JP2009167903A - Fluid supply device and fluid supplying method - Google Patents

Fluid supply device and fluid supplying method Download PDF

Info

Publication number
JP2009167903A
JP2009167903A JP2008006790A JP2008006790A JP2009167903A JP 2009167903 A JP2009167903 A JP 2009167903A JP 2008006790 A JP2008006790 A JP 2008006790A JP 2008006790 A JP2008006790 A JP 2008006790A JP 2009167903 A JP2009167903 A JP 2009167903A
Authority
JP
Japan
Prior art keywords
fluid
chamber
driving liquid
outlet
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006790A
Other languages
Japanese (ja)
Inventor
Masafumi Ajiri
雅文 阿尻
Katsuyasu Iida
勝康 飯田
Makio Irie
牧夫 入江
Kaoru Matsushita
馨 松下
Hideo Miyake
英雄 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITEC Co Ltd
Original Assignee
ITEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITEC Co Ltd filed Critical ITEC Co Ltd
Priority to JP2008006790A priority Critical patent/JP2009167903A/en
Publication of JP2009167903A publication Critical patent/JP2009167903A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage to a sealing part with particles and precisely supply a fixed quantity of high-pressure fluid even if the fluid to be supplied is a slurry in which particles are dispersed. <P>SOLUTION: A fluid housing chamber (3) and a driving liquid chamber (4) are provided in a housing (2). The fluid housing chamber (3) and the driving liquid chamber (4) are tightly blocked by a deformable partition wall (5) whose peripheral edge is fixed to the housing (2). A fluid opening (7) is opened at a lower portion of the fluid housing chamber (3). An outlet path (11) is connected to a fluid outlet (7), and an outlet opening/closing valve (13) is provided to the outlet path (11). A device (16) for agitating the inside of a supplying chamber is provided at a lower portion in the fluid housing chamber (3). A driving liquid inlet (18) is opened to the driving liquid chamber (4). The driving liquid inlet (18) is made to communicate with an oil tank (21) via the driving liquid supplying path (20). An oil pump (23) is provided to the driving liquid supplying path (20). A liquid surface detection means (27) is provided to the oil tank (21). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流体供給装置とこれを用いた流体供給方法に関し、さらに詳しくは、供給する流体が液中に微粒子を分散させたスラリーであっても、シール部などをこの微粒子で損傷する虞を防止でき、高圧の流体を精緻に定量供給できる流体供給装置とこれを用いた流体供給方法に関する。   The present invention relates to a fluid supply device and a fluid supply method using the same, and more specifically, even if the supplied fluid is a slurry in which fine particles are dispersed in a liquid, there is a risk that a seal portion or the like may be damaged by the fine particles. The present invention relates to a fluid supply apparatus capable of preventing and supplying a high-pressure fluid precisely and quantitatively, and a fluid supply method using the same.

いわゆるナノ粒子といわれる微粒子の製造装置では、亜臨界状態や超臨界状態の高温高圧水と金属塩水溶液などの原料流体とが反応器内で反応される。上記の原料流体は、例えば35MPaなどの高圧状態にされ、毎分40mL程度の供給流量で反応器内へ供給されるが、上記の反応器内で均一な微粒子を得るためには、脈動を極力抑え、その供給流量を高精度に制御する必要がある。   In a so-called nanoparticle production apparatus called a nanoparticle, a subcritical or supercritical high-temperature high-pressure water and a raw material fluid such as a metal salt aqueous solution are reacted in a reactor. The above-mentioned raw material fluid is brought into a high pressure state such as 35 MPa and supplied into the reactor at a supply flow rate of about 40 mL per minute. In order to obtain uniform fine particles in the above reactor, pulsation is minimized as much as possible. It is necessary to control the supply flow rate with high accuracy.

従来、上記の流体供給装置としては、シリンジポンプを用いたものがある(例えば、特許文献1参照。)。
このシリンジポンプは、筒状のシリンダー内に流体収容室を形成して、この流体収容室の一端に流体出口を開口してあり、この流体収容室内にピストン状のプランジャーを保密摺動自在に挿入してある。このプランジャーは送りネジ機構などで上記の流体出口に対し進退移動可能に構成してあり、このプランジャーを流体出口へ移動させることにより、シリンダー内に収容されている流体が流体出口から脈動することなく送り出される。この送り出される流体量は、シリンダーの内径とプランジャーの移動速度により決まり、そのプランジャーの移動速度を制御することにより、流体の供給流量が精緻に制御される。
Conventionally, as the fluid supply device, there is one using a syringe pump (for example, see Patent Document 1).
In this syringe pump, a fluid storage chamber is formed in a cylindrical cylinder, a fluid outlet is opened at one end of the fluid storage chamber, and a piston-like plunger is slidably slidable in the fluid storage chamber. Inserted. The plunger is configured to be movable forward and backward with respect to the fluid outlet by a feed screw mechanism or the like. By moving the plunger to the fluid outlet, the fluid stored in the cylinder pulsates from the fluid outlet. It is sent out without. The amount of fluid delivered is determined by the inner diameter of the cylinder and the moving speed of the plunger. By controlling the moving speed of the plunger, the fluid supply flow rate is precisely controlled.

特開昭49−12401号公報Japanese Patent Laid-Open No. 49-12401

上記のシリンジポンプは、流体の供給流量を精緻に制御できる利点があるが、プランジャーを移動させる送り機構が複雑で、製作コストが高価につくうえ、プランジャーのピストン部がシリンダー内面を保密摺動することから、シリンダー内に収容する流体が液体に微粒子を分散させたスラリーであると、この微粒子がシリンダー内面とピストンの外周面との間に入り込み、シール部が早期に損傷して流体の洩れを生じる虞があり、部品交換の頻度が多くメンテナンスが煩雑で安価に実施できない問題があった。   The above syringe pump has the advantage that the fluid supply flow rate can be precisely controlled. However, the feeding mechanism for moving the plunger is complicated, the manufacturing cost is high, and the piston part of the plunger seals the cylinder inner surface. Therefore, if the fluid contained in the cylinder is a slurry in which fine particles are dispersed in a liquid, the fine particles enter between the inner surface of the cylinder and the outer peripheral surface of the piston, and the seal portion is damaged early and the fluid There is a risk of leakage, and there is a problem that the frequency of parts replacement is high and maintenance is complicated and cannot be carried out at low cost.

本発明の技術的課題は上記の問題点を解消し、供給する流体が液中に微粒子を分散させたスラリーであっても、シール部などをこの微粒子で損傷する虞を防止でき、高圧の流体を精緻に定量供給できる、流体供給装置とこれを用いた流体供給方法を提供することにある。   The technical problem of the present invention is to solve the above problems, and even if the fluid to be supplied is a slurry in which fine particles are dispersed in the liquid, the risk of damaging the seal portion or the like with the fine particles can be prevented. It is to provide a fluid supply apparatus and a fluid supply method using the same.

本発明は上記の課題を解決するために、例えば、本発明の実施の形態を示す図1から図3に基づいて説明すると、次のように構成したものである。
即ち本発明1は流体供給装置に関し、高圧の非圧縮性流体(14)を定量供給可能な流体供給装置であって、ハウジング(2)内に流体収容室(3)と駆動液室(4)とを設け、周縁部が上記のハウジング(2)に固定された変形可能な隔壁(5)により、上記の流体収容室(3)と駆動液室(4)とを保密状に区画し、上記の流体収容室(3)に流体出口(7)を開口し、この流体出口(7)に出口路(11)を接続して、この出口路(11)に出口開閉弁(13)を設け、上記の駆動液室(4)に駆動液入口(18)を開口し、この駆動液入口(18)を駆動液供給源(21)に駆動液供給路(20)を介し連通して、この駆動液供給路(20)に駆動液供給手段(23)を設けたことを特徴とする。
In order to solve the above-described problems, the present invention is described as follows, for example, based on FIGS. 1 to 3 showing an embodiment of the present invention.
That is, the present invention relates to a fluid supply device, which is a fluid supply device capable of quantitatively supplying a high-pressure incompressible fluid (14), and includes a fluid storage chamber (3) and a drive fluid chamber (4) in a housing (2). The fluid storage chamber (3) and the driving liquid chamber (4) are partitioned in a tightly sealed manner by a deformable partition wall (5) having a peripheral edge fixed to the housing (2). A fluid outlet (7) is opened in the fluid storage chamber (3), an outlet passage (11) is connected to the fluid outlet (7), and an outlet on-off valve (13) is provided in the outlet passage (11). The driving liquid inlet (18) is opened in the driving liquid chamber (4), and the driving liquid inlet (18) is communicated with the driving liquid supply source (21) via the driving liquid supply path (20). A driving liquid supply means (23) is provided in the liquid supply path (20).

また本発明2は流体供給方法に関し、高圧の非圧縮性流体(14)を定量供給できる流体供給方法であって、上記の本発明1の流体供給装置(1)を用い、上記の駆動液室(4)に駆動液(22)を注入することにより、上記の流体収容室(3)内の流体(14)を上記の流体出口(7)から送り出させ、その駆動液室(4)への駆動液(22)の注入量を調節することにより、上記の流体出口(7)から送り出される流体(14)の供給流量を制御することを特徴とする。   The present invention 2 also relates to a fluid supply method, which is a fluid supply method capable of quantitatively supplying a high-pressure incompressible fluid (14), and using the fluid supply device (1) of the present invention 1 described above, By injecting the drive liquid (22) into (4), the fluid (14) in the fluid storage chamber (3) is sent out from the fluid outlet (7), and is supplied to the drive liquid chamber (4). The supply flow rate of the fluid (14) delivered from the fluid outlet (7) is controlled by adjusting the injection amount of the driving liquid (22).

上記の駆動液供給手段により、上記の駆動液供給源から上記の駆動液室へ駆動液を供給すると、その駆動液の圧力により上記の隔壁の中間部が流体収容室側へ変形する。流体収容室内に収容されている流体は、この隔壁の変形により、上記の駆動液室へ供給された駆動液と同じ容積分だけが、上記の流体出口から出口路へ送り出される。このとき、上記の隔壁は周縁部がハウジングに固定されており、流体収容室の内面と摺動することが無いので、流体中の微粒子による早期の損傷が防止される。   When the driving liquid is supplied from the driving liquid supply source to the driving liquid chamber by the driving liquid supply means, the intermediate portion of the partition wall is deformed to the fluid storage chamber side by the pressure of the driving liquid. Due to the deformation of the partition wall, only the same volume of the fluid stored in the fluid storage chamber as the driving liquid supplied to the driving liquid chamber is sent from the fluid outlet to the outlet path. At this time, since the peripheral edge of the partition wall is fixed to the housing and does not slide with the inner surface of the fluid storage chamber, early damage due to fine particles in the fluid is prevented.

ここで、上記の非圧縮性流体とは、圧縮応力により生じる体積変化が無視できる流体をいい、各種の液体のほか、液体に粒子を分散させたスラリーやペーストであってもよい。また、上記の駆動液は特定の種類に限定されないが、繁用されるポンプ類で容易に定量供給できるように、適正な粘性等を備えたオイルを用いると好ましい。   Here, the above-mentioned incompressible fluid means a fluid in which a volume change caused by a compressive stress can be ignored, and may be a slurry or a paste in which particles are dispersed in various liquids. Further, the driving fluid is not limited to a specific type, but it is preferable to use oil having an appropriate viscosity so that it can be easily quantitatively supplied by commonly used pumps.

上記の隔壁は、流体収容室側と駆動液室側とに変形できるものであればよく、ゴム弾性を備えた膜体や、バネ弾性を備えたダイヤフラムのほか、ベローズであってもよい。またその隔壁は、流体収容室内の流体と駆動液室内の駆動液とにより両側から略等しい圧力を受けるので、この隔壁自体は高い耐圧特性を必要とせず、このため金属材料のほか、ゴム材料やフッ素樹脂などの合成樹脂材料であってもよく、変形可能な任意の材質を用いることができる。   The partition wall is not limited as long as it can be deformed into the fluid storage chamber side and the driving liquid chamber side, and may be a bellows in addition to a film body having rubber elasticity or a diaphragm having spring elasticity. Further, the partition wall receives substantially the same pressure from both sides by the fluid in the fluid storage chamber and the driving liquid in the driving fluid chamber, so that the partition wall itself does not require high pressure resistance characteristics. A synthetic resin material such as a fluororesin may be used, and any deformable material can be used.

上記の流体収容室には、通常、上記の流体出口とは別に流体入口を開口して、この流体入口を流体供給源に入口路を介して連通し、この入口路に入口開閉弁を設けてある。しかし本発明では、上記の流体出口を流体入口に兼用させて、上記の出口開閉弁よりも上流側で上記の出口路から入口路を分岐させ、この入口路を介して上記の流体収容室を流体供給源に連通させるとともに、この入口路に入口開閉弁を設けてもよい。   In the fluid storage chamber, a fluid inlet is usually opened separately from the fluid outlet, the fluid inlet is communicated with a fluid supply source via an inlet passage, and an inlet opening / closing valve is provided in the inlet passage. is there. However, in the present invention, the fluid outlet is also used as a fluid inlet, the inlet passage is branched from the outlet passage on the upstream side of the outlet on-off valve, and the fluid storage chamber is formed via the inlet passage. In addition to communicating with the fluid supply source, an inlet opening / closing valve may be provided in the inlet passage.

上記の入口開閉弁や前記の出口開閉弁は、例えば逆止弁などを用いることも可能であるが、特に流体がスラリーである場合には、構造の単純な開閉弁を用いると、微粒子の付着などによる開閉作動不良の虞が少ないので好ましい。   For example, a check valve or the like can be used as the inlet on-off valve and the outlet on-off valve. However, when the fluid is a slurry, if a simple on-off valve having a structure is used, particulate adhesion This is preferable because there is little risk of an opening / closing operation failure due to the above.

上記の流体がスラリーである場合は、上記の流体出口を流体収容室の下側部位に開口して、この流体収容室内の下側部分に供給室内撹拌装置を設けると、液体中の微粒子が流体収容室の下方に沈殿し滞留することが防止され、微粒子が均一に分散したスラリーを出口路へ送り出すことができるので、好ましい。なお、このときの流体収容室の底面は、流体出口側へ下る傾斜面に形成しておくと、微粒子の滞留を一層良好に防止できてさらに好ましい。   When the fluid is a slurry, if the fluid outlet is opened to the lower part of the fluid storage chamber and the supply chamber agitation device is provided in the lower part of the fluid storage chamber, the fine particles in the liquid are fluidized. It is preferable that the slurry settles and stays below the storage chamber, and the slurry in which the fine particles are uniformly dispersed can be sent out to the outlet passage. In addition, it is more preferable that the bottom surface of the fluid storage chamber at this time is formed on an inclined surface that goes down to the fluid outlet side, because the retention of fine particles can be prevented more satisfactorily.

上記の流体収容室と駆動液室は、上記の隔壁を介して互いに隣接させてもよいが、この流体収容室と駆動液室との間に、圧力伝達液が充満した圧力伝達室を設け、この圧力伝達室と上記の流体収容室との間を上記の変形可能な隔壁で保密状に区画するとともに、周縁部が上記のハウジングに固定された変形可能な第2の隔壁により、上記の圧力伝達室と駆動液室とを保密状に区画してもよい。この場合は、上記の圧力伝達液を上記の流体と同じ成分または近似した成分の液体にしておくと、例えば上記の流体が水溶液や水に微粒子を分散させたスラリーである場合、圧力伝達室に水を充満させておくと、上記の隔壁が万一液洩れを生じても、水などの圧力伝達液が流体と混合されるだけであり、流体が駆動液で汚損される虞を防止できて好ましい。   The fluid storage chamber and the driving liquid chamber may be adjacent to each other via the partition wall, but a pressure transmission chamber filled with a pressure transmission liquid is provided between the fluid storage chamber and the driving liquid chamber, The pressure transmission chamber and the fluid storage chamber are partitioned in a tight manner by the deformable partition wall, and the pressure is increased by the deformable second partition wall whose peripheral portion is fixed to the housing. The transmission chamber and the driving fluid chamber may be partitioned in a tight manner. In this case, if the pressure transmission liquid is a liquid having the same or similar component as the fluid, for example, if the fluid is a slurry in which fine particles are dispersed in an aqueous solution or water, If water is filled, even if the above partition wall leaks, the pressure transmission fluid such as water is only mixed with the fluid, and the risk of the fluid being contaminated with the driving fluid can be prevented. preferable.

上記の駆動液供給手段は、脈動を抑えて定量供給が可能な供給手段であればよく、例えばギヤポンプなど、繁用される供給手段を用いることができ、特定の種類のものに限定されない。この駆動液供給手段や上記の駆動液供給路には、流量調整手段を付設することができ、この流量調整手段で流量を調節することで、駆動液室への駆動液の注入量を制御して、上記の流体出口から送り出される流体の供給流量を制御してもよい。しかし、上記の駆動液供給源に液面検出手段を設け、この液面検出手段の検出に基づき、上記の駆動液室への駆動液注入量を計測して調節するように構成すると、上記の駆動液室への駆動液の注入量を正確に計測できるので、上記の流体出口から送り出される流体の供給流量を一層精緻に制御できて好ましい。   The drive fluid supply means may be any supply means capable of supplying a fixed amount while suppressing pulsation. For example, a frequently used supply means such as a gear pump can be used, and the drive liquid supply means is not limited to a specific type. The drive liquid supply means and the drive liquid supply path can be provided with a flow rate adjusting means. By adjusting the flow rate with the flow rate adjusting means, the amount of the drive liquid injected into the drive liquid chamber can be controlled. Thus, the supply flow rate of the fluid delivered from the fluid outlet may be controlled. However, if the liquid level detecting means is provided in the driving liquid supply source and the amount of driving liquid injected into the driving liquid chamber is measured and adjusted based on the detection of the liquid level detecting means, Since the injection amount of the driving liquid into the driving liquid chamber can be accurately measured, it is preferable that the flow rate of the fluid delivered from the fluid outlet can be controlled more precisely.

本発明は上記のように構成され作用することから、次の効果を奏する。   Since the present invention is configured and operates as described above, the following effects can be obtained.

(1) 流体収容室内に収容されている流体は、駆動液室へ注入された駆動液と同じ容積分だけが流体出口から送り出されるので、上記の駆動液の注入量を調節することにより、この流体出口から送り出される流体の供給流量を精緻に制御することができる。   (1) Since the fluid stored in the fluid storage chamber is sent out from the fluid outlet only by the same volume as the driving liquid injected into the driving liquid chamber, this amount can be adjusted by adjusting the injection amount of the driving liquid. The supply flow rate of the fluid delivered from the fluid outlet can be precisely controlled.

(2) しかも流体収容室と駆動液室とを区画する隔壁は、周縁部がハウジングに固定されており、中間部のみが変形するので、液体供給室の内面と摺動することがなく、流体に微粒子が分散されていても、シール部などをこの微粒子で損傷する虞を防止でき、耐久性に優れるので部品の交換やメンテナンスを簡略にでき、安価に実施することができる。   (2) Moreover, since the partition wall that divides the fluid storage chamber and the driving liquid chamber is fixed to the housing at the peripheral edge and only the intermediate portion is deformed, it does not slide on the inner surface of the liquid supply chamber. Even if fine particles are dispersed, the possibility of damaging the seal portion or the like with the fine particles can be prevented, and since the durability is excellent, the replacement and maintenance of parts can be simplified, and it can be carried out at low cost.

以下、本発明の実施の形態を図面に基づき説明する。
図1は本発明の第1実施形態を示す、流体供給装置の概略構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a fluid supply apparatus showing a first embodiment of the present invention.

図1に示すように、この流体供給装置(1)は、ハウジング(2)内に流体収容室(3)と駆動液室(4)とが互いに隣接させて設けてある。この流体収容室(3)と駆動液室(4)との間には、例えばゴム材料からなる変形可能な隔壁(5)が配置してあり、この隔壁(5)の周縁部を上記のハウジング(2)に固定して、上記の流体収容室(3)と駆動液室(4)を保密状に区画してある。   As shown in FIG. 1, in the fluid supply device (1), a fluid storage chamber (3) and a driving liquid chamber (4) are provided adjacent to each other in a housing (2). A deformable partition wall (5) made of, for example, a rubber material is disposed between the fluid storage chamber (3) and the driving liquid chamber (4), and a peripheral portion of the partition wall (5) is disposed on the housing. Fixed to (2), the fluid storage chamber (3) and the driving liquid chamber (4) are partitioned in a coherent manner.

上記の流体収容室(3)には、下部に流体入口(6)と流体出口(7)とが開口してある。この流体入口(6)には入口路(8)が接続してあり、この入口路(8)を介して上記の流体収容室(3)に流体供給タンク(9)内を連通するとともに、入口路(8)に設けた入口開閉弁(10)でこの連通を遮断できるようにしてある。
また、上記の流体出口(7)には出口路(11)が接続してあり、この出口路(11)を介して上記の流体収容室(3)を、微粒子製造装置の反応器などの流体消費機器(12)に連通するとともに、この出口路(11)に設けた出口開閉弁(13)でこの連通を遮断できるようにしてある。
The fluid storage chamber (3) has a fluid inlet (6) and a fluid outlet (7) open at the bottom. An inlet channel (8) is connected to the fluid inlet (6), and the fluid supply tank (9) communicates with the fluid storage chamber (3) via the inlet channel (8). This communication can be blocked by an inlet opening / closing valve (10) provided in the passage (8).
An outlet passage (11) is connected to the fluid outlet (7), and the fluid containing chamber (3) is connected to the fluid outlet chamber (3) through the outlet passage (11), such as a reactor of a fine particle production apparatus. While communicating with the consumer device (12), the communication can be blocked by an outlet on-off valve (13) provided in the outlet passage (11).

上記の流体供給タンク(9)内には、例えば金属塩の水溶液中に微粒子を分散させたスラリー(14)が収容してあり、この微粒子が沈殿しないように、撹拌装置(15)で上記のスラリー(14)を撹拌してある。なお、この実施形態では流体供給タンク(9)に収容流体としてスラリーを用いたが、本発明ではこの流体として、例えば金属塩水溶液などの液体を用いてもく、この場合は上記の撹拌装置(15)を省略してもよい。   In the fluid supply tank (9), for example, a slurry (14) in which fine particles are dispersed in an aqueous solution of a metal salt is accommodated, and the stirring device (15) prevents the fine particles from precipitating. The slurry (14) is stirred. In this embodiment, the slurry is used as the stored fluid in the fluid supply tank (9). However, in the present invention, for example, a liquid such as a metal salt aqueous solution may be used as the fluid. 15) may be omitted.

上記の流体収容室(3)内の下側部分にも供給室内撹拌装置(16)が設けてあり、この供給室内撹拌装置(16)の直ぐ上方で上記の隔壁(5)よりも下方に、保護手段(17)が流体収容室(3)内を横断する状態に設けてある。この保護手段(17)により、上記の隔壁(5)が流体収容室(3)側へ大きく変形しても、上記の供給室内撹拌装置(16)と干渉することが防止される。なおこの保護手段(17)は、スラリー(14)がこの保護手段(17)の上下間を自由に流通でき、しかも上記の隔壁(5)を受け止めて通過させないものであればよく、網状や格子状など、任意の形状にすることができる。   A supply chamber agitator (16) is also provided in the lower part of the fluid storage chamber (3), just above the supply chamber agitator (16) and below the partition wall (5). The protection means (17) is provided so as to cross the inside of the fluid storage chamber (3). The protective means (17) prevents the partition wall (5) from interfering with the supply chamber stirring device (16) even if the partition wall (5) is largely deformed toward the fluid storage chamber (3). The protective means (17) may be any means as long as the slurry (14) can freely flow between the upper and lower sides of the protective means (17) and does not receive and pass the partition wall (5). An arbitrary shape such as a shape can be used.

一方、上記の駆動液室(4)の上部には駆動液入口(18)と駆動液出口(19)とが開口してある。この駆動液入口(18)には駆動液供給路(20)が接続してあり、この駆動液供給路(20)を介して上記の駆動液室(4)に、駆動液供給源としてのオイルタンク(21)が連通してある。このオイルタンク(21)には駆動液としてのオイル(22)が収容してある。上記の駆動液供給路(20)には、駆動液供給手段としてのオイルポンプ(23)と流量調整器(24)とが、上流側から順に設けてある。
また、上記の駆動液出口(19)には戻し路(25)が接続してあり、この戻し路(25)を介して上記の駆動液室(4)を上記のオイルタンク(21)に連通するとともに、この戻し路(25)に戻し路開閉弁(26)が設けてある。
On the other hand, a driving liquid inlet (18) and a driving liquid outlet (19) are opened above the driving liquid chamber (4). A driving liquid supply path (20) is connected to the driving liquid inlet (18), and oil as a driving liquid supply source is connected to the driving liquid chamber (4) via the driving liquid supply path (20). The tank (21) is in communication. The oil tank (21) contains oil (22) as a driving liquid. In the driving liquid supply path (20), an oil pump (23) and a flow rate regulator (24) as driving liquid supply means are provided in order from the upstream side.
A return path (25) is connected to the drive fluid outlet (19), and the drive fluid chamber (4) communicates with the oil tank (21) via the return path (25). In addition, a return path opening / closing valve (26) is provided in the return path (25).

上記のオイルタンク(21)には液面検出手段(27)が設けてあり、この液面検出手段(27)の検出に基づき、オイルタンク(21)内のオイル量の変化、即ち、上記のオイルポンプ(23)で上記の駆動液室(4)へ送られたオイル(22)の注入量が計測される。   The oil tank (21) is provided with a liquid level detection means (27). Based on the detection of the liquid level detection means (27), the change in the amount of oil in the oil tank (21), that is, The injection amount of the oil (22) sent to the drive fluid chamber (4) is measured by the oil pump (23).

次に、上記の流体供給装置(1)を用いて上記のスラリーを流体消費機器へ送り出す手順について説明する。
上記の流体供給タンク(9)内のスラリー(14)は、上記の入口開閉弁(10)を開くと、液頭差により入口路(8)を経て流体入口(6)から流体収容室(3)に流入する。このとき、上記の出口開閉弁(13)を閉じておき、戻し路開閉弁(26)を開いておく。これにより、流体収容室(3)にスラリー(14)が流入すると、上記の隔壁(5)の中間部が伸びて、上方の駆動液室(4)側へ変形し、駆動液室(4)内のオイル(22)が駆動液出口(19)から戻し路(25)を経てオイルタンク(21)内へ戻される。このオイルタンク(21)内の液面位置は、上記の液面検出手段(27)で検知されており、この液面が所定高さに達することで、流体収容室(3)に所定量のスラリー(14)が収容されたことが確認される。
Next, a procedure for sending the slurry to the fluid consuming device using the fluid supply device (1) will be described.
The slurry (14) in the fluid supply tank (9) opens the fluid storage chamber (3) from the fluid inlet (6) through the inlet passage (8) due to a liquid head difference when the inlet on-off valve (10) is opened. ). At this time, the outlet on / off valve (13) is closed and the return path on / off valve (26) is opened. As a result, when the slurry (14) flows into the fluid storage chamber (3), the intermediate portion of the partition wall (5) extends and deforms toward the upper drive liquid chamber (4), and the drive liquid chamber (4). The oil (22) inside is returned from the driving fluid outlet (19) to the oil tank (21) through the return path (25). The liquid level position in the oil tank (21) is detected by the liquid level detecting means (27), and when the liquid level reaches a predetermined height, a predetermined amount of fluid is stored in the fluid storage chamber (3). It is confirmed that the slurry (14) is contained.

次に、上記の入口開閉弁(10)と戻し路開閉弁(26)を閉じて上記のオイルポンプ(23)を運転すると、上記のオイルタンク(21)内のオイル(22)が駆動液供給路(20)を経て駆動液入口(18)から駆動液室(4)内に流入する。この状態で上記の出口開閉弁(13)を開くと、上記の隔壁(5)の中間部が下方の流体収容室(3)側へ変形して、この流体収容室(3)内のスラリー(14)のうち、上記の駆動液室(4)へ供給されたオイル(22)と同じ容積分だけが、流体出口(7)から出口路(11)を経て流体消費機器(12)へ送り出される。このとき、上記の流量調整器(24)を調節することで、駆動液室(4)内へ流入するオイル(22)を所定流量に設定し、これにより上記の流体出口(7)から送り出されるスラリー(14)が所定の供給流量に制御される。なお、上記の流量調整器(24)によるオイル流量の設定は、オイルタンク(21)内の液面変化を上記の液面検出手段(27)で検知して、オイルタンク(21)から吸い出されるオイル量を算出することにより確認される。   Next, when the oil pump (23) is operated by closing the inlet on-off valve (10) and the return path on-off valve (26), the oil (22) in the oil tank (21) is supplied with the driving fluid. It flows into the driving liquid chamber (4) from the driving liquid inlet (18) through the passage (20). When the outlet opening / closing valve (13) is opened in this state, the intermediate portion of the partition wall (5) is deformed to the lower fluid storage chamber (3) side, and the slurry (in the fluid storage chamber (3) ( 14), only the same volume as the oil (22) supplied to the drive fluid chamber (4) is sent from the fluid outlet (7) to the fluid consumption device (12) via the outlet passage (11). . At this time, by adjusting the flow rate regulator (24), the oil (22) flowing into the driving fluid chamber (4) is set to a predetermined flow rate, and is sent out from the fluid outlet (7). The slurry (14) is controlled to a predetermined supply flow rate. The setting of the oil flow rate by the flow rate regulator (24) described above is that the change in the liquid level in the oil tank (21) is detected by the liquid level detection means (27) and sucked out from the oil tank (21). This is confirmed by calculating the amount of oil that is generated.

上記の流体収容室(3)内のスラリー(14)は、前記の供給室内撹拌装置(16)で撹拌されており、スラリー(14)中の微粒子が流体収容室(3)内の下方に沈殿したり滞留したりすることがない。また流体収容室(3)の底面は流体出口(7)側に向かって下り傾斜にしてあり、この底面近傍の微粒子は滞留することなく、円滑に流体出口(7)側へ案内される。   The slurry (14) in the fluid storage chamber (3) is stirred by the supply chamber agitator (16), and the fine particles in the slurry (14) settle below the fluid storage chamber (3). And will not stay. Further, the bottom surface of the fluid storage chamber (3) is inclined downward toward the fluid outlet (7) side, and the fine particles near the bottom surface are smoothly guided to the fluid outlet (7) side without staying.

流体収容室(3)内のスラリー(14)が流体出口(7)から送り出され、上記の隔壁(5)が下方へ変形し続けると、この隔壁(5)が上記の供給室内撹拌装置(16)に近接し、前記の保護手段(17)に受け止められる。そして上記のオイルタンク(21)内の液面を検知することで、流体収容室(3)から所定量のスラリー(14)が送り出されたことが確認され、これにより、上記のオイルポンプ(23)の運転を停止するとともに、出口開閉弁(13)を閉じて、流体消費機器(12)へのスラリー(14)の供給が停止される。   When the slurry (14) in the fluid storage chamber (3) is sent out from the fluid outlet (7) and the partition wall (5) continues to be deformed downward, the partition wall (5) becomes the supply chamber stirring device (16 ) And is received by the protective means (17). Then, by detecting the liquid level in the oil tank (21), it is confirmed that a predetermined amount of the slurry (14) has been sent out from the fluid storage chamber (3), whereby the oil pump (23 ) And the outlet on / off valve (13) are closed, and the supply of the slurry (14) to the fluid consuming device (12) is stopped.

上記の流体収容室(3)内に収容されるスラリー(14)の容量は、上記の流体消費機器(12)が必要とする容量、即ち上記の流体出口(7)から送り出される供給流量と、運転時間とから設定される。例えば、流体出口(7)からの供給流量が毎分40mLで、運転時間が10時間である場合、流体収容室(3)内のスラリー(14)の容量は、1分間当たりの供給流量の600倍である24Lに設定される。これにより、流体収容室(3)内に収容されているスラリー(14)は、所定の運転時間、例えば10時間かけてゆっくりと連続的に流体出口(7)から送り出される。一方、上記のオイルポンプ(23)は、脈動が少なく、吐出量がスラリー(14)の供給流量と同程度、例えば毎分40mLで運転される小形のものが用いられ、これにより、上記のスラリー(14)は流体出口(7)から脈動のない安定した供給流量で送り出される。   The capacity of the slurry (14) accommodated in the fluid accommodation chamber (3) is the capacity required by the fluid consuming device (12), that is, the supply flow rate delivered from the fluid outlet (7), It is set from the operation time. For example, when the supply flow rate from the fluid outlet (7) is 40 mL per minute and the operation time is 10 hours, the capacity of the slurry (14) in the fluid storage chamber (3) is 600 of the supply flow rate per minute. It is set to 24L which is double. Thereby, the slurry (14) accommodated in the fluid accommodation chamber (3) is sent out from the fluid outlet (7) slowly and continuously over a predetermined operation time, for example, 10 hours. On the other hand, the oil pump (23) has a small pulsation and a discharge amount that is approximately the same as the supply flow rate of the slurry (14), for example, 40 mL / min. (14) is sent out from the fluid outlet (7) at a stable supply flow rate without pulsation.

なお、この第1実施形態では、スラリーの供給流量と運転時間とから流体収容室の容量を設定したが、本発明ではこの流体収容室の容量や流体の供給流量、運転時間などは、この実施形態のものに限定されず、任意の値に設定することができる。   In the first embodiment, the capacity of the fluid storage chamber is set based on the supply flow rate of the slurry and the operation time. In the present invention, the capacity of the fluid storage chamber, the supply flow rate of the fluid, the operation time, etc. It is not limited to the form, and can be set to any value.

また、上記の第1実施形態では、流体供給タンク内のスラリーを液頭差により流体収容室へ案内した。しかし本発明では、流体供給タンクから流体収容室へ流体を案内する手段は、特定のものに限定されない。例えば、上記の駆動液供給路と戻し路とを、切換弁を介してオイルポンプに接続し、この切換弁を切換え操作することで、オイルポンプにより駆動液室からオイルタンクへオイルを吸い出し、駆動液室内に生じる負圧で上記の流体供給タンクからスラリーを流体収容室へ吸い込んでもよい。さらに上記のオイルポンプに正逆切換え運転できる形式のものを採用した場合も、同様に駆動液室内に負圧を生じさせて、上記の流体供給タンクからスラリーを流体収容室へ吸い込むことができる。この正逆運転可能なオイルポンプを用いた場合は、上記の駆動液出口を駆動液入口に兼用させ、上記の戻し路を省略することができる。   In the first embodiment, the slurry in the fluid supply tank is guided to the fluid storage chamber by the liquid head difference. However, in the present invention, the means for guiding the fluid from the fluid supply tank to the fluid storage chamber is not limited to a specific one. For example, the driving fluid supply path and the return path are connected to an oil pump via a switching valve, and the switching valve is operated to suck out oil from the driving fluid chamber to the oil tank by the oil pump. The slurry may be sucked into the fluid storage chamber from the fluid supply tank with a negative pressure generated in the liquid chamber. Further, when a type capable of forward / reverse switching operation is adopted for the oil pump, a negative pressure can be similarly generated in the driving liquid chamber, and the slurry can be sucked into the fluid storage chamber from the fluid supply tank. When this oil pump capable of forward / reverse operation is used, the above-mentioned driving liquid outlet can also be used as the driving liquid inlet, and the above return path can be omitted.

また本発明では、例えば図1の仮想線に示すように、上記の流体供給タンク(9)に窒素ボンベや加圧空気などの加圧ガス供給源(31)を接続して、この加圧ガス供給源(31)から加圧ガスを流体供給タンク(9)内へ供給し、そのガス圧により流体供給タンク(9)内からスラリーなどの流体(14)を流体収容室(3)へ供給することも可能である。さらに本発明では上記の種々の手段を任意に組み合わせて採用することも可能である。   In the present invention, for example, as shown by the phantom line in FIG. 1, a pressurized gas supply source (31) such as a nitrogen cylinder or pressurized air is connected to the fluid supply tank (9), and the pressurized gas is supplied. Pressurized gas is supplied from the supply source (31) into the fluid supply tank (9), and fluid (14) such as slurry is supplied from the fluid supply tank (9) to the fluid storage chamber (3) by the gas pressure. It is also possible. Furthermore, in the present invention, the above-described various means can be arbitrarily combined and employed.

また上記の第1実施形態では、流体入口を流体出口とは別に設けたが、本発明では流体入口を流体出口と兼用させてもよい。
図2に示す第2実施形態では、流体収容室(3)に開口する流体入口(6)を流体出口(7)で兼用してあり、また、駆動液供給手段として正逆回転可能なオイルポンプ(23)を用い、駆動液室(4)に開口する駆動液出口(19)を駆動液入口(18)で兼用させて、上記の第1実施形態で用いた戻し路を省略してある。
In the first embodiment, the fluid inlet is provided separately from the fluid outlet. However, in the present invention, the fluid inlet may also be used as the fluid outlet.
In the second embodiment shown in FIG. 2, the fluid inlet (6) that opens to the fluid storage chamber (3) is also used as the fluid outlet (7), and an oil pump that can rotate forward and backward as drive liquid supply means. (23), the driving liquid outlet (19) opened to the driving liquid chamber (4) is also used as the driving liquid inlet (18), and the return path used in the first embodiment is omitted.

さらにこの第2実施形態では、上記の流体収容室(3)と上記の駆動液室(4)との間に、圧力伝達液としての水(28)を充満させた、圧力伝達室(29)が設けてある。この圧力伝達室(29)と上記の流体収容室(3)との間は、上記の第1実施形態と同様の、ゴム弾性を備えた変形可能な隔壁(5)で保密状に区画してある。また上記の圧力伝達室(29)と駆動液室(4)との間は、金属製または合成樹脂製のベローズからなる第2隔壁(30)で保密状に区画してある。この第2隔壁(30)と上記の隔壁(5)は、いずれも周縁部がハウジング(2)に固定してあり、中間部が変形して上下に移動できるようにしてある。   Further, in the second embodiment, the pressure transmission chamber (29) in which water (28) as a pressure transmission liquid is filled between the fluid storage chamber (3) and the driving liquid chamber (4). Is provided. The pressure transmission chamber (29) and the fluid storage chamber (3) are partitioned in a tightly-contained manner by a deformable partition wall (5) having rubber elasticity, similar to the first embodiment. is there. Further, the pressure transmission chamber (29) and the driving fluid chamber (4) are partitioned in a sealed manner by a second partition wall (30) made of a metal or synthetic resin bellows. Both the second partition wall (30) and the partition wall (5) have a peripheral edge fixed to the housing (2), and an intermediate portion is deformed so as to move up and down.

上記の駆動液供給路(20)に配置したオイルポンプ(23)を逆転させると、駆動液室(4)内のオイル(22)が駆動液供給路(20)を介してオイルタンク(21)内へ戻される。これにより駆動液室(4)内の負圧で上記の第2隔壁(30)の中間部が上方へ移動し、圧力伝達室(29)内が負圧となるので、上記の隔壁(5)の中間部も上方へ移動する。この結果、流体収容室(3)内も負圧となり、入口路(8)の入口開閉弁(10)を開くことで、流体供給タンク(9)内のスラリー(14)が入口路(8)を経て、流体出口(7)と兼用の流体入口(6)から流体収容室(3)内へ案内される。   When the oil pump (23) disposed in the driving liquid supply path (20) is reversed, the oil (22) in the driving liquid chamber (4) is transferred to the oil tank (21) via the driving liquid supply path (20). Returned in. As a result, the intermediate portion of the second partition wall (30) moves upward due to the negative pressure in the driving fluid chamber (4), and the pressure transmission chamber (29) becomes negative pressure. Therefore, the partition wall (5) The middle part of the also moves upward. As a result, the fluid storage chamber (3) also has a negative pressure, and by opening the inlet opening / closing valve (10) of the inlet passage (8), the slurry (14) in the fluid supply tank (9) is transferred to the inlet passage (8). Then, the fluid is guided from the fluid inlet (6) also serving as the fluid outlet (7) into the fluid storage chamber (3).

流体収容室(3)に所定量のスラリー(14)が収容されると、上記の入口開閉弁(10)を閉じて、上記のオイルポンプ(23)を正転させ、オイルポンプ(23)内のオイル(22)をオイルタンク(21)から駆動液室(4)内に注入する。これにより、上記の第2隔壁(30)の中間部が下方に移動し、その内圧が圧力伝達室(29)に伝わり、上記の隔壁(5)の中間部が下方へ移動する。そして、出口開閉弁(13)を開くことで、流体収容室(3)内のスラリー(14)のうち、上記の駆動液室(4)に注入されたオイル(22)と同じ容積分だけが、流体出口(7)から出口路(11)を経て流体消費機器(12)へ送り出される。その他の構成は上記の第1実施形態と同様であり、同様に作用するので説明を省略する。   When a predetermined amount of slurry (14) is stored in the fluid storage chamber (3), the inlet on-off valve (10) is closed, the oil pump (23) is rotated forward, and the oil pump (23) The oil (22) is injected into the drive fluid chamber (4) from the oil tank (21). As a result, the intermediate portion of the second partition wall (30) moves downward, the internal pressure is transmitted to the pressure transmission chamber (29), and the intermediate portion of the partition wall (5) moves downward. Then, by opening the outlet opening / closing valve (13), only the same volume as the oil (22) injected into the driving liquid chamber (4) of the slurry (14) in the fluid storage chamber (3) is obtained. The fluid is discharged from the fluid outlet (7) to the fluid consuming device (12) through the outlet passage (11). The other configuration is the same as that of the first embodiment described above, and functions in the same manner, so that the description is omitted.

図3は本発明の第3実施形態を示す、流体供給装置の概略構成図である。
この第3実施形態では、第1ハウジング(2a)と第2ハウジング(2b)との2つのハウジング(2)を備えており、各ハウジング(2a・2b)に形成された流体収容室(3・3)は、それぞれ流体入口(6)が入口路(8)を介して流体供給タンク(9)に接続され、流体出口(7)が出口路(11)を介して流体消費機器(12)に接続してある。
FIG. 3 is a schematic configuration diagram of a fluid supply apparatus showing a third embodiment of the present invention.
In the third embodiment, two housings (2), a first housing (2a) and a second housing (2b), are provided, and fluid housing chambers (3 · 2b) formed in the respective housings (2a · 2b). 3) The fluid inlet (6) is connected to the fluid supply tank (9) via the inlet passage (8), and the fluid outlet (7) is connected to the fluid consumption device (12) via the outlet passage (11). Connected.

各ハウジング(2a・2b)に形成された駆動液室(4・4)には、駆動液出口(19)を兼ねる駆動液入口(18)がそれぞれ開口してある。両駆動液入口(18・18)は駆動液供給路(20)を介して互いに連通してあり、この駆動液供給路(20)に正逆回転可能なオイルポンプ(23)が付設してある。   A driving liquid inlet (18) that also serves as a driving liquid outlet (19) is opened in each of the driving liquid chambers (4, 4) formed in each housing (2a, 2b). Both drive liquid inlets (18, 18) communicate with each other via a drive liquid supply path (20), and an oil pump (23) capable of rotating forward and reverse is attached to the drive liquid supply path (20). .

上記の第2ハウジング(2b)の出口開閉弁(13)と第1ハウジング(2a)の入口開閉弁(10)を閉じ、第1ハウジング(2a)の出口開閉弁(13)と第2ハウジング(2b)の入口開閉弁(10)を開いて、上記のオイルポンプ(23)を正転させると、第2ハウジング(2b)の駆動液室(4)から吸い出されたオイル(22)が第1ハウジング(2a)の駆動液室(4)内へ注入される。即ち、この場合は第2ハウジング(2b)の駆動液室(4)がオイル供給源(21)を兼ねている。そしてこのオイル(22)の移動により、第2ハウジング(2b)では隔壁(5)が上方へ移動して、流体収容室(3)へ流体供給タンク(9)からスラリー(14)が供給され、一方、第1ハウジング(2a)では隔壁(5)が下方へ移動して、流体収容室(3)からスラリー(14)が、所定流量で流体消費機器(12)へ送り出される。   The outlet on / off valve (13) of the second housing (2b) and the inlet on / off valve (10) of the first housing (2a) are closed, and the outlet on / off valve (13) of the first housing (2a) and the second housing ( When the inlet on / off valve (10) of 2b) is opened and the oil pump (23) is rotated forward, the oil (22) sucked out from the drive fluid chamber (4) of the second housing (2b) It is injected into the drive liquid chamber (4) of one housing (2a). That is, in this case, the driving liquid chamber (4) of the second housing (2b) also serves as the oil supply source (21). The movement of the oil (22) moves the partition wall (5) upward in the second housing (2b), and the slurry (14) is supplied from the fluid supply tank (9) to the fluid storage chamber (3). On the other hand, in the first housing (2a), the partition wall (5) moves downward, and the slurry (14) is sent from the fluid storage chamber (3) to the fluid consuming device (12) at a predetermined flow rate.

上記の流体供給タンク(9)には液面検出手段(27)が設けてあり、上記の第2ハウジング(2b)の流体収容室(3)へのスラリー供給量は、この流体供給タンク(9)内の液面の変化により計測される。そしてこのスラリー供給量が所定容量に達すると、上記の第1ハウジング(2a)の出口開閉弁(13)と第2ハウジング(2b)の入口開閉弁(10)を閉じ、第2ハウジング(2b)の出口開閉弁(13)と第1ハウジング(2a)の入口開閉弁(10)とを開いて、上記のオイルポンプ(23)を逆転させる。この場合は第1ハウジング(2a)の駆動液室(4)がオイル供給源(21)を兼ねており、オイル(22)は第1ハウジング(2a)の駆動液室(4)から第2ハウジング(2b)の駆動液室(4)に移動する。これにより、上記の隔壁(5)がそれぞれ上記とは逆方向へ移動し、第1ハウジング(2a)では隔壁(5)が上方へ移動して、流体収容室(3)へ流体供給タンク(9)からスラリー(14)が供給され、一方、第2ハウジング(2b)では隔壁(5)が下方へ移動して、流体収容室(3)からスラリー(14)が所定の流量で流体消費機器(12)へ送り出される。その他の構成は上記の第1実施形態や第2実施形態と同様であり、同様に作用するので説明を省略する。   The fluid supply tank (9) is provided with a liquid level detection means (27), and the amount of slurry supplied to the fluid storage chamber (3) of the second housing (2b) is determined by the fluid supply tank (9). ) Measured by the change in the liquid level inside. When the slurry supply amount reaches a predetermined capacity, the outlet on / off valve (13) of the first housing (2a) and the inlet on / off valve (10) of the second housing (2b) are closed, and the second housing (2b) The outlet on / off valve (13) and the inlet on / off valve (10) of the first housing (2a) are opened to reverse the oil pump (23). In this case, the drive fluid chamber (4) of the first housing (2a) also serves as the oil supply source (21), and the oil (22) is fed from the drive fluid chamber (4) of the first housing (2a) to the second housing. It moves to the driving liquid chamber (4) of (2b). As a result, the partition walls (5) move in the direction opposite to the above, and in the first housing (2a), the partition walls (5) move upward, and the fluid supply tank (9) enters the fluid storage chamber (3). On the other hand, in the second housing (2b), the partition wall (5) moves downward so that the slurry (14) flows from the fluid storage chamber (3) at a predetermined flow rate to the fluid consuming device ( Sent to 12). Other configurations are the same as those in the first embodiment and the second embodiment described above, and operate in the same manner, so that the description thereof is omitted.

上記の各実施形態で説明した流体供給装置や流体供給方法は、本発明の技術的思想を具体化するために例示したものであり、上記の各装置の構造や材質、配置、流体の種類などをこの実施形態のものに限定するものではなく、本発明の特許請求の範囲内において種々の変更を加え得るものである。   The fluid supply apparatus and the fluid supply method described in each of the above-described embodiments are illustrated to embody the technical idea of the present invention, and the structure, material, arrangement, type of fluid, and the like of each of the above-described apparatuses. However, the present invention is not limited to this embodiment, and various modifications can be made within the scope of the claims of the present invention.

例えば、上記の実施形態では非圧縮性流体がスラリーである場合について説明したが、本発明での非圧縮性流体は水溶液などの液体や、ペースト等であってもよい。また、上記の各実施形態ではいずれも流体収容室に供給室内撹拌装置を設けたが、流体が液体やペースト等、静置しても固体成分が容易に沈殿しない場合は、この供給室内撹拌装置を省略することができる。なお、この供給室内撹拌装置を省略した場合、上記の各実施形態で用いた保護手段はこれを省略してもよいが、上記の隔壁が流体出口に吸い込まれないように、この保護手段を備えていても良い。   For example, in the above embodiment, the case where the incompressible fluid is a slurry has been described, but the incompressible fluid in the present invention may be a liquid such as an aqueous solution, a paste, or the like. In each of the above embodiments, the supply chamber agitator is provided in the fluid storage chamber. However, when the fluid does not settle easily even when the fluid is left standing, such as a liquid or a paste, the supply chamber agitator is provided. Can be omitted. When the supply chamber agitation device is omitted, the protection means used in each of the above embodiments may be omitted, but the protection means is provided so that the partition wall is not sucked into the fluid outlet. May be.

また、上記の各実施形態では、いずれもゴム弾性を備えた隔壁で流体収容室を駆動液室や圧力伝達室から保密状に区画したが、本発明に用いる隔壁は、中間部が流体収容室側と駆動液室側との間で移動できるものであればよく、ベローズやダイヤフラムなどであってもよい。上記の第2実施形態で用いた第2隔壁もベローズに限定されず、ゴム弾性を備えた膜体やダイヤフラムなどであってもよい。
また上記の各実施形態では、いずれも駆動液としてオイルを用い、駆動液供給手段としてオイルポンプを用いたが、本発明の駆動液供給手段は、駆動液を脈動することなく定量供給できればよく、他の種類の駆動液や駆動液供給手段を用いてもよい。上記の実施形態で用いた流量調整手段は、ニードル弁状など任意の構造のものを用いることができ、駆動液供給手段が所定量の駆動液を供給できるものであれば、この流量調整手段を省略することも可能である。
さらに、上記の圧力伝達液は、第2実施形態で用いた水に限定されず、また、流体消費機器は微粒子製造装置の反応器に限定されないことは言うまでもない。
In each of the above-described embodiments, the fluid storage chamber is partitioned from the driving liquid chamber and the pressure transmission chamber in a tightly-contained manner by partition walls having rubber elasticity. As long as it can move between the side and the drive fluid chamber side, a bellows or a diaphragm may be used. The second partition used in the second embodiment is not limited to the bellows, and may be a film body or a diaphragm having rubber elasticity.
In each of the above embodiments, oil is used as the driving liquid and an oil pump is used as the driving liquid supply means.However, the driving liquid supply means of the present invention only needs to be able to supply the driving liquid quantitatively without pulsation, Other types of driving liquid and driving liquid supply means may be used. The flow rate adjusting means used in the above embodiment can be of any structure such as a needle valve, and if the driving liquid supply means can supply a predetermined amount of driving liquid, this flow rate adjusting means is used. It can be omitted.
Furthermore, it is needless to say that the pressure transmission liquid is not limited to the water used in the second embodiment, and the fluid consuming device is not limited to the reactor of the fine particle production apparatus.

本発明の流体供給装置および流体供給方法は、供給する流体が液中に微粒子を分散させたスラリーであっても、シール部などをこの微粒子で損傷する虞を防止でき、高圧の流体を精緻に定量供給できるので、特に微粒子製造装置への原料流体の供給に特に好適であるが、分析装置など他の装置へ高圧流体を定量供給する場合にも好適である。   The fluid supply device and the fluid supply method of the present invention can prevent the possibility of damaging the seal portion and the like even if the supplied fluid is a slurry in which the fine particles are dispersed in the liquid, and the high-pressure fluid is refined. Since it can be supplied in a fixed amount, it is particularly suitable for supplying the raw material fluid to the fine particle production apparatus, but is also suitable for supplying a high-pressure fluid quantitatively to other devices such as an analyzer.

本発明の第1実施形態を示す、流体供給装置の概略構成図である。It is a schematic block diagram of the fluid supply apparatus which shows 1st Embodiment of this invention. 本発明の第2実施形態を示す、流体供給装置の概略構成図である。It is a schematic block diagram of the fluid supply apparatus which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す、流体供給装置の概略構成図である。It is a schematic block diagram of the fluid supply apparatus which shows 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…流体供給装置
2…ハウジング
3…流体収容室
4…駆動液室
5…隔壁
7…流体出口
11…出口路
13…出口開閉弁
14…非圧縮性流体(スラリー)
16…供給室内撹拌装置
18…駆動液入口
20…駆動液供給路
21…駆動液供給源(オイルタンク)
22…駆動液(オイル)
23…駆動液供給手段(オイルポンプ)
27…液面検出手段
28…圧力伝達液(水)
29…圧力伝達室
30…第2隔壁
DESCRIPTION OF SYMBOLS 1 ... Fluid supply apparatus 2 ... Housing 3 ... Fluid storage chamber 4 ... Drive liquid chamber 5 ... Partition 7 ... Fluid outlet
11 ... Exit road
13… Outlet opening / closing valve
14… Incompressible fluid (slurry)
16… Agitator in the supply chamber
18 ... Drive fluid inlet
20 ... Drive fluid supply path
21 ... Drive fluid supply source (oil tank)
22 ... Drive fluid (oil)
23 ... Drive fluid supply means (oil pump)
27 ... Liquid level detection means
28… Pressure transfer fluid (water)
29… Pressure transmission chamber
30 ... Second wall

Claims (6)

高圧の非圧縮性流体(14)を定量供給可能な流体供給装置であって、
ハウジング(2)内に流体収容室(3)と駆動液室(4)とを設け、周縁部が上記のハウジング(2)に固定された変形可能な隔壁(5)により、上記の流体収容室(3)と駆動液室(4)とを保密状に区画し、
上記の流体収容室(3)に流体出口(7)を開口し、この流体出口(7)に出口路(11)を接続して、この出口路(11)に出口開閉弁(13)を設け、
上記の駆動液室(4)に駆動液入口(18)を開口し、この駆動液入口(18)を駆動液供給源(21)に駆動液供給路(20)を介し連通して、この駆動液供給路(20)に駆動液供給手段(23)を設けたことを特徴とする、流体供給装置。
A fluid supply device capable of quantitatively supplying a high-pressure incompressible fluid (14),
A fluid storage chamber (3) and a driving liquid chamber (4) are provided in the housing (2), and the fluid storage chamber is provided by a deformable partition wall (5) whose peripheral portion is fixed to the housing (2). (3) and the drive fluid chamber (4) are partitioned in a confined manner,
A fluid outlet (7) is opened in the fluid storage chamber (3), an outlet passage (11) is connected to the fluid outlet (7), and an outlet opening / closing valve (13) is provided in the outlet passage (11). ,
The driving liquid inlet (18) is opened in the driving liquid chamber (4), and the driving liquid inlet (18) is communicated with the driving liquid supply source (21) via the driving liquid supply path (20). A fluid supply apparatus comprising a drive liquid supply means (23) in the liquid supply path (20).
上記の流体出口(7)は流体収容室(3)の下側部位に開口し、この流体収容室(3)内の下側部分に供給室内撹拌装置(16)を設けた、請求項1に記載の流体供給装置。   The fluid outlet (7) is opened at a lower portion of the fluid storage chamber (3), and a supply chamber stirring device (16) is provided at a lower portion of the fluid storage chamber (3). The fluid supply apparatus described. 上記の流体収容室(3)と上記の駆動液室(4)との間に、圧力伝達液(28)が充満した圧力伝達室(29)を設け、この圧力伝達室(29)と上記の流体収容室(3)との間を上記の変形可能な隔壁(5)で保密状に区画するとともに、周縁部が上記のハウジング(2)に固定された変形可能な第2の隔壁(30)により、上記の圧力伝達室(29)と駆動液室(4)とを保密状に区画した、請求項1または請求項2に記載の流体供給装置。   A pressure transmission chamber (29) filled with a pressure transmission fluid (28) is provided between the fluid storage chamber (3) and the driving fluid chamber (4). A deformable second partition wall (30) having a space between the fluid storage chamber (3) and the deformable partition wall (5) in a tightly sealed manner and having a peripheral edge fixed to the housing (2). The fluid supply device according to claim 1 or 2, wherein the pressure transmission chamber (29) and the driving fluid chamber (4) are partitioned in a confined manner. 上記の駆動液供給源(21)に液面検出手段(27)を設け、この液面検出手段(27)の検出に基づき、上記の駆動液室(4)への駆動液(22)の注入量を調節可能に構成した、請求項1から3のいずれか1項に記載の流体供給装置。   The driving liquid supply source (21) is provided with a liquid level detecting means (27), and based on the detection by the liquid level detecting means (27), the driving liquid (22) is injected into the driving liquid chamber (4). The fluid supply device according to any one of claims 1 to 3, wherein the fluid supply device is configured to be adjustable. 上記の流体(14)が、液体中に微粒子を分散させたスラリーである、請求項1から4のいずれか1項に記載の流体供給装置。   The fluid supply device according to any one of claims 1 to 4, wherein the fluid (14) is a slurry in which fine particles are dispersed in a liquid. 高圧の非圧縮性流体(14)を定量供給できる流体供給方法であって、
上記の請求項1から5のいずれか1項に記載の流体供給装置(1)を用い、上記の駆動液室(4)に駆動液(22)を注入することにより、上記の流体収容室(3)内の流体(14)を上記の流体出口(7)から送り出させ、その駆動液室(4)への駆動液(22)の注入量を調節することにより、上記の流体出口(7)から送り出される流体(14)の供給流量を制御することを特徴とする、流体供給方法。
A fluid supply method capable of quantitatively supplying a high-pressure incompressible fluid (14),
By using the fluid supply device (1) according to any one of claims 1 to 5 and injecting the driving liquid (22) into the driving liquid chamber (4), the fluid containing chamber ( 3) By feeding the fluid (14) in the fluid from the fluid outlet (7) and adjusting the injection amount of the driving liquid (22) into the driving liquid chamber (4), the fluid outlet (7) A fluid supply method, characterized in that the supply flow rate of the fluid (14) delivered from the fluid is controlled.
JP2008006790A 2008-01-16 2008-01-16 Fluid supply device and fluid supplying method Pending JP2009167903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006790A JP2009167903A (en) 2008-01-16 2008-01-16 Fluid supply device and fluid supplying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006790A JP2009167903A (en) 2008-01-16 2008-01-16 Fluid supply device and fluid supplying method

Publications (1)

Publication Number Publication Date
JP2009167903A true JP2009167903A (en) 2009-07-30

Family

ID=40969362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006790A Pending JP2009167903A (en) 2008-01-16 2008-01-16 Fluid supply device and fluid supplying method

Country Status (1)

Country Link
JP (1) JP2009167903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101914497B1 (en) * 2017-04-20 2018-11-05 (주)일신오토클레이브 High viscosity crude oil transfer device with syringe pump type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191471A (en) * 1989-12-28 1992-07-09 Toufuku Kk Viscous fluid pressure-feeding device
JPH04224285A (en) * 1990-12-21 1992-08-13 Nippon Steel Corp Force feeding device
JPH0693963A (en) * 1992-09-09 1994-04-05 Toufuku Kk Slurry forced-feeding device
JPH06213163A (en) * 1993-01-22 1994-08-02 Nippon Steel Corp Double-membrane force feed device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191471A (en) * 1989-12-28 1992-07-09 Toufuku Kk Viscous fluid pressure-feeding device
JPH04224285A (en) * 1990-12-21 1992-08-13 Nippon Steel Corp Force feeding device
JPH0693963A (en) * 1992-09-09 1994-04-05 Toufuku Kk Slurry forced-feeding device
JPH06213163A (en) * 1993-01-22 1994-08-02 Nippon Steel Corp Double-membrane force feed device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101914497B1 (en) * 2017-04-20 2018-11-05 (주)일신오토클레이브 High viscosity crude oil transfer device with syringe pump type

Similar Documents

Publication Publication Date Title
CN108698069B (en) Discharge device and discharge method for liquid material containing solid particles, and application device
US9540225B2 (en) Liquid material discharge mechanism and liquid material discharge device
JP2018204784A (en) Hydraulic cylinder device and working fluid leakage detection method of hydraulic cylinder device
EP3316069B1 (en) Flow regulating pump, system, and method
JP2009167903A (en) Fluid supply device and fluid supplying method
JP4822675B2 (en) Manifold with integrated pressure relief valve
US10975861B2 (en) Metering mechanism for a proportioning pump, and associated pump and usage method
JP2015055225A (en) Constant delivery pump
CN206903821U (en) Solution dispensed device and there is its circulation of fluid circuit system
JP2007218136A (en) Diaphragm type pump
JP2007120446A (en) Air-driven diaphragm pump
US11878370B2 (en) Method of and apparatus for supplying cooling water to laser processing head and method of producing cooling water
JP6846252B2 (en) Liquid material weighing and filling device
KR102367131B1 (en) Apparatus for automatically supplying constant quantity
JP5986905B2 (en) Liquid supply device
KR20180020104A (en) Accumulator and fluid material discharge system
CN212775778U (en) Pipeline back pressure valve for stable liquid metering and conveying
RU2352814C1 (en) Pumping plant
US20230141287A1 (en) Fluid pump with pressure relief path
US20200332794A1 (en) Plunger pump
JP2020040068A (en) Discharge apparatus of liquid material, discharge method, and coating apparatus
KR101206762B1 (en) Apparatus for supplying fluid
US5255828A (en) Liquid developer supply system with pump for discharging fixed amounts of liquid developer
KR20150135674A (en) A dispensing device of the fluid quantitative
KR101515113B1 (en) Regulator for Controlling Inner Pressure Based on Discharging State

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305