JP2009169873A - Cooling structure of computer - Google Patents

Cooling structure of computer Download PDF

Info

Publication number
JP2009169873A
JP2009169873A JP2008009978A JP2008009978A JP2009169873A JP 2009169873 A JP2009169873 A JP 2009169873A JP 2008009978 A JP2008009978 A JP 2008009978A JP 2008009978 A JP2008009978 A JP 2008009978A JP 2009169873 A JP2009169873 A JP 2009169873A
Authority
JP
Japan
Prior art keywords
air volume
heat sink
cooling
substrate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008009978A
Other languages
Japanese (ja)
Inventor
Atsushi Murakawa
淳 村川
Shigehiro Tsubaki
繁裕 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008009978A priority Critical patent/JP2009169873A/en
Publication of JP2009169873A publication Critical patent/JP2009169873A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a structure which supplies the most suitable cooling air quantity at a computer system in which a plurality of cases where a plurality of high heating parts are mounted on the same board are mounted in parallel. <P>SOLUTION: The pressure loss of the part with a high load at a heating element on a board 8 is lowered and the pressure loss of the part with a low load at the heating element on the board 8 is raised by installing the air quantity regulating plate 9 consisting of two directional shape-memory alloy which works by temperature of mounted heat sink 2 at intake side or exhaust side. Thus, not only the most suitable cooling air quantity in a case 1 is supplied but also the passing air quantity of the case can be regulated according to necessary cooling air quantity due to load unevenness of a plurality of cases 1 mounted in parallel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特にブレードサーバシステムにおける各ブレードの冷却の効率化と、それに伴うシステムのファン騒音低減のための風量制御手法に関するものである。   The present invention relates to a method for controlling the air volume particularly for improving the efficiency of cooling each blade in a blade server system and reducing the fan noise of the system.

近年、サーバ等に代表される電子計算機に搭載されるLSIの動作速度向上に伴う高発熱化により、装置の冷却が課題となっている。また、同時にブレードサーバなどの高密度実装電子計算機の台頭も、装置冷却及び装置騒音の点から、非常に大きな課題となっている。特にブレードサーバ市場は、従来は低発熱のプロセッサを単体で実装したブレードを高密度に集積したシステムが主であったのに対し、近年では、高発熱・高性能プロセッサを複数個実装したブレード形態となってきている。   In recent years, due to the high heat generation accompanying the improvement in the operation speed of LSIs mounted on electronic computers typified by servers and the like, cooling of devices has become a problem. At the same time, the rise of high-density mounting computers such as blade servers is also a very big problem in terms of device cooling and device noise. In particular, the blade server market used to be a system in which blades with low-heat-generating processors mounted alone were densely integrated, but in recent years, a blade configuration with multiple high-heat-generating and high-performance processors mounted. It has become.

上記問題の解決のため、高性能ファンや高冷却効率ヒートシンクの開発がなされている。また、特開2005−286268号公報では電子計算機のCPUパッケージの排気部に形状記憶合金による圧損体を配設し、装置排気温度によってCPUパッケージの通過風量を調整する手法が示されている。   In order to solve the above problems, high performance fans and high cooling efficiency heat sinks have been developed. Japanese Patent Application Laid-Open No. 2005-286268 discloses a method in which a pressure loss body made of a shape memory alloy is disposed in the exhaust portion of a CPU package of an electronic computer, and the passing air volume of the CPU package is adjusted by the exhaust temperature of the apparatus.

特開2005−286268号公報JP 2005-286268 A

高性能ファンや高冷却効率ヒートシンクは、装置に搭載される全てのブレードに対して有効な手段であるが、動作率の低いブレードに対しては過剰冷却となってしまい、騒音や電力の増大を招くこととなる。また、従来の提案の一つである、特開2005−286268号公報の方式は、排気温度によってパッケージの圧力損失を変動させ、排気温度が低い場合には風量を低くする方法であるが、上記方式を1つの基板に2つ以上の高発熱体を持つ計算機システムに適用した場合、複数の問題が発生する。   High-performance fans and high-cooling efficiency heat sinks are effective means for all blades installed in the equipment, but blades with low operating rates are overcooled, increasing noise and power. Will be invited. Further, the method disclosed in Japanese Patent Application Laid-Open No. 2005-286268, which is one of the conventional proposals, is a method of changing the pressure loss of the package depending on the exhaust temperature and reducing the air volume when the exhaust temperature is low. When the method is applied to a computer system having two or more high heating elements on one board, a plurality of problems occur.

2つ以上の高発熱体を持つ基板の場合、それらの負荷率は必ずしも同程度ではなく、ばらつきが存在するため、排気温度が低くても一部の発熱体が高温となる場合があり、前記方式ではこれを冷却することができない。また、複数の発熱体から十分な距離が無ければ、排気温度が一様とならず、変態温度が安定しない。さらに、ブレードサーバ等では、排気部にコネクタが多く実装されるものも多く、物理的な制限から適用が困難となる。したがって、近年のブレードサーバに代表される、基板上に複数の高発熱体が存在するシステムの冷却のために、上記問題点を解決する必要がある。   In the case of a substrate having two or more high heating elements, their load factors are not necessarily the same, and there are variations, so some heating elements may be hot even if the exhaust temperature is low, The system cannot cool this. If there is not a sufficient distance from the plurality of heating elements, the exhaust temperature will not be uniform and the transformation temperature will not be stable. Furthermore, many blade servers and the like have many connectors mounted on the exhaust part, and are difficult to apply due to physical limitations. Therefore, it is necessary to solve the above-mentioned problem for cooling a system represented by a recent blade server, in which a plurality of high heat generating elements exist on a substrate.

上記の課題を解決するため、本発明での風量制御方式は、発熱体の冷却に用いるヒートシンク温度によって作動する、一枚もしくは複数枚の形状記憶合金板を配設し、段階的に圧力損失を変動させることで前記ヒートシンクの通過風量を調節する。   In order to solve the above problems, the air volume control method according to the present invention includes one or a plurality of shape memory alloy plates that operate according to the heat sink temperature used for cooling the heating element, and gradually reduces the pressure loss. The amount of air passing through the heat sink is adjusted by changing it.

本発明によって、単一基板上に搭載された複数の高発熱体の冷却風バランスを効率化することができる。また、前記基板を持つ筐体を複数個並列に配列した電子計算機全体の圧力損失についても同時に効率化することが可能となる。また、上記効率化によって、騒音の低減・省電力化が可能となる。   According to the present invention, the cooling air balance of a plurality of high heating elements mounted on a single substrate can be made efficient. In addition, the pressure loss of the entire computer in which a plurality of housings having the substrates are arranged in parallel can be improved at the same time. In addition, the above efficiency can reduce noise and save power.

以下に、本発明の一実施例について、図を用いて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明のヒートシンクを搭載するブレードサーバの形態であり、図2はブレード筐体内部の斜視図である。基板8上にある発熱体を冷却するためのヒートシンク2を含むブレード筐体1は、並列に複数台搭載されており、それぞれのブレード内部の基板8に存在するコネクタ3によってプラッタ4に接続されている。プラッタ4の更に装置背面側には、冷却ファン5が配設され、冷却風6を装置全体に供給し、排気風7を装置外部へ排出する。高発熱体であるプロセッサ用ヒートシンク2は、本実施例では4個実装され、効率の良い冷却のため、全て並列に配置する。また、それぞれのヒートシンク2には、形状記憶合金を用いた風量調整板9a及び9bが熱的に接合される。本実施例では、前記風量調整板はヒートシンク2の排気側のベース部分に1枚接合するが、ヒートシンク上部や入気側に、異なる変態温度の板を複数枚組み合わせて接続しても構わない。また、基板8上の小発熱部位であるLSI10、HDD11、メモリ12、バスコンバータ13については、風量調整板は設置しない。   FIG. 1 shows a form of a blade server on which the heat sink of the present invention is mounted, and FIG. 2 is a perspective view of the inside of the blade housing. A plurality of blade casings 1 including a heat sink 2 for cooling a heating element on a substrate 8 are mounted in parallel and connected to the platter 4 by a connector 3 existing on the substrate 8 inside each blade. Yes. Further, a cooling fan 5 is disposed on the rear side of the platter 4 to supply the cooling air 6 to the entire apparatus and exhaust the exhaust air 7 to the outside of the apparatus. In the present embodiment, four heat sinks 2 for processors, which are high heating elements, are mounted, and are all arranged in parallel for efficient cooling. Further, air volume adjusting plates 9a and 9b using a shape memory alloy are thermally bonded to each heat sink 2. In the present embodiment, one air volume adjusting plate is joined to the base portion on the exhaust side of the heat sink 2, but a plurality of plates having different transformation temperatures may be connected in combination on the heat sink upper part or on the inlet side. For the LSI 10, the HDD 11, the memory 12, and the bus converter 13 that are small heat generating portions on the substrate 8, no air volume adjusting plate is installed.

4つの高発熱プロセッサの全てが同等に高負荷状態である場合、全ての風量調整板は冷却風通過を妨げないようになっているが、一部のプロセッサが低負荷状態となると、負荷の低いプロセッサ位置では、風量調整板9bの状態になり、圧力損失を上昇させる。このため、他の高負荷プロセッサに対して、より多くの冷却風を供給可能となる。さらに、上記圧力損失の調整により、ブレード単位の圧力損失も負荷状態によって変動するため、ブレード間の風量分配も効率化される。   When all of the four high heat generation processors are equally loaded, all the air volume adjustment plates do not prevent the cooling air from passing through. However, when some of the processors are in a low load state, the load is low. At the processor position, the air volume adjusting plate 9b is brought into a state to increase the pressure loss. For this reason, it becomes possible to supply more cooling air to other high-load processors. Furthermore, since the pressure loss in units of blades varies depending on the load state by adjusting the pressure loss, the air volume distribution between the blades is also made efficient.

従来では、プロセッサの1つでも負荷が高くなると、冷却ファン5の回転数を上昇させる必要があるため、装置全体から見た負荷が低い場合でも、前記ファンの回転数が上昇するケースが生じ、ファン制御を実施しても、思うように装置騒音が低下しないことが考えられる。本問題に対して上記方式を適用することにより、より低いファン回転数での運用が可能となる。   Conventionally, if the load of even one of the processors increases, it is necessary to increase the number of rotations of the cooling fan 5, so that even when the load viewed from the entire apparatus is low, there is a case where the number of rotations of the fan increases. Even if the fan control is performed, it is conceivable that the apparatus noise does not decrease as expected. By applying the above method to this problem, it is possible to operate at a lower fan speed.

通常、図2に示すような、基板上に複数のプロセッサが搭載される装置では、必ずしも全てのプロセッサを使用するわけではなく、用途によってプロセッサの搭載個数が異なる。この場合、プロセッサの搭載されないソケットにはヒートシンク2は不要のため、同等の圧力損失を持つダミーが必要であるが、プロセッサの増設時にはこれを取り外すことになり、余剰部品を発生させることになる。本実施例では、プロセッサの有無に関わらず搭載され、プロセッサ搭載時には風量調節機能を持ち、非搭載時にはヒートシンクダミーとして機能する構造体について、図を用いて説明する。   In general, an apparatus in which a plurality of processors are mounted on a board as shown in FIG. 2 does not necessarily use all the processors, and the number of processors mounted differs depending on the application. In this case, since the heat sink 2 is not required for the socket in which the processor is not mounted, a dummy having the same pressure loss is necessary. However, when the processor is added, this is removed, and surplus parts are generated. In this embodiment, a structure that is mounted with or without a processor, has an air volume adjustment function when the processor is mounted, and functions as a heat sink dummy when not mounted will be described with reference to the drawings.

図3はヒートシンクダミーに風量調整機能を一体化させた場合の本発明の一形態である。ブレード内部のプロセッサは2個搭載され、残りの2個分には搭載されていない。ヒートシンク2の排気側には、ある温度で作動する二方向性の形状記憶合金を用いて作成された構造体14を配設する。構造体14は、プロセッサ搭載時には、ヒートシンク2の温度が高温から変態温度を越えて低温になると、構造体14aのように冷却風を塞ぐ構造に変化することで、他の高負荷部位の冷却風量を増加させる。また、プロセッサが搭載されない場合には、低温のままであるため、構造体14cのように流路が塞がれ、ダミーとしての役割を果たす。   FIG. 3 shows an embodiment of the present invention in which the air volume adjustment function is integrated with the heat sink dummy. Two processors inside the blade are installed, and the remaining two are not installed. On the exhaust side of the heat sink 2, a structure 14 made of a bidirectional shape memory alloy that operates at a certain temperature is disposed. When the structure 14 is mounted on the processor, when the temperature of the heat sink 2 is changed from a high temperature to a low temperature exceeding the transformation temperature, the structure 14 changes to a structure that closes the cooling air like the structure 14a. Increase. In addition, when the processor is not mounted, the temperature remains low, so that the flow path is blocked like the structure 14c and serves as a dummy.

図4,5はヒートシンク2搭載時の構造体14aと非搭載時の構造体14cの横断面図である。本構造体には、ヒートシンクベースとの距離を一定に保つスペーサー15が接合される。本スペーサー15は、ヒートシンクダベース温度を構造体14に伝導する機能を併せ持つことで、構造体14aの変態温度検知精度を向上させる。また、構造体14aは、ヒートシンク2の固定用ねじ16を用いて筐体1に圧入されたスタッド17に固定される。また、プロセッサ非搭載時には、構造体14cは、ねじ18によってスタッド17に固定される。   4 and 5 are cross-sectional views of the structure 14a when the heat sink 2 is mounted and the structure 14c when not mounted. A spacer 15 that maintains a constant distance from the heat sink base is joined to the structure. The spacer 15 has a function of conducting the heat sink base temperature to the structure 14, thereby improving the transformation temperature detection accuracy of the structure 14a. Further, the structure 14 a is fixed to the stud 17 press-fitted into the housing 1 using the fixing screw 16 of the heat sink 2. When the processor is not mounted, the structure 14 c is fixed to the stud 17 with the screw 18.

今後更なる拡大が予想される高密度サーバシステム、とりわけブレードあたりのプロセッサが複数個に及ぶ高性能ブレードサーバにおいて、より効率的な風量分配を行うことにより、更なる低騒音が見込めるため、今後、高密度、高信頼性電子計算機の冷却方式に適用が期待される。   In a high-density server system that is expected to expand further in the future, especially high-performance blade servers with multiple processors per blade, more efficient air volume distribution can be expected to further reduce noise. It is expected to be applied to a cooling method for high-density, high-reliability electronic computers.

請求項における装置全体の概略図。The schematic of the whole apparatus in a claim. 実施例1における、ヒートシンクに接合した風量調整板の搭載例。The example of mounting of the air volume adjustment board joined to the heat sink in Example 1. FIG. 実施例2における、ダミーを兼ねた風量調整板の搭載例。The example of mounting of the air volume adjusting plate also serving as a dummy in the second embodiment. ヒートシンク搭載時の、ダミーを兼ねた風量調整板の固定方法例の概略図。Schematic of the example of the fixing method of the air volume adjustment board which served as the dummy at the time of heat sink mounting. ヒートシンク非搭載時の、ダミーを兼ねた風量調整板の固定方法例の概略図。Schematic of the example of the fixing method of the air volume adjusting plate which served as the dummy at the time of heat sink non-mounting.

符号の説明Explanation of symbols

1…基板固定用筐体、2…高発熱体用ヒートシンク、3…コネクタ、4…プラッタ、5…冷却ファン、6…入気冷却風、7…排気風、8…主基板、9…ヒートシンクに接合された風量調整板、10…LSI、11…HDD、12…メモリ、13…バスコンバータ、14…ヒートシンクダミーを兼ねた風量調整板、15…スペーサー、16…ヒートシンク固定ねじ、17…スタッド、18…風量調整板固定ねじ。   DESCRIPTION OF SYMBOLS 1 ... Board fixing housing, 2 ... Heat sink for high heating element, 3 ... Connector, 4 ... Platter, 5 ... Cooling fan, 6 ... Inlet cooling air, 7 ... Exhaust air, 8 ... Main board, 9 ... Heat sink Bonded air volume adjusting plate, 10 ... LSI, 11 ... HDD, 12 ... Memory, 13 ... Bus converter, 14 ... Air volume adjusting plate that also serves as heat sink dummy, 15 ... Spacer, 16 ... Heat sink fixing screw, 17 ... Stud, 18 ... Air volume adjustment plate fixing screw.

Claims (4)

2つ以上の高発熱部品を持つ基板と、前記基板を囲む筐体が並列に複数配列され、また、前記筐体内部に冷却風を通過させることでシステムの冷却を行うファンを有する電子装置において、基板上の発熱部の冷却に使用するヒートシンク温度によって作動する、二方向性の形状記憶合金からなる風量制御板によって、発熱部に流れる風量を動的に制御することを特徴とする電子計算機。   In an electronic apparatus having a substrate having two or more highly heat-generating parts and a plurality of cases surrounding the substrate arranged in parallel, and having a fan for cooling the system by passing cooling air through the case An electronic computer characterized by dynamically controlling the amount of air flowing through the heat generating portion by means of an air flow control plate made of a bidirectional shape memory alloy that operates according to a heat sink temperature used for cooling the heat generating portion on the substrate. 請求項1において、前記風量制御板形状の動的変動による圧力損失調整により、基板内部の複数の発熱体の負荷率に対応した風量分配を可能とする電子計算機。   2. The computer according to claim 1, wherein the air volume distribution corresponding to the load factor of a plurality of heating elements inside the substrate is possible by adjusting the pressure loss by the dynamic fluctuation of the air volume control plate shape. 請求項1において、前記風量制御板による圧力損失調整により、並列に配列された前記筐体同士の負荷ばらつきに応じた風量分配を可能とする電子計算機。   2. The computer according to claim 1, wherein the air volume can be distributed according to the load variation between the casings arranged in parallel by adjusting the pressure loss by the air volume control plate. 請求項1〜3において、ヒートシンク搭載時には風量調整機能を持ち、非搭載時にはヒートシンクダミーとして機能することを特徴とする構造体。   4. The structure according to claim 1, wherein the structure has an air volume adjusting function when the heat sink is mounted, and functions as a heat sink dummy when not mounted.
JP2008009978A 2008-01-21 2008-01-21 Cooling structure of computer Pending JP2009169873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009978A JP2009169873A (en) 2008-01-21 2008-01-21 Cooling structure of computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009978A JP2009169873A (en) 2008-01-21 2008-01-21 Cooling structure of computer

Publications (1)

Publication Number Publication Date
JP2009169873A true JP2009169873A (en) 2009-07-30

Family

ID=40970930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009978A Pending JP2009169873A (en) 2008-01-21 2008-01-21 Cooling structure of computer

Country Status (1)

Country Link
JP (1) JP2009169873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128704A1 (en) * 2009-11-30 2011-06-02 International Business Machines Corporation Flow control device and cooled electronic system empolying the same
EP2618645A1 (en) * 2012-01-19 2013-07-24 Alcatel Lucent Thermal management of electronics and photonics equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128704A1 (en) * 2009-11-30 2011-06-02 International Business Machines Corporation Flow control device and cooled electronic system empolying the same
US8385066B2 (en) * 2009-11-30 2013-02-26 International Business Machines Corporation Flow control device and cooled electronic system employing the same
EP2618645A1 (en) * 2012-01-19 2013-07-24 Alcatel Lucent Thermal management of electronics and photonics equipment

Similar Documents

Publication Publication Date Title
US7474527B2 (en) Desktop personal computer and thermal module thereof
Choi et al. A new CPU cooler design based on an active cooling heatsink combined with heat pipes
US8111516B2 (en) Housing used as heat collector
US7116555B2 (en) Acoustic and thermal energy management system
US8619420B2 (en) Consolidated thermal module
US9317078B2 (en) Storage device backplane with penetrating convection and computer framework
US7274571B2 (en) Heatsink
US20140016268A1 (en) Electronic device and airflow adjustment member
CN109727937B (en) Assemblies including heat dissipating elements and related systems and methods
US20050083660A1 (en) Power supply without cooling fan
JP2005012212A (en) Fined device for removing heat from electronic component
US9622386B2 (en) Graphics card cooler
US7038911B2 (en) Push-pull dual fan fansink
US20060002082A1 (en) Dual fan heat sink
JP2007072635A (en) Liquid cooling system and electronic equipment storage rack
US20070146993A1 (en) Method, apparatus and computer system for enhancement of thermal energy transfer
JP2009169873A (en) Cooling structure of computer
CN111124081B (en) Kits for enhanced cooling of components of computing devices and related systems and methods
US20140022724A1 (en) Heat dissipation apparatus
CN111031767B (en) Electronic equipment and heat dissipation module
US20060002083A1 (en) Dual fan heat sink with flow directors
CN101038899B (en) Heat sink mounting device and mounting method, and server blade using the same
TW201146152A (en) Air duct
Wang et al. Investigation of CPU thermal solution designs for BTX desktop system
US20120092825A1 (en) Electronic device with heat dissipation module