JP2009168420A - Engine-driven type heat pump - Google Patents

Engine-driven type heat pump Download PDF

Info

Publication number
JP2009168420A
JP2009168420A JP2008010358A JP2008010358A JP2009168420A JP 2009168420 A JP2009168420 A JP 2009168420A JP 2008010358 A JP2008010358 A JP 2008010358A JP 2008010358 A JP2008010358 A JP 2008010358A JP 2009168420 A JP2009168420 A JP 2009168420A
Authority
JP
Japan
Prior art keywords
engine
heat pump
ventilation
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010358A
Other languages
Japanese (ja)
Other versions
JP5184900B2 (en
Inventor
Norihiro Okuda
憲弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2008010358A priority Critical patent/JP5184900B2/en
Publication of JP2009168420A publication Critical patent/JP2009168420A/en
Application granted granted Critical
Publication of JP5184900B2 publication Critical patent/JP5184900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To use a ventilating hole for ventilation air of equipment chamber also as a through-hole of refrigerant connection piping for connecting refrigerant equipment with an outdoor heat exchanger, and reduce the number of man-hours of boring processing of a drain pan also used as a vertical partition wall, in an engine-driven type heat pump. <P>SOLUTION: The engine-driven type heat pump 1 has the drain pan 6 also used as the vertical partition wall, partitioning the lower equipment chamber 5 and an upper heat exchange chamber 4 and having the ventilating hole for guiding a flow of ventilation air for the equipment chamber 5 to the heat exchange chamber 4 and the through-hole 14 through which outdoor heat exchanger gas piping 45 and outdoor heat exchanger liquid piping 46 for connecting the refrigerant equipment with the outdoor heat exchanger 25 penetrate. The ventilating hole is also used as the through-hole 14, and the peripheral edge of the ventilating hole is covered with a ventilation duct 10 having at least one bent part 17c in the height direction and a discharge face 11c intersecting with the drain pan 6 also used as the vertical partition wall. The outdoor heat exchanger gas piping 45 and outdoor heat exchanger liquid piping 46 penetrate through the ventilation duct 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジン駆動式ヒートポンプ、詳しくは機器室と熱交換室とを区切る上下仕切り壁兼用ドレンパンの構成技術に関する。   The present invention relates to an engine-driven heat pump, and more particularly to a technology for constructing an upper / lower partition wall combined drain pan that divides an equipment room and a heat exchange room.

従来、エンジン及び圧縮機等の冷媒機器を配置する機器室と、機器室の上方に室外熱交換器を配置する熱交換室と、機器室と熱交換室とを仕切る上下仕切り壁と、を有するエンジン駆動式ヒートポンプは公知である。また、熱交換室の排水処理を行うドレンパンの機能を有する上下仕切り壁として、上下仕切り壁兼用ドレンパンも公知である。   Conventionally, it has an equipment room in which refrigerant equipment such as an engine and a compressor is arranged, a heat exchange room in which an outdoor heat exchanger is arranged above the equipment room, and an upper and lower partition wall that partitions the equipment room and the heat exchange room. Engine-driven heat pumps are known. Further, as an upper and lower partition wall having a function of a drain pan that performs drainage treatment of the heat exchange chamber, an upper and lower partition wall combined drain pan is also known.

機器室は、運転中にエンジン騒音が発生する。そのため、エンジン駆動式ヒートポンプは、エンジン騒音が機器室から外部に漏れないようにされる必要がある。
熱交換室には、雨水及び室外熱交換器の凝縮水が浸入する。一方、機器室は、エンジン等が配置されるため、水の浸入が許されない。そのため、機器室は、水が熱交換室から機器室に浸入しないようにされる必要がある。
The equipment room generates engine noise during operation. Therefore, the engine-driven heat pump needs to prevent the engine noise from leaking from the equipment room to the outside.
Rainwater and condensed water from the outdoor heat exchanger enter the heat exchange chamber. On the other hand, in the equipment room, an engine or the like is arranged, so that water does not enter. Therefore, the equipment room needs to prevent water from entering the equipment room from the heat exchange room.

例えば、特許文献1は、中央仕切り板(上下仕切り壁)の構成を開示している。本構成の中央仕切り板は、冷媒機器と室外熱交換器とを接続する冷媒配管の貫通口に雨水浸入防止用のシール用パッドが設けられ、換気用空気の換気口が消音ボックスに覆われる構成とされている。
特許第3248122号公報
For example, Patent Document 1 discloses a configuration of a central partition plate (upper and lower partition walls). The central partition plate of this configuration is configured such that a sealing pad for preventing rainwater ingress is provided at the through hole of the refrigerant pipe connecting the refrigerant device and the outdoor heat exchanger, and the ventilation port of the ventilation air is covered with a silencer box It is said that.
Japanese Patent No. 3248122

しかし、特許文献1に代表される従来構成は、機器室の換気用空気の換気口と冷媒機器と室外熱交換器とを接続する冷媒配管の貫通口が中央仕切り板に別々に構成されている。そのため、中央仕切り板にそれぞれの穴あけ加工が必要となる。
そこで、解決しようとする課題は、エンジン駆動式ヒートポンプにおいて、機器室の換気用空気の換気口を冷媒機器と室外熱交換器とを接続する冷媒配管の貫通口としても使用して、上下仕切り壁兼用ドレンパンの穴あけ加工の工数を低減することである。
However, in the conventional configuration represented by Patent Document 1, a ventilation port for ventilation air in the equipment room and a through-hole in the refrigerant pipe connecting the refrigerant device and the outdoor heat exchanger are separately configured in the central partition plate. . Therefore, each drilling process is required for the central partition plate.
Therefore, the problem to be solved is that in an engine-driven heat pump, the ventilating air vent of the equipment room is also used as a through hole of a refrigerant pipe connecting the refrigerant equipment and the outdoor heat exchanger, It is to reduce the man-hour for drilling the dual-purpose drain pan.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

すなわち、請求項1においては、エンジン及び圧縮機等の冷媒機器が配置される機器室と、室外熱交換器及びファンが配置される熱交換室と、下部の前記機器室と上部の前記熱交換室とを仕切り、前記機器室の換気風を該機器室から前記熱交換室に導く換気口、及び前記冷媒機器と前記室外熱交換器とを接続する冷媒接続配管が貫通する貫通口を有する上下仕切り壁兼用ドレンパンと、を有するエンジン駆動式ヒートポンプにおいて、前記換気口を前記貫通口としても使用し、前記換気口の周縁を高さ方向に少なくとも一回以上の曲がり部及び上下仕切り壁兼用ドレンパンと交差する排出面を有する換気ダクトで覆い、前記冷媒接続配管が前記換気ダクトを貫通するものである。   That is, in claim 1, an equipment room in which refrigerant equipment such as an engine and a compressor is arranged, a heat exchange room in which an outdoor heat exchanger and a fan are arranged, the lower equipment room, and the upper heat exchange Upper and lower having a ventilation port for partitioning the chamber and guiding the ventilation air of the device room from the device chamber to the heat exchange chamber, and a through port through which a refrigerant connection pipe connecting the refrigerant device and the outdoor heat exchanger passes. In an engine-driven heat pump having a partition wall combined use drain pan, the ventilation port is also used as the through port, and the periphery of the ventilation port is bent at least once in the height direction and the upper and lower partition wall combined drain pans. It covers with the ventilation duct which has the discharge surface which intersects, and the said refrigerant | coolant connection piping penetrates the said ventilation duct.

請求項2においては、エンジン及び圧縮機等の冷媒機器が配置される機器室と、室外熱交換器及びファンが配置される熱交換室と、下部の前記機器室と上部の前記熱交換室とを仕切り、前記機器室の換気風を該機器室から前記熱交換室に導く換気口、及び前記冷媒機器と前記室外熱交換器とを接続する冷媒接続配管が貫通する貫通口を有する上下仕切り壁兼用ドレンパンと、を有するエンジン駆動式ヒートポンプにおいて、前記換気口を前記貫通口としても使用し、前記換気口の周縁を換気風の流れ方向で該換気口を間にして一端側に流入面及び他端側に排出面を有する換気ダクトで覆い、前記冷媒接続配管が前記換気ダクトを貫通するものである。   In claim 2, an equipment room in which refrigerant equipment such as an engine and a compressor is arranged, a heat exchange room in which an outdoor heat exchanger and a fan are arranged, the lower equipment room, and the upper heat exchange room, An upper and lower partition wall having a ventilation port for guiding ventilation air from the device room to the heat exchange chamber, and a through-hole through which a refrigerant connection pipe connecting the refrigerant device and the outdoor heat exchanger passes. In the engine-driven heat pump having a dual-purpose drain pan, the ventilation port is also used as the through-hole, and the periphery of the ventilation port is in the flow direction of the ventilation air between the ventilation port and the inlet surface and the other side It is covered with a ventilation duct having a discharge surface on the end side, and the refrigerant connection pipe penetrates the ventilation duct.

請求項3においては、請求項1又は2記載のエンジン駆動式ヒートポンプにおいて、前記排出面と前記冷媒接続配管の貫通面を前記換気ダクトの同一面に形成したものである。   According to a third aspect of the present invention, in the engine-driven heat pump according to the first or second aspect, the exhaust surface and the through surface of the refrigerant connection pipe are formed on the same surface of the ventilation duct.

請求項4においては、請求項3記載のエンジン駆動式ヒートポンプにおいて、前記排出面を上側、前記貫通面を下側に上下に区画して形成したものである。   According to a fourth aspect of the present invention, in the engine-driven heat pump according to the third aspect, the discharge surface is formed on the upper side and the through surface is formed on the lower side.

請求項5においては、請求項4記載のエンジン駆動式ヒートポンプにおいて、前記上下仕切り壁兼用ドレンパン上で前記換気口と前記貫通面との間に該貫通面間口と略等しい幅を有する堰を設け、前記冷媒接続配管が該堰を跨ぐように形成されたものである。   In claim 5, in the engine driven heat pump according to claim 4, a weir having a width substantially equal to the through-surface opening is provided between the ventilation port and the through-surface on the upper and lower partition wall combined drain pan, The refrigerant connection pipe is formed so as to straddle the weir.

請求項6においては、請求項5記載のエンジン駆動式ヒートポンプにおいて、前記貫通面に密閉部材を設け、該密閉部材を貫通して前記冷媒接続配管を取り出したものである。   According to a sixth aspect of the present invention, in the engine-driven heat pump according to the fifth aspect, a sealing member is provided on the penetration surface, and the refrigerant connection pipe is taken out through the sealing member.

請求項7においては、請求項3記載のエンジン駆動式ヒートポンプにおいて、少なくとも前記換気ダクトの外部上面を換気風の流れ方向に沿って前記排出面側が下方傾斜する構成とし、前記換気ダクトの外部上面の前記排出面端に樋を設けたものである。   According to claim 7, in the engine-driven heat pump according to claim 3, at least the outer upper surface of the ventilation duct is configured so that the discharge surface side is inclined downward along the flow direction of the ventilation air, and the outer upper surface of the ventilation duct is A ridge is provided at the end of the discharge surface.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、換気口と冷媒配管貫通口を共用するため、上下仕切り壁兼用ドレンパンの穴あけ加工の工数を低減できる。   In Claim 1, since the ventilation port and the refrigerant pipe through-hole are shared, the man-hour for drilling the upper and lower partition wall drain pans can be reduced.

請求項2においても、換気口と冷媒配管貫通口を共用するため、上下仕切り壁兼用ドレンパンの穴あけ加工の工数を低減できる。   Also in Claim 2, since the ventilation port and the refrigerant pipe through-hole are shared, the man-hour for drilling the upper and lower partition wall combined drain pan can be reduced.

請求項3においては、換気ダクトの一面のみに換気風及び冷媒接続配管の開口を集約できるので、換気口のみならず換気ダクトの換気風排出口と冷媒接続配管の取り出し口も兼用も可能となる。   In Claim 3, since the opening of ventilation wind and refrigerant | coolant connection piping can be concentrated only on one surface of a ventilation duct, it becomes possible to combine not only a ventilation opening but the ventilation wind discharge port of a ventilation duct, and the extraction port of refrigerant | coolant connection piping. .

請求項4においては、冷媒接続配管を上下仕切り壁兼用ドレンパンに沿わせて取り出すことができるので、配管を上下仕切り壁兼用ドレンパンで支持することが容易となる。   According to the fourth aspect of the present invention, since the refrigerant connection pipe can be taken out along the drain pan serving as the upper and lower partition walls, it becomes easy to support the pipe with the drain pan serving as the upper and lower partition walls.

請求項5においては、冷媒接続配管の取り出し口から雨水等の浸水があっても換気口への浸水を防止できる。   According to the fifth aspect of the present invention, even if there is water such as rainwater from the outlet of the refrigerant connection pipe, water can be prevented from entering the ventilation port.

請求項6においては、冷媒接続配管の取り出し口からの雨水等の浸水を極力防止できる。   According to the sixth aspect of the present invention, it is possible to prevent flooding such as rainwater from the outlet of the refrigerant connection pipe as much as possible.

請求項7においては、換気ダクト外部の上面からの雨水等の浸水を極力防止できる。   In Claim 7, inundation, such as rain water, from the upper surface outside a ventilation duct can be prevented as much as possible.

次に、発明の実施の形態を説明する。
図1は本発明の実施例に係るエンジン駆動式ヒートポンプの冷媒回路構成を示す構成図、図2は同じく室外機の全体的な構成を示す一部を透視する斜視図、図3は同じく換気ダクトの全体的な構成を示す一部を透視する斜視図である。図4は同じく換気ダクトの全体的な構成を示す一部を透視する別の斜視図である。
Next, embodiments of the invention will be described.
FIG. 1 is a block diagram showing a refrigerant circuit configuration of an engine-driven heat pump according to an embodiment of the present invention, FIG. 2 is a perspective view partially showing the overall configuration of the outdoor unit, and FIG. 3 is a ventilation duct. It is a perspective view which sees through one part which shows the whole structure of this. FIG. 4 is another perspective view showing a part of the overall structure of the ventilation duct.

まず、図1を用いて、エンジン駆動式ヒートポンプ1の冷媒回路構成について説明する。
エンジン駆動式ヒートポンプ1の冷媒回路は、駆動源としてのエンジン22から動力をクラッチ21を介して得る圧縮機20と、圧縮機20の吐出側に接続され冷房時及び暖房時で冷媒の流れを切り換える四方弁24と、冷房時に圧縮機20から四方弁24を介して吐出冷媒が供給される室外熱交換器25と、室外熱交換器25を室外空気と熱交換させる室外ファン26と、暖房時に圧縮機20から四方弁24を介して吐出冷媒が供給される室内熱交換器29と、室内熱交換器29を室内空気と熱交換させる室内ファン30と、室外熱交換器25及び室内熱交換器29間に設けられる室外熱交換器膨張弁27とから構成されている。
First, the refrigerant circuit configuration of the engine-driven heat pump 1 will be described with reference to FIG.
The refrigerant circuit of the engine-driven heat pump 1 is connected to a compressor 20 that obtains power from an engine 22 as a drive source via a clutch 21 and is connected to the discharge side of the compressor 20 to switch the refrigerant flow during cooling and heating. A four-way valve 24, an outdoor heat exchanger 25 to which discharged refrigerant is supplied from the compressor 20 via the four-way valve 24 during cooling, an outdoor fan 26 that exchanges heat between the outdoor heat exchanger 25 and outdoor air, and compression during heating The indoor heat exchanger 29 to which the refrigerant discharged from the machine 20 is supplied via the four-way valve 24, the indoor fan 30 for exchanging heat between the indoor heat exchanger 29 and the indoor air, the outdoor heat exchanger 25 and the indoor heat exchanger 29 The outdoor heat exchanger expansion valve 27 is provided between them.

圧縮機20は、その吸入側からガス冷媒を吸引・圧縮し、高温・高圧のガス冷媒を吐出する。また、圧縮機20には、吐出側に吐出ライン42を介して四方弁24が接続されている。吐出ライン42には、ガス冷媒中に含まれる冷凍機油を分離して圧縮機20の吸入側に戻すための油分離器23が設けられている。すなわち、圧縮機20から吐出されるガス冷媒は、油分離器23を介して四方弁24へと流入し、この四方弁24にて所定の方向に導かれる。他方、圧縮機20に吸引されるガス冷媒も四方弁24にて導かれるため、圧縮機20の冷媒吸入側と四方弁24とは吸入ライン41により接続されている。   The compressor 20 sucks and compresses the gas refrigerant from the suction side, and discharges the high-temperature and high-pressure gas refrigerant. A four-way valve 24 is connected to the compressor 20 via a discharge line 42 on the discharge side. The discharge line 42 is provided with an oil separator 23 for separating the refrigeration oil contained in the gas refrigerant and returning it to the suction side of the compressor 20. That is, the gas refrigerant discharged from the compressor 20 flows into the four-way valve 24 through the oil separator 23 and is guided in a predetermined direction by the four-way valve 24. On the other hand, since the gas refrigerant sucked into the compressor 20 is also guided by the four-way valve 24, the refrigerant suction side of the compressor 20 and the four-way valve 24 are connected by a suction line 41.

室外熱交換器25には、一端側に冷媒接続配管としての室外熱交換器ガス配管45を介して四方弁24が接続され、他端側には冷媒接続配管としての室外熱交換器液配管46を介してレシーバ31が接続されている。他方、室内熱交換器29には、一端側に室内熱交換器膨張弁28を介してレシーバ31が接続され、他端側に四方弁24が接続されている。   The four-way valve 24 is connected to the outdoor heat exchanger 25 via an outdoor heat exchanger gas pipe 45 serving as a refrigerant connection pipe on one end side, and an outdoor heat exchanger liquid pipe 46 serving as a refrigerant connection pipe on the other end side. A receiver 31 is connected via On the other hand, the receiver 31 is connected to the indoor heat exchanger 29 via the indoor heat exchanger expansion valve 28 at one end side, and the four-way valve 24 is connected to the other end side.

廃熱回収器35は、廃熱回収ライン44に設けられている。また、廃熱回収ライン44は、レシーバ31と室外熱交換器膨張弁27との間から分岐し、吸入ライン41に接続されている。廃熱回収膨張弁34は、廃熱回収ライン44において、廃熱回収器35の入口側に設けられている。廃熱回収ライン44を通過する冷媒は、廃熱回収膨張弁34によって通過量を制御され、廃熱回収器35でエンジン冷却水からエンジン22の廃熱を回収して蒸発する。   The waste heat recovery unit 35 is provided in the waste heat recovery line 44. The waste heat recovery line 44 branches from between the receiver 31 and the outdoor heat exchanger expansion valve 27 and is connected to the suction line 41. The waste heat recovery expansion valve 34 is provided on the inlet side of the waste heat recovery unit 35 in the waste heat recovery line 44. The amount of refrigerant passing through the waste heat recovery line 44 is controlled by the waste heat recovery expansion valve 34, and the waste heat of the engine 22 is recovered from the engine coolant by the waste heat recovery unit 35 and evaporated.

過冷却熱交換器33は、レシーバ31の内部に配置され、過冷却ライン43に設けられている。また、過冷却ライン43は、レシーバ31と室外熱交換器膨張弁27との間から分岐し、吸入ライン41に接続されている。過冷却熱交換器膨張弁32は、過冷却ライン43において、過冷却熱交換器33の入口側に設けられている。過冷却ライン43を通過する冷媒は、過冷却熱交換器膨張弁32によって通過量を制御され、レシーバ31内の液冷媒を過冷却熱交換器33にて過冷却して蒸発する。   The supercooling heat exchanger 33 is disposed inside the receiver 31 and is provided in the supercooling line 43. The supercooling line 43 branches from between the receiver 31 and the outdoor heat exchanger expansion valve 27 and is connected to the suction line 41. The supercooling heat exchanger expansion valve 32 is provided on the inlet side of the supercooling heat exchanger 33 in the supercooling line 43. The refrigerant passing through the supercooling line 43 is controlled in its passage amount by the supercooling heat exchanger expansion valve 32, and the liquid refrigerant in the receiver 31 is supercooled by the supercooling heat exchanger 33 and evaporated.

また、図1及び図2を用いて、エンジン駆動式ヒートポンプ1の室外機2の構成について説明する。なお、図2において、室外ファン26、側板7、天板8、及び配管類は、説明を分かり易くするために、図示を透過している。
図1に示すように、エンジン駆動式ヒートポンプ1は、室外機2と、室内機3と、から構成されている。
図2に示すように、室外機2は、室外ファン26によって、側面の室外熱交換器25から外気を吸い込み、上面(天板8側)に排出する上吹き型の構成とされている。なお、上吹き型の室外機2は、大容量のエンジン駆動式ヒートポンプに用いられる構成である。また、室内機3は、本実施例では室外機2に1台接続されているが、複数台接続することもできる。
Moreover, the structure of the outdoor unit 2 of the engine drive type heat pump 1 is demonstrated using FIG.1 and FIG.2. In FIG. 2, the outdoor fan 26, the side plate 7, the top plate 8, and the piping are transparent to the illustration for easy understanding.
As shown in FIG. 1, the engine-driven heat pump 1 includes an outdoor unit 2 and an indoor unit 3.
As shown in FIG. 2, the outdoor unit 2 has an upper blow type configuration in which outside air is sucked in from the outdoor heat exchanger 25 on the side surface by an outdoor fan 26 and discharged to the upper surface (top plate 8 side). The top blow type outdoor unit 2 has a configuration used for a large-capacity engine-driven heat pump. In addition, one indoor unit 3 is connected to the outdoor unit 2 in this embodiment, but a plurality of indoor units can be connected.

室外機2は、上部の熱交換室4と、下部の機器室5と、を備えて構成されている。上下仕切り壁兼用ドレンパン6は、熱交換室4の排水処理を行うドレンパンとしての機能を有し、熱交換室4と機器室5とを仕切る壁である。また、熱交換室4には、室外熱交換器25及び室外ファン26が配置されている。
ここで、特記すべき事項として、熱交換室4において、換気ダクト10が設けられている。また、換気ダクト10は、上下仕切り壁兼用ドレンパン6に形成される貫通口14を覆うように配置されている。なお、換気ダクト10について、詳細は後述する。貫通口14は、室外熱交換器ガス配管45及び室外熱交換器液配管46が熱交換室4と機器室5とを接続するため、上下仕切り壁兼用ドレンパン6に開口された穴である。
一方、機器室5には、エンジン22及び圧縮機20等の冷媒機器が配置されている。
The outdoor unit 2 includes an upper heat exchange chamber 4 and a lower equipment chamber 5. The upper / lower partition wall drain pan 6 has a function as a drain pan for performing drainage treatment of the heat exchange chamber 4 and is a wall that partitions the heat exchange chamber 4 and the equipment chamber 5. In the heat exchange chamber 4, an outdoor heat exchanger 25 and an outdoor fan 26 are arranged.
Here, as a matter to be noted, a ventilation duct 10 is provided in the heat exchange chamber 4. Moreover, the ventilation duct 10 is arrange | positioned so that the through-hole 14 formed in the upper and lower partition wall combined drain pan 6 may be covered. The ventilation duct 10 will be described in detail later. The through-hole 14 is a hole opened in the upper and lower partition wall drain pan 6 so that the outdoor heat exchanger gas pipe 45 and the outdoor heat exchanger liquid pipe 46 connect the heat exchange chamber 4 and the equipment chamber 5.
On the other hand, refrigerant equipment such as the engine 22 and the compressor 20 is arranged in the equipment room 5.

ここで、図3を用いて、換気ダクト10の構成について、詳細に説明する。なお、図3において、換気ダクト10内部を分かり易く説明するため、換気ダクト10は、透過して図示されている。また、以下では、図3における矢印の方向を、換気ダクト10の吹き出し側と定義する。   Here, the configuration of the ventilation duct 10 will be described in detail with reference to FIG. In FIG. 3, the ventilation duct 10 is shown in a transparent manner for easy understanding of the inside of the ventilation duct 10. In the following, the direction of the arrow in FIG. 3 is defined as the blowout side of the ventilation duct 10.

図3に示すように、換気ダクト10は、外部ダクト11と、内部ダクト12と、堰13と、から構成されている。
外部ダクト11は、内部ダクト12、堰13、及び貫通口14を覆うように、上下仕切り壁兼用ドレンパン6に配置されている。また、外部ダクト11は、底面及び吹き出し側の面11cを開口する略直方体で形成されている。この面11cが換気ダクト10の換気風の排出面であり、排出口である。さらに、外部ダクト11には、吹き出し側の面11c上端に樋11hが設けられている。ここで、外部ダクト11の上面11aは、吹き出し側に向かって下降するように傾斜している(図4参照)。また、外部ダクト11では、吹き出し側と対向する側の面11d及び左右側面の内側に吸音材19d・19e・19fが貼着されている。
As shown in FIG. 3, the ventilation duct 10 includes an external duct 11, an internal duct 12, and a weir 13.
The external duct 11 is arranged on the upper and lower partition wall drain pan 6 so as to cover the internal duct 12, the weir 13, and the through-hole 14. Moreover, the external duct 11 is formed in the substantially rectangular parallelepiped which opens the bottom face and the surface 11c on the blowing side. This surface 11c is a ventilation air discharge surface of the ventilation duct 10 and is a discharge port. Further, the outer duct 11 is provided with a flange 11h at the upper end of the blow-off surface 11c. Here, the upper surface 11a of the external duct 11 is inclined so as to descend toward the blowing side (see FIG. 4). In the external duct 11, sound absorbing materials 19d, 19e, and 19f are attached to the inside of the surface 11d on the side facing the blowing side and the left and right side surfaces.

内部ダクト12は、堰13、及び貫通口14を覆うように、外部ダクト11内に配置されている。また、内部ダクト12は、底面及び左右側面を開口する略直方体で形成されている。さらに、内部ダクト12には、吹き出し側の面12cにおいて、冷媒配管取り出し口16が2箇所設けられている。さらに、内部ダクト12には、吹き出し側と対向する側の面12dにおいて、スリット15が形成されている。この面12dが換気ダクト10の換気風の流入面であり、スリット15が換気ダクト10の換気風の流入口である。ここで、内部ダクト12の上面12aは、吹き出し側に向かって下降するように傾斜している(図4参照)。   The internal duct 12 is disposed in the external duct 11 so as to cover the weir 13 and the through hole 14. Moreover, the internal duct 12 is formed in the substantially rectangular parallelepiped which opens a bottom face and right and left side surfaces. Further, the internal duct 12 is provided with two refrigerant piping outlets 16 on the blow-out side surface 12c. Furthermore, a slit 15 is formed in the inner duct 12 on a surface 12d facing the blowing side. This surface 12 d is a ventilation air inflow surface of the ventilation duct 10, and the slit 15 is a ventilation air inlet of the ventilation duct 10. Here, the upper surface 12a of the internal duct 12 is inclined so as to descend toward the blowing side (see FIG. 4).

堰13は、貫通口14の吹き出し側において、内部ダクト12内に配置されている。また、堰13は、上下仕切り壁兼用ドレンパン6上において、貫通口14と内部ダクト12の吹き出し側の面12cとの間に設けられている。さらに、堰13は、幅を外部ダクト11の幅、すなわち内部ダクト12の面12cの間口と略同一に、高さを内部ダクト12の高さの略半分に形成されている。さらに、堰13には、貫通口14側において、吸音材19cが貼着されている。   The weir 13 is disposed in the internal duct 12 on the blowing side of the through-hole 14. Further, the weir 13 is provided between the through-hole 14 and the blowing-side surface 12 c of the internal duct 12 on the upper and lower partition wall drain pan 6. Further, the weir 13 is formed to have a width substantially the same as the width of the external duct 11, that is, the opening of the surface 12 c of the internal duct 12, and a height that is substantially half the height of the internal duct 12. Furthermore, a sound absorbing material 19c is attached to the weir 13 on the through hole 14 side.

ここで、図4を用いて、換気ダクト10の構成について、さらに詳細に説明する。なお、図4において、換気ダクト10内部を分かり易く説明するため、換気ダクト10は、透過して図示されている。また、図4における白抜き矢印は、換気ダクト10内の通路17(換気風の流れ方向)を示している。さらに、換気ダクト10内部を分かり易く説明するため、図4において吸音材19d・19e・19fの図示は省略されている。   Here, the configuration of the ventilation duct 10 will be described in more detail with reference to FIG. In FIG. 4, the ventilation duct 10 is illustrated in a transparent manner in order to easily explain the inside of the ventilation duct 10. Moreover, the white arrow in FIG. 4 has shown the channel | path 17 (flow direction of ventilation wind) in the ventilation duct 10. As shown in FIG. Furthermore, in order to explain the inside of the ventilation duct 10 in an easy-to-understand manner, the sound absorbing materials 19d, 19e, and 19f are not shown in FIG.

図4に示すように、換気ダクト10は、外部ダクト11及び内部ダクト12によって、通路17a・17b・17c及び吹き出し口18を形成する。通路17a・17b・17cは、換気ダクト10内において、第一通路17a、第二通路17b、及び曲がり部17cが連通され形成されている。第一通路17aは、内部ダクト12の上面12a外側と、外部ダクト11の側面11e・11fの内側及び上面11aの内側によって形成されている。第二通路17bは、内部ダクト12の吹き出し側と対向する側の面12dの外側と、外部ダクト11の側面11e・11fのそれぞれの内側及び吹き出し側と対向する側の面11dの内側によって形成されている。ここで、第二通路17bから第一通路17aへは、曲がり部17cによって、高さ方向に一回曲げられる。
一方、吹き出し口18は、内部ダクト12の吹き出し側の面12cと、開口された外部ダクト11の吹き出し側の面11cと、から構成されている。
As shown in FIG. 4, the ventilation duct 10 forms passages 17 a, 17 b, and 17 c and a blowout port 18 by the external duct 11 and the internal duct 12. The passages 17a, 17b, and 17c are formed in the ventilation duct 10 such that the first passage 17a, the second passage 17b, and the bent portion 17c communicate with each other. The first passage 17a is formed by the outer side of the upper surface 12a of the internal duct 12, the inner side of the side surfaces 11e and 11f of the outer duct 11, and the inner side of the upper surface 11a. The second passage 17b is formed by the outside of the surface 12d facing the blowing side of the internal duct 12, the inside of each of the side surfaces 11e and 11f of the external duct 11, and the inside of the surface 11d facing the blowing side. ing. Here, the second passage 17b is bent once in the height direction by the bent portion 17c from the first passage 17a.
On the other hand, the blowout port 18 includes a blowout side surface 12 c of the internal duct 12 and a blowout side surface 11 c of the opened external duct 11.

室外熱交換器ガス配管45及び室外熱交換器液配管46は、機器室5(図2参照)から鉛直方向に上下仕切り壁兼用ドレンパン6の貫通口14を貫通し、内部ダクト12内において、高さ方向に折り返され、堰13を跨いで、内部ダクト12の冷媒配管取り出し口16を貫通し、熱交換室4において室外熱交換器25(図2参照)と接続する。また、室外熱交換器ガス配管45及び室外熱交換器液配管46は、冷媒配管取り出し口16において、密閉部材51・51を貫通して取り出されている。また、密閉部材51・51で冷媒配管取り出し口16は、略密閉されている。   The outdoor heat exchanger gas pipe 45 and the outdoor heat exchanger liquid pipe 46 pass through the through-hole 14 of the upper and lower partition wall drain pan 6 in the vertical direction from the equipment room 5 (see FIG. 2), and in the internal duct 12, It is folded in the vertical direction, straddles the weir 13, passes through the refrigerant pipe outlet 16 of the internal duct 12, and is connected to the outdoor heat exchanger 25 (see FIG. 2) in the heat exchange chamber 4. The outdoor heat exchanger gas pipe 45 and the outdoor heat exchanger liquid pipe 46 are taken out through the sealing members 51 and 51 at the refrigerant pipe outlet 16. Further, the refrigerant pipe outlet 16 is substantially sealed by the sealing members 51.

ここで、換気風の通風構成について説明する。機器室5に配置されるエンジン22等は、換気風によって冷却される。そして、機器室5の換気風は、熱交換室4が負圧であるため、換気ダクト10を経由して、熱交換室4に導かれる。
ここで、換気風は、機器室5より貫通口14を通過し、内部ダクト12のスリット15を通過し、通路17a・17b・17cを通過し、吹き出し口18から熱交換室4まで導かれる(図4における白抜き矢印参照)。つまり、貫通口14は、室外熱交換器ガス配管45及び室外熱交換器液配管46を貫通させるのみではなく、機器室5よりの換気用空気の通気口としても利用される。
Here, the ventilation structure of the ventilation air will be described. The engine 22 and the like disposed in the equipment room 5 are cooled by ventilation air. The ventilation air in the equipment room 5 is guided to the heat exchange chamber 4 via the ventilation duct 10 because the heat exchange chamber 4 has a negative pressure.
Here, the ventilation air passes through the through-hole 14 from the equipment room 5, passes through the slit 15 of the internal duct 12, passes through the passages 17 a, 17 b, and 17 c, and is guided from the blow-out port 18 to the heat exchange chamber 4 ( (See the white arrow in FIG. 4). That is, the through-hole 14 is used not only for passing through the outdoor heat exchanger gas pipe 45 and the outdoor heat exchanger liquid pipe 46 but also as a vent hole for ventilation air from the equipment room 5.

また、換気ダクト10の防水作用について説明する。換気ダクト10には、吹き出し口18より熱交換室4における雨水又は室外熱交換器25の凝縮水等の水滴が浸入するおそれがある。一方、機器室5は、エンジン22及び圧縮機20が配置されているため、水分の浸入が許されない(図2参照)。
ここで、吹き出し口18より浸入した水滴は、上面12aの傾斜によって、第一通路17aより先に浸入することを妨げられる。また、外部ダクト11の上面11aに付着した水滴は、樋11hによって、吹き出し口18への浸入を妨げられる。さらに、冷媒配管取り出し口16より浸入した水滴は、堰13によって、貫通口14への浸入を妨げられる。
The waterproof action of the ventilation duct 10 will be described. There is a risk that water droplets such as rainwater in the heat exchange chamber 4 or condensed water in the outdoor heat exchanger 25 may enter the ventilation duct 10 from the outlet 18. On the other hand, since the engine 22 and the compressor 20 are arranged in the equipment room 5, moisture intrusion is not permitted (see FIG. 2).
Here, the water droplets that have entered from the outlet 18 are prevented from entering before the first passage 17a due to the inclination of the upper surface 12a. Moreover, the water droplets adhering to the upper surface 11a of the external duct 11 are prevented from entering the outlet 18 by the eaves 11h. Further, water droplets that have entered from the refrigerant pipe outlet 16 are prevented from entering the through hole 14 by the weir 13.

さらに、換気ダクト10の防音作用について説明する。機器室5は、エンジン22が配置されているため、エンジン騒音が発生する。このエンジン騒音は、貫通口14より熱交換室4、ひいては室外機2外部に漏れるおそれがある。
上述するように、換気ダクト10は、堰13の貫通口14側の吸音材19cと、外部ダクト11の吹き出し側に向かって左右の側面11e・11fの内側の吸音材19e・19fと、外部ダクト11の吹き出し側と対向する側の面11dの吸音材19dと、が貼着されている。ここで、エンジン騒音は、これらの吸音材19c・19d・19e・19fによって吸収される。そのため、熱交換室4に漏れるエンジン騒音は、低減される。
また、換気ダクト10の曲がり部17cでの騒音波の減衰によってもエンジン騒音は、低減される。
Furthermore, the soundproofing action of the ventilation duct 10 will be described. Since the engine 22 is disposed in the equipment room 5, engine noise is generated. This engine noise may leak from the through-hole 14 to the heat exchange chamber 4 and thus to the outside of the outdoor unit 2.
As described above, the ventilation duct 10 includes the sound absorbing material 19c on the through-hole 14 side of the weir 13, the sound absorbing materials 19e and 19f inside the left and right side surfaces 11e and 11f toward the blowing side of the external duct 11, and the external duct. 11 is affixed to a sound absorbing material 19d on the surface 11d on the side facing the blowing side. Here, the engine noise is absorbed by the sound absorbing materials 19c, 19d, 19e, and 19f. Therefore, engine noise leaking into the heat exchange chamber 4 is reduced.
The engine noise is also reduced by the attenuation of the noise wave at the bent portion 17c of the ventilation duct 10.

このようにして、冷媒配管貫通口14と機器室5の換気口とを共用するため、上下仕切り壁兼用ドレンパン6の穴あけ加工の工数を低減できる。同時に、換気ダクト10は、熱交換室4の水分の浸入を妨げる防水効果を有し、機器室5のエンジン騒音の騒音低減効果を有する。   In this way, since the refrigerant pipe through-hole 14 and the ventilation opening of the equipment room 5 are shared, the man-hours for drilling the upper and lower partition wall drain pan 6 can be reduced. At the same time, the ventilation duct 10 has a waterproof effect that prevents moisture from entering the heat exchange chamber 4, and has a noise reduction effect of engine noise in the equipment chamber 5.

本発明の実施例に係るエンジン駆動式ヒートポンプの冷媒回路構成を示す構成図。The block diagram which shows the refrigerant circuit structure of the engine drive type heat pump which concerns on the Example of this invention. 同じく室外機の全体的な構成を示す一部を透視する斜視図。The perspective view which sees through one part which shows the whole structure of an outdoor unit similarly. 同じく換気ダクトの全体的な構成を示す一部を透視する斜視図。The perspective view which sees through a part which shows the whole structure of a ventilation duct similarly. 同じく換気ダクトの全体的な構成を示す一部を透視する別の斜視図。The other perspective view which sees through a part which shows the whole structure of a ventilation duct similarly.

符号の説明Explanation of symbols

1 エンジン駆動式ヒートポンプ
2 室外機
4 熱交換室
5 機器室
6 上下仕切り壁兼用ドレンパン
10 換気ダクト
11 外部ダクト
12 内部ダクト
14 貫通口
20 圧縮機
22 エンジン
25 室外熱交換器
45 室外熱交換器ガス配管
46 室外熱交換器液配管
DESCRIPTION OF SYMBOLS 1 Engine drive type heat pump 2 Outdoor unit 4 Heat exchange room 5 Equipment room 6 Drain pan combined with upper and lower partition walls 10 Ventilation duct 11 External duct 12 Internal duct 14 Through-hole 20 Compressor 22 Engine 25 Outdoor heat exchanger 45 Outdoor heat exchanger gas piping 46 Outdoor heat exchanger liquid piping

Claims (7)

エンジン及び圧縮機等の冷媒機器が配置される機器室と、
室外熱交換器及びファンが配置される熱交換室と、
下部の前記機器室と上部の前記熱交換室とを仕切り、前記機器室の換気風を該機器室から前記熱交換室に導く換気口、及び前記冷媒機器と前記室外熱交換器とを接続する冷媒接続配管が貫通する貫通口を有する上下仕切り壁兼用ドレンパンと、
を有するエンジン駆動式ヒートポンプにおいて、
前記換気口を前記貫通口としても使用し、
前記換気口の周縁を高さ方向に少なくとも一回以上の曲がり部及び上下仕切り壁兼用ドレンパンと交差する排出面を有する換気ダクトで覆い、
前記冷媒接続配管が前記換気ダクトを貫通することを特徴とするエンジン駆動式ヒートポンプ。
An equipment room in which refrigerant equipment such as an engine and a compressor is arranged;
A heat exchange chamber in which an outdoor heat exchanger and a fan are arranged;
The lower equipment room and the upper heat exchange room are partitioned, and the ventilation port for guiding the ventilation air of the equipment room from the equipment room to the heat exchange room, and the refrigerant equipment and the outdoor heat exchanger are connected. An upper and lower partition wall combined drain pan having a through-hole through which the refrigerant connection pipe passes;
In an engine-driven heat pump having
Use the ventilation port as the through-hole,
Covering the peripheral edge of the ventilation port with a ventilation duct having a discharge surface intersecting with the bent part and the upper and lower partition wall combined drain pan at least once in the height direction,
The engine-driven heat pump, wherein the refrigerant connection pipe passes through the ventilation duct.
エンジン及び圧縮機等の冷媒機器が配置される機器室と、
室外熱交換器及びファンが配置される熱交換室と、
下部の前記機器室と上部の前記熱交換室とを仕切り、前記機器室の換気風を該機器室から前記熱交換室に導く換気口、及び前記冷媒機器と前記室外熱交換器とを接続する冷媒接続配管が貫通する貫通口を有する上下仕切り壁兼用ドレンパンと、
を有するエンジン駆動式ヒートポンプにおいて、
前記換気口を前記貫通口としても使用し、
前記換気口の周縁を換気風の流れ方向で該換気口を間にして一端側に流入面及び他端側に排出面を有する換気ダクトで覆い、
前記冷媒接続配管が前記換気ダクトを貫通することを特徴とするエンジン駆動式ヒートポンプ。
An equipment room in which refrigerant equipment such as an engine and a compressor is arranged;
A heat exchange chamber in which an outdoor heat exchanger and a fan are arranged;
The lower equipment room and the upper heat exchange room are partitioned, and the ventilation port for guiding the ventilation air of the equipment room from the equipment room to the heat exchange room, and the refrigerant equipment and the outdoor heat exchanger are connected. An upper and lower partition wall combined drain pan having a through-hole through which the refrigerant connection pipe passes;
In an engine-driven heat pump having
Use the ventilation port as the through-hole,
Covering the periphery of the vent with a ventilation duct having an inflow surface on one end and an exhaust surface on the other end with the vent in the flow direction of the ventilation air,
The engine-driven heat pump, wherein the refrigerant connection pipe passes through the ventilation duct.
請求項1又は2記載のエンジン駆動式ヒートポンプにおいて、
前記排出面と前記冷媒接続配管の貫通面を前記換気ダクトの同一面に形成したことを特徴とするエンジン駆動式ヒートポンプ。
The engine-driven heat pump according to claim 1 or 2,
An engine-driven heat pump characterized in that the exhaust surface and the through surface of the refrigerant connection pipe are formed on the same surface of the ventilation duct.
請求項3記載のエンジン駆動式ヒートポンプにおいて、
前記排出面を上側、前記貫通面を下側に上下に区画して形成したことを特徴とするエンジン駆動式ヒートポンプ。
The engine-driven heat pump according to claim 3,
An engine-driven heat pump characterized in that the discharge surface is formed on the upper side and the through surface is formed on the lower side.
請求項4記載のエンジン駆動式ヒートポンプにおいて、
前記上下仕切り壁兼用ドレンパン上で前記換気口と前記貫通面との間に該貫通面間口と略等しい幅を有する堰を設け、前記冷媒接続配管が該堰を跨ぐように形成されたことを特徴とするエンジン駆動式ヒートポンプ。
The engine-driven heat pump according to claim 4,
A weir having a width substantially equal to the through-surface opening is provided between the ventilation port and the through surface on the upper and lower partition wall drain pan, and the refrigerant connection pipe is formed to straddle the weir. Engine driven heat pump.
請求項5記載のエンジン駆動式ヒートポンプにおいて、
前記貫通面に密閉部材を設け、該密閉部材を貫通して前記冷媒接続配管を取り出したことを特徴とするエンジン駆動式ヒートポンプ。
The engine-driven heat pump according to claim 5,
An engine-driven heat pump, wherein a sealing member is provided on the through surface, and the refrigerant connection pipe is taken out through the sealing member.
請求項3記載のエンジン駆動式ヒートポンプにおいて、
少なくとも前記換気ダクトの外部上面を換気風の流れ方向に沿って前記排出面側が下方傾斜する構成とし、前記換気ダクトの外部上面の前記排出面端に樋を設けたことを特徴とするエンジン駆動式ヒートポンプ。
The engine-driven heat pump according to claim 3,
An engine-driven system characterized in that at least the outer upper surface of the ventilation duct is configured so that the discharge surface side is inclined downward along the flow direction of the ventilation air, and a flange is provided at the end of the discharge surface of the outer upper surface of the ventilation duct. heat pump.
JP2008010358A 2008-01-21 2008-01-21 Engine driven heat pump Active JP5184900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010358A JP5184900B2 (en) 2008-01-21 2008-01-21 Engine driven heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010358A JP5184900B2 (en) 2008-01-21 2008-01-21 Engine driven heat pump

Publications (2)

Publication Number Publication Date
JP2009168420A true JP2009168420A (en) 2009-07-30
JP5184900B2 JP5184900B2 (en) 2013-04-17

Family

ID=40969799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010358A Active JP5184900B2 (en) 2008-01-21 2008-01-21 Engine driven heat pump

Country Status (1)

Country Link
JP (1) JP5184900B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139914A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Outdoor unit
WO2016021262A1 (en) * 2014-08-05 2016-02-11 ヤンマー株式会社 Heat pump
US20160040593A1 (en) * 2014-08-05 2016-02-11 Yanmar Co., Ltd. Engine system
US10344661B2 (en) 2014-08-05 2019-07-09 Yanmar Co., Ltd. Engine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080794B2 (en) 2014-03-26 2017-02-15 ヤンマー株式会社 Package storage type engine generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248122B2 (en) * 1994-06-30 2002-01-21 ヤマハ発動機株式会社 Outdoor unit of engine driven heat pump device
JP2003343882A (en) * 2002-03-20 2003-12-03 Aisin Seiki Co Ltd Engine-driven air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248122B2 (en) * 1994-06-30 2002-01-21 ヤマハ発動機株式会社 Outdoor unit of engine driven heat pump device
JP2003343882A (en) * 2002-03-20 2003-12-03 Aisin Seiki Co Ltd Engine-driven air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139914A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Outdoor unit
WO2016021262A1 (en) * 2014-08-05 2016-02-11 ヤンマー株式会社 Heat pump
US20160040593A1 (en) * 2014-08-05 2016-02-11 Yanmar Co., Ltd. Engine system
JP2016038107A (en) * 2014-08-05 2016-03-22 ヤンマー株式会社 heat pump
US10267219B2 (en) * 2014-08-05 2019-04-23 Yanmar Co., Ltd. Engine system
US10344661B2 (en) 2014-08-05 2019-07-09 Yanmar Co., Ltd. Engine system

Also Published As

Publication number Publication date
JP5184900B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5260426B2 (en) Package type compressor
JP5184900B2 (en) Engine driven heat pump
JP6501908B2 (en) Outdoor unit
US11112131B2 (en) Heat source unit with corrugated bottom plate
JP6596974B2 (en) Air conditioner
TWI657222B (en) Heat source unit of refrigeration unit
JP2008202889A (en) Engine-driven heat pump
JP5123018B2 (en) Air conditioner
JP4391368B2 (en) Outdoor unit and air conditioner
JP4544223B2 (en) Air conditioner
JP6402961B2 (en) Air conditioner
JP2009168422A (en) Engine driven type working machine
JP2000065376A (en) Ceiling cassette type air conditioner
JP3425635B2 (en) Engine driven heat pump device
JP2011158109A (en) Outdoor unit of freezing machine
JP3084431U (en) Engine driven work machine
JP7066422B2 (en) Ceiling embedded air conditioner
EP2113729B1 (en) Engine-driven heat pump
KR100745174B1 (en) Drain Filter for an Air Conditioner
JP2005077054A (en) Waterproof structure of vertical air conditioner
JPH07239137A (en) Air conditioner
JP2006125651A (en) Outdoor unit
JPH10238826A (en) Outdoor machine unit of engine-driven heat pump
JPH07305872A (en) Engine-driven air conditioner
JPH07233975A (en) Engine-driven air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5184900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350