JP2009167673A - Work device - Google Patents

Work device Download PDF

Info

Publication number
JP2009167673A
JP2009167673A JP2008006125A JP2008006125A JP2009167673A JP 2009167673 A JP2009167673 A JP 2009167673A JP 2008006125 A JP2008006125 A JP 2008006125A JP 2008006125 A JP2008006125 A JP 2008006125A JP 2009167673 A JP2009167673 A JP 2009167673A
Authority
JP
Japan
Prior art keywords
command value
work machine
force
hydraulic
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006125A
Other languages
Japanese (ja)
Inventor
Kenjiro Yamamoto
健次郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2008006125A priority Critical patent/JP2009167673A/en
Publication of JP2009167673A publication Critical patent/JP2009167673A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a work device advantageous for smoothly operating while avoiding the occurrence of vibration thereof by easily predicting the response of the body of the machine. <P>SOLUTION: This work device comprises driven members 8, 2 driven by hydraulic actuators 33A-33D, hydraulic actuators 33A-33D, control valves 32A-32D for controlling the flow of a pressure oil into the hydraulic actuators 33A-33D, an operating device 11 for indicating the operations of the driven members 2, 8, and a control unit 37 for generating control signals 37S to the control valves 32A-32D according to instruction values from the operating device. The operating device 11 comprises an operating force detection means 16 for detecting the operating force acting on an operation lever 15 and an instruction value generating means 17 for outputting the operation instruction value 11S of the hydraulic actuator to the control unit 37 according to the detected operating force. The standard response frequency characteristics of the operating device 11 from the detection of the operating force to the displacement of the operating lever 15 correspond to the standard response frequency characteristics of the body from the output of the instruction value 11S to the output of the operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、油圧ショベルや油圧クレーン等の作業機械に関する。   The present invention relates to a work machine such as a hydraulic excavator or a hydraulic crane.

土木工事や解体工事等の作業現場では、一般に油圧ショベルや油圧クレーンに代表される作業機械が用いられる。こうした作業機械は、動力源となる油圧ポンプ、油圧ポンプからの圧油で駆動する油圧アクチュエータ(油圧シリンダ、油圧モータ等)、油圧アクチュエータにより駆動される被駆動部材(アーム、バケット、ワイヤロープ等)、油圧アクチュエータへの圧油の流れ(流量及び方向)を制御する制御弁、被駆動部材の動作を指示する操作装置等を備えている。通常、操作装置は、オペレータにより操作される被操作部材(操作レバー、ペダル、ボタン等)、被操作部材の移動角や移動距離を油圧アクチュエータの動作速度指令値に変換する指令値生成装置から構成されている。オペレータによって被操作部材が操作されると操作装置からの指令値を基に制御弁が制御され、指令値に応じた駆動速度で油圧アクチュエータが駆動し被駆動部材が実際に動作する。   In work sites such as civil engineering work and demolition work, work machines represented by hydraulic excavators and hydraulic cranes are generally used. Such work machines include a hydraulic pump as a power source, a hydraulic actuator (hydraulic cylinder, hydraulic motor, etc.) driven by pressure oil from the hydraulic pump, and a driven member (arm, bucket, wire rope, etc.) driven by the hydraulic actuator. And a control valve for controlling the flow (flow rate and direction) of the pressure oil to the hydraulic actuator, an operating device for instructing the operation of the driven member, and the like. Usually, the operating device is composed of a member to be operated (operating lever, pedal, button, etc.) operated by an operator, and a command value generating device for converting a movement angle or a moving distance of the member to be operated into an operation speed command value of a hydraulic actuator. Has been. When the operated member is operated by the operator, the control valve is controlled based on a command value from the operating device, and the hydraulic actuator is driven at a driving speed corresponding to the command value, and the driven member actually operates.

こうした作業機械においては、被駆動部材の動作に伴って各構成要素の共振により機体全体が揺れる振動現象が生じる場合がある。例えば急操作により共振が生じるとハンチングの発生により機体のコントロールが難しくなるので、オペレータはハンチングが生じないように作業機械を操縦する必要がある。圧油やワイヤロープ等の動力伝達要素は、大きな力を高効率に伝達する反面、一般に振動が生じ易い。この種の作業機械は、振動を抑制する構成要素が少なく、発生した振動が減衰し難いのも実情である。   In such work machines, there may be a vibration phenomenon in which the entire machine body shakes due to resonance of each component as the driven member moves. For example, if resonance occurs due to an abrupt operation, it becomes difficult to control the aircraft due to the occurrence of hunting, and therefore the operator needs to steer the work machine so that hunting does not occur. Power transmission elements such as pressure oil and wire rope transmit large force with high efficiency, but generally tend to generate vibration. In fact, this type of work machine has few components that suppress vibration, and the generated vibration is difficult to attenuate.

それに対し、この種の作業機械の振動抑制を目的とした技術として、油圧アクチュエータの圧力(検出値)を操作信号にフィードバックすることにより、油圧アクチュエータの圧力変動を抑え、機体の振動を抑制するものがある(特許文献1等参照〉。   On the other hand, as a technology for the purpose of suppressing this type of work machine vibration, the pressure (detection value) of the hydraulic actuator is fed back to the operation signal, thereby suppressing the pressure fluctuation of the hydraulic actuator and suppressing the vibration of the airframe. (See Patent Document 1 etc.).

特開平11−351204号公報JP 11-351204 A

一般に、作業機械の動作には、油圧機器等の動作遅れ・各構成要素の弾性や重量等に起因して、オペレータの操作に対する作業機械の応答ずれが生じるため、作業機械を精度良く又は効率良く操縦するためには、オペレータは、この応答特性を予測して操作する必要がある。したがって、作業機械の操縦は、機体の応答特性を熟知する必要がある上、機体の振動現象が生じないように機体の挙動を監視しつつ適切な速度で機体をコントロールする必要があり、オペレータには高度な熟練が要求される。アームやバケット等の複数の被駆動部材を同時に複合操作するときのように機体の複雑な動作を予測する必要がある場合には、特に高度な熟練度が要求される。このように機体を高精度かつスムーズに操縦するために機体の挙動を予測する必要がある点は、上記特許文献1に記載した技術でも同様である。   In general, the work machine operates in a precise or efficient manner because the work machine has a response error to the operator's operation due to delays in the operation of the hydraulic equipment, elasticity of each component, weight, etc. In order to steer, the operator needs to predict and operate this response characteristic. Therefore, it is necessary to know the response characteristics of the aircraft, and to control the aircraft at an appropriate speed while monitoring the behavior of the aircraft so that the aircraft does not vibrate. High skill is required. A high degree of skill is required particularly when it is necessary to predict a complicated operation of the airframe, such as when a plurality of driven members such as arms and buckets are simultaneously operated in combination. The point that it is necessary to predict the behavior of the aircraft in order to maneuver the aircraft with high accuracy and smoothness is the same as in the technique described in Patent Document 1.

本発明は上記課題に鑑みなされたもので、機体の応答の予測を容易化し振動現象の発生を回避しつつ円滑に操縦する上で有利な作業機械を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a work machine that is advantageous in facilitating smooth prediction while facilitating prediction of response of the airframe and avoiding the occurrence of a vibration phenomenon.

(1)上記目的を達成するために、本発明は、油圧ポンプと、この油圧ポンプからの圧油で駆動する油圧アクチュエータと、この油圧アクチュエータにより駆動される被駆動部材と、前記油圧ポンプから前記油圧アクチュエータへの圧油の流れを制御する制御弁と、前記被駆動部材の動作を指示する操作装置からの指令値に基づいて前記制御弁への制御信号を生成する動作制御手段とを備えた作業機械において、前記操作装置は、操作者による機械的な操作入力を受ける被操作部材と、この被操作部材に作用した操作力を検出する操作力検出手段と、この操作力検出手段により検出された操作力に基づいて対象の油圧アクチュエータの動作指令値を生成し前記動作制御手段に出力する指令値生成手段と、前記操作力検出手段により検出された操作力を受けて前記被操作部材が変位するまでの前記操作装置の標準応答周波数特性が、前記指令値生成手段による指令値出力から前記被駆動部材の動作までの機体の標準応答周波数特性に対応するように前記被操作部材に操作反力を付加する反力付加手段とを備えたことを特徴とする。   (1) In order to achieve the above object, the present invention provides a hydraulic pump, a hydraulic actuator driven by pressure oil from the hydraulic pump, a driven member driven by the hydraulic actuator, and the hydraulic pump A control valve for controlling the flow of pressure oil to the hydraulic actuator, and an operation control means for generating a control signal to the control valve based on a command value from an operating device for instructing the operation of the driven member. In a work machine, the operating device is detected by an operated member that receives a mechanical operation input by an operator, an operating force detection unit that detects an operating force that has acted on the operated member, and the operating force detection unit. A command value generating means for generating an operation command value of the target hydraulic actuator based on the operating force and outputting the operation command value to the operation control means, and detected by the operating force detecting means The standard response frequency characteristic of the operating device until the operated member is displaced due to the working force corresponds to the standard response frequency characteristic of the airframe from the command value output by the command value generating means to the operation of the driven member. Thus, a reaction force adding means for adding an operation reaction force to the operated member is provided.

(2)上記(1)において、好ましくは、前記機体の標準応答周波数特性が、少なくとも圧油の粘性成分、構成部材の弾性成分、構成部材の重量による慣性成分のいずれかを含む2次以上の遅れ特性であることを特徴とする。   (2) In the above (1), preferably, the standard response frequency characteristic of the airframe includes at least a second or higher order component including at least one of a viscous component of pressure oil, an elastic component of a component member, and an inertia component due to the weight of the component member. It is a delay characteristic.

(3)上記(1)又は(2)において、好ましくは、前記反力付加手段は、前記被操作部材の操作力と前記機体の標準応答周波数特性との予め与えられた関係の下、前記操作力検出手段により検出された操作力に基づいて反力の指令値を演算する演算手段と、この演算手段で演算された指令値に基づいて前記被操作部材にかかる操作力に対向する操作反力を前記被操作部材に付加する反力生成手段とを備えていることを特徴とする。   (3) In the above (1) or (2), preferably, the reaction force adding means is configured to perform the operation under a predetermined relationship between an operation force of the operated member and a standard response frequency characteristic of the airframe. A calculation means for calculating a reaction force command value based on the operation force detected by the force detection means, and an operation reaction force opposed to the operation force applied to the operated member based on the command value calculated by the calculation means. And a reaction force generating means for adding to the operated member.

(4)上記(1)又は(2)において、好ましくは、前記操作装置は、標準応答周波数特性が機体の標準応答周波数特性に対応するように、前記被操作部材の操作に伴う粘性成分、弾性成分、慣性成分のうちの少なくとも一つが調整されていることを特徴とする。   (4) In the above (1) or (2), preferably, the operating device has a viscous component or elasticity accompanying the operation of the operated member so that the standard response frequency characteristic corresponds to the standard response frequency characteristic of the airframe. At least one of the component and the inertia component is adjusted.

(5)上記(1)〜(4)のいずれかにおいて、好ましくは、前記油圧ポンプは可変容量型の油圧ポンプであり、前記動作制御手段は、前記制御弁とともに、又は前記制御弁に代えて前記油圧ポンプの傾転を制御することを特徴とする。   (5) In any one of the above (1) to (4), preferably, the hydraulic pump is a variable displacement hydraulic pump, and the operation control means is used together with the control valve or in place of the control valve. The tilt of the hydraulic pump is controlled.

(6)上記(1)〜(5)のいずれかにおいて、好ましくは、前記被操作部材は操作レバー、前記被駆動部材はブーム、アーム、作業具からなる多関節型の作業装置若しくは走行体、前記油圧アクチュエータは前記作業装置又は走行体を駆動する複数の油圧シリンダ又は油圧モータであることを特徴とする。   (6) In any one of the above (1) to (5), preferably, the operated member is an operation lever, and the driven member is a multi-joint type working device or traveling body including a boom, an arm, and a work tool, The hydraulic actuator is a plurality of hydraulic cylinders or hydraulic motors that drive the working device or the traveling body.

本発明によれば、機体の応答の予測を容易化し振動現象の発生を回避しつつ操作性を向上させることができる。   According to the present invention, it is possible to improve the operability while facilitating the prediction of the response of the aircraft and avoiding the occurrence of the vibration phenomenon.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の一実施の形態に係る作業機械の側面図である。   FIG. 1 is a side view of a work machine according to an embodiment of the present invention.

図1に示すように、本実施の形態では、作業機械の一例として油圧ショベルを例示している。本実施の形態では、特に断り書きのない場合、図1中の左右を機体の前後方向とする。図1に示した油圧ショベルは、大きく分けて走行体1及びこの走行体1上に旋回可能に搭載された旋回体2から構成される。   As shown in FIG. 1, in this embodiment, a hydraulic excavator is illustrated as an example of a work machine. In the present embodiment, unless otherwise specified, the left and right in FIG. The hydraulic excavator shown in FIG. 1 includes a traveling body 1 and a revolving body 2 that is mounted on the traveling body 1 so as to be able to swivel.

走行体1は、無限軌道履帯を有する左右のクローラを備えており、左右のクローラを左右の走行モータ33E,33F(後述する図3参照)によりそれぞれ駆動することで走行する。走行モータ33E,33Fは油圧アクチュエータであり、走行体1は走行モータ33E,33Fにより駆動される被駆動部材を構成する。   The traveling body 1 includes left and right crawlers having endless track tracks, and travels by driving the left and right crawlers by left and right traveling motors 33E and 33F (see FIG. 3 described later). The traveling motors 33E and 33F are hydraulic actuators, and the traveling body 1 constitutes a driven member that is driven by the traveling motors 33E and 33F.

旋回体2は、旋回フレーム3を有し、旋回フレーム3には、前方側にオペレータが搭乗するキャブボックス4が、キャブボックス4の後方側に機械室を画成する建屋カバー5が、最後部に機体の前後方向のバランスを調整するカウンタウェイト6が搭載されている。旋回フレーム3には旋回モータ33D(後述する図3参照)が設けられており、旋回体2はこの旋回モータによって旋回駆動される。旋回モータ33Dは油圧アクチュエータであり、旋回体2は旋回モータ33Dにより駆動される被駆動部材を構成する。   The swivel body 2 has a swivel frame 3. The swivel frame 3 has a cab box 4 on which an operator gets on the front side, and a building cover 5 that defines a machine room on the rear side of the cab box 4. A counterweight 6 for adjusting the balance in the front-rear direction of the aircraft is mounted on the machine. The turning frame 3 is provided with a turning motor 33D (see FIG. 3 described later), and the turning body 2 is driven to turn by this turning motor. The turning motor 33D is a hydraulic actuator, and the turning body 2 constitutes a driven member that is driven by the turning motor 33D.

また、旋回体2の前部(本例ではキャブボックス4の右側)には、旋回体2に対して俯仰動作するフロント作業装置8が設けられている。このフロント作業装置8は、旋回体2の旋回フレーム3にピン結合されたブーム8Aと、ブーム8Aの先端側にピン結合されたアーム8Bと、アーム8Bの先端側にピン結合された作業具(バケット)8Cとによって構成されている。そして、ブーム8A、アーム8B及びバケット8Cは、ブームシリンダ33A、アームシリンダ33B及びバケットシリンダ33C等の油圧アクチュエータによって駆動される。ブーム8A、アーム8B及びバケット8Cは、それぞれブームシリンダ33A、アームシリンダ33B及びバケットシリンダ33Cにより駆動される被駆動部材を構成している。   In addition, a front working device 8 that moves up and down with respect to the swivel body 2 is provided at a front portion of the swivel body 2 (right side of the cab box 4 in this example). The front working device 8 includes a boom 8A pin-coupled to the revolving frame 3 of the revolving structure 2, an arm 8B pin-coupled to the tip side of the boom 8A, and a work tool (pin-coupled to the tip side of the arm 8B). Bucket) 8C. The boom 8A, the arm 8B, and the bucket 8C are driven by hydraulic actuators such as the boom cylinder 33A, the arm cylinder 33B, and the bucket cylinder 33C. The boom 8A, arm 8B, and bucket 8C constitute driven members that are driven by the boom cylinder 33A, arm cylinder 33B, and bucket cylinder 33C, respectively.

図2はキャブボックス4の内部の概略構成を表す側面図である。   FIG. 2 is a side view illustrating a schematic configuration inside the cab box 4.

図2に示すように、キャブボックス4の床板4A上には、運転席7と運転席7の左右両側に配置された操作装置11(左側のみ図示)が設けられている。操作装置11は、被駆動部材としての旋回体2やフロント作業装置8の動作を指示するものである。この操作装置11については、後に図4及び図5を用いて詳述するが、オペレータによる機械的な操作入力を受ける被操作部材である操作レバー15と、操作レバー15を支持するレバー支持体12とを備えている。レバー支持体12は、レバースタンド13と、操作レバー15のケーシング14とを備えている。レバースタンド13は、運転席7の側方に位置し、キャブボックス4の床板4Aに取付けられている。左右の操作レバー15を前後左右に傾転操作することによって、ブームシリンダ33A、アームシリンダ33B、バケットシリンダ33C及び旋回モータが駆動され、ブーム8A、アーム8B、バケット8C及び旋回体2が動作する。また、運転席7の前方には、走行体1の左右のクローラに対応する一対の被操作部材であるペダル付き操作レバー15C(左側のみ図示)が、キャブボックス4の床板4Aに取付けられている。   As shown in FIG. 2, on the floor plate 4 </ b> A of the cab box 4, there are provided a driver's seat 7 and an operation device 11 (shown only on the left side) arranged on both the left and right sides of the driver's seat 7. The operating device 11 instructs the operation of the swing body 2 and the front work device 8 as driven members. The operation device 11 will be described in detail later with reference to FIGS. 4 and 5. The operation lever 15 is a member to be operated that receives a mechanical operation input by the operator, and a lever support 12 that supports the operation lever 15. And. The lever support 12 includes a lever stand 13 and a casing 14 for the operation lever 15. The lever stand 13 is located on the side of the driver's seat 7 and is attached to the floor plate 4 </ b> A of the cab box 4. The boom cylinder 33A, the arm cylinder 33B, the bucket cylinder 33C and the swing motor are driven by tilting the left and right operation levers 15 back and forth, and the boom 8A, the arm 8B, the bucket 8C and the swing body 2 operate. Further, in front of the driver's seat 7, a pedal-equipped operation lever 15 </ b> C (shown only on the left side), which is a pair of operated members corresponding to the left and right crawlers of the traveling body 1, is attached to the floor plate 4 </ b> A of the cab box 4. .

図3は作業機械に備えられた油圧アクチュエータの駆動回路の概略図である。   FIG. 3 is a schematic diagram of a drive circuit of a hydraulic actuator provided in the work machine.

図3に示すように、油圧アクチュエータすなわち、ブームシリンダ33A、アームシリンダ33B、バケットシリンダ33C、旋回モータ33D、走行モータ33E,33Fは、建屋カバー5内に設けられた動力源としての油圧ポンプ30からの圧油(作動油)により駆動する。油圧ポンプ30はエンジン(図示せず)により駆動される。油圧ポンプ30から吐出された圧油は、吐出配管31Aを流通して電磁・油圧パイロット式の制御弁(3位置コントロールバルブ)32A〜32Fに供給され、それぞれ制御弁32A〜32Fによって流れ(方向及び流量)を制御されて油圧アクチュエータ33A〜33Fに供給される。油圧アクチュエータ33A〜33Fからの各戻り油は、それぞれ制御弁32A〜32Fを介して戻り油配管31Bに流れ込みタンク38に戻される。また、吐出配管31Aの圧油の最高圧はリリーフ弁36により規制される。   As shown in FIG. 3, hydraulic actuators, that is, a boom cylinder 33 </ b> A, an arm cylinder 33 </ b> B, a bucket cylinder 33 </ b> C, a swing motor 33 </ b> D, and travel motors 33 </ b> E and 33 </ b> F are provided from a hydraulic pump 30 as a power source provided in the building cover 5. It is driven by pressure oil (hydraulic oil). The hydraulic pump 30 is driven by an engine (not shown). The pressure oil discharged from the hydraulic pump 30 flows through the discharge pipe 31A and is supplied to electromagnetic / hydraulic pilot type control valves (three-position control valves) 32A to 32F, and flows (direction and direction) by the control valves 32A to 32F, respectively. The flow rate is controlled and supplied to the hydraulic actuators 33A to 33F. The return oil from the hydraulic actuators 33A to 33F flows into the return oil pipe 31B through the control valves 32A to 32F, and is returned to the tank 38. Further, the maximum pressure of the pressure oil in the discharge pipe 31 </ b> A is regulated by the relief valve 36.

左右の操作レバー15(図2参照)には、それぞれ対応付けられた側の操作レバー15の操作方向(前或いは後、又は左或いは右)及び操作量に応じ、油圧アクチュエータ33A〜33Dの動作指令値をそれぞれ生成する指令値生成装置34A〜34Dが設けられており、指令値生成装置34A〜34Dで生成された指令値は制御ユニット37に出力される。また、ペダル付き操作レバー15C(図2参照)には、それぞれ対応付けられた側の操作レバー15Cの操作方向(前又は後)及び操作量に応じ、走行モータ33E,33Fの動作指令値をそれぞれ生成する指令値生成装置34E,34Fが設けられており、指令値生成装置34E,34Fで生成された指令値が制御ユニット37に出力される。   The left and right operation levers 15 (see FIG. 2) are provided with operation commands for the hydraulic actuators 33A to 33D according to the operation direction (front or rear, or left or right) and the operation amount of the operation lever 15 on the associated side. Command value generation devices 34 </ b> A to 34 </ b> D that generate values are provided, and the command values generated by the command value generation devices 34 </ b> A to 34 </ b> D are output to the control unit 37. The operation lever 15C with a pedal (see FIG. 2) is provided with operation command values for the travel motors 33E and 33F according to the operation direction (front or rear) and the operation amount of the operation lever 15C on the associated side. Command value generation devices 34E and 34F to be generated are provided, and the command values generated by the command value generation devices 34E and 34F are output to the control unit 37.

制御ユニット37は、油圧アクチュエータの動作を制御する動作制御手段であり、指令値生成装置34A〜34Fからの指令値を基にそれぞれ制御弁32A〜32Fへの制御信号を生成し、それぞれ制御弁34A〜34Fのソレノイドに制御信号を出力する。制御ユニット37からの制御信号により制御弁32A〜32Fのポジションがそれぞれ切り換わり、油圧アクチュエータ33A〜33Fへの圧油の流れ(方向及び流量)が制御され、油圧アクチュエータ33A〜33Fが駆動制御される。   The control unit 37 is an operation control means for controlling the operation of the hydraulic actuator, generates control signals to the control valves 32A to 32F based on the command values from the command value generating devices 34A to 34F, and controls the control valve 34A. A control signal is output to the solenoid of ~ 34F. The positions of the control valves 32A to 32F are switched by control signals from the control unit 37, the flow (direction and flow rate) of the pressure oil to the hydraulic actuators 33A to 33F is controlled, and the hydraulic actuators 33A to 33F are driven and controlled. .

図4は前述した操作装置11の操作レバー15を抽出して表した図である。   FIG. 4 is a diagram illustrating the operation lever 15 of the operation device 11 described above.

図4に示すように、操作レバー15は、それぞれ前後方向・左右方向に回動するアーチ状のガイド部材51,52の頂部に設けた長穴51a,52aに通されている。例えば操作レバー15を前後方向に操作すると、操作レバー15はガイド部材52の長穴52a内を長穴52aの長手方向に移動する一方、操作レバー15の前後への動きに伴ってガイド部材51が前後に回動する。反対に、操作レバー15を左右方向に操作すると、操作レバー15はガイド部材51の長穴51a内を長穴51aの長手方向に移動する一方、操作レバー15の左右への動きに伴ってガイド部材52が左右に回動する。操作レバー15を複合操作した場合、例えば操作レバー15を左前方に操作した場合には、操作レバー15の動作に伴ってガイド部材51,52がそれぞれ前方及び左方向に回動する。   As shown in FIG. 4, the operation lever 15 is passed through elongated holes 51 a and 52 a provided at the tops of arcuate guide members 51 and 52 that rotate in the front-rear direction and the left-right direction, respectively. For example, when the operation lever 15 is operated in the front-rear direction, the operation lever 15 moves in the longitudinal direction of the elongated hole 52 a in the elongated hole 52 a of the guide member 52, while the guide member 51 is moved along the longitudinal movement of the operation lever 15. Rotate back and forth. On the other hand, when the operation lever 15 is operated in the left-right direction, the operation lever 15 moves in the long hole 51a of the guide member 51 in the longitudinal direction of the long hole 51a, while the guide member is moved in the left-right direction. 52 rotates left and right. When the operation lever 15 is operated in combination, for example, when the operation lever 15 is operated to the left front, the guide members 51 and 52 are rotated forward and left in accordance with the operation of the operation lever 15, respectively.

このとき、ガイド部材51,52の支軸には、それぞれ電動モータ53,54の出力軸が連結されている。これら電動モータ53,54は、ガイド部材51,52に対し、ガイド部材51,52の回動方向と対向する方向(反対方向)にトルクを与え、操作レバー15に与える操作反力を生成する反力生成手段として機能する。   At this time, the output shafts of the electric motors 53 and 54 are connected to the support shafts of the guide members 51 and 52, respectively. These electric motors 53, 54 apply torque to the guide members 51, 52 in a direction (opposite direction) opposite to the rotation direction of the guide members 51, 52, and generate reaction reaction force applied to the operation lever 15. Functions as force generation means.

図5は本発明の一実施の形態に係る作業機械の機能ブロック図である。図5において、既出図面と同様の部分には同符号を付して説明を省略する。   FIG. 5 is a functional block diagram of the work machine according to the embodiment of the present invention. In FIG. 5, the same parts as those in the above-mentioned drawings are denoted by the same reference numerals, and description thereof is omitted.

図5には、作業機械の機能ブロックとして、操作装置11、制御ユニット(動作制御手段)37、及び作業機本体(機体)72を備えている。   In FIG. 5, an operation device 11, a control unit (operation control means) 37, and a work machine main body (machine body) 72 are provided as functional blocks of the work machine.

操作装置11は、操作レバー(被操作部材)15と、操作力検出手段16と、指令値生成手段17と、演算手段18と、電動モータ(反力生成手段)53,54とを備えている。   The operation device 11 includes an operation lever (operated member) 15, an operation force detection unit 16, a command value generation unit 17, a calculation unit 18, and electric motors (reaction force generation units) 53 and 54. .

操作力検出手段16は、操作レバー15に作用した力、すなわちオペレータが操作レバー15に加えた力を検出するものであり、力センサ等を用いることができる。この操作力検出手段16は、操作レバー15の操作方向(前・後・左・右)ごとに設けられ、各方向への操作力を検出しその検出信号は指令値生成手段17に出力する。   The operating force detection means 16 detects the force acting on the operating lever 15, that is, the force applied by the operator to the operating lever 15, and a force sensor or the like can be used. The operation force detection means 16 is provided for each operation direction (front / rear / left / right) of the operation lever 15, detects the operation force in each direction, and outputs a detection signal to the command value generation means 17.

指令値生成手段17は、アンプやフィルタ等の回路で形成され、操作力検出手段16からの検出信号から、対応する油圧アクチュエータの動作指令値11Sを生成し、制御ユニット(動作制御手段)37に出力する。   The command value generation means 17 is formed of a circuit such as an amplifier or a filter, generates an operation command value 11S of the corresponding hydraulic actuator from the detection signal from the operation force detection means 16, and supplies it to the control unit (operation control means) 37. Output.

演算手段18は、反力生成手段である電動モータ53,54とともに、操作レバー15に所望の操作反力を付加する反力付加手段を構成するものであり、機体の標準応答周波数特性と操作レバー15の操作力との予め与えられた関係の下、操作力検出手段17により検出された操作力を基に反力の指令値を演算し電動モータ53,54に出力する。このとき、演算手段17には図示しない記憶部が備えられており、その記憶部には機体の標準応答周波数特性と操作レバー15の操作力との関係が予め記憶されている。ここで、作業機械の標準応答周波数特性は、モデル等を用いてシミュレーションにより算出する、或いは、指令値生成手段17による指令値11Sの出力から対応の被駆動部材(ブーム8A、アーム8B等)が動作するまでの時間、指令値11Sや被駆動部材の挙動を実測することにより求めることができる。機体の応答周波数特性は、アクチュエータやアクチュエータの動作方向ごとに異なるので、各アクチュエータにつき動作方向ごとにデータを得ておく。演算手段17の記憶部には、こうした機体の標準応答周波数特性が操作レバー15の操作力に対応付けられて記憶されている。   The calculation means 18 constitutes reaction force addition means for adding a desired operation reaction force to the operation lever 15 together with the electric motors 53 and 54 as reaction force generation means. Based on the operation force detected by the operation force detection means 17 under a predetermined relationship with the 15 operation force, a reaction force command value is calculated and output to the electric motors 53 and 54. At this time, the calculation means 17 is provided with a storage unit (not shown), and the storage unit stores in advance the relationship between the standard response frequency characteristic of the machine body and the operation force of the operation lever 15. Here, the standard response frequency characteristic of the work machine is calculated by simulation using a model or the like, or the corresponding driven member (boom 8A, arm 8B, etc.) is output from the output of the command value 11S by the command value generation means 17. It can be obtained by actually measuring the time until operation, the command value 11S and the behavior of the driven member. Since the response frequency characteristics of the airframe are different for each actuator and the operation direction of the actuator, data is obtained for each actuator for each operation direction. The storage unit of the calculation means 17 stores such standard response frequency characteristics of the aircraft in association with the operation force of the operation lever 15.

オペレータにより操作レバー15に力が加えられると、演算手段18は、操作力検出手段16で検出された操作力を基に機体の標準応答周波数特性に対応した反力指令値を生成し、その反力指令値を電動モータ53,54に出力する。電動モータ53,54は、演算手段18からの反力指令値を基に操作レバー15の操作力に対向するトルクを生成し、前出のガイド部材51,52を介して操作レバー15に操作反力を付加する。これにより、操作装置11の標準応答周波数特性、具体的には操作力検出手段16による操作力の検出から当該操作力を受けて操作レバー15が変位するまでの操作装置11の標準応答周波数特性が、前述した機体の標準応答周波数特性に対応するようになっている。なお、作業機械と操作装置11の標準応答周波数特性は完全に一致する必要はなく、類似した傾向を持っていれば足りる。   When a force is applied to the operation lever 15 by the operator, the calculation means 18 generates a reaction force command value corresponding to the standard response frequency characteristic of the aircraft based on the operation force detected by the operation force detection means 16, and the reaction force command value is generated. The force command value is output to the electric motors 53 and 54. The electric motors 53 and 54 generate torque that opposes the operating force of the operating lever 15 based on the reaction force command value from the computing means 18, and operate the operating lever 15 against the operating lever 15 via the guide members 51 and 52 described above. Add power. Thereby, the standard response frequency characteristic of the operating device 11, specifically, the standard response frequency characteristic of the operating device 11 from the detection of the operating force by the operating force detecting means 16 until the operating lever 15 is displaced by receiving the operating force. It corresponds to the standard response frequency characteristic of the aircraft described above. It should be noted that the standard response frequency characteristics of the work machine and the operating device 11 do not need to be completely coincident with each other, and need only have similar tendencies.

作業機本体72では、操作装置11からの動作指令値11Sを基に制御ユニット37で生成された制御信号37Sが制御弁の対応のソレノイド駆動部に入力され、これにより油圧ポンプ30からの圧油が操作装置11の操作に対応した方向及び流量で油圧アクチュエータに供給され、被駆動部材が動作する。例えば、操作装置11で「ブーム上げ」の動作を指示した場合、その操作の際に操作レバー15に加わった操作力に基づく制御信号37Sが制御弁32Aの対応(図3中の右側)のソレノイドに入力され、油圧ポンプ30からの圧油がブームシリンダ33Aのボトム側に供給され、ブームシリンダ33Aが伸長して被駆動部材であるブーム8Aが上昇する。前述した反力付加手段の作用により、この際の操作レバー15の応答とブーム8Aの挙動は対応し、仮に作業フロント8の姿勢によりブーム8Aの動作が重い場合には、操作レバー15に相応の反力が作用するので操作レバー15の感触も重くなる。   In the work machine main body 72, the control signal 37S generated by the control unit 37 based on the operation command value 11S from the operating device 11 is input to the corresponding solenoid drive portion of the control valve, whereby the pressure oil from the hydraulic pump 30 is supplied. Is supplied to the hydraulic actuator in a direction and flow rate corresponding to the operation of the operating device 11, and the driven member operates. For example, when an operation of “boom raising” is instructed by the operation device 11, the control signal 37S based on the operation force applied to the operation lever 15 during the operation is a solenoid corresponding to the control valve 32A (right side in FIG. 3). The pressure oil from the hydraulic pump 30 is supplied to the bottom side of the boom cylinder 33A, and the boom cylinder 33A extends to raise the boom 8A as a driven member. Due to the action of the reaction force adding means described above, the response of the operation lever 15 at this time corresponds to the behavior of the boom 8A. If the operation of the boom 8A is heavy due to the posture of the work front 8, the response to the operation lever 15 is appropriate. Since the reaction force acts, the feel of the operation lever 15 becomes heavy.

なお、本実施の形態は、制御ユニット37が制御信号37Sを制御弁32A〜32Fに出力し制御弁32A〜32Fを制御する例であるが、例えば油圧ポンプ30が可変容量型のポンプである場合、図5にも例示したように、油圧ポンプ30の傾転を制御するポンプ制御装置である出力制御装置73に制御信号37Sを出力し、制御弁32A〜32Fとともに、或いは制御弁32A〜32Fに代えて油圧ポンプ30の出力を制御することで、油圧アクチュエータの作動量を制御する構成とすることもできる。出力制御装置73には、ポンプ傾転を制御する装置の他、油圧ポンプ30を駆動するエンジン(図示せず)の回転数を制御する装置(ガバナ等)も考えられる。   The present embodiment is an example in which the control unit 37 outputs the control signal 37S to the control valves 32A to 32F to control the control valves 32A to 32F. For example, the hydraulic pump 30 is a variable displacement pump. As illustrated in FIG. 5, the control signal 37S is output to the output control device 73 which is a pump control device that controls the tilting of the hydraulic pump 30, and the control valves 32A to 32F are supplied to the control valves 32A to 32F. Alternatively, the operation amount of the hydraulic actuator can be controlled by controlling the output of the hydraulic pump 30. As the output control device 73, in addition to a device that controls the tilting of the pump, a device (such as a governor) that controls the rotational speed of an engine (not shown) that drives the hydraulic pump 30 is also conceivable.

次に本実施の形態による作用効果を説明する。   Next, the effect by this Embodiment is demonstrated.

図3に示したような油圧系は、大きな力を効率良く伝達することが可能である反面、振動が生じ易く且つ減衰し難い性質を持つ振動系となることが一般に知られている。ここで、仮に一般の作業機械のように操作レバー15やペダル付き操作レバー15Cの操作量を基に動作指令値を生成する構成とした場合、オペレータが操作レバー15やペダル付き操作レバー15Cを急操作すると、動作指令値が急変し制御弁32A〜32Fが急に切り換わることで配管31A,31Bの油圧が振動することがある。この振動は油圧アクチュエータ33A〜33Fに伝搬し、作業機械を振動(ハンチング)させることになる。急操作によってフロント作業装置8のブーム8A・アーム8B・バケット8Cや旋回体2が急激に動作した場合、これら被駆動部材の慣性による反動もハンチングの要因となる。この現象は特に起動時や停止時に生じ易い。また、作業機械全体の振動は搭乗するオペレータに伝わり、オペレータの身体の揺れが操作レバー15に伝達されて作業機械全体の共振周波数近傍の振動がさらに大きくなることもある。このようなハンチングが生じると機体のコントロールが難しくなり作業効率が下がるので、オペレータはハンチングが生じないように被操作部材を慎重に操作する必要がある。   It is generally known that the hydraulic system as shown in FIG. 3 is a vibration system that can transmit a large force efficiently, but has a property that vibration is likely to occur and is not easily damped. Here, if the operation command value is generated based on the operation amount of the operation lever 15 or the operation lever 15C with a pedal as in a general work machine, the operator suddenly operates the operation lever 15 or the operation lever 15C with a pedal. When operated, the hydraulic pressure of the pipes 31A and 31B may vibrate due to a sudden change in the operation command value and sudden switching of the control valves 32A to 32F. This vibration propagates to the hydraulic actuators 33A to 33F, causing the work machine to vibrate (hunting). When the boom 8A, the arm 8B, the bucket 8C and the swing body 2 of the front working device 8 are suddenly operated by an abrupt operation, the reaction due to the inertia of these driven members also causes hunting. This phenomenon is particularly likely to occur when starting or stopping. In addition, the vibration of the entire work machine is transmitted to the operator on board, and the vibration of the operator's body may be transmitted to the operation lever 15 to further increase the vibration near the resonance frequency of the whole work machine. When such hunting occurs, it is difficult to control the machine body and the work efficiency is lowered. Therefore, the operator needs to carefully operate the operated member so that hunting does not occur.

しかも、一般に、作業機械の動作には油圧機器等の動作遅れや各構成要素の弾性や重量(慣性)等に起因して、オペレータの操作に対する作業機械の応答ずれが生じる。そのため、作業機械を高精度に効率良く操縦するためには、通常、オペレータは作業機械の応答特性を予測して操作する必要があった。   Moreover, generally, the operation of the work machine causes a shift in the response of the work machine to the operation of the operator due to the delay in the operation of the hydraulic equipment, the elasticity and weight (inertia) of each component, and the like. For this reason, in order to maneuver the work machine with high accuracy and efficiency, it is usually necessary for the operator to predict and operate the response characteristic of the work machine.

それに対し、本実施の形態では、操作レバー15の操作量ではなく操作レバー15に加わった操作力を基に動作指令値11Sを生成し、予め与えられた動作指令値11Sと被駆動部材の動作出力の結果との関係を基に、被駆動部材の挙動に対応した操作反力を操作レバー15に付加する構成としている。これにより、被駆動部材の挙動に対応した操作反力が操作レバー15を通じてオペレータに伝えられるので、オペレータは被駆動部材の挙動に応じた操作レバー15の手応えから感覚的に機体の挙動を予測することができる。したがって、機体の応答の予測を容易化し振動現象の発生を回避しつつ円滑に操縦する上で有利であり、熟練した操作技能がなくても感覚的にハンチングの発生を回避し易くなる。また、反力付加手段により、操作レバー15の変位が油圧アクチュエータの動作量を擬似する(操作レバー15がオペレータの加えた操作力に対して被駆動部材と同じように応答する)ので、操作量を基に動作指令値を生成する場合に比べ、操作レバー15の動きに対する機体の応答ずれも小さい。   On the other hand, in the present embodiment, the operation command value 11S is generated based on the operation force applied to the operation lever 15 instead of the operation amount of the operation lever 15, and the operation command value 11S given in advance and the operation of the driven member are generated. An operation reaction force corresponding to the behavior of the driven member is added to the operation lever 15 based on the relationship with the output result. As a result, an operation reaction force corresponding to the behavior of the driven member is transmitted to the operator through the operation lever 15, so that the operator sensuously predicts the behavior of the aircraft from the response of the operation lever 15 according to the behavior of the driven member. be able to. Therefore, it is advantageous in facilitating the prediction of the response of the aircraft and smoothly maneuvering while avoiding the occurrence of the vibration phenomenon, and it is easy to avoid the occurrence of hunting sensuously even without skilled operation skills. Further, the displacement of the operation lever 15 simulates the operation amount of the hydraulic actuator by the reaction force adding means (the operation lever 15 responds to the operation force applied by the operator in the same manner as the driven member). Compared to the case where the operation command value is generated based on the control lever 15, the response deviation of the machine body with respect to the movement of the operation lever 15 is also small.

続いて本実施の形態の上記作用の理論的な裏付けを説明する。   Next, the theoretical support for the above operation of the present embodiment will be described.

上述のような油圧系を含む作業機械において、例えば操作レバー8による動作指令値が制御ユニット37に入力されてからフロント作業装置8の動作出力までの機体の標準応答周波数特性Wは、一般に次の式(1)に示すような2次遅れ特性に近似することができる。   In a work machine including a hydraulic system as described above, for example, the standard response frequency characteristic W of the machine body from when the operation command value by the operation lever 8 is input to the control unit 37 to the operation output of the front work device 8 is generally as follows. It can be approximated to a second-order lag characteristic as shown in Equation (1).

W=k1・ω/(s+2ζωs+ω)・・・(1)
ここで、k1はゲイン、ζは振動系の減衰係数、ωは被駆動部材の角周波数、sはラプラス演算子を表す。
W = k1 · ω 2 / (s 2 + 2ζωs + ω 2 ) (1)
Here, k1 is a gain, ζ is a damping coefficient of the vibration system, ω is an angular frequency of the driven member, and s is a Laplace operator.

この特性Wには、図6に示した周波数特性60のようにピークが存在する。このときの共振周波数は一般に数Hz程度である。この特性はアクチュエータ及びアクチュエータの動作方向ごとに異なっている。例えば、ブーム8Aの上方向動作、下方向動作、アーム8Bの上方向動作、下方向動作では特性が異なっている。操作レバー15の操作量を基に動作指令値を生成する場合、ハンチングの発生を抑制するためには、オペレータは、それぞれのアクチュエータ及びその動作方向ごとの特性を考慮し、共振周波数を含む動作を避けて慎重に操縦しなければならない。   This characteristic W has a peak like the frequency characteristic 60 shown in FIG. The resonance frequency at this time is generally about several Hz. This characteristic varies depending on the actuator and the operation direction of the actuator. For example, the characteristics are different in the upward movement, the downward movement, the upward movement and the downward movement of the arm 8B. When generating the operation command value based on the operation amount of the operation lever 15, in order to suppress the occurrence of hunting, the operator considers the characteristics for each actuator and its operation direction, and performs the operation including the resonance frequency. You must avoid it carefully.

図7は一般の作業機械の操作入力から動作出力に係る系をオペレータの神経系における情報の伝達と処理を中心にモデル化したブロック図である。   FIG. 7 is a block diagram in which a system related to operation output from operation input of a general work machine is modeled mainly on information transmission and processing in an operator's nervous system.

図7に示した系は、実際の操作レバー15の変位量からレバー操作量を認識する認識特性E、作業機械の実際の動作速度と目標速度41の差異を認識する認識特性A、認識特性Aで認識した差異からレバー操作量を算出する関数B、レバー操作量の算出値とフィードバック値に基づくレバー操作量の目標偏差から操作レバー15に加える力(操作力)を決定する関数C、操作レバー15に加える力から各筋肉の指令値を決定する関数D、レバー逆特性U(後述)から操作レバー15の操作反力を認識する認識特性F、腱張力によるフィードバック関数N、骨格モデルQ(後述)の筋伸長に基づくフィードバック関数S、関数Dで算出した各筋肉の指令値とフィードバック関数N,Sから実際の筋力を生成する関数P、骨格モデルQ(後述)に基づく筋の粘弾性モデルO、レバー変位を骨格変位に変換する逆ヤコビアンV、これら粘弾性モデル及び骨格変位と生成した筋力から導き出したオペレータ自身の骨格モデルQ、この骨格変位をレバー変位(操作量)に変換するヤコビアンR、レバー特性(操作反力に対するレバー変位の応答特性)の逆特性であるレバー逆特性U、及び前述の作業機械の応答特性(標準応答周波数特性)Wから構成される。これらのうち、レバー逆特性Uは操作レバー15の特性、応答特性Wは作業機械の機体特性であり、それ以外の点線で囲った処理系はオペレータ自身の情報伝達系又は情報処理系を表している。   The system shown in FIG. 7 has a recognition characteristic E for recognizing the lever operation amount from the actual displacement amount of the operation lever 15, a recognition characteristic A for recognizing a difference between the actual operating speed of the work machine and the target speed 41, and a recognition characteristic A. A function B for calculating the lever operation amount from the difference recognized in step B, a function C for determining the force (operation force) applied to the operation lever 15 from the target deviation of the lever operation amount based on the calculated value of the lever operation amount and the feedback value, and the operation lever 15, a function D for determining a command value of each muscle from the force applied to 15, a recognition characteristic F for recognizing an operation reaction force of the operation lever 15 from a lever reverse characteristic U (described later), a feedback function N by tendon tension, and a skeleton model Q (described later) ) Based on muscle extension, a function P for generating actual muscle strength from the command value of each muscle calculated by the function D and the feedback functions N and S, and a skeletal model Q (described later) Viscoelastic model O of the following muscle, inverse Jacobian V that converts lever displacement into skeletal displacement, operator's own skeleton model Q derived from the viscoelastic model and skeletal displacement and generated muscle force, lever displacement (operation amount) ), The lever reverse characteristic U which is the reverse characteristic of the lever characteristic (the response characteristic of the lever displacement with respect to the operation reaction force), and the response characteristic (standard response frequency characteristic) W of the work machine described above. Among these, the lever reverse characteristic U is the characteristic of the operating lever 15, the response characteristic W is the machine characteristic of the work machine, and the other processing system surrounded by the dotted line represents the operator's own information transmission system or information processing system. Yes.

図7に示した系の認識特性Aの入力から作業機械の伝達特性Wの出力までの特性をGと表した場合、特性Gは図7のブロック図を基に、
G=WRQPDCBA/{PD(CE+FU)RQ+PN+PSQ(O+VUR)Q+1}・・・(2)
と表すことができる。
When the characteristic from the input of the recognition characteristic A of the system shown in FIG. 7 to the output of the transfer characteristic W of the work machine is expressed as G, the characteristic G is based on the block diagram of FIG.
G = WRQPDCBA / {PD (CE + FU) RQ + PN + PSQ (O + VUR) Q + 1} (2)
It can be expressed as.

この式(2)は、次の式(3)で表されるオペレータの身体特性Xを用いると、式(4)のように変換することができる。   This equation (2) can be converted into equation (4) by using the operator's body characteristic X expressed by the following equation (3).

X=RQPD/{PN+PSQ+(O+VUR)Q+1}・・・(3)
G=WXCBA/{X(CE+FU)+1}・・・(4)
図8は式(4)に基づくブロック図である。
X = RQPD / {PN + PSQ + (O + VUR) Q + 1} (3)
G = WXCBA / {X (CE + FU) +1} (4)
FIG. 8 is a block diagram based on Equation (4).

ここで簡単のため、式(4)のレバー変位の認識特性Eに関する項の値が十分大きい場合を考えると、式(4)は次の式(5)に近似することができる。   Here, for the sake of simplicity, considering the case where the value of the term relating to the lever displacement recognition characteristic E in Equation (4) is sufficiently large, Equation (4) can be approximated to the following Equation (5).

G=WBA/E・・・(5)
式(5)において、認識特性Aは視覚の認識特性であり、一般に無駄時間(情報伝達時間等)と1次遅れで表される。また、認識特性Eは操作レバー位置を固有感覚レベルで認識する特性である。
G = WBA / E (5)
In Expression (5), the recognition characteristic A is a visual recognition characteristic, and is generally represented by a dead time (information transmission time or the like) and a first order delay. The recognition characteristic E is a characteristic for recognizing the position of the operation lever at a unique sense level.

したがって、応答特性Wの作業機械をうまく操縦するためには、レバー操作量を算出する関数Bにおいて、機体の応答特性Wの共振周波数でのゲインを下げる要素を含む必要がある。つまり関数Bでは、機体の応答特性Wを予測して、共振周波数以下の帯域における緩やかな操縦動作か、機体の振動を前もって打ち消すべくフィードフォワード的に位相を進める補償動作を算出する必要がある。したがって、式(5)から前述したオペレータの負担を理解することができる。   Therefore, in order to control the work machine having the response characteristic W well, the function B for calculating the lever operation amount needs to include an element for reducing the gain at the resonance frequency of the response characteristic W of the airframe. That is, in the function B, it is necessary to predict the response characteristic W of the aircraft and calculate a gentle steering operation in a band below the resonance frequency or a compensation operation that advances the phase in a feedforward manner so as to cancel the vibration of the aircraft in advance. Therefore, the burden on the operator described above can be understood from the equation (5).

そこでこの負担を削減するため、本実施の形態では、図9に示すように作業機械への指令値をレバー位置変位42ではなくレバー反力43とし、かつレバーの標準応答周波数特性(Uの逆特性からゲインを除いたもの)を作業機械の標準応答周波数特性(Wからゲインを除いたもの)に近似させる構成としている。   Therefore, in order to reduce this burden, in the present embodiment, as shown in FIG. 9, the command value to the work machine is not the lever position displacement 42 but the lever reaction force 43, and the lever standard response frequency characteristic (reverse of U) The characteristic is obtained by approximating the standard response frequency characteristic (W minus the gain) of the work machine.

図9のブロック図を基に、式(5)に対応する特性を次の式(6)に示す。   Based on the block diagram of FIG. 9, the characteristic corresponding to the equation (5) is shown in the following equation (6).

G=WUBA/E・・・(6)
ここで、W≒U−1であることから、この式(6)は、
G≒BA/E・・・(7)
とすることができる。
G = WUBA / E (6)
Here, since W≈U− 1 , this equation (6) is
G ≒ BA / E (7)
It can be.

上記特性式(7)より、機体の応答特性WがUにより相殺されており、またレバー位置変位そのものが機械の目標速度に遅れなく対応するので、操作関数Bにおいて機械特性Wを予測する必要がないことが判る。さらに、レバー特性そのものが応答特性Wの共振周波数を機械的にフィルタリングするノッチフィルタの役目を果たすので、振動を生じさせる要因をレバー装置自体によって除去することができる。したがって、本実施の形態によれば、作業機械特性Wを予測し、必要以上に慎重な操作や負担の大きいフィードフォワード操作をする必要がなく、レバー位置によって直感的に機械の動作が判り、高速かつ安定した操縦が可能となる。従来より早い動作でも作業機械の動作が安定し、作業効率の向上、オペレータの負担低減が可能となる。   From the characteristic equation (7), the response characteristic W of the airframe is canceled by U, and the lever position displacement itself corresponds to the target speed of the machine without delay, so it is necessary to predict the mechanical characteristic W in the operation function B. It turns out that there is no. Further, since the lever characteristic itself serves as a notch filter that mechanically filters the resonance frequency of the response characteristic W, the factor causing the vibration can be removed by the lever device itself. Therefore, according to the present embodiment, it is not necessary to predict the working machine characteristic W, and to perform a feedforward operation that requires more care than necessary and a heavy feedforward operation. And stable maneuvering is possible. Even if the operation is faster than before, the operation of the work machine is stabilized, and the work efficiency can be improved and the burden on the operator can be reduced.

尚以上において、図4に示した電動モータ53,54やソレノイドなどの能動的な反力生成手段を用いた場合を例に挙げて説明したが、能動的な反力生成手段を設ける代わりに、操作装置の標準応答周波数特性が機体の標準応答周波数特性に対応するように、被操作部材の操作に伴う粘性成分、弾性成分、慣性成分のうちの少なくとも一つを調整しても良い。この場合、例えば操作装置の被操作部材にダンパーやウェイト、バネ等を取り付け、バネや油等の粘弾性体や流体等によって生じる反力で、操作装置の応答特性が機体の応答特性Wに近似するように構成することが考えられる。ただし、上記応答特性Wが少なくとも圧油の粘性成分、構成部材の弾性成分、構成部材の重量による慣性成分のいずれかを含む2次以上の遅れを持つ場合は、その特性を計算機によって容易に実現することができるので能動的な反力生成手段を用いる方が良く、この場合特性の変更、調整も容易となる。   In the above description, the case where the active reaction force generating means such as the electric motors 53 and 54 and the solenoid shown in FIG. 4 is used has been described as an example, but instead of providing the active reaction force generating means, At least one of a viscous component, an elastic component, and an inertial component accompanying the operation of the operated member may be adjusted so that the standard response frequency characteristic of the operating device corresponds to the standard response frequency characteristic of the airframe. In this case, for example, a damper, a weight, a spring or the like is attached to the operated member of the operating device, and the response characteristic of the operating device approximates the response characteristic W of the airframe due to a reaction force generated by a viscoelastic body such as spring or oil or fluid. It is conceivable to configure so as to. However, if the response characteristic W has a delay of at least a second order including at least one of the viscous component of pressure oil, the elastic component of the component, and the inertia component due to the weight of the component, the characteristic can be easily realized by a computer. Therefore, it is better to use active reaction force generating means, and in this case, characteristics can be easily changed and adjusted.

上記のように操作装置自体が持つ質量M、弾性(バネ)定数K、粘性係数H等の特性値を調整する場合、それぞれの値は例えば次のように決定する。まず、操作装置の操作に要する力が適当な大きさとなるように、弾性(バネ)定数Kを人間工学的に適切な値に設定する。次に、作業機械の応答特性Wが前述の式(1)のような特性の場合、質量M≒K/ω、粘性係数H≒2Kζ/ωとなるように質量と粘性要素を決定する。作業機械の応答特性Wは、前述したように、モデル等を用いて算出するか、動作指令値入力とフロント作業装置8の動作出力を計測し、その対応から算出する。また、応答特性Wはアクチュエータやその動作方向ごとにそれぞれ決定する。被操作部材と作業機本体の応答特性値は、完全に一致する必要はない。共振周波数帯域のゲインを下げるものであればよいので、実機で直接調整しても良い。 When adjusting the characteristic values such as the mass M, the elastic (spring) constant K, the viscosity coefficient H, etc. of the operating device itself as described above, the respective values are determined as follows, for example. First, the elastic (spring) constant K is set to an ergonomically appropriate value so that the force required for operating the operating device has an appropriate magnitude. Next, when the response characteristic W of the work machine is a characteristic such as the above-described equation (1), the mass and the viscosity element are determined so that the mass M≈K / ω 2 and the viscosity coefficient H≈2Kζ / ω. As described above, the response characteristic W of the work machine is calculated using a model or the like, or is calculated from the correspondence between the operation command value input and the operation output of the front work device 8. The response characteristic W is determined for each actuator and its operating direction. The response characteristic values of the operated member and the work machine main body do not need to completely match. Any device that lowers the gain of the resonance frequency band may be used.

また、操作レバー15に本発明を適用した場合を主に説明したが、操作レバー15に限らず、ペダル付き操作レバー15Cや、その他のレバー、ペダル、ボタンなどのオペレータが直接操作する被操作部材にも本発明は適用可能である。また、油圧ショベルに限らず、油圧クレーンやホイールローダ等、土木工事、解体工事等の作業現場に使用される作業機械にも本発明は適用可能である。また、工場、宇宙、その他の環境でオペレータの操作する機械、遠隔操作機械、ロボットなどにも本発明は適用可能であり、同様の効果を得ることができる。   Although the case where the present invention is applied to the operation lever 15 has been mainly described, not only the operation lever 15 but also an operation lever 15C with a pedal, other operated members such as other levers, pedals, and buttons that are directly operated by an operator. In addition, the present invention is applicable. Further, the present invention is not limited to the hydraulic excavator, but can be applied to a working machine used at a work site such as a hydraulic crane, a wheel loader, or a civil engineering work or a dismantling work. Further, the present invention can be applied to a machine operated by an operator in a factory, space, or other environment, a remote control machine, a robot, and the like, and the same effect can be obtained.

本発明の一実施の形態に係る作業機械の側面図である。1 is a side view of a work machine according to an embodiment of the present invention. 本発明の一実施の形態に係る作業機械に備えられたキャブボックスの内部の概略構成を表す側面図である。It is a side view showing the schematic structure inside the cab box with which the working machine which concerns on one embodiment of this invention was equipped. 本発明の一実施の形態に係る作業機械に備えられた油圧アクチュエータの駆動回路の概略図である。It is the schematic of the drive circuit of the hydraulic actuator with which the working machine which concerns on one embodiment of this invention was equipped. 本発明の一実施の形態に係る作業機械に備えられた操作装置の操作レバーを抽出して表した図である。It is the figure which extracted and represented the operating lever of the operating device with which the working machine which concerns on one embodiment of this invention was equipped. 本発明の一実施の形態に係る作業機械の機能ブロック図である。It is a functional block diagram of the working machine which concerns on one embodiment of this invention. 作業機械の周波数特性を例示する図である。It is a figure which illustrates the frequency characteristic of a working machine. 一般の作業機械の操作入力から動作出力に係る系をオペレータの神経系における情報の伝達と処理を中心にモデル化したブロック図である。It is the block diagram which modeled the system which concerns on the operation output from the operation input of a general working machine centering on the transmission and processing of information in an operator's nervous system. 図7のブロック図を簡略化したブロック図である。It is the block diagram which simplified the block diagram of FIG. 本発明の一実施の形態に係る作業機械の操作入力から動作出力に係る系をオペレータの神経系における情報の伝達と処理を中心にモデル化し簡略化したブロック図である。It is the block diagram which modeled and simplified the system which concerns on operation | movement output of the working machine which concerns on one embodiment of this invention centering on the transmission and processing of information in an operator's nervous system.

符号の説明Explanation of symbols

1 走行体(被駆動部材)
2 旋回体(被駆動部材)
3 旋回フレーム
4 キャブポックス
8 フロント作業装置(被駆動部材)
8A ブーム(被駆動部材)
8B アーム(被駆動部材)
8C バケット(被駆動部材)
11 操作装置
11S 動作指令値
15 操作レバー(被操作部材)
15C ペダル付き操作レバー(被操作部材)
16 操作力検出手段
17 指令値生成手段
18 演算手段(反力付加手段)
30 油圧ポンプ
31A 吐出配管
31B 戻り油配管
33A ブームシリンダ(油圧アクチュエータ)
33B アームシリンダ(油圧アクチュエータ)
33C バケットシリンダ(油圧アクチュエータ)
33D 旋回モータ(油圧アクチュエータ)
33E,F 走行モータ(油圧アクチュエータ)
32A〜F 制御弁
37 制御ユニット(動作制御手段)
37S 制御信号
43 レバー反力
53,54 電動モータ(反力生成手段、反力付加手段)
73 出力制御手段
H 粘性係数
K 弾性定数
M 質量
W 標準応答周波数特性
1 Traveling body (driven member)
2 Revolving body (driven member)
3 Revolving frame 4 Cabpox 8 Front working device (driven member)
8A boom (driven member)
8B arm (driven member)
8C bucket (driven member)
11 Operation device 11S Operation command value 15 Operation lever (member to be operated)
15C Operation lever with pedal (operated member)
16 Operating force detection means 17 Command value generation means 18 Calculation means (reaction force addition means)
30 Hydraulic pump 31A Discharge piping 31B Return oil piping 33A Boom cylinder (hydraulic actuator)
33B Arm cylinder (hydraulic actuator)
33C Bucket cylinder (hydraulic actuator)
33D slewing motor (hydraulic actuator)
33E, F Traveling motor (hydraulic actuator)
32A to F Control valve 37 Control unit (operation control means)
37S Control signal 43 Lever reaction force 53, 54 Electric motor (reaction force generation means, reaction force addition means)
73 Output control means H Viscosity coefficient K Elastic constant M Mass W Standard response frequency characteristics

Claims (6)

油圧ポンプと、この油圧ポンプからの圧油で駆動する油圧アクチュエータと、この油圧アクチュエータにより駆動される被駆動部材と、前記油圧ポンプから前記油圧アクチュエータへの圧油の流れを制御する制御弁と、前記被駆動部材の動作を指示する操作装置からの指令値に基づいて前記制御弁への制御信号を生成する動作制御手段とを備えた作業機械において、
前記操作装置は、
操作者による機械的な操作入力を受ける被操作部材と、
この被操作部材に作用した操作力を検出する操作力検出手段と、
この操作力検出手段により検出された操作力に基づいて対象の油圧アクチュエータの動作指令値を生成し前記動作制御手段に出力する指令値生成手段と、
前記操作力検出手段により検出された操作力を受けて前記被操作部材が変位するまでの前記操作装置の標準応答周波数特性が、前記指令値生成手段による指令値出力から前記被駆動部材の動作までの機体の標準応答周波数特性に対応するように前記被操作部材に操作反力を付加する反力付加手段と
を備えたことを特徴とする作業機械。
A hydraulic pump, a hydraulic actuator driven by pressure oil from the hydraulic pump, a driven member driven by the hydraulic actuator, a control valve for controlling the flow of pressure oil from the hydraulic pump to the hydraulic actuator, In a work machine comprising operation control means for generating a control signal to the control valve based on a command value from an operating device that instructs the operation of the driven member,
The operating device is:
A member to be operated that receives a mechanical operation input by an operator;
An operation force detecting means for detecting an operation force acting on the operated member;
Command value generation means for generating an operation command value of the target hydraulic actuator based on the operation force detected by the operation force detection means and outputting the operation command value to the operation control means;
The standard response frequency characteristic of the operating device until the operated member is displaced in response to the operating force detected by the operating force detecting means is from the command value output by the command value generating means to the operation of the driven member. A work machine comprising reaction force adding means for adding an operation reaction force to the operated member so as to correspond to a standard response frequency characteristic of the machine body.
請求項1の作業機械において、前記機体の標準応答周波数特性が、少なくとも圧油の粘性成分、構成部材の弾性成分、構成部材の重量による慣性成分のいずれかを含む2次以上の遅れ特性であることを特徴とする作業機械。   2. The work machine according to claim 1, wherein the standard response frequency characteristic of the airframe is a delay characteristic of second or higher order including at least one of a viscous component of pressure oil, an elastic component of a component, and an inertia component due to the weight of the component. A working machine characterized by that. 請求項1又は2の作業機械において、
前記反力付加手段は、
前記被操作部材の操作力と前記機体の標準応答周波数特性との予め与えられた関係の下、前記操作力検出手段により検出された操作力に基づいて反力の指令値を演算する演算手段と、
この演算手段で演算された指令値に基づいて前記被操作部材にかかる操作力に対向する操作反力を前記被操作部材に付加する反力生成手段と
を備えていることを特徴とする作業機械。
The work machine according to claim 1 or 2,
The reaction force adding means is
A calculation means for calculating a reaction force command value based on an operation force detected by the operation force detection means under a predetermined relationship between an operation force of the operated member and a standard response frequency characteristic of the airframe; ,
A work machine comprising: a reaction force generating means for adding an operation reaction force that opposes the operation force applied to the operated member based on a command value calculated by the calculating means to the operated member. .
請求項1又は2の作業機械において、前記操作装置は、標準応答周波数特性が機体の標準応答周波数特性に対応するように、前記被操作部材の操作に伴う粘性成分、弾性成分、慣性成分のうちの少なくとも一つが調整されていることを特徴とする作業機械。   3. The work machine according to claim 1, wherein the operating device includes a viscous component, an elastic component, and an inertial component associated with the operation of the operated member so that the standard response frequency characteristic corresponds to the standard response frequency characteristic of the airframe. A working machine characterized in that at least one of said is adjusted. 請求項1〜4のいずれかの作業機械において、前記油圧ポンプは可変容量型の油圧ポンプであり、前記動作制御手段は、前記制御弁とともに、又は前記制御弁に代えて前記油圧ポンプの傾転を制御することを特徴とする作業機械。   5. The work machine according to claim 1, wherein the hydraulic pump is a variable displacement hydraulic pump, and the operation control means is configured to tilt the hydraulic pump together with the control valve or instead of the control valve. A work machine characterized by controlling. 請求項1〜5のいずれかの作業機械において、前記被操作部材は操作レバー、前記被駆動部材はブーム、アーム、作業具からなる多関節型の作業装置若しくは走行体、前記油圧アクチュエータは前記作業装置又は走行体を駆動する複数の油圧シリンダ又は油圧モータであることを特徴とする作業機械。   6. The work machine according to claim 1, wherein the operated member is an operation lever, the driven member is an articulated work device or traveling body including a boom, an arm, and a work tool, and the hydraulic actuator is the work. A work machine comprising a plurality of hydraulic cylinders or hydraulic motors for driving an apparatus or a traveling body.
JP2008006125A 2008-01-15 2008-01-15 Work device Pending JP2009167673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006125A JP2009167673A (en) 2008-01-15 2008-01-15 Work device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006125A JP2009167673A (en) 2008-01-15 2008-01-15 Work device

Publications (1)

Publication Number Publication Date
JP2009167673A true JP2009167673A (en) 2009-07-30

Family

ID=40969161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006125A Pending JP2009167673A (en) 2008-01-15 2008-01-15 Work device

Country Status (1)

Country Link
JP (1) JP2009167673A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512976A (en) * 2011-04-29 2014-05-29 レイセオン カンパニー Remote control robot system
US9533411B2 (en) 2011-04-29 2017-01-03 Sarcos Lc System and method for controlling a teleoperated robotic agile lift system
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
US10766133B2 (en) 2014-05-06 2020-09-08 Sarcos Lc Legged robotic device utilizing modifiable linkage mechanism
US10765537B2 (en) 2016-11-11 2020-09-08 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US10906191B2 (en) 2018-12-31 2021-02-02 Sarcos Corp. Hybrid robotic end effector
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
CN113508204A (en) * 2019-03-20 2021-10-15 神钢建机株式会社 Working machine
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
US11794345B2 (en) 2020-12-31 2023-10-24 Sarcos Corp. Unified robotic vehicle systems and methods of control
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049642A (en) * 2011-04-29 2021-04-01 レイセオン カンパニーRaytheon Company Teleoperated robotic system
US9533411B2 (en) 2011-04-29 2017-01-03 Sarcos Lc System and method for controlling a teleoperated robotic agile lift system
JP7395647B2 (en) 2011-04-29 2023-12-11 サルコス・エルシー remote control robot system
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
JP2018043343A (en) * 2011-04-29 2018-03-22 レイセオン カンパニーRaytheon Company Teleoperated robotic system
JP2019217633A (en) * 2011-04-29 2019-12-26 レイセオン カンパニーRaytheon Company Teleoperated robotic system
US11745331B2 (en) 2011-04-29 2023-09-05 Sarcos, Lc Teleoperated robotic system with payload stabilization
US11738446B2 (en) 2011-04-29 2023-08-29 Sarcos, Lc Teleoperated robotic system with impact responsive force feedback
JP2014512976A (en) * 2011-04-29 2014-05-29 レイセオン カンパニー Remote control robot system
JP2022107625A (en) * 2011-04-29 2022-07-22 サルコス・エルシー Teleoperated robotic system
JP7071548B2 (en) 2011-04-29 2022-05-19 サルコス・エルシー Remote control robot system
US10780588B2 (en) 2012-05-14 2020-09-22 Sarcos Lc End effector for a robotic arm
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
US10766133B2 (en) 2014-05-06 2020-09-08 Sarcos Lc Legged robotic device utilizing modifiable linkage mechanism
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US11926044B2 (en) 2016-11-11 2024-03-12 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
US11772283B2 (en) 2016-11-11 2023-10-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US11759944B2 (en) 2016-11-11 2023-09-19 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi- passive elastic actuators with internal valve arrangements
US10765537B2 (en) 2016-11-11 2020-09-08 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
US11679511B2 (en) 2018-12-31 2023-06-20 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
US10906191B2 (en) 2018-12-31 2021-02-02 Sarcos Corp. Hybrid robotic end effector
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
CN113508204A (en) * 2019-03-20 2021-10-15 神钢建机株式会社 Working machine
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
US11794345B2 (en) 2020-12-31 2023-10-24 Sarcos Corp. Unified robotic vehicle systems and methods of control
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot

Similar Documents

Publication Publication Date Title
JP2009167673A (en) Work device
CN112585079B (en) Crane and control method thereof
KR20060021866A (en) Crane or excavator for handling a cable-suspended load provided with optimised motion guidance
JP4647325B2 (en) Construction machine work machine control device, construction machine work machine control method, and program for causing computer to execute the method
JP5053457B2 (en) Construction machine, construction machine control method, and program for causing computer to execute the method
CN111295354A (en) Crane and method for controlling such a crane
KR20050000530A (en) Rotatingly driving device of construction machinery
EP3604690B1 (en) Construction machinery
US11391016B2 (en) Construction machine
JP2010066962A (en) Operation device
KR20200069292A (en) Shovel
JP2007009432A (en) Construction machinery and control unit for use in the same
JP2007051781A (en) Control device for hydraulic drive machine
JP5970625B1 (en) Construction machine, hybrid hydraulic excavator, and motor generator output torque control method
JP3147188B2 (en) Work machine vibration suppression device
JP2006177560A (en) Control device for hydraulic drive machine
JP4820907B2 (en) Construction machine work machine control device and construction machine work machine control method
JPH10259619A (en) Control device for construction machine
CN105971042B (en) The oscillation damping method of excavator, excavator
WO2020100562A1 (en) Work machine
JP3217981B2 (en) Control equipment for construction machinery
JP7161561B2 (en) working machine
JP6180292B2 (en) Remote control system
JP6964054B2 (en) Construction machinery
KR20210123023A (en) Hydraulic control method and system