水が冷却水タンク7に混入しないように、排出側に切り替わる。   When the voltage detector 18 detects that the voltage of the fuel cell 4 is equal to or lower than a preset threshold value (step 202), the cooling water switching valve 9 supplies cold water lower than the operating temperature of the fuel cell 4. The cold water is supplied to the cooling water flow path 5a of the fuel cell 4 (step 203). At this time, the cooling water switching valve 10 at the cooling water outlet 14 is switched to the discharge side so that the cooling water is not mixed into the cooling water tank 7.

そして、燃料電池4に接続されている負荷を切断し、発電を停止する(ステップ204)。このときアノード4bおよびカソード4cにはそれぞれ燃料ガスおよび酸化剤ガスが流通している。   Then, the load connected to the fuel cell 4 is disconnected, and power generation is stopped (step 204). At this time, the fuel gas and the oxidant gas are flowing through the anode 4b and the cathode 4c, respectively.

そして、電圧検出手段18が燃料電池4の電圧が開回路状態であることを検知した後(ステップ205)、カソード4cに供給されている酸化剤ガスの供給を停止する(ステップ206)。開回路状態にすることにより、カソード4cの触媒表面の電位が上昇し、カソード4cに付着していた不純物を酸化し、凝縮水に溶解しやすくして洗浄効果を高めることができる。   Then, after the voltage detector 18 detects that the voltage of the fuel cell 4 is in an open circuit state (step 205), the supply of the oxidant gas supplied to the cathode 4c is stopped (step 206). By setting the open circuit state, the potential of the catalyst surface of the cathode 4c is increased, and the impurities adhering to the cathode 4c are oxidized and easily dissolved in the condensed water, thereby enhancing the cleaning effect.

そして、酸化剤ガスの供給を停止すると、酸化剤ガス中の酸素はアノード4b側からクロスリークしてくる燃料ガス中に含まれる水素と反応して、消費されてなくなるので、カソード4cの電位が下がり、カソード4cの触媒表面を還元して、触媒活性を上げることができる。   When the supply of the oxidant gas is stopped, oxygen in the oxidant gas reacts with hydrogen contained in the fuel gas that cross leaks from the anode 4b side and is not consumed. Then, the catalytic surface of the cathode 4c can be reduced to increase the catalytic activity.

そして、電圧検出手段18が停止時の電圧が予め設定した閾値以下であることを検出する(ステップ207)。ステップ207までが燃料電池4の停止時に行う活性化方法で、ここで、燃料ガスを停止し、システムを立ち下げても同様の効果が得られる。   Then, the voltage detection means 18 detects that the voltage at the time of stop is equal to or less than a preset threshold value (step 207). The activation method up to step 207 is performed when the fuel cell 4 is stopped. Here, the same effect can be obtained even when the fuel gas is stopped and the system is shut down.

図4では、続けて起動を行い、起動時にも活性化を行う場合のステップを示しており、発電を開始するために、アノード4bに燃料ガスが供給されている状態で酸化剤ガスの供給を開始する(ステップ208)。   FIG. 4 shows the steps in the case where the start-up is continued and the activation is also performed at the start-up. In order to start the power generation, the oxidant gas is supplied while the fuel gas is supplied to the anode 4b. Start (step 208).

このとき冷却水切り替え弁9および10は冷水側になっており、燃料電池4の冷却水流路5aには冷水が供給され、燃料電池4は低温となっている。そして、電圧検出手段18が燃料電池4の電圧が開回路状態であることを検知した後(ステップ209)、負荷を接続し、発電を開始する(ステップ210)。   At this time, the cooling water switching valves 9 and 10 are on the cold water side, cold water is supplied to the cooling water flow path 5a of the fuel cell 4, and the fuel cell 4 is at a low temperature. Then, after the voltage detector 18 detects that the voltage of the fuel cell 4 is in an open circuit state (step 209), the load is connected and power generation is started (step 210).

発電直前に開回路状態にすることにより、カソード4cの電位が上昇し、カソード4cの触媒に付着していた不純物を酸化し、除去しやすくして、凝縮水の洗浄効果を促進することができる。そして、発電を停止してから再び発電するまでのサイクルの数を一回とし、終了したらサイクル数をカウントアップする(ステップ211)。   By setting the open circuit state immediately before power generation, the potential of the cathode 4c increases, and the impurities adhering to the catalyst of the cathode 4c can be oxidized and removed easily, and the cleaning effect of condensed water can be promoted. . Then, the number of cycles from when power generation is stopped to when power is generated again is set to one, and when it is completed, the number of cycles is counted up (step 211).

そして、ステップ204からステップ211までのステップを繰り返し、サイクル数が予め設定した回数に到達したら(ステップ212)、冷却水切り替え弁9および10を冷却水側に切り替えて(ステップ213)、燃料電池4の活性化を終了としている。   The steps from step 204 to step 211 are repeated, and when the number of cycles reaches a preset number (step 212), the cooling water switching valves 9 and 10 are switched to the cooling water side (step 213), and the fuel cell 4 The activation of is finished.

上記シーケンスにより、燃料電池4に冷水を供給しながら、停止と発電を繰り返して、カソード4cの電位を昇降させるので、不純物の洗浄効果が高まり、さらに燃料電池4を活性化することができる。   According to the above sequence, stop and power generation are repeated while supplying cold water to the fuel cell 4 to raise and lower the potential of the cathode 4c, so that the effect of cleaning impurities can be enhanced and the fuel cell 4 can be activated.

(実施の形態3)
本発明の実施の形態3の実施の形態1と異なる点は、貯湯タンク16の上流に貯湯タンク切り替え弁19を備え、冷却水供給管5が燃料電池4に冷却水を供給している間は熱交換器15で熱交換したお湯を貯湯タンクの上部20に、燃料電池4に冷水が供給されている間は熱交換器15を流通したお湯を貯湯タンクの下部21に導入するように貯湯タンク切り替え弁19を切り替えるように構成した点である。
(Embodiment 3)
The third embodiment of the present invention differs from the first embodiment in that a hot water storage tank switching valve 19 is provided upstream of the hot water storage tank 16 while the cooling water supply pipe 5 supplies the cooling water to the fuel cell 4. Hot water that has been heat-exchanged by the heat exchanger 15 is supplied to the upper part 20 of the hot water storage tank, and hot water circulated through the heat exchanger 15 is introduced to the lower part 21 of the hot water storage tank while cold water is being supplied to the fuel cell 4. It is the point which comprised so that the switching valve 19 might be switched.

上記構成によれば、熱いお湯と冷たい水は比重が異なるため、熱いお湯は貯湯タンクの上部20に、冷たい水は貯湯タンクの下部21に分離することができ、貯湯タンク16の上流側に配置された貯湯タンク切り替え弁19は、燃料電池4の運転温度で熱交換した熱いお湯を貯湯タンクの上部20に、熱交換できなかった冷たい水を貯湯タンクの下部21に導入するように切り替えることができる。   According to the above configuration, since hot water and cold water have different specific gravities, hot water can be separated into the upper part 20 of the hot water storage tank, and cold water can be separated into the lower part 21 of the hot water storage tank. The hot water storage tank switching valve 19 is switched so as to introduce hot hot water whose heat has been exchanged at the operating temperature of the fuel cell 4 into the upper part 20 of the hot water storage tank and cold water which has not been heat exchanged into the lower part 21 of the hot water storage tank. it can.

したがって、燃料電池4に温度の低い冷水が流れた時も、熱交換器15で熱交換して貯湯タンク16に貯湯することができるので、給湯するお湯の温度を低下させることなく、熱効率ロスの少ないシステムを得ることができる。   Therefore, even when cold water having a low temperature flows through the fuel cell 4, heat can be exchanged by the heat exchanger 15 and stored in the hot water storage tank 16, so that the heat efficiency loss can be reduced without lowering the temperature of the hot water to be supplied. A few systems can be obtained.

本発明の燃料電池発電システムおよびその運転方法は、電解質の含水率の増加と、不純物の洗浄除去による燃料電池の活性化を実現し、発電効率と耐久性の向上という効果を有し、高分子型固体電解質膜を用いた燃料電池、燃料電池デバイスに有用である。また、上水道水を直接使用できる定置用燃料電池コジェネレーションシステムにも利用可能である。   The fuel cell power generation system and the operation method thereof according to the present invention have the effect of increasing the moisture content of the electrolyte and activating the fuel cell by washing and removing impurities, improving the power generation efficiency and durability, This is useful for a fuel cell and a fuel cell device using a solid electrolyte membrane. It can also be used in stationary fuel cell cogeneration systems that can directly use tap water.

本発明の実施の形態1における燃料電池発電システムの概略構成図1 is a schematic configuration diagram of a fuel cell power generation system according to Embodiment 1 of the present invention. 同システムの運転方法を示すフローチャートFlow chart showing the operation method of the system 同システムによる活性化前後における電圧変化を示す特性図Characteristic diagram showing voltage change before and after activation by the system 本発明の実施の形態2における燃料電池発電システムの停止および発電時の運転方法を示すフローチャートThe flowchart which shows the operation method at the time of the stop of the fuel cell power generation system in Embodiment 2 of this invention, and electric power generation 従来の燃料電池発電システムの概略構成図Schematic configuration diagram of a conventional fuel cell power generation system

符号の説明Explanation of symbols

1 燃料供給手段
1a 脱硫部
1b 改質部
1c CO変成部
1d CO除去部
2 酸化剤ガス供給手段
2a ブロワ
2b 不純物除去手段
3 加湿手段
4 燃料電池
4a 固体高分子電解質
4b アノード
4c カソード
4d,4e セパレータ板
5 冷却水供給管
5a 冷却水流路
6 冷却水浄化手段
7 冷却水タンク
8 冷却水ポンプ
9,10 冷却水切り替え弁
11 冷水浄化手段
12 流量制御手段
13 冷却水入口
14 冷却水出口
15 熱交換器
16 貯湯タンク
17 貯湯ポンプ
18 電圧検出手段
19 貯湯タンク切り替え弁
20 貯湯タンクの上部
21 貯湯タンクの下部
DESCRIPTION OF SYMBOLS 1 Fuel supply means 1a Desulfurization part 1b Reforming part 1c CO conversion part 1d CO removal part 2 Oxidant gas supply means 2a Blower 2b Impurity removal means 3 Humidification means 4 Fuel cell 4a Solid polymer electrolyte 4b Anode 4c Cathode 4d, 4e Separator Plate 5 Cooling water supply pipe 5a Cooling water flow path 6 Cooling water purifying means 7 Cooling water tank 8 Cooling water pump 9, 10 Cooling water switching valve 11 Cooling water purifying means 12 Flow rate controlling means 13 Cooling water inlet 14 Cooling water outlet 15 Heat exchanger 16 Hot water storage tank 17 Hot water storage pump 18 Voltage detection means 19 Hot water storage tank switching valve 20 Upper part of hot water storage tank 21 Lower part of hot water storage tank

Claims (16)

燃料電池と、前記燃料電池を冷却する冷却水を流通する冷却水流路と、前記冷却水を貯蔵する冷却水タンクと、前記冷却水タンクから前記冷却水流路に前記冷却水を供給する冷却水供給管と、前記冷却水供給管の経路に取り付けられ前記冷却水を前記冷却水より低温の冷水に切り替える冷却水切り替え弁とを備えた燃料電池発電システム。   A fuel cell, a cooling water passage for circulating cooling water for cooling the fuel cell, a cooling water tank for storing the cooling water, and a cooling water supply for supplying the cooling water from the cooling water tank to the cooling water passage A fuel cell power generation system comprising a pipe and a cooling water switching valve that is attached to a path of the cooling water supply pipe and switches the cooling water to cold water having a temperature lower than that of the cooling water. 前記冷水は上水道水から供給する請求項1に記載の燃料電池発電システム。   The fuel cell power generation system according to claim 1, wherein the cold water is supplied from tap water. 前記冷水を浄化する冷水浄化手段を備えた請求項1に記載の燃料電池発電システム。   The fuel cell power generation system according to claim 1, further comprising cold water purification means for purifying the cold water. 前記冷水の流量を制御する流量制御手段を備え、前記流量制御手段は前記冷却水流路の入口温度と出口温度の差が小さくなるように前記冷水の流量を制御する請求項1に記載の燃料電池発電システム。   2. The fuel cell according to claim 1, further comprising a flow rate control unit configured to control a flow rate of the cold water, wherein the flow rate control unit controls the flow rate of the cold water so that a difference between an inlet temperature and an outlet temperature of the cooling water flow path becomes small. Power generation system. 前記燃料電池に供給された前記冷却水と熱交換する熱交換器と、前記熱交換器で熱交換したお湯を貯蔵する貯湯タンクと、前記貯湯タンクのお湯を循環させる貯湯ポンプを備え、前記貯湯ポンプは、前記冷却水流路に冷水が流通している間は停止する請求項1に記載の燃料電池発電システム。   A heat exchanger for exchanging heat with the cooling water supplied to the fuel cell; a hot water storage tank for storing hot water heat exchanged by the heat exchanger; and a hot water storage pump for circulating hot water in the hot water storage tank, The fuel cell power generation system according to claim 1, wherein the pump is stopped while cold water is flowing through the cooling water flow path. 前記燃料電池に供給された前記冷却水と熱交換する熱交換器と、前記熱交換器で熱交換したお湯を貯蔵する貯湯タンクと、前記貯湯タンクの上流側に配置した貯湯タンク切り替え弁を備え、前記貯湯タンク切り替え弁は、前記冷却水流路に前記冷却水が流通している間は熱交換したお湯を前記貯湯タンクの上部に導入し、前記冷却水流路に前記冷水が流通している間は前記熱交換器を流通したお湯を前記貯湯タンクの下部に導入するように切り替える請求項1に記載の燃料電池発電システム。   A heat exchanger for exchanging heat with the cooling water supplied to the fuel cell; a hot water storage tank for storing hot water exchanged by the heat exchanger; and a hot water tank switching valve disposed on the upstream side of the hot water storage tank. The hot water storage tank switching valve introduces hot water whose heat has been exchanged into the upper part of the hot water storage tank while the cooling water is flowing through the cooling water flow path, while the cold water is flowing through the cooling water flow path. 2. The fuel cell power generation system according to claim 1, wherein hot water flowing through the heat exchanger is switched to be introduced into a lower portion of the hot water storage tank. 前記燃料電池の電圧を検出する電圧検出手段を備え、前記電圧検出手段が前記燃料電池の電圧が予め設定した閾値を一定時間以上越えたことを検出したとき、前記冷却水流路に冷却水より低温の前記冷水が供給されるように前記冷却水切り替え弁を切り替える請求項1に記載の燃料電池発電システム。   Voltage detecting means for detecting the voltage of the fuel cell, and when the voltage detecting means detects that the voltage of the fuel cell exceeds a preset threshold value for a predetermined time or more, the cooling water flow path has a temperature lower than that of the cooling water. The fuel cell power generation system according to claim 1, wherein the cooling water switching valve is switched so that the cold water is supplied. 前記燃料電池の電圧を検出する電圧検出手段を備え、前記燃料電池が発電中で前記冷却水流路に前記冷却水より低温の前記冷水が供給されている間で、前記電圧検出手段が前記燃料電池の電圧が予め設定した下限値を越えたことを検出したとき、前記冷却水流路に前記冷却水が供給されるように前記冷却水切り替え弁を切り替える請求項1に記載の燃料電池発電システム。   Voltage detection means for detecting the voltage of the fuel cell is provided, and the voltage detection means is the fuel cell while the fuel cell is generating power and the cold water having a temperature lower than the cooling water is supplied to the cooling water flow path. 2. The fuel cell power generation system according to claim 1, wherein the cooling water switching valve is switched so that the cooling water is supplied to the cooling water flow path when it is detected that the voltage of the first water exceeds a preset lower limit value. 燃料電池と、前記燃料電池を冷却する冷却水を流通する冷却水流路と、前記冷却水を貯蔵する冷却水タンクと、前記冷却水タンクから前記冷却水流路に前記冷却水を供給する冷却水供給管と、前記冷却水供給管の経路に取り付けられ前記冷却水を前記冷却水より低温の冷水に切り替える冷却水切り替え弁と、前記燃料電池に供給される燃料ガスおよび酸化剤ガスを加湿する加湿手段とを備え、前記冷却水切り替え弁を切り替えて前記冷却水流路に供給された前記冷水により前記加湿手段で加湿された前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復する燃料電池発電システムの運転方法。   A fuel cell, a cooling water passage for circulating cooling water for cooling the fuel cell, a cooling water tank for storing the cooling water, and a cooling water supply for supplying the cooling water from the cooling water tank to the cooling water passage A cooling water switching valve that is attached to a path of the cooling water supply pipe and that switches the cooling water to cold water lower in temperature than the cooling water, and a humidifying means that humidifies the fuel gas and the oxidant gas supplied to the fuel cell The cooling water switching valve is switched to condense the fuel gas and the oxidant gas humidified by the humidifying means with the cold water supplied to the cooling water flow path to generate condensed water, and the condensation A method for operating a fuel cell power generation system, wherein water is supplied to the fuel cell to restore the activity of the fuel cell. 加湿された前記燃料ガスおよび前記酸化剤ガスの内、少なくとも前記酸化剤ガスの供給を停止して発電を停止し、前記燃料電池の電圧を降下させながら前記冷却水切り替え弁を切り替えて前記冷却水流路に供給された冷水で残存する前記燃料ガスおよび前記酸化剤ガスを凝縮して凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復する請求項9に記載の燃料電池発電システムの運転方法。   Of the humidified fuel gas and oxidant gas, supply of at least the oxidant gas is stopped to stop power generation, and the cooling water switching valve is switched while lowering the voltage of the fuel cell to switch the cooling water flow 10. The fuel gas and the oxidant gas remaining in the cold water supplied to the passage are condensed to generate condensed water, and the condensed water is supplied to the fuel cell to restore the activity of the fuel cell. An operation method of the fuel cell power generation system described. 負荷を切断し一旦開回路状態にした後、加湿された前記燃料ガスおよび前記酸化剤ガスの内、少なくとも前記酸化剤ガスの供給を停止して発電を停止する請求項9または10に記載の燃料電池発電システムの運転方法。   The fuel according to claim 9 or 10, wherein after the load is cut and the circuit is once opened, the supply of at least the oxidant gas of the humidified fuel gas and the oxidant gas is stopped to stop power generation. Operation method of battery power generation system. 前記冷却水切り替え弁を切り替えて前記冷却水流路に前記冷却水より低温の前記冷水を供給し、加湿された前記燃料ガスおよび前記酸化剤ガスを供給して発電を開始し、前記燃料ガスおよび前記酸化剤ガスを凝縮して前記凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復した後、前記冷却水切り替え弁を切り替えて前記冷却水流路に前記冷却水を供給する請求項9に記載の燃料電池発電システムの運転方法。   The cooling water switching valve is switched to supply the cold water having a temperature lower than the cooling water to the cooling water flow path, the humidified fuel gas and the oxidant gas are supplied to start power generation, and the fuel gas and the After the oxidant gas is condensed to generate the condensed water, and the condensed water is supplied to the fuel cell to restore the activity of the fuel cell, the cooling water switching valve is switched to cool the cooling water flow path to the cooling water flow path. The operation method of the fuel cell power generation system according to claim 9, wherein water is supplied. 前記冷却水切り替え弁を切り替えて前記冷却水流路に前記冷却水より低温の前記冷水を供給し、加湿された前記燃料ガスおよび前記酸化剤ガスを供給し、一旦開回路状態にした後、発電を開始する請求項9または12に記載の燃料電池発電システムの運転方法。   The cooling water switching valve is switched to supply the cooling water at a temperature lower than the cooling water to the cooling water flow path, and the humidified fuel gas and the oxidant gas are supplied. The operation method of the fuel cell power generation system according to claim 9 or 12, which starts. 加湿された前記燃料ガスおよび前記酸化剤ガスの内、少なくとも前記酸化剤ガスの供給を停止して発電を停止し、前記燃料電池の電圧を降下させながら前記冷却水切り替え弁を切り替えて前記冷却水流路に供給された前記冷水で残存する前記燃料ガスおよび前記酸化剤ガスを凝縮して前記凝縮水を生成し、前記凝縮水を前記燃料電池に供給し、前記冷却水流路に前記冷水を供給したまま、加湿された前記燃料ガスおよび前記酸化剤ガスを供給して発電を開始し、前記燃料ガスおよび前記酸化剤ガスを凝縮して前記凝縮水を生成し、前記凝縮水を前記燃料電池に供給して前記燃料電池の活性を回復した後、冷却水切り替え弁を切り替えて冷却水を供給する起動停止を少なくとも一回以上行って前記燃料電池の活性を回復する請求項9ないし13のいずれか1項に記載の燃料電池発電システムの運転方法。   Of the humidified fuel gas and oxidant gas, supply of at least the oxidant gas is stopped to stop power generation, and the cooling water switching valve is switched while lowering the voltage of the fuel cell to switch the cooling water flow The fuel gas and the oxidant gas remaining in the cold water supplied to the passage are condensed to generate the condensed water, the condensed water is supplied to the fuel cell, and the cold water is supplied to the cooling water passage. The humidified fuel gas and the oxidant gas are supplied to start power generation, the fuel gas and the oxidant gas are condensed to generate the condensed water, and the condensed water is supplied to the fuel cell. 14. After the activity of the fuel cell is recovered, the activation of the fuel cell is recovered by switching the cooling water switching valve and starting and stopping at least once to supply the cooling water. The method of operating a fuel cell power generation system according to any one. システムを設置した後、初回に発電させる時、前記冷却水切り替え弁を切り替えて前記冷却水流路に前記冷水を供給し、前記燃料ガスおよび前記酸化剤ガスを凝縮して前記凝縮水を生成し、前記凝縮水を燃料電池に供給して前記燃料電池の活性を回復する起動停止を少なくとも一回以上行う請求項9ないし14のいずれか1項に記載の燃料電池発電システムの運転方法。   When power is generated for the first time after installing the system, the cooling water switching valve is switched to supply the cooling water to the cooling water flow path, the fuel gas and the oxidant gas are condensed to generate the condensed water, The method of operating a fuel cell power generation system according to any one of claims 9 to 14, wherein start-stop is performed at least once to supply the condensed water to the fuel cell and restore the activity of the fuel cell. 長期間システムを停止した後、発電させる前に前記冷却水切り替え弁を切り替えて前記冷却水流路に前記冷水を供給し、前記燃料ガスおよび前記酸化剤ガスを凝縮して前記凝縮水を生成し、前記凝縮水を燃料電池に供給して前記燃料電池の活性を回復する起動停止を少なくとも一回以上行う請求項9ないし14のいずれか1項に記載の燃料電池発電システムの運転方法。   After stopping the system for a long period of time, before generating electricity, switch the cooling water switching valve to supply the cooling water to the cooling water flow path, condense the fuel gas and the oxidant gas to generate the condensed water, The method of operating a fuel cell power generation system according to any one of claims 9 to 14, wherein start-stop is performed at least once to supply the condensed water to the fuel cell and restore the activity of the fuel cell.
JP2008003999A 2008-01-11 2008-01-11 Fuel cell power generation system and its operation method Pending JP2009170131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003999A JP2009170131A (en) 2008-01-11 2008-01-11 Fuel cell power generation system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003999A JP2009170131A (en) 2008-01-11 2008-01-11 Fuel cell power generation system and its operation method

Publications (1)

Publication Number Publication Date
JP2009170131A true JP2009170131A (en) 2009-07-30

Family

ID=40971103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003999A Pending JP2009170131A (en) 2008-01-11 2008-01-11 Fuel cell power generation system and its operation method

Country Status (1)

Country Link
JP (1) JP2009170131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277637A (en) * 2008-05-15 2009-11-26 Hyundai Motor Co Ltd Method of activating fuel cell
KR102044766B1 (en) * 2019-07-24 2019-11-19 주식회사 코텍에너지 High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
CN116078768A (en) * 2023-04-12 2023-05-09 江苏尚纯自动化技术有限公司 Rinsing method of electrolyte storage barrel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277637A (en) * 2008-05-15 2009-11-26 Hyundai Motor Co Ltd Method of activating fuel cell
KR102044766B1 (en) * 2019-07-24 2019-11-19 주식회사 코텍에너지 High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
CN116078768A (en) * 2023-04-12 2023-05-09 江苏尚纯自动化技术有限公司 Rinsing method of electrolyte storage barrel
CN116078768B (en) * 2023-04-12 2023-06-27 江苏尚纯自动化技术有限公司 Rinsing method of electrolyte storage barrel

Similar Documents

Publication Publication Date Title
JP4915452B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP5049413B2 (en) Fuel cell system and operation method thereof
JP4624670B2 (en) Integration of the functions of many components of a fuel cell power plant
KR101519667B1 (en) Method for accelerating activation of fuel cell
JP5221766B2 (en) Fuel cell power generation system and operation method thereof
JP5071254B2 (en) Fuel cell power generation system and operation method thereof
WO2002015315A1 (en) Fuel cell system
US9472821B2 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2009170131A (en) Fuel cell power generation system and its operation method
JP2003031255A (en) Fuel cell power generation device and feeding method of condensate to water storage tank
JP4015225B2 (en) Carbon monoxide removal equipment
JP2016167375A (en) Operation method for solid polymer type fuel battery
JP2010153195A (en) Fuel cell power generation system of fuel cell and its operation method
JP2005317489A (en) Solid oxide fuel cell system
JP6145683B2 (en) Fuel cell power generation system
JP2010267563A (en) Fuel cell power generation system
JP2015011914A (en) Fuel cell system
KR101628443B1 (en) Dehydration Control System and Method of Fuel Cell Stack
JP5119569B2 (en) Solid polymer fuel cell power generation method and apparatus
JP2014075277A (en) Fuel cell system and operation method thereof
JP2007018859A (en) Fuel cell power generation system
JP2011100547A (en) Fuel cell power generating system
JP2005216510A (en) Fuel cell system
JP2004199980A (en) Fuel cell system
JP2005294223A (en) Solid polymer electrolyte fuel cell system and its operation method