JP2009170011A - Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method - Google Patents

Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method Download PDF

Info

Publication number
JP2009170011A
JP2009170011A JP2008004970A JP2008004970A JP2009170011A JP 2009170011 A JP2009170011 A JP 2009170011A JP 2008004970 A JP2008004970 A JP 2008004970A JP 2008004970 A JP2008004970 A JP 2008004970A JP 2009170011 A JP2009170011 A JP 2009170011A
Authority
JP
Japan
Prior art keywords
optical
recording medium
light
optical recording
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008004970A
Other languages
Japanese (ja)
Inventor
Arikatsu Nakaoki
有克 中沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008004970A priority Critical patent/JP2009170011A/en
Publication of JP2009170011A publication Critical patent/JP2009170011A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To allow recording and reproduction using near-field light for an optical recording medium including two recording layers. <P>SOLUTION: An optical pickup 30 includes a near-field optical system irradiating the optical recording medium with the near-field light. The near-field optical system is an objective lens 20 using a solid immersion lens 22. The objective lens 20 is adjusted to obtain the minimum spherical aberration in a focusing state on one layer L1 from among the recording layers L0, L1 of the optical recording medium. A focus adjustment mechanism 10 for performing the adjustment of the focal position by making incident light into parallel light or non-parallel light is provided. An aberration correction means 7 correcting the spherical aberration generated due to the movement of the focal position is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、近接場光を光記録媒体に照射して記録、再生の少なくともいずれかを行う光学ピックアップとこれを用いた光記録再生装置、近接場光記録再生方法に関する。   The present invention relates to an optical pickup that performs at least one of recording and reproduction by irradiating an optical recording medium with near-field light, an optical recording / reproducing apparatus using the optical pickup, and a near-field optical recording / reproducing method.

近年、光ディスク、磁気ディスクや光メモリーカード等の情報記録媒体において、高記録密度及び高解像度を達成するために、物体同士の間隔がある距離以下となるときに界面から光が漏れ出す近接場(ニアフィールド)光(エバネッセント波ともいう)を用いた記録再生方式が注目されている。
情報記録媒体に近接場光を照射して記録再生を行う手法として、ソリッドイマージョンレンズ(SIL:Solid Immersion Lens)やソリッドイマージョンミラー(SIM:Solid Immersion Mirror)、導波路構造体等を用いた光記録再生方法が提案されている(例えば特許文献1、非特許文献1参照。)。この近接場光を利用した記録再生方式は、高密度の情報記録媒体に対し、開口数NAが1を超えるSIL等の近接場光照射手段を用いて、レンズと光記録媒体の表面との距離をエバネッセント波が発生する程度にまで近接させて記録再生を行う技術である。
In recent years, in order to achieve high recording density and high resolution in information recording media such as optical disks, magnetic disks, and optical memory cards, a near field in which light leaks from the interface when the distance between objects is below a certain distance ( A recording / reproducing system using near-field light (also referred to as evanescent wave) has attracted attention.
Optical recording using a solid immersion lens (SIL), a solid immersion mirror (SIM), a waveguide structure, etc. as a method for recording and reproducing by irradiating an information recording medium with near-field light A reproduction method has been proposed (see, for example, Patent Document 1 and Non-Patent Document 1). This recording / reproducing method using near-field light uses a near-field light irradiation means such as SIL having a numerical aperture NA exceeding 1 for a high-density information recording medium, and the distance between the lens and the surface of the optical recording medium. Is a technique for performing recording and reproduction in close proximity to the extent that an evanescent wave is generated.

近接場光を用いて記録再生する高密度の光記録媒体としては、ガラスやポリカーボネート(PC)等より成る基板上に、Al等より成る反射膜、SiO等より成る誘電体層、GeSbTe等より成る相変化材料層、SiO等より成る誘電体層が順次積層形成された構造の相変化記録型の光記録媒体や、または、ガラスやPC等より成る基板上に、記録情報に対応した凹凸ピットが形成され、その上にAl等より成る反射層が形成された再生専用型の光記録媒体などが提案され(例えば非特許文献2及び3参照。)、その他光磁気記録型の記録媒体や光アシスト磁気記録による磁気記録媒体等も検討されている。 As a high-density optical recording medium for recording and reproducing using near-field light, a reflective film made of Al or the like, a dielectric layer made of SiO 2 or the like on a substrate made of glass or polycarbonate (PC), GeSbTe, or the like Corresponding to recording information on a phase change recording type optical recording medium having a structure in which a dielectric layer made of SiO 2 or the like is sequentially laminated, or on a substrate made of glass or PC A read-only optical recording medium in which pits are formed and a reflective layer made of Al or the like is formed thereon has been proposed (see, for example, Non-Patent Documents 2 and 3), other magneto-optical recording media, Magnetic recording media using optically assisted magnetic recording are also being studied.

また、SIL等の近接場光照射部を用いる場合、その表面と情報記録媒体の表面との間の間隔、いわゆるギャップは、照射する光の波長の10分の1以下が望ましいということが報告されている(例えば非特許文献4参照。)。
このため、ギャップを精度よく制御する技術や、SIL等を近接させて情報記録媒体と相対的に走行させる際に、衝突を抑制するためのスキュー制御技術等が種々検討されている(例えば特許文献2及び3参照。)。
In addition, when a near-field light irradiation unit such as SIL is used, it is reported that the distance between the surface and the surface of the information recording medium, that is, the so-called gap, is preferably 1/10 or less of the wavelength of the light to be irradiated. (For example, refer nonpatent literature 4).
For this reason, various studies have been made on a technique for accurately controlling the gap, a skew control technique for suppressing a collision when the SIL is moved close to the information recording medium (for example, Patent Documents). 2 and 3).

特開平5−189796号公報Japanese Patent Laid-Open No. 5-189796 I. Ichimuraet al., “Near-Field Phase-Change Optical Recording of 1.36 Numerical Aperture”, Japanese Journal of Applied Physics, Vol.39, pp.962-967(2000)I. Ichimuraet al., “Near-Field Phase-Change Optical Recording of 1.36 Numerical Aperture”, Japanese Journal of Applied Physics, Vol.39, pp.962-967 (2000) M. Shinodaet al., “High Density Near-Field Optical Disc Recording”, Digest of ISOM2004, We-E-03M. Shinodaet al., “High Density Near-Field Optical Disc Recording”, Digest of ISOM2004, We-E-03 M. Furukiet al., “Progress in Electron Beam Mastering of 100Gb/inch2 Density Disc”, Japanese Journal of Applied Physics Vol.43, pp.5044-5046(2004)M. Furukiet al., “Progress in Electron Beam Mastering of 100Gb / inch2 Density Disc”, Japanese Journal of Applied Physics Vol.43, pp.5044-5046 (2004) K. Saito et al., “A Simulation of Magneto-Optical Signals in Near-Field Recording”, Japanese Journal of Applied Physics, Vol.38, pp.6743-6749(1999)K. Saito et al., “A Simulation of Magneto-Optical Signals in Near-Field Recording”, Japanese Journal of Applied Physics, Vol.38, pp.6743-6749 (1999) 特開2001−76358号公報JP 2001-76358 A 特開2006−344351号公報JP 2006-344351 A

上述したように、近接場光を利用する記録再生方式においては、レンズと情報記録媒体の表面との距離が非常に小さいことを除けば、他の取り扱いは従来の情報記録媒体と同様に取り扱うことが可能である。したがって、より高い記録密度を達成するために、記録層を積層させた多層の光記録媒体に対して、近接場光を用いて記録や再生を行うことも、原理的には可能である。   As described above, in the recording / reproducing system using near-field light, the other handling is the same as that of the conventional information recording medium except that the distance between the lens and the surface of the information recording medium is very small. Is possible. Therefore, in order to achieve a higher recording density, it is possible in principle to perform recording and reproduction using a near-field light on a multilayer optical recording medium in which recording layers are laminated.

しかしながら、媒質中の光学的小距離が異なることにより発生する球面収差は開口数NAの4乗に比例するため、大きい開口数NAを達成する近接場光学系ではこの球面収差が大きくなってしまう。したがって、現実的には、複数の記録層に焦点を結ぶ光学系を単に採用するだけでは、球面収差を補正しきれない。これを解決するには、例えばソリッドイマージョンレンズの厚さを変化させるなどの非常に複雑な設計が必要となるという問題がある。   However, since the spherical aberration caused by the small optical distance in the medium is proportional to the fourth power of the numerical aperture NA, this spherical aberration is increased in the near-field optical system that achieves a large numerical aperture NA. Therefore, in reality, it is not possible to correct spherical aberration by simply adopting an optical system that focuses on a plurality of recording layers. In order to solve this, there is a problem that a very complicated design such as changing the thickness of the solid immersion lens is required.

また、特に近接場光を用いる記録再生方式においては、元来開口数NAが高いことから、非常に高度な加工精度、組み立て精度が必要となる。特に、複数の記録層に対する記録や再生を可能とするには、ソリッドイマージョンレンズの形状や、これと組み合わせて対物レンズを構成する非球面レンズの形状、及びこれら2レンズの物理的距離等を極めて高精度に調整しなければならない。上述したように多層の記録層を有する光記録媒体に対して記録再生を行おうとすると、各記録層に対応してそれぞれこのような調整が必要となる。したがって、実用に供する光学ピックアップや光記録再生装置においてこれらを調整できる機構を採用することは非常に困難と考えられる。   In particular, in the recording / reproducing method using near-field light, since the numerical aperture NA is originally high, very high processing accuracy and assembly accuracy are required. In particular, in order to enable recording and reproduction with respect to a plurality of recording layers, the shape of the solid immersion lens, the shape of the aspherical lens constituting the objective lens in combination with this, the physical distance between these two lenses, etc. It must be adjusted with high accuracy. As described above, when recording / reproduction is performed on an optical recording medium having a multi-layered recording layer, such adjustment is required for each recording layer. Therefore, it is considered very difficult to employ a mechanism capable of adjusting these in a practical optical pickup or optical recording / reproducing apparatus.

以上の問題に鑑みて、本発明は、近接場光学系を有する光学ピックアップ及び光記録再生装置において、ソリッドイマージョンレンズを用いた近接場光学系の調整精度を高めることなく、複数の記録層を有する情報記録媒体に対して記録や再生を行うことを可能とすることを目的とする。   In view of the above problems, the present invention has a plurality of recording layers in an optical pickup and optical recording / reproducing apparatus having a near-field optical system without increasing the adjustment accuracy of the near-field optical system using a solid immersion lens. It is an object to enable recording and reproduction on an information recording medium.

上記課題を解決するため、本発明による光学ピックアップは、光源と、光記録媒体に近接場光を照射する近接場光学系と、光記録媒体からの戻り光を検出する光検出部と、光検出部からの検出信号に基づいて制御信号を生成する制御部と、光記録媒体に対し所定の位置に前記近接場光学系を駆動する駆動部と、光記録媒体の複数の記録層に焦点を調整する焦点調整機構と、焦点距離の移動により発生する球面収差を補正する収差補正機構と、を備える構成とする。   In order to solve the above problems, an optical pickup according to the present invention includes a light source, a near-field optical system that irradiates the optical recording medium with near-field light, a light detection unit that detects return light from the optical recording medium, and light detection. A control unit that generates a control signal based on a detection signal from the unit, a drive unit that drives the near-field optical system to a predetermined position with respect to the optical recording medium, and a focus that is adjusted to a plurality of recording layers of the optical recording medium And a aberration correction mechanism that corrects spherical aberration caused by movement of the focal length.

また本発明は、上述の光学ピックアップにおいて、近接場光学系と光記録媒体の最表面との距離を制御するギャップ制御信号と、光記録媒体の各記録層の位置に対応するフォーカス制御信号とが制御部において生成され、ギャップ制御信号が近接場光学系を駆動する駆動部に出力され、フォーカス制御信号が焦点調整機構に出力される構成とすることが望ましい。   According to the present invention, in the optical pickup described above, a gap control signal for controlling the distance between the near-field optical system and the outermost surface of the optical recording medium, and a focus control signal corresponding to the position of each recording layer of the optical recording medium are provided. It is desirable that the control unit generates the gap control signal and outputs the gap control signal to the driving unit that drives the near-field optical system, and outputs the focus control signal to the focus adjustment mechanism.

更に、本発明は、上述の光学ピックアップにおいて、近接場光学系を、ソリッドイマージョンレンズを用いた対物レンズとし、対物レンズを、光記録媒体の記録層のうちの1層に焦点を結んだ状態で球面収差が最小となるように調整されて成る構成とすることが望ましい。   Furthermore, the present invention provides the optical pickup described above, wherein the near-field optical system is an objective lens using a solid immersion lens, and the objective lens is focused on one of the recording layers of the optical recording medium. Desirably, the spherical aberration is adjusted to be minimized.

また本発明は、上述の光学ピックアップにおいて、焦点調整機構を、球面収差が最小となるように対物レンズが調整された記録層に対する記録、再生のいずれかを行う際には入射光を平行光とし、他の記録層の記録、再生のいずれかを行う際には入射光を非平行光とすることで焦点位置の調整が行われる構成とすることが望ましい。   In the optical pickup described above, the focus adjustment mechanism may be configured so that incident light is parallel light when performing recording or reproduction on a recording layer whose objective lens is adjusted so that spherical aberration is minimized. It is desirable that the focal position is adjusted by using incident light as non-parallel light when performing recording or reproduction on other recording layers.

本発明による光記録再生装置は、光学ピックアップと、光記録媒体の装着部と、光記録媒体の装着部を光学ピックアップと相対的に移動させる駆動部と、を有する。そして光学ピックアップは、光源と、光記録媒体に近接場光を照射する近接場光学系と、光記録媒体からの戻り光を検出する光検出部と、光検出部からの検出信号に基づいて制御信号を生成する制御部と、光記録媒体に対し所定の位置に前記近接場光学系を駆動する駆動部と、光記録媒体の複数の記録層に焦点を調整する焦点調整機構と、焦点距離の移動により発生する球面収差を補正する収差補正機構と、を備える。   An optical recording / reproducing apparatus according to the present invention includes an optical pickup, an optical recording medium mounting unit, and a drive unit that moves the optical recording medium mounting unit relative to the optical pickup. The optical pickup is controlled based on a light source, a near-field optical system that irradiates the optical recording medium with near-field light, a light detection unit that detects return light from the optical recording medium, and a detection signal from the light detection unit. A control unit that generates a signal, a drive unit that drives the near-field optical system to a predetermined position with respect to the optical recording medium, a focus adjustment mechanism that adjusts the focus on a plurality of recording layers of the optical recording medium, An aberration correction mechanism for correcting spherical aberration generated by movement.

また、本発明による近接場光記録再生方法は、近接場光学系を、ソリッドイマージョンレンズを用いた対物レンズより構成し、対物レンズを、光記録媒体の記録層のうちの1層に焦点を結んだ状態で球面収差が最小となるように調整して、記録層に対する記録、再生のいずれかを行う際には入射光を平行光とし、他の記録層の記録、再生のいずれかを行う際には入射光を非平行光とすることで焦点位置の調整を行い、焦点位置の移動により発生する球面収差を補正する。   In the near-field optical recording / reproducing method according to the present invention, the near-field optical system includes an objective lens using a solid immersion lens, and the objective lens is focused on one of the recording layers of the optical recording medium. In this state, the spherical aberration is adjusted to be minimal, and when recording or reproducing on the recording layer, the incident light is made parallel light and when recording or reproducing on the other recording layer In this case, the focal position is adjusted by making the incident light non-parallel, and the spherical aberration caused by the movement of the focal position is corrected.

上述したように、本発明の光学ピックアップとこれを用いた光記録再生装置においては、光源と、光記録媒体に近接場光を照射する近接場光学系と、光記録媒体からの戻り光を検出する光検出部と、光検出部からの検出信号に基づいて制御信号を生成する制御部と、光記録媒体に対し所定の位置に前記近接場光学系を駆動する駆動部と、光記録媒体の複数の記録層に焦点を調整する焦点調整機構と、焦点距離の移動により発生する球面収差を補正する収差補正機構とを備える構成とするものである。
このように、近接場光学系を駆動する駆動部とは別に、光記録媒体の複数の記録層に焦点を調整する焦点調整機構と、収差補正機構とを設けることで、近接場光学系を光記録媒体の最表面に対して所定の距離、すなわち近接場光を発生する微小な距離を保ちながら、光記録媒体の複数の記録層に対して良好に焦点位置を調整し、かつ発生する球面収差を抑えることができる。
As described above, in the optical pickup of the present invention and the optical recording / reproducing apparatus using the same, the light source, the near-field optical system for irradiating the optical recording medium with the near-field light, and the return light from the optical recording medium are detected. A light detection unit, a control unit that generates a control signal based on a detection signal from the light detection unit, a drive unit that drives the near-field optical system to a predetermined position with respect to the optical recording medium, and an optical recording medium A focus adjustment mechanism that adjusts the focus on a plurality of recording layers and an aberration correction mechanism that corrects spherical aberration caused by movement of the focal length are provided.
As described above, by providing the focus adjustment mechanism for adjusting the focus on the plurality of recording layers of the optical recording medium and the aberration correction mechanism separately from the drive unit that drives the near-field optical system, the near-field optical system can be Spherical aberrations that occur while adjusting the focal position for multiple recording layers of an optical recording medium while maintaining a predetermined distance from the outermost surface of the recording medium, that is, a minute distance that generates near-field light. Can be suppressed.

また、本発明の光学ピックアップにおいて、近接場光学系と光記録媒体の最表面との距離を制御するギャップ制御信号と、光記録媒体の各記録層の位置に対応するフォーカス制御信号とが制御部において生成され、ギャップ制御信号が近接場光学系を駆動する駆動部に出力され、フォーカス制御信号が焦点調整機構に出力される構成とすることで、同様に、確実に光記録媒体とのギャップを精度良く保持しつつ、所望の記録層への焦点位置調整を精度よく行うことができる。   In the optical pickup of the present invention, the control unit includes a gap control signal for controlling the distance between the near-field optical system and the outermost surface of the optical recording medium, and a focus control signal corresponding to the position of each recording layer of the optical recording medium. In the same manner, the gap control signal is output to the drive unit that drives the near-field optical system, and the focus control signal is output to the focus adjustment mechanism. It is possible to adjust the focal position on the desired recording layer with high accuracy while maintaining high accuracy.

更に、本発明の光学ピックアップにおいて、近接場光学系を、ソリッドイマージョンレンズを用いた対物レンズとし、対物レンズを、光記録媒体の記録層のうちの1層に焦点を結んだ状態で球面収差が最小となるように調整することで、この記録層以外の記録層に焦点位置を調整する場合のみ球面収差を補正する構成とすることができる。すなわち、そりーやこれと組み合わせる光学レンズの形状やレンズ間の間隔を、光記録媒体の各記録層に対応してそれぞれ調整する必要がなく、また収差補正機構を簡易な構成とすることができる。   Further, in the optical pickup of the present invention, the near field optical system is an objective lens using a solid immersion lens, and the spherical aberration is in a state where the objective lens is focused on one of the recording layers of the optical recording medium. By adjusting so as to be the minimum, it is possible to correct the spherical aberration only when the focal position is adjusted to a recording layer other than the recording layer. In other words, it is not necessary to adjust the shape of the sled and the optical lens combined therewith and the distance between the lenses corresponding to each recording layer of the optical recording medium, and the aberration correction mechanism can be simplified. .

また本発明の光学ピックアップにおいて、焦点調整機構を、球面収差が最小となるように対物レンズが調整された記録層に対する記録、再生のいずれかを行う際には入射光を平行光とし、他の記録層の記録、再生のいずれかを行う際には入射光を非平行光とすることで焦点位置の調整が行われる構成とすることで、同様に、近接場光学系の光記録媒体とのギャップを確実に保持しながら、所望の記録層への焦点位置調整を良好に行うことが可能となる。   Further, in the optical pickup of the present invention, the focus adjustment mechanism uses the incident light as parallel light when performing recording or reproduction on the recording layer in which the objective lens is adjusted so that the spherical aberration is minimized. When the recording layer is recorded or reproduced, the focal position is adjusted by making the incident light non-parallel light. It is possible to satisfactorily adjust the focal position on the desired recording layer while reliably maintaining the gap.

また、本発明の近接場光記録再生方法によれば、同様に、近接場光学系の光記録媒体とのギャップを保持しつつ、光記録媒体の複数の記録層への焦点位置調整を良好に行って、複数の記録層をもつ光記録媒体への記録、再生を良好に行うことができる。   Further, according to the near-field optical recording / reproducing method of the present invention, similarly, the focal position adjustment to the plurality of recording layers of the optical recording medium is favorably performed while maintaining the gap with the optical recording medium of the near-field optical system. Thus, it is possible to satisfactorily perform recording and reproduction on an optical recording medium having a plurality of recording layers.

本発明によれば、ソリッドイマージョンレンズを用いた近接場光学系の調整精度を高めることなく、複数の記録層を有する情報記録媒体に対して記録や再生を行うことが可能となる。   According to the present invention, it is possible to perform recording and reproduction on an information recording medium having a plurality of recording layers without increasing the adjustment accuracy of a near-field optical system using a solid immersion lens.

以下本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。   Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples.

図1は、本発明の一実施の形態による光学ピックアップ装置30を備える光記録再生装置100の概略構成図である。本発明の光記録再生装置としては、記録と再生を行う記録再生装置、再生専用装置に適用でき、また記録装置にも適用可能である。また、本発明の光学ピックアップ、光記録再生装置において対称とする光記録媒体としては、記録層が多層であれば記録態様の種類は問わないが、例えば凹凸ピットによる記録層を複数層有する再生専用光記録媒体や、相変化記録膜を複数層有する記録再生用の光記録媒体等に適用可能である。   FIG. 1 is a schematic configuration diagram of an optical recording / reproducing apparatus 100 including an optical pickup device 30 according to an embodiment of the present invention. The optical recording / reproducing apparatus of the present invention can be applied to a recording / reproducing apparatus that performs recording and reproduction, a reproduction-only apparatus, and can also be applied to a recording apparatus. Further, the optical recording medium that is symmetrical in the optical pickup and the optical recording / reproducing apparatus of the present invention may be of any recording mode as long as the recording layer is multi-layered. The present invention can be applied to an optical recording medium, an optical recording medium for recording / reproduction having a plurality of phase change recording films, and the like.

図1に示す例においては、近接場光学系20として、光記録媒体200側に配置される半球状又は超半球状のソリッドイマージョンレンズ(SIL)21と、非球面レンズ等よりなる光学レンズ22とから対物レンズを構成する場合を示す。図1においては超半球状のSILを示すが半球状のSILでもよい。この光学ピックアップ装置30は、パワー制御部1、レーザーダイオード等の光源2、コリメートレンズ3、偏光ビームスプリッタ4、1/4波長板5、ミラー6、矢印aで示す例えば光軸と直交する方向に移動可能とされる収差補正機構7、移動可能なレンズ群8及び9より構成されるエキスパンダー等の焦点調整機構10、近接場光学系20、ビームスプリッタ4の分岐光路上に配置される集光レンズ13、4分割フォトダイオード等の光検出部14を備える。更に、光検出部14による検出信号を演算する制御部15を有する。制御部15は、近接場光学系20の駆動部11、焦点調整機構10及び収差補正機構7を制御する制御信号、すなわちギャップ制御信号Sgやフォーカス制御信号Sf、収差補正信号Saを生成する。制御部15において、SIL22の光記録媒体200に対する傾き(チルト)を制御するチルト制御信号Stも生成して駆動部11に出力する構成としてもよい。   In the example shown in FIG. 1, as the near-field optical system 20, a hemispherical or super hemispherical solid immersion lens (SIL) 21 disposed on the optical recording medium 200 side, and an optical lens 22 made of an aspherical lens or the like The case where an objective lens is comprised from is shown. Although FIG. 1 shows a super hemispherical SIL, it may be a hemispherical SIL. The optical pickup device 30 includes a power control unit 1, a light source 2 such as a laser diode, a collimating lens 3, a polarization beam splitter 4, a ¼ wavelength plate 5, a mirror 6, for example, in a direction orthogonal to the optical axis indicated by an arrow a. A focus correction mechanism 10 such as an expander composed of a movable aberration correction mechanism 7, movable lens groups 8 and 9, a near-field optical system 20, and a condensing lens disposed on a branch optical path of the beam splitter 4. 13 and a photodetection unit 14 such as a quadrant photodiode. Furthermore, it has the control part 15 which calculates the detection signal by the photon detection part 14. FIG. The control unit 15 generates control signals for controlling the driving unit 11, the focus adjustment mechanism 10, and the aberration correction mechanism 7 of the near-field optical system 20, that is, the gap control signal Sg, the focus control signal Sf, and the aberration correction signal Sa. The control unit 15 may generate the tilt control signal St for controlling the tilt of the SIL 22 with respect to the optical recording medium 200 and output the tilt control signal St to the drive unit 11.

この光記録再生装置100には更に、ディスク状等の光記録媒体200を装着する装着部25と、この装着部25を例えば一点鎖線Csを回転軸として回転駆動することで、光学ピックアップ30の近接場光学系20と光記録媒体200とを相対的に移動させる駆動部26とが設けられる。   The optical recording / reproducing apparatus 100 further includes a mounting unit 25 for mounting an optical recording medium 200 such as a disk, and the mounting unit 25 is rotated around, for example, a one-dot chain line Cs as a rotation axis so A drive unit 26 that relatively moves the field optical system 20 and the optical recording medium 200 is provided.

この構成において、記録時には、パワー制御部1により出力が制御された光が光源2から出射され、コリメートレンズ3により平行光とされてビームスプリッタ4を透過し、ミラー5に反射されて、収差補正機構7が光路に配置される場合は収差補正機構7を通過して、焦点調整機構10により焦点位置を調整されて、近接場光学系20に入射する。なお、パワー制御部1は例えば記録の際に図示しない情報記憶部からの記録情報に対応して光源2の出力を制御する。再生時はパワー制御部1からの出力制御を省略して、光源2の出力を一定としてもよい。再生専用の装置として構成する場合はパワー制御部1を省略してもよい。近接場光学系20により光記録媒体200の目的とする記録層に近接場光を用いて入射光Lが照射される。光記録媒体200から反射された戻り光は、ミラー5により反射され、ビームスプリッタ4で反射されて集光レンズ13により光検出部14に集光される。   In this configuration, at the time of recording, light whose output is controlled by the power control unit 1 is emitted from the light source 2, converted into parallel light by the collimating lens 3, transmitted through the beam splitter 4, reflected by the mirror 5, and corrected for aberrations. When the mechanism 7 is disposed on the optical path, the light passes through the aberration correction mechanism 7, the focal position is adjusted by the focus adjustment mechanism 10, and enters the near-field optical system 20. For example, the power control unit 1 controls the output of the light source 2 in accordance with recording information from an information storage unit (not shown) during recording. During reproduction, output control from the power control unit 1 may be omitted, and the output of the light source 2 may be constant. When configured as a reproduction-only device, the power control unit 1 may be omitted. The near-field optical system 20 irradiates the target recording layer of the optical recording medium 200 with the incident light L using near-field light. The return light reflected from the optical recording medium 200 is reflected by the mirror 5, reflected by the beam splitter 4, and condensed on the light detection unit 14 by the condenser lens 13.

光検出部14により検出された光の一部は、再生時には光記録媒体200の記録情報に対応するRF(高周波)信号SRFとして出力される。一方、光記録媒体200の所定の記録層L1又はL2からの戻り光は、近接場光学系20の駆動部11を制御する信号を生成する制御部15に入力される。制御部15においてギャップ制御信号Sgやチルト制御信号Stが生成されて、近接場光学系20を駆動する駆動部11に出力される。駆動部11は例えばボイスコイルモーターを含む2軸アクチュエータや3軸アクチュエータ等より構成される。なお、ギャップ制御用の駆動部と、チルト制御用の駆動部とを別々に設け、各駆動部に制御信号をそれぞれ入力する構成としてもよい。 Part of the light detected by the light detection unit 14 is output as an RF (high frequency) signal S RF corresponding to the recording information of the optical recording medium 200 during reproduction. On the other hand, the return light from the predetermined recording layer L 1 or L 2 of the optical recording medium 200 is input to the control unit 15 that generates a signal for controlling the driving unit 11 of the near-field optical system 20. The control unit 15 generates a gap control signal Sg and a tilt control signal St and outputs them to the drive unit 11 that drives the near-field optical system 20. The drive unit 11 is composed of, for example, a biaxial actuator including a voice coil motor, a triaxial actuator, or the like. The gap control drive unit and the tilt control drive unit may be provided separately, and a control signal may be input to each drive unit.

一方、制御部15において光記録媒体200からの戻り光に基づいて、各記録層L1又はL2に対応するフォーカス制御信号Sfが生成され、焦点調整機構10に出力される。また、記録層L1又はL2の選択に伴って、必要に応じて収差補正機構7を光路上に配置させるか、或いは矢印aで示すように光路から外す移動を行うかについて、駆動部への収差補正信号Saが、制御部15から収差補正機構7に出力される。この信号Saは、実質的には記録層を選択する信号を用いてもよい。   On the other hand, the control unit 15 generates a focus control signal Sf corresponding to each recording layer L1 or L2 based on the return light from the optical recording medium 200 and outputs the focus control signal Sf to the focus adjustment mechanism 10. As the recording layer L1 or L2 is selected, whether the aberration correction mechanism 7 is arranged on the optical path as necessary, or whether the movement out of the optical path as indicated by the arrow a is performed is an aberration to the drive unit. A correction signal Sa is output from the control unit 15 to the aberration correction mechanism 7. As this signal Sa, a signal for selecting a recording layer may be used substantially.

この光記録再生装置100においては、光記録媒体200が上述した回転駆動する駆動部26に装着されると共に、例えば光学ピックアップ装置30が光記録媒体200の記録面に沿って平行移動する水平移動機構(図示せず)に搭載される。そしてこの水平移動機構と駆動部26との連動によって、近接場光学系20から照射される近接場光が光記録媒体200の盤面の記録トラックに沿って例えばスパイラル状、または同心円状に走査される構成とする。   In this optical recording / reproducing apparatus 100, the optical recording medium 200 is mounted on the drive unit 26 that is rotationally driven as described above, and for example, a horizontal movement mechanism in which the optical pickup device 30 moves in parallel along the recording surface of the optical recording medium 200. (Not shown). Then, the near-field light irradiated from the near-field optical system 20 is scanned along the recording track on the disk surface of the optical recording medium 200, for example, spirally or concentrically by the interlocking of the horizontal movement mechanism and the drive unit 26. The configuration.

図2は、近接場光を用いた光学ピックアップ装置30における、ギャップに対する全反射戻り光量の関係を模式的に示す図である。図2Aにおいては、SIL21及び光学レンズ22より成る近接場光学系20の、SIL21の端面と光記録媒体200と間のギャップを示す。図2Bに、このギャップに対する全反射戻り光量の関係を示す。全反射戻り光量はこの場合、SIL21の光記録媒体200と対向する端面に全反射する角度で入射した光(開口率≧1の成分)の戻り光量である。   FIG. 2 is a diagram schematically showing the relationship between the total reflected return light quantity with respect to the gap in the optical pickup device 30 using near-field light. FIG. 2A shows a gap between the end surface of the SIL 21 and the optical recording medium 200 in the near-field optical system 20 including the SIL 21 and the optical lens 22. FIG. 2B shows the relationship between the total reflected return light quantity and the gap. In this case, the total reflected return light amount is a return light amount of light (a component with an aperture ratio ≧ 1) incident on the end surface of the SIL 21 facing the optical recording medium 200 at an angle of total reflection.

図2Bに示すように、近接場状態でない領域であるファーフィールド領域Ffは、一般にギャップが入射レーザー光の波長の1/2〜1/5以上の範囲に相当する。このファーフィールド領域Ffでは、SIL端面で全て光が全反射されるため、全反射戻り光量は一定となる。一方、一般に入射レーザー光の波長の1/2〜1/5以下のギャップでは、近接場状態すなわちニアフィールド領域Fnとなる。なお、図2Bに示す例においては、一例として入射光の波長が405nmの場合において、70nm以下で全反射戻り光量が減少している例を示す。ニアフィールド領域となるギャップと波長との関係は一律ではなく、波長や、光記録媒体やSILの材料構成等によって、上述したように1/2〜1/5程度、場合によっては1/10以下程度まで変化する。   As shown in FIG. 2B, the far field region Ff, which is a region that is not in the near-field state, generally corresponds to a range in which the gap is 1/2 to 1/5 or more of the wavelength of the incident laser light. In the far field region Ff, all light is totally reflected at the SIL end face, so that the total reflected return light amount is constant. On the other hand, in general, a near-field state, that is, a near-field region Fn is obtained in a gap of 1/2 to 1/5 or less of the wavelength of incident laser light. In the example shown in FIG. 2B, as an example, when the wavelength of incident light is 405 nm, the total reflected return light amount is reduced below 70 nm. The relationship between the gap and the wavelength serving as the near field region is not uniform, and is about 1/2 to 1/5 as described above depending on the wavelength, the material configuration of the optical recording medium or SIL, and in some cases, 1/10 or less. Varies to the extent.

ニアフィールド領域Fnでは、SIL端面と光記録媒体の表面とでエバネセント結合が生じ、全反射戻り光の一部が、SIL端面を突き抜けて光記録媒体側に透過する。このため全反射戻り光量は減少する。そして、SILが光記録媒体に完全に接触すると、全ての全反射戻り光が光記録媒体側に透過するため、全反射戻り光量はゼロとなる。したがって、SIL端面と光記録媒体との間のギャップと全反射戻り光量との関係は図2Bに示すように、ファーフィールドFfで一定であった全反射戻り光量がニアフィールド領域Fnで徐々に減少し、ギャップがゼロのときこの全反射戻り光量はゼロとなる。そして全反射戻り光量が減少する領域では、ギャップと全反射戻り光量との関係が破線lで囲んで示すように線形関係になる領域がある。したがってこの線形の範囲においては、全反射戻り光量をギャップ制御信号として利用することで、ギャップを一定に保持し、近接場光を用いた記録や再生、すなわち開口数NA>1となる高密度記録再生が可能となる。
なお、ギャップ制御信号としてはこのように全反射戻り光量を検出して得る他、後述する偏光の変化を利用した方法等によって得ることも可能である。
In the near field region Fn, evanescent coupling occurs between the SIL end face and the surface of the optical recording medium, and a part of the total reflected return light penetrates the SIL end face and is transmitted to the optical recording medium side. For this reason, the total reflected return light amount decreases. When the SIL completely contacts the optical recording medium, all the totally reflected return light is transmitted to the optical recording medium side, so that the total reflected return light amount becomes zero. Therefore, as shown in FIG. 2B, the relationship between the gap between the SIL end face and the optical recording medium and the total reflected return light amount is gradually reduced in the near field region Fn, which was constant in the far field Ff. When the gap is zero, the total reflected return light amount becomes zero. In the region where the total reflected return light amount decreases, there is a region where the relationship between the gap and the total reflected return light amount is linear as shown by being surrounded by a broken line l. Therefore, in this linear range, by using the total reflected return light amount as a gap control signal, the gap is kept constant, and recording and reproduction using near-field light, that is, high-density recording with a numerical aperture NA> 1. Playback is possible.
The gap control signal can be obtained by detecting the total reflected return light quantity as described above, or by a method using a change in polarization described later.

一方、戻り光を用いてフォーカス制御信号も生成する。本発明においては、フォーカス制御方法は特に限定されるものではなく、一般的なナイフエッジ法や非点収差法等を利用することができる。このフォーカス制御信号に基づき、焦点調整機構10を駆動することにより、光記録媒体200の記録層のうち、目的とする記録層に対して焦点位置を調整することができる。   On the other hand, a focus control signal is also generated using the return light. In the present invention, the focus control method is not particularly limited, and a general knife edge method, astigmatism method, or the like can be used. By driving the focus adjusting mechanism 10 based on this focus control signal, the focal position can be adjusted with respect to the target recording layer among the recording layers of the optical recording medium 200.

次に、図3及び図4を参照して本発明の光学ピックアップ、光記録再生装置において、光記録媒体の異なる記録層に焦点位置を調整した場合の光学系のより具体的な構成例について説明する。
図3及び図4に、本発明の一実施の形態における光学ピックアップの基本要素を模式化して、光記録媒体200の各記録層L1、L2に焦点位置を調整した状態の構成図をそれぞれ示す。図3及び図4において、図1と対応する部分には同一符号を付して重複説明を省略する。本実施の形態においては、近接場光学系20を構成するSIL21と光学レンズ22が、2層の記録層を有する光記録媒体200の最表面に近い方の記録層L1に焦点位置を調整したときに、球面収差が最小となる構成とされる例を示す。
Next, with reference to FIG. 3 and FIG. 4, in the optical pickup and the optical recording / reproducing apparatus of the present invention, a more specific configuration example of the optical system when the focal position is adjusted to different recording layers of the optical recording medium will be described. To do.
3 and 4 schematically illustrate basic elements of the optical pickup according to the embodiment of the present invention, and show configuration diagrams in a state in which the focal positions are adjusted in the recording layers L1 and L2 of the optical recording medium 200, respectively. 3 and 4, the same reference numerals are given to the portions corresponding to those in FIG. In the present embodiment, when the SIL 21 and the optical lens 22 constituting the near-field optical system 20 adjust the focal position on the recording layer L1 closest to the outermost surface of the optical recording medium 200 having two recording layers. Shows an example in which the spherical aberration is minimized.

この様子を図5に模式的に示す。保持体23に支えられたSIL21及び光学レンズ22の形状が、特定の記録層に焦点位置を調整した状態で、球面収差が最小となるように、破線21a、22aで示す形状から調整され、またSIL21とレンズ22との間の間隔も調整される。本実施の形態においては、このようにSIL21及び光学レンズ22を調整して光学ピックアップ30に組み込んだ後は、他の記録層に焦点位置を合わせた状態に対応して調整し直す必要がない。
また、予め球面収差が最小となる記録層として、光記録媒体の最表面に近い記録層とすることで、その他の記録層に合わせて調整する場合と比べて、SILや光学レンズの形状や間隔の調整が比較的簡易化されるという利点を有する。
This is schematically shown in FIG. The shapes of the SIL 21 and the optical lens 22 supported by the holding body 23 are adjusted from the shapes indicated by the broken lines 21a and 22a so that the spherical aberration is minimized with the focal position adjusted to a specific recording layer. The distance between the SIL 21 and the lens 22 is also adjusted. In the present embodiment, after the SIL 21 and the optical lens 22 are adjusted and incorporated in the optical pickup 30 as described above, it is not necessary to adjust again in accordance with a state where the focal position is aligned with another recording layer.
In addition, the recording layer that minimizes the spherical aberration in advance is a recording layer that is close to the outermost surface of the optical recording medium. There is an advantage that the adjustment of is relatively simplified.

この場合において、光記録媒体200に対して記録、再生の少なくともいずれかを行う際の基本動作に関して図3を参照して説明する。
先ず、光記録媒体200の最表面に近い方の記録層(第1の記録層)L1に記録、再生のいずれかを行う際には、収差補正機構7は矢印a1で示すように、光源2から近接場光学系20に至る光路から外れた位置に移動される。この状態で、光源2から出射された光がコリメータレンズ3を介して平行光とされ、偏光ビームスプリッタ4を通り焦点調整機構10に入射される。
In this case, the basic operation when at least one of recording and reproduction with respect to the optical recording medium 200 will be described with reference to FIG.
First, when recording or reproducing is performed on the recording layer (first recording layer) L1 closest to the outermost surface of the optical recording medium 200, the aberration correction mechanism 7 uses the light source 2 as indicated by an arrow a1. To a position deviating from the optical path from the near-field optical system 20 to the near-field optical system 20. In this state, the light emitted from the light source 2 is converted into parallel light through the collimator lens 3 and is incident on the focus adjustment mechanism 10 through the polarization beam splitter 4.

この時、収差補正機構7は光路から外れた移動状態にあり、入射光には関与しない状態とされる。SIL22及び光学レンズ21から成る高NAの対物レンズは、平行光入射に対し第1の記録層L1に焦点を結ぶように、SIL22のレンズ厚みやSIL22と光学レンズ21との距離等が調整される。このため、焦点調整機構10ではほぼ平行光のまま通過することとなり、高NAにより収束された光は第1の記録層L1にほぼ無収差に近い状況で焦点を結ぶことができる。   At this time, the aberration correction mechanism 7 is in a moving state deviating from the optical path and is not involved in incident light. The high NA objective lens composed of the SIL 22 and the optical lens 21 is adjusted in terms of the lens thickness of the SIL 22 and the distance between the SIL 22 and the optical lens 21 so as to focus on the first recording layer L1 with respect to parallel light incidence. . For this reason, the focus adjustment mechanism 10 passes through almost parallel light, and the light converged by the high NA can be focused on the first recording layer L1 in a state of almost no aberration.

次に、図4を参照して、第1の記録層L1の下にある記録層(第2の記録層)L2に記録、再生のいずれかを行う際の基本動作について説明する。この場合、図4に示すように、収差補正機構7は矢印a2で示すように移動して、光源2から近接場光学系20に至る光路内の所定位置に配置される。第1の記録層L1の時と同様に、光源2より出射された光は平行光となり、偏光ビームスプリッタ4を介して今度は収差補正機構7に入射される。収差補正機構7により、焦点位置が第2の記録層L2に移動したことにより発生する近接場光学系20での球面収差を補正する。収差補正された光は、この場合非平行光として近接場光学系20に入射され、同様に、高NAにより収束された光を、第2の記録層L2にほぼ無収差に近い状態で焦点を結ぶことができる。   Next, with reference to FIG. 4, a basic operation when performing either recording or reproduction on the recording layer (second recording layer) L2 below the first recording layer L1 will be described. In this case, as shown in FIG. 4, the aberration correction mechanism 7 moves as indicated by an arrow a <b> 2 and is disposed at a predetermined position in the optical path from the light source 2 to the near-field optical system 20. As in the case of the first recording layer L 1, the light emitted from the light source 2 becomes parallel light and is then incident on the aberration correction mechanism 7 via the polarization beam splitter 4. The aberration correction mechanism 7 corrects the spherical aberration in the near-field optical system 20 generated when the focal position moves to the second recording layer L2. In this case, the aberration-corrected light is incident on the near-field optical system 20 as non-parallel light. Similarly, the light converged by the high NA is focused on the second recording layer L2 in a state of almost no aberration. Can be tied.

本実施の形態における収差補正機構7は基本的に、一方の層を記録、再生する際に発生する球面収差と逆の収差を発生させられればよい。すなわち、上述したようにこの例においては、光記録媒体200の記録層を2層と固定する例で、且つ相関膜厚等の設計値が固定されている場合には、単純なレンズ形状の光学素子を用いることもできる。その際、往復で作用することになるので、値は半分の量を補正することとなる。   Basically, the aberration correction mechanism 7 in the present embodiment is only required to generate an aberration opposite to the spherical aberration that occurs when one layer is recorded and reproduced. That is, in this example, as described above, in the case where the recording layer of the optical recording medium 200 is fixed to two layers, and the design value such as the correlation film thickness is fixed, a simple lens-shaped optical An element can also be used. In that case, since it acts in a reciprocating manner, the value is corrected by half.

また、収差補正機構7としては、本実施の形態においては第1の記録層を記録、再生する際には不要となるため、光路から待避できる駆動機構を設ける必要がある。一方、例えば液晶を用いた位相補正素子など、移動によらずに調整が可能な収差補正機構を適用することも可能であり、その場合には駆動機構は不要となる。この場合は、図1において示す収差補正信号Saが、収差補正機構7の駆動機構に出力されるのではなく、液晶を用いた位相補正素子等より成る収差補正機構7自体に出力される。   Further, the aberration correction mechanism 7 is not necessary when recording and reproducing the first recording layer in the present embodiment, and therefore, it is necessary to provide a drive mechanism that can be retracted from the optical path. On the other hand, it is also possible to apply an aberration correction mechanism that can be adjusted without movement, such as a phase correction element using liquid crystal, in which case the drive mechanism is not necessary. In this case, the aberration correction signal Sa shown in FIG. 1 is not output to the drive mechanism of the aberration correction mechanism 7, but is output to the aberration correction mechanism 7 including a phase correction element using liquid crystal.

本実施の形態において用いる焦点調整機構10は、凹レンズと凸レンズの組合せにて構成する例を示す。この場合、片方のレンズ位置を変動させることにより焦点位置の調整が可能となる。これらの組合せにより、第2の記録層への記録、再生動作が可能となる。
またその他焦点調整機構10として、例えばエレクトロウエッティング現象を利用した液体レンズ等、駆動機構を用いない光学系を利用することももちろん可能である。
An example in which the focus adjustment mechanism 10 used in the present embodiment is configured by a combination of a concave lens and a convex lens is shown. In this case, the focal position can be adjusted by changing the position of one lens. These combinations enable recording and reproduction operations on the second recording layer.
Further, as the other focus adjustment mechanism 10, it is of course possible to use an optical system that does not use a driving mechanism, such as a liquid lens using an electrowetting phenomenon.

更に、可動機構を有するレンズ群、いわゆるビームエキスパンダーを利用して各レンズの枚数、形状、移動距離を調整することにより、焦点調整機構10及び収差補正機構7の機能を兼ね備える光学系を構成することも可能である。   Furthermore, an optical system that combines the functions of the focus adjustment mechanism 10 and the aberration correction mechanism 7 is configured by adjusting the number, shape, and movement distance of each lens using a lens group having a movable mechanism, that is, a so-called beam expander. Is also possible.

以上説明した例においては、1つの光源を(すなわち1つの波長の光)を用いて光学ピックアップ、光記録再生装置を構成する例であるが、近接場光記録再生を行うにあたって、ギャップ制御用として、異なる波長の光を利用する場合もある。この場合の光記録再生装置の一実施形態について、図6を参照して説明する。図6において、図1と対応する部分には同一符号を付して示す。
図6に示すように、この光学ピックアップ30においては、光源2の出射光路上に、コリメートレンズ3、偏光ビームスプリッタ4、1/4波長板5、収差補正機構7、焦点調整機構10、ダイクロイックプリズム45が配置される。ダイクロイックプリズム45によって反射される光路上に、駆動部11に搭載される近接場光学系20、すなわち光学レンズ22及びSIL21が配置される。偏光ビームスプリッタ4の戻り光による反射光路上に、集光レンズ13及び光検出部14が配置される。
In the example described above, an optical pickup and an optical recording / reproducing apparatus are configured by using one light source (that is, light of one wavelength). However, when performing near-field optical recording / reproducing, In some cases, light of different wavelengths is used. An embodiment of the optical recording / reproducing apparatus in this case will be described with reference to FIG. In FIG. 6, parts corresponding to those in FIG.
As shown in FIG. 6, in this optical pickup 30, a collimator lens 3, a polarization beam splitter 4, a quarter wavelength plate 5, an aberration correction mechanism 7, a focus adjustment mechanism 10, and a dichroic prism are provided on the light path of the light source 2. 45 is arranged. On the optical path reflected by the dichroic prism 45, the near-field optical system 20, that is, the optical lens 22 and the SIL 21 mounted on the drive unit 11 is disposed. A condensing lens 13 and a light detection unit 14 are disposed on the reflected light path by the return light of the polarization beam splitter 4.

またこの場合、近接場光光学系20のSIL21と光記録媒体200の表面との距離を検出するいわゆるギャップ検出用光として、記録再生用の光とは異なる波長の光を用いる。すなわちこの場合は、光源2とは異なる波長の光源40を用いて、光源40の出射光路上には、近接場光学系20との間に、コリメータレンズ41、ビームスプリッタ42、偏光ビームスプリッタ43、1/4波長板44が配置され、1/4波長板44を通過した光がダイクロイックプリズム45に入射される。ダイクロイックプリズム45はこの光を反射する構成とされ、反射光が近接場光学系20に入射される配置とする。ビームスプリッタ42の戻り光による反射光路上に、集光レンズ46及び光検出部47が配置される。
また、光検出部14、47から得られる戻り光が入力される制御部15が設けられる。制御部15において戻り光に基づいて生成されたギャップ制御信号Sg、フォーカス制御信号Sfがそれぞれ近接場光学系20を搭載する駆動部11と、焦点調整機構10に出力される。この場合においても、SIL21の傾きを制御するチルト制御信号Stを駆動部11に出力される構成としてもよい。また、収差補正信号Saとして、例えば光記録媒体200の記録層L1又はL2を選択する信号が、制御部15から収差補正機構7に出力される。
In this case, light having a wavelength different from that for recording / reproducing light is used as so-called gap detection light for detecting the distance between the SIL 21 of the near-field optical system 20 and the surface of the optical recording medium 200. That is, in this case, a light source 40 having a wavelength different from that of the light source 2 is used, and a collimator lens 41, a beam splitter 42, a polarization beam splitter 43, A quarter-wave plate 44 is disposed, and light that has passed through the quarter-wave plate 44 enters the dichroic prism 45. The dichroic prism 45 is configured to reflect this light, and is disposed so that the reflected light is incident on the near-field optical system 20. A condensing lens 46 and a light detection unit 47 are disposed on the reflected light path by the return light of the beam splitter 42.
Moreover, the control part 15 into which the return light obtained from the light detection parts 14 and 47 is input is provided. A gap control signal Sg and a focus control signal Sf generated based on the return light in the control unit 15 are output to the drive unit 11 on which the near-field optical system 20 is mounted and the focus adjustment mechanism 10, respectively. Even in this case, a tilt control signal St for controlling the tilt of the SIL 21 may be output to the drive unit 11. Further, as the aberration correction signal Sa, for example, a signal for selecting the recording layer L1 or L2 of the optical recording medium 200 is output from the control unit 15 to the aberration correction mechanism 7.

この構成において、光源2から出射された光は、コリメートレンズ3により平行光とされて、偏光ビームスプリッタ4を通過して1/4波長板5を通過する。そして収差補正機構7が光路上に配置される場合は収差補正機構7、更に焦点調整機構10に入射される。必要に応じて収差補正機構7において収差を補正された光は、焦点調整機構10により焦点距離を調整されて、ダイクロイックプリズム45に入射される。ダイクロイックプリズム45により反射された光は近接場光学系20、すなわち光学レンズ22及びSIL21に入射され、光記録媒体200に近接場光を用いて照射される。
光記録媒体200の記録面から反射された光は、近接場光学系20を介してダイクロイックプリズム45により再び反射され、焦点調整機構10、収差補正機構7、1/4波長板5を介して偏光ビームスプリッタ4により一部反射されて、集光レンズ13により記録再生用の信号及びフォーカス制御用の信号として光検出部14に集光される。
In this configuration, the light emitted from the light source 2 is converted into parallel light by the collimating lens 3, passes through the polarization beam splitter 4, and passes through the quarter wavelength plate 5. When the aberration correction mechanism 7 is disposed on the optical path, the light is incident on the aberration correction mechanism 7 and the focus adjustment mechanism 10. The light whose aberration has been corrected by the aberration correction mechanism 7 as necessary is adjusted in focal length by the focus adjustment mechanism 10 and is incident on the dichroic prism 45. The light reflected by the dichroic prism 45 enters the near-field optical system 20, that is, the optical lens 22 and the SIL 21, and irradiates the optical recording medium 200 using the near-field light.
The light reflected from the recording surface of the optical recording medium 200 is reflected again by the dichroic prism 45 through the near-field optical system 20, and polarized through the focus adjustment mechanism 10, the aberration correction mechanism 7, and the quarter wavelength plate 5. A part of the light is reflected by the beam splitter 4 and condensed by the condenser lens 13 on the light detection unit 14 as a recording / reproducing signal and a focus control signal.

一方、光源40から出射される光は、コリメートレンズ41、ビームスプリッタ42、偏光ビームスプリッタ43、1/4波長板44を介してダイクロイックプリズム45に入射される。この波長の光はダイクロイックプリズム45を透過する構成として、このダイクロイックプリズム45において光源2からの光と合波され、近接場光学系20の光学レンズ22、SIL21を介して光記録媒体200にギャップ検出用光として照射される。   On the other hand, the light emitted from the light source 40 enters the dichroic prism 45 via the collimating lens 41, the beam splitter 42, the polarizing beam splitter 43, and the quarter wavelength plate 44. The light having this wavelength is transmitted through the dichroic prism 45, and is combined with the light from the light source 2 in the dichroic prism 45, and the gap is detected in the optical recording medium 200 via the optical lens 22 and the SIL 21 of the near-field optical system 20. Irradiated as business light.

ギャップ検出用の戻り光は、ダイクロイックプリズム45通過し、1/4波長板44を通過して、偏光ビームスプリッタ43により殆ど反射されるが、この偏光ビームスプリッタ45から漏れた光をビームスプリッタ42で反射して集光レンズ46を介して光検出部47で検出することができる。   The return light for gap detection passes through the dichroic prism 45, passes through the quarter-wave plate 44, and is almost reflected by the polarizing beam splitter 43. The light leaked from the polarizing beam splitter 45 is reflected by the beam splitter 42. The light can be reflected and detected by the light detection unit 47 via the condenser lens 46.

なお、この例においては、上述した偏光の変化を利用してギャップを検出する。すなわち、光記録媒体と近接場光学系、すなわちSILとのギャップが広く、SIL端面で光が略全反射する場合には、SIL表面で偏光が変化するので、戻り光路で偏光ビームスプリッタ43から一部の光が漏れてくる。一方、光記録媒体とSILとが近く、近接場光が漏れて通常の反射に近い場合には偏光の変化は小さいので、偏光ビームスプリッタ43を漏れてくる光量は小さくなる。この差すなわち、全反射戻り光量の変化を利用してギャップ検出を行い、これに基づいて制御部15においてギャップ制御信号Sgを生成する。そして近接場光学系20を保持する駆動部11を制御信号Sgに基づいて駆動することによって、光記録媒体200と近接場光学系20との間隔を精度よく保持することができる。
なお、ギャップの検出方法としては、その他例えば静電容量の変化を検出する方法など、種々の方法を採ることができる。
In this example, the gap is detected using the change in polarization described above. That is, when the gap between the optical recording medium and the near-field optical system, that is, the SIL is wide and the light is substantially totally reflected at the SIL end face, the polarization changes on the SIL surface. The light of the part leaks. On the other hand, when the optical recording medium is close to the SIL and the near-field light leaks and is close to normal reflection, the change in polarization is small, so the amount of light leaking through the polarization beam splitter 43 is small. Gap detection is performed using this difference, that is, a change in the total reflected return light quantity, and based on this, the control unit 15 generates a gap control signal Sg. By driving the drive unit 11 that holds the near-field optical system 20 based on the control signal Sg, the distance between the optical recording medium 200 and the near-field optical system 20 can be accurately held.
As the gap detection method, various other methods such as a method of detecting a change in capacitance can be employed.

このように、ギャップ制御用として異なる波長の光原を用いる場合においても、本発明を適用することで、図1に示す実施形態と同様の効果を得ることができる。
すなわち、制御部15からギャップ制御信号Sg、フォーカス制御信号Sf、収差補正信号Saをそれぞれ駆動部11、焦点調整機構10及び収差補正機構7に出力することで、焦点調整機構10及び収差補正機構7の動作態様を図3及び図4に示す実施の形態と同様に行う。更に、近接場光学系20の形状やレンズ間隔の調整も、図5に示す実施の形態と同様とすることで、光記録媒体200の第1の記録層L1及び第2の記録層L2に対してそれぞれ、ほぼ無収差の状態で焦点を結ぶことが可能となる。
As described above, even when photons having different wavelengths are used for gap control, the same effects as those of the embodiment shown in FIG. 1 can be obtained by applying the present invention.
That is, the control unit 15 outputs the gap control signal Sg, the focus control signal Sf, and the aberration correction signal Sa to the drive unit 11, the focus adjustment mechanism 10, and the aberration correction mechanism 7, respectively, so that the focus adjustment mechanism 10 and the aberration correction mechanism 7 are output. The operation mode is performed in the same manner as the embodiment shown in FIGS. Furthermore, the adjustment of the shape of the near-field optical system 20 and the lens interval is the same as in the embodiment shown in FIG. 5, so that the first recording layer L1 and the second recording layer L2 of the optical recording medium 200 are adjusted. Thus, it is possible to focus on each lens with almost no aberration.

以上説明したように、本発明によれば、近接場光を用いて記録や再生を行う光記録媒体においても、記録層を多層とする多層媒体への適応が比較的容易に行えることとなる。また、光学ピックアップ及び光記録再生装置の構成として、実用的な機構にて焦点調整、収差補正を実現できる。これにより、近接場光記録媒体の大容量化が可能となる。   As described above, according to the present invention, even an optical recording medium that performs recording and reproduction using near-field light can be relatively easily adapted to a multilayer medium having multiple recording layers. Further, as a configuration of the optical pickup and the optical recording / reproducing apparatus, focus adjustment and aberration correction can be realized by a practical mechanism. Thereby, the capacity of the near-field optical recording medium can be increased.

なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。   The present invention is not limited to the configuration described in the above-described embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.

本発明の実施の形態に係る光学ピックアップを含む光記録再生装置の概略構成図である。1 is a schematic configuration diagram of an optical recording / reproducing apparatus including an optical pickup according to an embodiment of the present invention. A及びBは全反射戻り光量の説明図である。A and B are explanatory views of the total reflected return light amount. 本発明の実施の形態に係る光学ピックアップの一動作態様を示す概略構成図である。It is a schematic block diagram which shows the one operation | movement aspect of the optical pick-up which concerns on embodiment of this invention. 本発明の実施の形態に係る光学ピックアップの一動作態様を示す概略構成図である。It is a schematic block diagram which shows the one operation | movement aspect of the optical pick-up which concerns on embodiment of this invention. 本発明の実施の形態に係る光学ピックアップにおける近接場光学系の概略構成図である。1 is a schematic configuration diagram of a near-field optical system in an optical pickup according to an embodiment of the present invention. 本発明の実施の形態に係る光学ピックアップを含む光記録再生装置の概略構成図である。1 is a schematic configuration diagram of an optical recording / reproducing apparatus including an optical pickup according to an embodiment of the present invention.

符号の説明Explanation of symbols

1.パワー制御部、2.光源、3.コリメートレンズ、4.ビームスプリッタ、5.4分の1波長板、6.ミラー、7.収差補正機構、8,9.光学レンズ、10.焦点調整機構、11.駆動部、13.集光レンズ、14.光検出部、15.制御部、20.近接場光学系、21.ソリッドイマージョンレンズ(SIL)、22.光学レンズ、25.装着部、26.駆動部、30.光学ピックアップ、40.光源、41.コリメートレンズ、42.ビームスプリッタ、43.偏光ビームスプリッタ、44.4分の1波長板、45.ダイクロイックプリズム、46.集光レンズ、47.光検出部、100.光記録再生装置   1. 1. Power control unit, 2. light source; Collimating lens, 4. 5. beam splitter, 5.4 wavelength plate, Mirror, 7; Aberration correction mechanism, 8,9. Optical lens, 10. 10. focus adjustment mechanism; Drive unit, 13. Condensing lens, 14. 15. light detection unit; Control unit, 20. Near-field optical system, 21. Solid immersion lens (SIL), 22. Optical lens, 25. Mounting part, 26. Drive unit, 30. Optical pickup, 40. Light source, 41. Collimating lens, 42. Beam splitter, 43. Polarizing beam splitter, 44.4 quarter wave plate, 45. Dichroic prism, 46. Condensing lens, 47. Light detection unit, 100. Optical recording / reproducing device

Claims (9)

光源と、
光記録媒体に近接場光を照射する近接場光学系と、
前記光記録媒体からの戻り光を検出する光検出部と、
前記光検出部からの検出信号に基づいて制御信号を生成する制御部と、
前記光記録媒体に対し所定の位置に前記近接場光学系を駆動する駆動部と、
前記光記録媒体の複数の記録層に焦点を調整する焦点調整機構と、
焦点距離の移動により発生する球面収差を補正する収差補正機構と、を備える
ことを特徴とする光学ピックアップ。
A light source;
A near-field optical system for irradiating the optical recording medium with near-field light; and
A light detection unit for detecting return light from the optical recording medium;
A control unit that generates a control signal based on a detection signal from the light detection unit;
A drive unit that drives the near-field optical system to a predetermined position with respect to the optical recording medium;
A focus adjustment mechanism for adjusting the focus on a plurality of recording layers of the optical recording medium;
An optical pickup comprising: an aberration correction mechanism that corrects spherical aberration caused by movement of the focal length.
前記制御部において前記近接場光学系と前記光記録媒体の最表面との距離を制御するギャップ制御信号と、前記光記録媒体の各記録層の位置に対応するフォーカス制御信号とが生成され、
前記ギャップ制御信号が前記近接場光学系を駆動する駆動部に出力され、
前記フォーカス制御信号が前記焦点調整機構に出力されることを特徴とする請求項1記載の光学ピックアップ。
A gap control signal for controlling the distance between the near-field optical system and the outermost surface of the optical recording medium and a focus control signal corresponding to the position of each recording layer of the optical recording medium are generated in the control unit,
The gap control signal is output to a driving unit that drives the near-field optical system,
The optical pickup according to claim 1, wherein the focus control signal is output to the focus adjustment mechanism.
前記近接場光学系は、ソリッドイマージョンレンズを用いた対物レンズであり、
前記対物レンズは、前記光記録媒体の前記記録層のうちの1層に焦点を結んだ状態で球面収差が最小となるように調整されて成ることを特徴とする請求項1記載の光学ピックアップ。
The near-field optical system is an objective lens using a solid immersion lens,
2. The optical pickup according to claim 1, wherein the objective lens is adjusted so that spherical aberration is minimized while focusing on one of the recording layers of the optical recording medium.
前記焦点調整機構は、
前記球面収差が最小となるように前記対物レンズが調整された記録層に対する記録、再生のいずれかを行う際には入射光を平行光とし、
他の記録層の記録、再生のいずれかを行う際には入射光を非平行光とすることで焦点位置の調整が行われることを特徴とする請求項3記載の光学ピックアップ。
The focus adjustment mechanism is
When performing recording or reproduction on the recording layer in which the objective lens is adjusted so that the spherical aberration is minimized, the incident light is made parallel light,
4. The optical pickup according to claim 3, wherein when performing recording or reproduction on another recording layer, the focal position is adjusted by making the incident light non-parallel light.
前記ソリッドイマージョンレンズを用いた対物レンズは、前記光記録媒体の最表面に最も近い記録層に対して焦点を結んだ状態で、球面収差が最小となるように調整されて成ることを特徴とする請求項4記載の光学ピックアップ。   The objective lens using the solid immersion lens is characterized in that it is adjusted so as to minimize spherical aberration while being focused on the recording layer closest to the outermost surface of the optical recording medium. The optical pickup according to claim 4. 前記収差補正機構に、前記光源から前記近接場光学系に至る光路への出入りを可能とする駆動部が設けられたことを特徴とする請求項1記載の光学ピックアップ。   The optical pickup according to claim 1, wherein the aberration correction mechanism is provided with a drive unit that enables entry and exit into an optical path from the light source to the near-field optical system. 前記収差補正機構は、前記光記録媒体の記録層を選択する選択信号に基づき駆動されることを特徴とする請求項1記載の光学ピックアップ。   The optical pickup according to claim 1, wherein the aberration correction mechanism is driven based on a selection signal for selecting a recording layer of the optical recording medium. 光学ピックアップと、
光記録媒体の装着部と、
前記光記録媒体の装着部を前記光学ピックアップと相対的に移動させる駆動部と、を有し、
前記光学ピックアップは、
光源と、
前記光記録媒体に近接場光を照射する近接場光学系と、
前記光記録媒体からの戻り光を検出する光検出部と、
前記光検出部からの検出信号に基づいて制御信号を生成する制御部と、
前記光記録媒体に対し所定の位置に前記近接場光学系を駆動する駆動部と、
前記光記録媒体の複数の記録層に焦点を調整する焦点調整機構と、
焦点距離の移動により発生する球面収差を補正する収差補正機構と、を備える
ことを特徴とする光記録再生装置。
An optical pickup,
A mounting portion of an optical recording medium;
A drive unit that moves the mounting unit of the optical recording medium relative to the optical pickup;
The optical pickup is
A light source;
A near-field optical system for irradiating the optical recording medium with near-field light;
A light detection unit for detecting return light from the optical recording medium;
A control unit that generates a control signal based on a detection signal from the light detection unit;
A drive unit that drives the near-field optical system to a predetermined position with respect to the optical recording medium;
A focus adjustment mechanism for adjusting the focus on a plurality of recording layers of the optical recording medium;
An optical recording / reproducing apparatus comprising: an aberration correction mechanism that corrects spherical aberration caused by movement of a focal length.
近接場光学系を、ソリッドイマージョンレンズを用いた対物レンズより構成し、
前記対物レンズを、光記録媒体の記録層のうちの1層に焦点を結んだ状態で球面収差が最小となるように調整して、
前記記録層に対する記録、再生のいずれかを行う際には入射光を平行光とし、他の記録層の記録、再生のいずれかを行う際には入射光を非平行光とすることで焦点位置の調整を行い、
焦点位置の移動により発生する球面収差を補正する
ことを特徴とする近接場光記録再生方法。
The near-field optical system is composed of an objective lens using a solid immersion lens.
Adjusting the objective lens so that the spherical aberration is minimized while focusing on one of the recording layers of the optical recording medium;
When performing recording or reproduction with respect to the recording layer, the incident light is made parallel light, and when performing recording or reproduction with respect to another recording layer, the incident light is made non-parallel light so that the focal position is obtained. Make adjustments
A near-field optical recording / reproducing method comprising correcting spherical aberration caused by movement of a focal position.
JP2008004970A 2008-01-11 2008-01-11 Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method Pending JP2009170011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004970A JP2009170011A (en) 2008-01-11 2008-01-11 Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004970A JP2009170011A (en) 2008-01-11 2008-01-11 Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method

Publications (1)

Publication Number Publication Date
JP2009170011A true JP2009170011A (en) 2009-07-30

Family

ID=40971021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004970A Pending JP2009170011A (en) 2008-01-11 2008-01-11 Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method

Country Status (1)

Country Link
JP (1) JP2009170011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014805A1 (en) * 2012-07-16 2014-01-23 Trustees Of Boston University Solid immersion microscopy system with deformable mirror for correction of aberrations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263770A (en) * 2002-03-06 2003-09-19 Sony Corp Optical recording/playback device and optical recording medium
JP2004046915A (en) * 2002-07-08 2004-02-12 Sony Corp Optical recording medium playback device
JP2004118879A (en) * 2002-09-20 2004-04-15 Ricoh Co Ltd Optical disk drive
JP2007293963A (en) * 2006-04-24 2007-11-08 Canon Inc Optical information recording and reproducing device
JP2009170073A (en) * 2007-09-20 2009-07-30 Panasonic Corp Optical pickup optical system, and optical pickup device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263770A (en) * 2002-03-06 2003-09-19 Sony Corp Optical recording/playback device and optical recording medium
JP2004046915A (en) * 2002-07-08 2004-02-12 Sony Corp Optical recording medium playback device
JP2004118879A (en) * 2002-09-20 2004-04-15 Ricoh Co Ltd Optical disk drive
JP2007293963A (en) * 2006-04-24 2007-11-08 Canon Inc Optical information recording and reproducing device
JP2009170073A (en) * 2007-09-20 2009-07-30 Panasonic Corp Optical pickup optical system, and optical pickup device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014805A1 (en) * 2012-07-16 2014-01-23 Trustees Of Boston University Solid immersion microscopy system with deformable mirror for correction of aberrations
US10175476B2 (en) 2012-07-16 2019-01-08 Trustees Of Boston University Solid immersion microscopy system with deformable mirror for correction of aberrations

Similar Documents

Publication Publication Date Title
US7791986B2 (en) Optical information recording/reproducing apparatus
US7944794B2 (en) Optical disc apparatus, information recording method, and information reproduction method
EP1724771B1 (en) Optical recording and reproducing apparatus, optical head, optical recording and reproducing method and skew detection method
US7961565B2 (en) Optical disk apparatus and optical aberration correcting method
US20070171778A1 (en) Optical recording/reproducing apparatus, optical pickup, and tracking error detecting method
US7764576B2 (en) Optical information recording and reproducing apparatus
JP2009252287A (en) Volume type information recording medium, information recorder, information reproducer and optical pickup
US8599661B2 (en) Optical disk device, optical pickup, and optical recording medium
JP2001307344A (en) Information recording/reproducing device
US8031575B2 (en) Optical pickup device and recording/reproducing device
TW200945337A (en) Optical disc device and focus control method
JP2007293963A (en) Optical information recording and reproducing device
JP2011216171A (en) Optical pickup, optical drive apparatus, and light illumination method
US20080212418A1 (en) Optical disc device
US20090052312A1 (en) Recording apparatus, reproducing apparatus, recording method, reproducing method, and recording medium
JP4449819B2 (en) Optical reproducing method, waveform equalizing method, and optical recording / reproducing apparatus
US20070263521A1 (en) Optical pickup and optical disk apparatus
JP2011118995A (en) Optical recording medium, device for driving optical recording medium, method for driving optical recording medium
JP2009170011A (en) Optical pickup and optical recording and reproducing device using the same, and near-field optical recording and reproducing method
US20070280065A1 (en) Optical information recording/reproduction apparatus
JP2008508652A (en) Initial focus optimization for optical scanning devices
JP2006190400A (en) Near field optical recording/playback method, optical pickup apparatus, and optical recording/playback apparatus
JP2007250073A (en) Optical information recording and reproducing device
JP4254740B2 (en) Optical recording / reproducing method, optical pickup device, and optical recording / reproducing device
JP2007250065A (en) Optical information recording and reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710