JP2009167330A - Paint for forming infrared ray shielding film and infrared ray shielding material - Google Patents

Paint for forming infrared ray shielding film and infrared ray shielding material Download PDF

Info

Publication number
JP2009167330A
JP2009167330A JP2008008774A JP2008008774A JP2009167330A JP 2009167330 A JP2009167330 A JP 2009167330A JP 2008008774 A JP2008008774 A JP 2008008774A JP 2008008774 A JP2008008774 A JP 2008008774A JP 2009167330 A JP2009167330 A JP 2009167330A
Authority
JP
Japan
Prior art keywords
infrared shielding
shielding film
film
surfactant
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008008774A
Other languages
Japanese (ja)
Inventor
Junji Tofuku
淳司 東福
Kayo Yabuki
佳世 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008008774A priority Critical patent/JP2009167330A/en
Publication of JP2009167330A publication Critical patent/JP2009167330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paint for forming an infrared ray shielding film hardly causing application film defects such as cissing and irregularity on application to a transparent base material surface of a resin film and the like, and to provide an infrared ray shielding material. <P>SOLUTION: This paint is prepared by dispersing or dissolving fine particles of composite tungsten oxide, which is represented by a general formula M<SB>Y</SB>WO<SB>Z</SB>(wherein M is at least one kind of element selected from H, He, alkali metals, alkaline-earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001≤Y≤1.0, and 2.2≤Z≤3.0) and has a hexagonal system crystal structure, a surfactant and a binder resin in a solvent. The infrared ray shielding material is composed of a transparent base material and the infrared ray shielding film formed on the base material surface by using the above paint. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可視光領域においては透明で近赤外線領域においては吸収を持つ複合タングステン酸化物微粒子が溶媒中に分散された赤外線遮蔽膜形成用塗料に係り、特に、樹脂フィルム等の透明基材に塗布された際に、ハジキ、ヌケ、ムラ等の塗布膜欠陥が起り難い赤外線遮蔽膜形成用塗料の改良と、この塗料を用いて製造される赤外線遮蔽体に関するものである。   The present invention relates to a coating material for forming an infrared shielding film in which composite tungsten oxide fine particles that are transparent in the visible light region and absorb in the near infrared region are dispersed in a solvent. The present invention relates to an improvement in a coating material for forming an infrared shielding film in which coating film defects such as repellency, leakage and unevenness hardly occur when applied, and an infrared shielding body produced using this coating material.

この種の赤外線遮蔽膜形成用塗料としては、一般式MWOで表記されかつ六方晶系の結晶構造を有する複合タングステン酸化物微粒子を有機溶剤等の溶媒中に分散させた塗料(赤外線遮蔽材料微粒子の分散液)が本出願人により提案され(特許文献1参照)、また、樹脂フィルム等透明基材の面上に上記塗料(赤外線遮蔽材料微粒子の分散液)を塗布して構成された赤外線遮蔽膜(赤外線遮蔽材料微粒子分散体)も特許文献1において既に提案されている。 As this type of coating material for forming an infrared shielding film, a coating material (infrared shielding material) in which composite tungsten oxide fine particles represented by the general formula MY WO Z and having a hexagonal crystal structure are dispersed in a solvent such as an organic solvent. (Dispersion liquid of material fine particles) was proposed by the present applicant (see Patent Document 1), and was formed by applying the paint (dispersion liquid of infrared shielding material fine particles) on the surface of a transparent substrate such as a resin film. An infrared shielding film (infrared shielding material fine particle dispersion) has already been proposed in Patent Document 1.

ところで、複合タングステン酸化物微粒子が膜中に分散している上記赤外線遮蔽膜(赤外線遮蔽材料微粒子分散体)は、上述したように樹脂フィルム等透明基材の面上に赤外線遮蔽膜形成用塗料(赤外線遮蔽材料微粒子の分散液)を塗布して製造されている。   By the way, the infrared shielding film (infrared shielding material fine particle dispersion) in which the composite tungsten oxide fine particles are dispersed in the film is, as described above, an infrared shielding film forming coating (on the surface of a transparent substrate such as a resin film). Infrared shielding material fine particle dispersion) is applied.

そして、透明基材面上への赤外線遮蔽膜形成用塗料の塗布方法として、グラビアロールコート法、リバースロールコート法、ディップコート法、ブレードコート法、エアーナイフコート法、ワイヤーブロックコート法、リブロックスコート法、リブロックスロールコート法、エクストルージョンコート法、ロッドコート法、ワイヤーバーコート法、スライドコート法およびカーテンコート法等の公知の手法が用いられている。   As a method for applying the infrared shielding film-forming coating material on the transparent substrate surface, gravure roll coating method, reverse roll coating method, dip coating method, blade coating method, air knife coating method, wire block coating method, reblocks Known methods such as a coating method, a reblock roll coating method, an extrusion coating method, a rod coating method, a wire bar coating method, a slide coating method, and a curtain coating method are used.

しかし、これ等公知の塗布方法を用いて透明基材面上へ上記赤外線遮蔽膜形成用塗料を塗布した場合、塗料の組成や透明基材の表面状態によって、透明基材表面にハジキやヌケといった塗布膜欠陥や、塗布方向に対し幅方向に連続して発生する塗布ムラ(横段ムラ)が顕著に表れることがあり、赤外線遮蔽膜に要求される性能が満たされないという問題が存在した。   However, when the above-described coating material for forming an infrared shielding film is applied onto the surface of the transparent substrate using these known coating methods, the surface of the transparent substrate may be repelled or missing depending on the composition of the coating material or the surface state of the transparent substrate. There has been a problem that coating film defects and coating unevenness (transverse unevenness) continuously generated in the width direction with respect to the coating direction may be remarkably exhibited, and the performance required for the infrared shielding film is not satisfied.

塗布性を向上させる方法の一つとして、基材表面(塗布面)に対する表面処理が挙げられ、この表面処理方法として、紫外線処理、コロナ放電処理、グロー放電処理、火焔処理、高周波処理、プラズマ処理、レーザー処理、機械的処理、混酸処理、オゾン酸化処理等が知られており、特に、コロナ放電処理、グロー放電処理が工業的に広く用いられている。そして、コロナ放電処理については、例えば特許文献2〜7に記載された方法があり、また、グロー放電処理についても、例えば特許文献8〜14に記載された方法がある。   One of the methods for improving the coating property is a surface treatment for the substrate surface (coating surface). As this surface treatment method, ultraviolet treatment, corona discharge treatment, glow discharge treatment, flame treatment, high frequency treatment, plasma treatment are performed. Laser treatment, mechanical treatment, mixed acid treatment, ozone oxidation treatment and the like are known, and in particular, corona discharge treatment and glow discharge treatment are widely used industrially. And about a corona discharge process, there exists the method described in patent documents 2-7, for example, and there exists a method described in patent documents 8-14 about glow discharge processing, for example.

しかし、これ等表面処理方法では、表面処理の過程で基材の加熱、冷却が必要となるため、基材自体が塑性変形し易く、基材表面の平面性が損なわれてしまうばかりか、低分子量体(基材である樹脂フィルムの添加剤やモノマー成分等)が基材表面に析出し、透明性や耐ブロッキング性を悪化させてしまうことがあった。更に、これ等基材の表面処理のみでは、種々の基材や塗料組成に対応させることは困難なため、塗布ムラを完全に解消させることはできなかった。
国際公開WO2005/37932号公報(請求項1、段落0069) 特公昭48−5043号公報 特公昭47−51905号公報 特開昭47−28067号公報 特開昭49−83767号公報 特開昭51−41770号公報 特開昭51−131576号公報 特公昭35−7578号公報 特公昭36−10336号公報 特開昭45−22004号公報 特開昭45−22005号公報 特開昭45−24040号公報 特開昭46−43480号公報 特開昭53−129262号公報
However, these surface treatment methods require heating and cooling of the base material in the course of the surface treatment, so that the base material itself is easily plastically deformed, and the flatness of the base material surface is impaired. A molecular weight body (such as an additive or a monomer component of a resin film as a base material) may be deposited on the surface of the base material, thereby deteriorating transparency and blocking resistance. Furthermore, since it is difficult to deal with various base materials and coating compositions only by surface treatment of these base materials, the coating unevenness cannot be completely eliminated.
International Publication WO 2005/37932 (Claim 1, Paragraph 0069) Japanese Patent Publication No. 48-5043 Japanese Examined Patent Publication No. 47-51905 JP 47-28067 A JP 49-83767 A JP-A-51-41770 JP 51-131576 A Japanese Patent Publication No. 35-7578 Japanese Patent Publication No. 36-10336 JP-A-45-22004 JP-A 45-22005 JP-A-45-24040 JP-A-46-43480 JP-A-53-129262

本発明はこのような問題点に着目してなされたもので、その課題とするところは、樹脂フィルム等の透明基材に塗布された際に、ハジキ、ヌケ、ムラ等の塗布膜欠陥を起こし難い赤外線遮蔽膜形成用塗料を提供し、かつ、この塗料を用いて製造される赤外線遮蔽体を提供することを目的とする。   The present invention has been made paying attention to such problems, and the problem is that when coated on a transparent substrate such as a resin film, coating film defects such as repellency, leakage, unevenness, etc. are caused. An object of the present invention is to provide a coating material for forming an infrared shielding film which is difficult, and to provide an infrared shielding body manufactured using the coating material.

そこで、上記課題を解決するため本発明者等が鋭意検討したところ、複合タングステン酸化物微粒子が分散された赤外線遮蔽膜形成用塗料内に界面活性剤を添加することにより、上述したハジキ、ヌケ、ムラ等の塗布膜欠陥が防止されることを見出すに至った。更に、上記界面活性剤が分散された赤外線遮蔽膜形成用塗料を用いて形成された赤外線遮蔽膜と透明基材とで構成される赤外線遮蔽体は精密な面内均一性を有しており、可視光領域においては透明で近赤外線領域においては優れた遮蔽特性を有することも見出すに至った。本発明はこのような技術的発見により完成されている。   Therefore, the inventors of the present invention diligently studied to solve the above problems, and by adding a surfactant into the infrared shielding film-forming coating material in which the composite tungsten oxide fine particles are dispersed, It has been found that coating film defects such as unevenness are prevented. Furthermore, an infrared shielding body composed of an infrared shielding film formed using an infrared shielding film-forming coating material in which the surfactant is dispersed and a transparent substrate has a precise in-plane uniformity, It has also been found that it is transparent in the visible light region and has excellent shielding properties in the near infrared region. The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
赤外線遮蔽膜形成用塗料を前提とし、
一般式MWO(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、かつ、0.001≦Y≦1.0、2.2≦Z≦3.0)で表記されかつ六方晶系の結晶構造を有する複合タングステン酸化物微粒子と、界面活性剤およびバインダー樹脂が溶媒中に分散若しくは溶解されていることを特徴とする。
That is, the invention according to claim 1
Assuming a paint for forming an infrared shielding film,
General formula M Y WO Z (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo , Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, and 0.001 ≦ Y ≦ 1.0, 2.2 ≦ A composite tungsten oxide fine particle represented by Z ≦ 3.0) and having a hexagonal crystal structure, a surfactant and a binder resin are dispersed or dissolved in a solvent.

次に、請求項2に係る発明は、
請求項1に記載の発明に係る赤外線遮蔽膜形成用塗料を前提とし、
上記界面活性剤の含有量が、塗料全体を100重量部とした場合に0.001〜10重量部であることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の発明に係る赤外線遮蔽膜形成用塗料を前提とし、
上記複合タングステン酸化物微粒子が、粒子直径が1nm以上800nm以下である複合タングステン酸化物の微粒子であることを特徴とする。
Next, the invention according to claim 2
On the premise of the infrared shielding film forming paint according to the invention of claim 1,
The content of the surfactant is 0.001 to 10 parts by weight when the entire coating is 100 parts by weight,
The invention according to claim 3
Based on the infrared shielding film forming paint according to the invention of claim 1 or 2,
The composite tungsten oxide fine particles are composite tungsten oxide fine particles having a particle diameter of 1 nm to 800 nm.

また、請求項4に係る発明は、
請求項1に記載の発明に係る赤外線遮蔽膜形成用塗料を前提とし、
上記界面活性剤が、陽イオン、陰イオン、両イオンまたは非イオン界面活性剤から選択された少なくとも一種であることを特徴とし、
請求項5に係る発明は、
請求項4に記載の発明に係る赤外線遮蔽膜形成用塗料を前提とし、
上記非イオン界面活性剤が、疎水基がジメチルポリシロキサン、親水基がポリアルキレンオキサイドであるシリコーン系化合物により構成されたシリコーン系界面活性剤であることを特徴とし、
請求項6に係る発明は、
請求項5に記載の発明に係る赤外線遮蔽膜形成用塗料を前提とし、
上記シリコーン系界面活性剤が、下記化学式(1)〜(6)の内から選択された1種以上であることを特徴とする。
The invention according to claim 4
On the premise of the infrared shielding film forming paint according to the invention of claim 1,
The surfactant is at least one selected from a cationic, anionic, amphoteric or nonionic surfactant,
The invention according to claim 5
Based on the infrared shielding film forming paint according to the invention of claim 4,
The nonionic surfactant is a silicone surfactant composed of a silicone compound having a hydrophobic group of dimethylpolysiloxane and a hydrophilic group of polyalkylene oxide,
The invention according to claim 6
On the premise of the infrared shielding film forming paint according to the invention of claim 5,
The silicone-based surfactant is one or more selected from the following chemical formulas (1) to (6).

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
[但し、化学式(1)〜(6)中において、Rはアルキル基または水素を示し、R’はアルキレン基を示し、また、a、bはそれぞれ1〜500の整数、m、nはそれぞれ1〜200の整数である。]
更に、請求項7に係る発明は、
赤外線遮蔽体を前提とし、
請求項1〜6のいずれかに記載の赤外線遮蔽膜形成用塗料を透明基材の面上に塗布しかつ形成された塗布膜を板状、フィルム状または薄膜状に成形して成る赤外線遮蔽膜と、上記透明基材とで構成されることを特徴とする。
Figure 2009167330
[In the chemical formulas (1) to (6), R represents an alkyl group or hydrogen, R ′ represents an alkylene group, a and b are each an integer of 1 to 500, and m and n are 1 respectively. It is an integer of ~ 200. ]
Furthermore, the invention according to claim 7 provides
Assuming an infrared shield,
An infrared shielding film formed by coating the coating material for forming an infrared shielding film according to any one of claims 1 to 6 on a surface of a transparent substrate, and forming the formed coating film into a plate shape, a film shape, or a thin film shape. And the transparent substrate.

本発明に係る赤外線遮蔽膜形成用塗料は、複合タングステン酸化物微粒子と、界面活性剤およびバインダー樹脂が溶媒中に分散若しくは溶解されていることを特徴としている。   The infrared shielding film-forming paint according to the present invention is characterized in that composite tungsten oxide fine particles, a surfactant and a binder resin are dispersed or dissolved in a solvent.

そして、本発明に係る赤外線遮蔽膜形成用塗料を樹脂フィルム等の透明基材に塗布した際、ハジキ、ヌケ、ムラ等の塗布膜欠陥が起り難いため、上記赤外線遮蔽膜形成用塗料を用いて形成された赤外線遮蔽膜と透明基材とで構成される赤外線遮蔽体は精密な面内均一性を有しており、可視光領域においては透明で近赤外線領域においては優れた遮蔽特性を具備する効果を有している。   When the infrared shielding film-forming paint according to the present invention is applied to a transparent substrate such as a resin film, coating film defects such as repellency, leakage, and unevenness are unlikely to occur. The infrared shielding body composed of the formed infrared shielding film and a transparent substrate has a precise in-plane uniformity, and is transparent in the visible light region and has excellent shielding properties in the near infrared region. Has an effect.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係る赤外線遮蔽膜形成用塗料は、一般式MWO(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、かつ、0.001≦Y≦1.0、2.2≦Z≦3.0)で表記されかつ六方晶系の結晶構造を有する複合タングステン酸化物微粒子と、界面活性剤およびバインダー樹脂が溶媒中に分散若しくは溶解されていることを特徴としている。 First, the coating material for forming an infrared shielding film according to the present invention has a general formula M Y WO Z (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe). Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S , Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, and 0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0) and a composite tungsten oxide fine particle having a hexagonal crystal structure, a surfactant and a binder resin are dispersed in a solvent. Alternatively, it is dissolved.

1.複合タングステン微粒子
一般に、WO中には有効な自由電子が存在しないため、WOは近赤外線領域の吸収、反射特性が少なく、赤外線遮蔽材料としては有効ではない。一方、3酸化タングステンにNa等の陽性元素を添加したいわゆるタングステンブロンズは、導電性材料であり自由電子を持つ材料であることが知られており、赤外線領域の光に対する自由電子の応答が示唆されている。そして、本出願人は、タングステンと酸素との組成範囲の特定部分において、赤外線遮蔽材料として特に有効な範囲があることを見出し、可視光領域においては透明で、近赤外線領域においては吸収を持つ上記複合タングステン酸化物微粒子を得ている(特許文献1参照)。尚、本明細書において、透明とは、可視光領域の光に対して散乱が少なく透過性が高いという意味で用いている。
1. The composite tungsten microparticles general, because there is no valid free electrons in WO 3, WO 3 absorption in the near infrared region, the reflection characteristic is small, not effective as an infrared-shielding material. On the other hand, so-called tungsten bronze in which positive elements such as Na are added to tungsten trioxide is known to be a conductive material and a material having free electrons, suggesting a response of free electrons to light in the infrared region. ing. The present applicant has found that there is a particularly effective range as an infrared shielding material in a specific portion of the composition range of tungsten and oxygen, and is transparent in the visible light region and has absorption in the near infrared region. Composite tungsten oxide fine particles are obtained (see Patent Document 1). In this specification, the term “transparent” is used in the sense that the light is less scattered and has high transparency.

ここで、複合タングステン酸化物微粒子の粒子直径(粒子径と略称する場合もある)は、その使用目的によって各々選定可能であるが、透明性を保持した応用に使用する場合には、800nm以下の粒子径を有していることが好ましい。800nm以下の粒子径を有する粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に、可視光領域の透明性を重視する場合は、更に粒子による散乱を考慮する必要がある。この粒子による散乱の低減を重視するとき、粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、粒子の粒子径が小さければ、幾何学散乱若しくはミー散乱による400nm〜780nmの可視光線領域の光の散乱が低減され、この結果、赤外線遮蔽膜が曇りガラスのようになって鮮明な透明性が得られなくなるのを回避できるからである。すなわち、粒子径が200nm以下になると、幾何学散乱若しくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、粒子径の減少に伴い散乱が低減して透明性が向上するからである。更に粒子径が100nm以下になると散乱光は非常に少なくなり好ましい。このように光の散乱を回避する観点からは、粒子径は小さい方が好ましく、また、粒子径が1nm以上あれば工業的な製造は容易である。   Here, the particle diameter (sometimes abbreviated as particle diameter) of the composite tungsten oxide fine particles can be selected depending on the purpose of use, but when used for applications that maintain transparency, it is 800 nm or less. It preferably has a particle size. This is because particles having a particle diameter of 800 nm or less do not completely block light due to scattering, can maintain visibility in the visible light region, and at the same time can efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is necessary to further consider scattering by particles. When importance is attached to the reduction of scattering by the particles, the particle diameter is 200 nm or less, preferably 100 nm or less. The reason for this is that if the particle size of the particles is small, the scattering of light in the visible light region of 400 nm to 780 nm due to geometrical scattering or Mie scattering is reduced, and as a result, the infrared shielding film becomes like a frosted glass and becomes clear. This is because it is possible to avoid the loss of transparency. That is, when the particle diameter is 200 nm or less, geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained. This is because in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the particle diameter decreases. Further, when the particle diameter is 100 nm or less, the scattered light is preferably very small. Thus, from the viewpoint of avoiding light scattering, it is preferable that the particle diameter is small, and industrial production is easy if the particle diameter is 1 nm or more.

そして、上記粒子径を800nm以下に選択することにより、赤外線遮蔽材料微粒子が媒体中に分散された赤外線遮蔽材料微粒子分散体(例えば上述した赤外線遮蔽膜)のヘイズ値について、可視光透過率85%以下でヘイズ30%以下とすることができる。ヘイズ値が30%を越えると、曇りガラスのようになり、鮮明な透明性が得られない。   Then, by selecting the particle diameter to be 800 nm or less, the visible light transmittance is 85% for the haze value of the infrared shielding material fine particle dispersion (for example, the above-described infrared shielding film) in which the infrared shielding material fine particles are dispersed in the medium. Below, it can be 30% or less of haze. When the haze value exceeds 30%, it becomes like frosted glass, and clear transparency cannot be obtained.

また、本発明に係る複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alの一種類以上を含有する酸化物で被覆されていることは、上記微粒子の耐候性向上の観点から好ましい。   Moreover, it is preferable from the viewpoint of improving the weather resistance of the fine particles that the surface of the composite tungsten oxide fine particles according to the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al.

2.界面活性剤
上述したハジキやヌケ、ムラ等のない良好な塗布性を得るためには、基材に対する塗料の濡れ性およびレベリング性を制御することが好ましい。塗料物性において、上記レベリング性は表面張力が高く、粘性が低く、乾燥速度が遅い程向上し、上記濡れ性は表面張力が低く、基材表面に対する接触角を下げることで向上する。種々の溶剤により構成される塗料の場合、その塗膜形成過程において、塗料は随時、組成変化しながら乾燥、固化に至る。その塗布性において重要なのは、塗料物性よりも、固化直前における組成の親油性・親水性バランス(HLB)が、基材表面に対し良好な界面活性を有しているかどうかである。しかし、塗料に使用される溶剤は、表面張力や粘性(塗布性)の他に、極性(フィラー分散性に関連する)、沸点や蒸気圧(乾燥速度に関連する)、樹脂溶解性、安全性等の様々な制約を受けるため、単に溶剤組成の調整のみでは良好な塗布性を得ることは困難な場合が多い。
2. Surfactant It is preferable to control the wettability and leveling property of the coating material with respect to the substrate in order to obtain good coating properties without the above-mentioned repelling, removal, unevenness and the like. In the physical properties of the paint, the leveling property is improved as the surface tension is high, the viscosity is low, and the drying speed is low, and the wettability is improved by decreasing the contact angle with the substrate surface. In the case of a paint composed of various solvents, in the coating film forming process, the paint is dried and solidified while changing its composition as needed. What is important in the applicability is whether the lipophilicity / hydrophilicity balance (HLB) of the composition immediately before solidification has better surface activity than the physical properties of the coating. However, in addition to surface tension and viscosity (applicability), solvents used in paints are polar (related to filler dispersibility), boiling point and vapor pressure (related to drying speed), resin solubility, and safety. Therefore, it is often difficult to obtain good coating properties by simply adjusting the solvent composition.

基材に対する塗料の表面張力を制御する有効な手段の一つに、本発明において適用する界面活性剤の添加が挙げられる。界面活性剤は、一つの分子内に親水性部分と親油性部分を有し、水中では親水性部分を外側にしたミセルを、非極性溶媒中では内外反対になったミセルを形成する。従って、このミセルの内部には外部環境とは性質の異なる物質を取り込むことができるため、界面活性剤の存在下では、バインダーや複合タングステン酸化物微粒子等フィラーを含む極性・非極性両方の物質の混合状態が均一化し、基材表面に対する塗料の界面活性(表面張力)が変化する。   One effective means for controlling the surface tension of the coating material with respect to the substrate is the addition of a surfactant applied in the present invention. The surfactant has a hydrophilic part and a lipophilic part in one molecule, and forms a micelle having the hydrophilic part on the outside in water and a micelle which is reversed inside and outside in a nonpolar solvent. Therefore, since these micelles can incorporate substances having different properties from the external environment, in the presence of a surfactant, both polar and non-polar substances including fillers such as binders and composite tungsten oxide fine particles are contained. The mixed state becomes uniform, and the surface activity (surface tension) of the paint with respect to the substrate surface changes.

塗料が良好な界面活性を示すためには、親油基(親油性部分)と親水基(親水性部分)がそれぞれ同一分子中に占める割合が重要で、どちらか一方があまり大きくなり過ぎると界面活性は失われてしまう。すなわち、界面活性剤は、親水基と親油基のバランスが重要であり、活性作用の強さはHLB値によって定量的に示される。   In order for the paint to exhibit good surface activity, the ratio of the lipophilic group (lipophilic part) and the hydrophilic group (hydrophilic part) in the same molecule is important, and if either one becomes too large, the interface Activity is lost. That is, in the surfactant, the balance between the hydrophilic group and the lipophilic group is important, and the strength of the active action is quantitatively shown by the HLB value.

そして、本発明における界面活性剤の使用目的は、[塗布液(塗料液)][薄液膜][乾燥膜]という、低沸点溶剤から順に揮発・脱媒し、刻々と塗布液(塗料液)組成が変化するプロセスにおいて、塗布液(塗料液)が流動性を失うギリギリの液組成まで、極性・非極性双方の溶剤の均一混合状態を維持し、薄液全体のHLBを基材の表面エネルギーに対して適正化する、つまり、液特性の改質を目的としている。   The purpose of use of the surfactant in the present invention is to volatilize and remove the solvent in order from a low boiling point solvent of [coating liquid (coating liquid)] [thin liquid film] [dry film]. ) In the process of changing the composition, the polar liquid and the non-polar solvent are uniformly mixed until the liquid composition of the coating liquid (paint liquid) loses its fluidity. The purpose is to optimize the energy, that is, to improve the liquid properties.

ところで、界面活性剤は、親水性部分がイオン性(陽イオン性・陰イオン性・双性)のものと非イオン性(ノニオン性)のものに大別され、また、低分子系と高分子系に分類される。イオン性の界面活性剤は、液中で対イオンと解離して主鎖がイオン化する界面活性剤を意味する。ここで、主鎖とは解離後に分子量が大きい側を指し示す。   By the way, surfactants are roughly classified into ionic (cationic / anionic / zwitteric) hydrophilic parts and nonionic (nonionic) parts. It is classified into a system. The ionic surfactant means a surfactant that dissociates from a counter ion in a liquid and ionizes the main chain. Here, the main chain indicates the side having a higher molecular weight after dissociation.

陰イオン界面活性剤の具体例としては、脂肪酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等で構成される界面活性剤が挙げられる。また、陽イオン界面活性剤の具体例としては、第4級アンモニウム塩型界面活性剤、アミン塩型界面活性剤等が挙げられる。また、双性(両イオン)界面活性剤は、分子内に陰イオン性部位と陽イオン性部位の両方を持っているもので、上述したそれぞれを組み合わせた構造を有し、具体例として、アミノ酸型界面活性剤、ベタイン型界面活性剤、アミンオキシド型界面活性剤等が挙げられる。更に、非イオン(ノニオン性)界面活性剤は、イオン化しない親水性部分を持つもので、具体的には、エーテル型界面活性剤、多価アルコール型界面活性剤、エステル型界面活性剤、多価アルコールエステル型界面活性剤、アルカノールアミド型界面活性剤の他、非イオン系のフッ素系界面活性剤(パーフルオロアルキルエチレンオキサイド付加物等)、非イオン系のシリコーン系界面活性剤等が挙げられる。   Specific examples of the anionic surfactant include surfactants composed of fatty acid salts, sulfate esters, sulfonates, phosphate esters, and the like. Specific examples of the cationic surfactant include quaternary ammonium salt type surfactants and amine salt type surfactants. A zwitterionic (both ions) surfactant has both an anionic site and a cationic site in the molecule, and has a structure in which each of the above is combined. Type surfactants, betaine type surfactants, amine oxide type surfactants and the like. Furthermore, nonionic (nonionic) surfactants have a hydrophilic portion that is not ionized, and specifically include ether type surfactants, polyhydric alcohol type surfactants, ester type surfactants, polyvalent surfactants. In addition to alcohol ester surfactants and alkanolamide surfactants, nonionic fluorine surfactants (perfluoroalkylethylene oxide adducts, etc.), nonionic silicone surfactants and the like can be mentioned.

赤外線遮蔽膜形成用塗料を用いて透明基材面に赤外線遮蔽膜を形成する場合、上記陽イオン、陰イオン、両イオンまたは非イオン界面活性剤から選択された少なくとも一種の界面活性剤を溶媒中に分散させることにより、基材表面に対する塗料の濡れ性が改善され、これにより塗布性が向上して、ハジキ、ヌケ、ムラ等の塗布膜欠陥のない精密な面内均一性を有する赤外線遮蔽膜を得ることが可能となる。   When forming an infrared shielding film on the surface of a transparent substrate using a coating material for forming an infrared shielding film, at least one surfactant selected from the cation, anion, amphoteric or nonionic surfactant is contained in a solvent. By dispersing the coating material in the surface, the wettability of the paint on the surface of the base material is improved, thereby improving the coating property, and the infrared shielding film having a precise in-plane uniformity without coating film defects such as repellency, leakage, unevenness, etc. Can be obtained.

そして、本発明で適用される界面活性剤としては、イオン性(陽イオン、陰イオン、両イオン)界面活性剤、非イオン性界面活性剤のいずれも使用可能であるが、高分子系界面活性剤であるシリコーン系界面活性剤が特に望ましい。   As the surfactant applied in the present invention, either an ionic (cationic, anionic or amphoteric) surfactant or a nonionic surfactant can be used. A silicone surfactant that is an agent is particularly desirable.

上記イオン性界面活性剤を用いた場合、使用する溶剤やバインダー樹脂の種類によっては、溶液中で解離した界面活性剤のイオンが、分散している複合タングステン酸化物微粒子同士の静電反発力を変位させ、あるいは、界面活性剤が複合タングステン酸化物微粒子表面に吸着することで複合タングステン酸化物微粒子と溶媒との親和性を変化させることがある。そして、塗料の組成によっては複合タングステン酸化物微粒子が分散液中で凝集し易くなり、塗膜を形成した際に塗膜に曇りが生ずる等の弊害を引き起こすことがある。これに対し、非イオン性界面活性剤はイオン化しない親水基を有するため、界面活性剤が複合タングステン酸化物微粒子表面に静電吸着して分散性を変化させることがない。但し、低分子量タイプでは十分な界面活性効果が得られないことがある。   When the above ionic surfactant is used, depending on the type of solvent or binder resin used, the surfactant ions dissociated in the solution may cause electrostatic repulsion between the dispersed composite tungsten oxide particles. The affinity between the composite tungsten oxide fine particles and the solvent may be changed by displacement or adsorption of the surfactant on the surface of the composite tungsten oxide fine particles. Depending on the composition of the coating material, the composite tungsten oxide fine particles are likely to aggregate in the dispersion, which may cause problems such as clouding of the coating film when the coating film is formed. On the other hand, since the nonionic surfactant has a hydrophilic group that is not ionized, the surfactant is not electrostatically adsorbed on the surface of the composite tungsten oxide fine particles to change the dispersibility. However, sufficient surface active effects may not be obtained with the low molecular weight type.

上記シリコーン系界面活性剤は非イオン系が主流であり、非極性溶媒中においてその高い可溶化力から優れた界面活性効果を発現する。そして、高分子系界面活性剤である上記シリコーン系界面活性剤は、分子側鎖または末端の官能基や分子骨格および分子量によって親油性と親水性のバランス(HLB)を変更することができるため、各溶剤系に応じた最適のものを選択して使用できる。更に、フィラー表面に対する反応性が高いものでも、高分子の立体障害効果によりフィラーの分散性を悪化させ難く、界面活性剤の過剰添加によるブリーディング(塗膜表面からの経時的な染み出し)や泡立ち(膜欠陥の原因)が少ないという利点が挙げられる。   The silicone-based surfactants are mainly nonionic and exhibit an excellent surfactant effect due to their high solubilizing power in nonpolar solvents. And since the said silicone type surfactant which is a polymeric surfactant can change the lipophilicity and hydrophilicity balance (HLB) according to the functional group, molecular skeleton, and molecular weight of a molecular side chain or a terminal, The optimum one for each solvent system can be selected and used. Furthermore, even if the reactivity to the filler surface is high, it is difficult to deteriorate the dispersibility of the filler due to the steric hindrance effect of the polymer, and bleeding (exudation from the coating film surface over time) and foaming due to excessive addition of surfactant. There is an advantage that there are few (causes of film defects).

そして、高分子系界面活性剤である上記シリコーン系界面活性剤として、疎水基がジメチルポリシロキサン、親水基がポリアルキレンオキサイドであるシリコーン系化合物を用いることができる。具体的には、下記化学式(1)〜(6)で示される1種以上のシリコーン系界面活性剤が適用された場合、赤外線遮蔽膜形成用塗料内における複合タングステン酸化物微粒子の分散性を損なうことなく透明基材表面に対する塗料の濡れ性が改善され、塗布膜欠陥のない精密な面内均一性を有する赤外線遮蔽膜を得ることが可能となる。   As the silicone surfactant that is a polymer surfactant, a silicone compound in which the hydrophobic group is dimethylpolysiloxane and the hydrophilic group is polyalkylene oxide can be used. Specifically, when one or more silicone surfactants represented by the following chemical formulas (1) to (6) are applied, the dispersibility of the composite tungsten oxide fine particles in the coating material for forming an infrared shielding film is impaired. Therefore, the wettability of the coating material with respect to the transparent substrate surface is improved, and it becomes possible to obtain an infrared shielding film having a precise in-plane uniformity without a coating film defect.

尚、上記効果を損なわない範囲で他の界面活性剤を併用してもよい。   In addition, you may use other surfactant together in the range which does not impair the said effect.

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
Figure 2009167330

Figure 2009167330
[但し、化学式(1)〜(6)中において、Rはアルキル基または水素を示し、R’はアルキレン基を示し、また、a、bはそれぞれ1〜500の整数、m、nはそれぞれ1〜200の整数である。]
ここで、赤外線遮蔽膜形成用塗料内への界面活性剤の添加量は、塗料全体を100重量部とした場合に0.001〜10重量部の範囲に設定することが望ましく、0.005〜5重量部の範囲が特に望ましい。添加量が0.001重量部未満であると基材に対する濡れ性や乾燥時のレベリング性が十分でない場合があり、また、10重量部を超えて過剰に添加した場合、塗液のHLBが最適範囲から外れ、塗布性が逆に悪化するだけでなく、塗料の泡立ちや完成塗膜のブリーディングを引き起こす原因となる場合があるからである。
Figure 2009167330
[In the chemical formulas (1) to (6), R represents an alkyl group or hydrogen, R ′ represents an alkylene group, a and b are each an integer of 1 to 500, and m and n are 1 respectively. It is an integer of ~ 200. ]
Here, the addition amount of the surfactant in the coating material for forming an infrared shielding film is desirably set in the range of 0.001 to 10 parts by weight when the entire coating is 100 parts by weight, A range of 5 parts by weight is particularly desirable. If the addition amount is less than 0.001 part by weight, the wettability to the substrate and the leveling property at the time of drying may not be sufficient, and if the addition amount exceeds 10 parts by weight, the HLB of the coating solution is optimal. This is because the coating property is not only within the range and the applicability deteriorates, but it may cause foaming of the paint and bleeding of the finished coating film.

3.溶媒
本発明の赤外線遮蔽膜形成用塗料に適用される溶媒は、特に限定されることなく公知の有機溶剤を使用することができる。具体的には、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶剤、3−メチル−メトキシ−プロピオネート(MMP)等のエステル系溶剤、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGMEA)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、フォルムアミド(FA)、N−メチルフォルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)等のアミド類、トルエン、キシレン等の芳香族炭化水素類、エチレンクロライド、クロルベンゼン等のハロゲン化炭化水素類等を挙げることができる。中でも極性の低い有機溶剤が好ましく、特にMIBK、MEK等のケトン類や、トルエン、キシレン等の芳香族炭化水素類、PGMEA、PE−AC等のグリコールエーテルアセテート類等、疎水性の高いものがより好ましい。これ等溶媒は1種または2種以上を組み合わせて用いることができる。
3. Solvent The solvent applied to the infrared shielding film-forming coating material of the present invention is not particularly limited, and a known organic solvent can be used. Specifically, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol, acetone, methyl ethyl ketone (MEK) , Ketone solvents such as methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ester solvents such as 3-methyl-methoxy-propionate (MMP), ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl Glycol derivatives such as ether acetate (PGMEA), propylene glycol ethyl ether acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, N-methyl-2-pyrrolidone ( Amides such as NMP), aromatic hydrocarbons such as toluene and xylene, and halogenated hydrocarbons such as ethylene chloride and chlorobenzene. Among them, organic solvents with low polarity are preferable, and particularly highly hydrophobic ones such as ketones such as MIBK and MEK, aromatic hydrocarbons such as toluene and xylene, glycol ether acetates such as PGMEA and PE-AC, and the like. preferable. These solvents can be used alone or in combination of two or more.

4.バインダー樹脂
上記赤外線遮蔽膜形成用塗料にはバインダー成分を含有させる必要があり、このバインダー成分として公知の硬化性樹脂を用いることができる。例えば、熱硬化型樹脂、UV硬化型樹脂、電子線硬化型樹脂等が目的に応じて選定可能である。そして、熱硬化型樹脂として、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等プレポリマーの架橋反応を利用する樹脂を挙げることができる。また、熱硬化型、UV硬化型または電子線硬化型の樹脂としては多官能重合性不飽和化合物が挙げられ、例えば、多官能アクリレートまたはメタクリレート[ペンタエリスリトール(メタ)アクリレートやジペンタエリスリトールヘキサ(メタ)アクリレート等]が挙げられる。更に、これ等バインダー成分中には必要に応じて充填剤、重合開始剤、重合促進剤を添加することが好ましい。
4). Binder resin The paint for forming an infrared shielding film needs to contain a binder component, and a known curable resin can be used as the binder component. For example, a thermosetting resin, a UV curable resin, an electron beam curable resin, or the like can be selected according to the purpose. And as thermosetting resin, resin using the crosslinking reaction of prepolymers, such as a melamine resin, a urethane resin, an epoxy resin, can be mentioned. Examples of thermosetting, UV curable, or electron beam curable resins include polyfunctional polymerizable unsaturated compounds. For example, polyfunctional acrylate or methacrylate [pentaerythritol (meth) acrylate or dipentaerythritol hexa (meth) ) Acrylate etc.]. Furthermore, it is preferable to add a filler, a polymerization initiator, and a polymerization accelerator to these binder components as necessary.

5.透明基材
本発明における透明基材の材質としては、透明体であれば特に限定されることはなく、ガラス、樹脂シート若しくは樹脂フィルムが好ましく用いられる。そして、上記樹脂シート若しくは樹脂フィルムとしては、必要とするシート若しくはフィルムの表面状態や耐久性に不具合を生じないものであれば特に制限はなく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、更にこれ等の二元系、三元系各種共重合体、グラフト共重合体、ブレンド物等の透明ポリマーからなるシート若しくはフィルムが挙げられる。特に、ポリエチレンテレフタレート、ポリブチレンテレフタレートあるいはポリエチレン−2,6−ナフタレート等のポリエステル系2軸配向フィルムが、機械的特性、光学特性、耐熱性および経済性の点より好適である。また、ポリエステル系2軸配向フィルムは共重合ポリエステル系であってもよい。
5. Transparent substrate The material of the transparent substrate in the present invention is not particularly limited as long as it is a transparent body, and glass, a resin sheet, or a resin film is preferably used. The resin sheet or resin film is not particularly limited as long as it does not cause problems in the surface state and durability of the required sheet or film. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate Cellulose polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate polymers, acrylic polymers such as polymethyl methacrylate, styrene polymers such as polystyrene and acrylonitrile / styrene copolymers, polyethylene, polypropylene, and cyclic or norbornene structures Polyolefins, olefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as aromatic polyamides, imide polymers, Ruphone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer Furthermore, the sheet | seat or film which consists of transparent polymers, such as these binary-type, ternary-type various copolymers, a graft copolymer, and a blend, is mentioned. In particular, a polyester biaxially oriented film such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene-2,6-naphthalate is preferable in terms of mechanical properties, optical properties, heat resistance, and economy. The polyester biaxially oriented film may be a copolyester.

6.赤外線遮蔽膜形成用塗料の調製および塗布方法
本発明の赤外線遮蔽膜形成用塗料は、例えば上記複合タングステン酸化物微粒子を溶媒中に分散させ、これに上記界面活性剤を添加し、更にバインダー樹脂を溶解、混合させることにより調製することができる。また、調製された赤外線遮蔽膜形成用塗料を樹脂フィルム等の透明基材表面に塗布し、かつ、塗布された塗料の溶媒を蒸発させ、所定の方法でバインダー樹脂を硬化させることにより赤外線遮蔽膜を形成することができる。
6). Preparation and application method of infrared shielding film-forming coating material The infrared shielding film-forming coating material of the present invention is prepared, for example, by dispersing the above-mentioned composite tungsten oxide fine particles in a solvent, adding the above-mentioned surfactant thereto, and further adding a binder resin. It can be prepared by dissolving and mixing. Also, the infrared shielding film is formed by applying the prepared coating material for forming an infrared shielding film to the surface of a transparent substrate such as a resin film, and evaporating the solvent of the applied coating material and curing the binder resin by a predetermined method. Can be formed.

尚、赤外線遮蔽膜形成用塗料の塗布方法としては、樹脂フィルム等の透明基材表面に上記塗料を均一に塗布できる方法なら任意であり、例えば、バーコート法、グラビアロールコート法、リバースロールコート法、ディップコート法、ブレードコート法、エアーナイフコート法、ワイヤーブロックコート法、リブロックスコート法、リブロックスロールコート法、エクストルージョンコート法、ロッドコート法、ワイヤーバーコート法、スライドコート法およびカーテンコート法等が挙げられる。   The coating method for forming the infrared shielding film may be any method as long as the coating material can be uniformly applied to the surface of the transparent substrate such as a resin film. For example, the bar coating method, the gravure roll coating method, the reverse roll coating Method, dip coating method, blade coating method, air knife coating method, wire block coating method, reblocks coating method, reblocking roll coating method, extrusion coating method, rod coating method, wire bar coating method, slide coating method and curtain Examples thereof include a coating method.

7.赤外線遮蔽体
本発明の赤外線遮蔽体は、上記赤外線遮蔽膜形成用塗料を樹脂フィルム等透明基材の面上に塗布しかつ形成された塗布膜を板状、フィルム状または薄膜状に成形して成る赤外線遮蔽膜と、上記透明基材とで構成される。
7). Infrared shielding body The infrared shielding body of the present invention is obtained by coating the coating material for forming the infrared shielding film on the surface of a transparent substrate such as a resin film, and forming the formed coating film into a plate shape, a film shape, or a thin film shape. The infrared shielding film and the transparent substrate.

そして、本発明の赤外線遮蔽体は、赤外線遮蔽膜形成用塗料のハジキ、ヌケ、塗布ムラ等に起因した塗布膜欠陥がなく、精密な面内均一性を有しているため、可視光領域においては透明でかつ近赤外線領域においては優れた遮蔽特性を有している。従って、近赤外線を吸収する機能が要求される光学用フィルター等として好適に使用することができる。   The infrared shielding body of the present invention is free of coating film defects due to repellency, removal, coating unevenness, etc. of the coating material for forming an infrared shielding film, and has a precise in-plane uniformity. Is transparent and has excellent shielding properties in the near infrared region. Therefore, it can be suitably used as an optical filter or the like that requires a function of absorbing near infrared rays.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

尚、各実施例と比較例1における光学測定は、建築窓ガラス用フィルムJISA 5759(1998)(光源:A光)に基づき測定を行って可視光透過率を算出し、ヘイズ値は、JISK7105に基づき測定を行った。また、平均分散粒子直径は、動的光散乱法を用いた測定装置(大塚電子株式会社製 ELS−800)により測定した平均値とした。また、透明基材である厚さ50μmのPETフィルムにおける光学特性は、可視光透過率90%、ヘイズ0.9%である。   In addition, the optical measurement in each Example and the comparative example 1 calculates based on the film for architectural window glass JISA 5759 (1998) (light source: A light), calculates visible light transmittance, and a haze value is based on JISK7105. Based on the measurement. In addition, the average dispersed particle diameter was an average value measured by a measuring device using a dynamic light scattering method (ELS-800 manufactured by Otsuka Electronics Co., Ltd.). The optical properties of a PET film having a thickness of 50 μm, which is a transparent substrate, have a visible light transmittance of 90% and a haze of 0.9%.

Cs0.33WOで表記されかつ六方晶系の結晶構造を有する複合タングステン酸化物の粉末を8重量部、トルエン84重量部、分散剤8重量部を混合し、分散処理を行って平均分散粒子直径80nmの分散液(A液)とした。 8 parts by weight of a composite tungsten oxide powder represented by Cs 0.33 WO 3 and having a hexagonal crystal structure, 84 parts by weight of toluene, and 8 parts by weight of a dispersant are mixed and subjected to dispersion treatment to obtain an average dispersion A dispersion liquid (A liquid) having a particle diameter of 80 nm was obtained.

このA液100重量部と、ハードコート用紫外線硬化型樹脂[東亞合成(株)社製、商品名UV3701]50重量部と、上記化学式(1)で示されるシリコーン系界面活性剤(日本ユニカー製、商品名:FZ−2164)0.05重量部とを混合して実施例1に係る赤外線遮蔽膜形成用塗料を調製した。   100 parts by weight of this liquid A, 50 parts by weight of an ultraviolet curable resin for hard coat [manufactured by Toagosei Co., Ltd., trade name UV3701], and a silicone-based surfactant represented by the above chemical formula (1) (manufactured by Nihon Unicar) , Trade name: FZ-2164) 0.05 part by weight was mixed to prepare a coating material for forming an infrared shielding film according to Example 1.

次に、実施例1に係る赤外線遮蔽膜形成用塗料を、ロールコーターを用いてPETフィルム(50μm厚)上に塗布し塗膜とした。   Next, the infrared shielding film-forming paint according to Example 1 was applied onto a PET film (thickness: 50 μm) using a roll coater to form a coating film.

そして、この塗膜を80℃で60秒間乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させて赤外線遮蔽膜とし、この赤外線遮蔽膜とPETフィルムとで構成される赤外線遮蔽フィルム(赤外線遮蔽体)を得た。   The coating film was dried at 80 ° C. for 60 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to form an infrared shielding film. An infrared shielding film (infrared ray) composed of the infrared shielding film and a PET film. A shield was obtained.

尚、上記赤外線遮蔽膜の表面を目視で観察し、下記の評価基準で判定した。   The surface of the infrared shielding film was visually observed and judged according to the following evaluation criteria.

[横断ムラ]
○:全くない。△:部分的に確認される。×:はっきり確認できる。
[Crossing unevenness]
○: Not at all. Δ: Partially confirmed. X: It can be confirmed clearly.

[ヌケ(直径1〜3mm程度のピンホールの有無)]
○:ヌケの数が5個/m2以下。△:50個/m2未満。×:50個/m2以上。
[Nuke (with or without pinholes with a diameter of 1 to 3 mm)]
○: The number of leakage is 5 / m 2 or less. Δ: Less than 50 / m 2 . X: 50 pieces / m 2 or more.

そして、実施例1に係る赤外線遮蔽フィルムの光学特性を測定したところ、可視光透過率は70%であり、可視光領域の光を十分透過していることが確認された。また、ヘイズは0.8%であり、優れた透明性を示した。   And when the optical characteristic of the infrared shielding film which concerns on Example 1 was measured, the visible light transmittance | permeability was 70% and it was confirmed that the light of visible region is fully permeate | transmitted. Moreover, haze was 0.8% and showed the outstanding transparency.

尚、赤外線遮蔽フィルム(赤外線遮蔽体)のヘイズがPETフィルムのヘイズよりも僅かに低下しているのは、PETフィルム表面には塗膜の密着性を向上させるための易接着処理(プライマーやコロナ放電等)が施されているため、PETフィルム表面の若干の凹凸に起因した表面散乱によりヘイズ発生してPETフィルムのヘイズが0.9%になっているのに対し、このPETフィルムに塗膜が形成されると、フィルム表面の凹凸が埋められて平滑化するため、赤外線遮蔽フィルム(赤外線遮蔽体)のヘイズが0.8%になったと考えられる。   The haze of the infrared shielding film (infrared shielding body) is slightly lower than the haze of the PET film because of the easy adhesion treatment (primer and corona) for improving the adhesion of the coating film to the PET film surface. The haze is generated by surface scattering due to slight unevenness on the surface of the PET film, and the haze of the PET film is 0.9%. When the film is formed, the unevenness of the film surface is filled and smoothed, so the haze of the infrared shielding film (infrared shielding body) is considered to be 0.8%.

更に、上記評価基準に従って得られた赤外線遮蔽膜を判定したところ、横断ムラは見られず(○)、ヌケも少なく(○)、良好な塗布性を呈していた。   Furthermore, when the infrared shielding film obtained according to the said evaluation criteria was determined, the crossing unevenness was not seen ((circle)), there were few leaks ((circle)), and the favorable applicability | paintability was exhibited.

上記A液100重量部と、ハードコート用紫外線硬化型樹脂[東亞合成(株)社製、商品名UV3701]50重量部と、上記シリコーン系界面活性剤(日本ユニカー製、商品名:FZ−2164)0.0016重量部とを混合して実施例2に係る赤外線遮蔽膜形成用塗料を調製した。   100 parts by weight of the above-mentioned A liquid, 50 parts by weight of UV curable resin for hard coat [manufactured by Toagosei Co., Ltd., trade name UV3701], and the above-mentioned silicone surfactant (manufactured by Nihon Unicar, trade name: FZ-2164) ) 0.0016 part by weight was mixed to prepare the infrared shielding film forming paint according to Example 2.

次に、実施例2に係る赤外線遮蔽膜形成用塗料を、ロールコーターを用いてPETフィルム(50μm厚)上に塗布し塗膜とした。   Next, the coating material for forming an infrared shielding film according to Example 2 was applied onto a PET film (thickness: 50 μm) using a roll coater to form a coating film.

そして、この塗膜を80℃で60秒間乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させて赤外線遮蔽膜とし、この赤外線遮蔽膜とPETフィルムとで構成される赤外線遮蔽フィルム(赤外線遮蔽体)を得た。   The coating film was dried at 80 ° C. for 60 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to form an infrared shielding film. An infrared shielding film (infrared ray) composed of the infrared shielding film and a PET film. A shield was obtained.

次に、実施例2に係る赤外線遮蔽フィルムの光学特性を測定したところ、可視光透過率は71%であり、可視光領域の光を十分透過していることが確認された。また、ヘイズは0.8%であり、優れた透明性を示した。   Next, when the optical characteristic of the infrared shielding film according to Example 2 was measured, the visible light transmittance was 71%, and it was confirmed that the light in the visible light region was sufficiently transmitted. Moreover, haze was 0.8% and showed the outstanding transparency.

更に、上記評価基準に従って得られた赤外線遮蔽膜を判定したところ、横断ムラは見られず(○)、ヌケも少なく(○)、良好な塗布性を呈していた。   Furthermore, when the infrared shielding film obtained according to the said evaluation criteria was determined, the crossing unevenness was not seen ((circle)), there were few leaks ((circle)), and the favorable applicability | paintability was exhibited.

上記A液100重量部と、ハードコート用紫外線硬化型樹脂[東亞合成(株)社製、商品名UV3701]50重量部と、上記シリコーン系界面活性剤(日本ユニカー製、商品名:FZ−2164)16重量部とを混合して実施例3に係る赤外線遮蔽膜形成用塗料を調製した。   100 parts by weight of the above-mentioned A liquid, 50 parts by weight of UV curable resin for hard coat [manufactured by Toagosei Co., Ltd., trade name UV3701], and the above-mentioned silicone surfactant (manufactured by Nihon Unicar, trade name: FZ-2164) ) 16 parts by weight were mixed to prepare an infrared shielding film forming paint according to Example 3.

次に、実施例3に係る赤外線遮蔽膜形成用塗料を、ロールコーターを用いてPETフィルム(50μm厚)上に塗布し塗膜とした。   Next, the coating material for forming an infrared shielding film according to Example 3 was applied onto a PET film (50 μm thickness) using a roll coater to form a coating film.

そして、この塗膜を80℃で60秒間乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させて赤外線遮蔽膜とし、この赤外線遮蔽膜とPETフィルムとで構成される赤外線遮蔽フィルム(赤外線遮蔽体)を得た。   The coating film was dried at 80 ° C. for 60 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to form an infrared shielding film. An infrared shielding film (infrared ray) composed of the infrared shielding film and a PET film. A shield was obtained.

次に、実施例3に係る赤外線遮蔽フィルムの光学特性を測定したところ、可視光透過率は71%であり、可視光領域の光を十分透過していることが確認された。また、ヘイズは1.0%であり、優れた透明性を示した。   Next, when the optical characteristic of the infrared shielding film according to Example 3 was measured, the visible light transmittance was 71%, and it was confirmed that the light in the visible light region was sufficiently transmitted. Moreover, the haze was 1.0%, indicating excellent transparency.

更に、上記評価基準に従って得られた赤外線遮蔽膜を判定したところ、横断ムラが部分的に見られたが(△)、ヌケは少なく(△)、比較的良好な塗布性を呈していた。
[比較例1]
上記A液を100重量部とハードコート用紫外線硬化型樹脂[東亞合成(株)社製、商品名UV3701]50重量部とを混合して比較例1に係る赤外線遮蔽膜形成用塗料を調製した。
Furthermore, when the infrared shielding film obtained according to the above-mentioned evaluation criteria was judged, transverse unevenness was partially observed (Δ), but there was little missing (Δ) and a relatively good coating property was exhibited.
[Comparative Example 1]
100 parts by weight of the above liquid A and 50 parts by weight of UV curable resin for hard coat [manufactured by Toagosei Co., Ltd., trade name UV3701] were mixed to prepare an infrared shielding film forming paint according to Comparative Example 1. .

次に、比較例1に係る赤外線遮蔽膜形成用塗料を、ロールコーターを用いてPETフィルム(50μm厚)上に塗布し塗膜とした。   Next, the infrared shielding film-forming paint according to Comparative Example 1 was applied onto a PET film (50 μm thick) using a roll coater to form a coating film.

そして、この塗膜を80℃で60秒間乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させて赤外線遮蔽膜とし、この赤外線遮蔽膜とPETフィルムとで構成される赤外線遮蔽フィルム(赤外線遮蔽体)を得た。   The coating film was dried at 80 ° C. for 60 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to form an infrared shielding film. An infrared shielding film (infrared ray) composed of the infrared shielding film and a PET film. A shield was obtained.

次に、比較例1に係る赤外線遮蔽フィルムの光学特性を測定したところ、可視光透過率は71%であり、可視光領域の光を十分透過していることが確認された。また、ヘイズは0.8%であり、優れた透明性を示した。   Next, when the optical characteristic of the infrared shielding film according to Comparative Example 1 was measured, the visible light transmittance was 71%, and it was confirmed that the light in the visible light region was sufficiently transmitted. Moreover, haze was 0.8% and showed the outstanding transparency.

しかし、上記評価基準に従って得られた赤外線遮蔽膜を判定したところ、横断ムラがはっきりと観察され(×)、ヌケも多く(×)、塗布性は不良であった。   However, when the infrared shielding film obtained according to the above evaluation criteria was determined, transverse unevenness was clearly observed (×), there were many spots (×), and the applicability was poor.

上記A液100重量部と、ハードコート用紫外線硬化型樹脂[東亞合成(株)社製、商品名UV3701]50重量部と、上記シリコーン系界面活性剤(日本ユニカー製、商品名:FZ−2164)0.0008重量部とを混合して実施例4に係る赤外線遮蔽膜形成用塗料を調製した。   100 parts by weight of the above-mentioned A liquid, 50 parts by weight of UV curable resin for hard coat [manufactured by Toagosei Co., Ltd., trade name UV3701], and the above-mentioned silicone surfactant (manufactured by Nihon Unicar, trade name: FZ-2164) ) 0.0008 part by weight was mixed to prepare the infrared shielding film forming paint according to Example 4.

次に、実施例4に係る赤外線遮蔽膜形成用塗料を、ロールコーターを用いてPETフィルム(50μm厚)上に塗布し塗膜とした。   Next, the coating material for forming an infrared shielding film according to Example 4 was applied onto a PET film (thickness: 50 μm) using a roll coater to form a coating film.

そして、この塗膜を80℃で60秒間乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させて赤外線遮蔽膜とし、この赤外線遮蔽膜とPETフィルムとで構成される赤外線遮蔽フィルム(赤外線遮蔽体)を得た。   The coating film was dried at 80 ° C. for 60 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to form an infrared shielding film. An infrared shielding film (infrared ray) composed of the infrared shielding film and a PET film. A shield was obtained.

次に、実施例4に係る赤外線遮蔽フィルムの光学特性を測定したところ、可視光透過率は71%であり、可視光領域の光を十分透過していることが確認された。また、ヘイズは0.8%であり、優れた透明性を示した。   Next, when the optical characteristic of the infrared shielding film according to Example 4 was measured, the visible light transmittance was 71%, and it was confirmed that the light in the visible light region was sufficiently transmitted. Moreover, haze was 0.8% and showed the outstanding transparency.

更に、上記評価基準に従って得られた赤外線遮蔽膜を判定したところ、横断ムラに関しては比較例1より改善されていた(△)が、ヌケが若干多く(×に近い△)他の実施例に較べて塗布性が若干劣っていた。   Furthermore, when the infrared shielding film obtained according to the above-mentioned evaluation criteria was determined, the crossing unevenness was improved from Comparative Example 1 (Δ), but there was a little more missing (Δ close to x) compared to other examples. The applicability was slightly inferior.

上記A液100重量部と、ハードコート用紫外線硬化型樹脂[東亞合成(株)社製、商品名UV3701]50重量部と、上記シリコーン系界面活性剤(日本ユニカー製、商品名:FZ−2164)26重量部とを混合して実施例5に係る赤外線遮蔽膜形成用塗料を調製した。   100 parts by weight of the above-mentioned A liquid, 50 parts by weight of UV curable resin for hard coat [manufactured by Toagosei Co., Ltd., trade name UV3701], and the above-mentioned silicone surfactant (manufactured by Nihon Unicar, trade name: FZ-2164) ) 26 parts by weight were mixed to prepare an infrared shielding film forming paint according to Example 5.

次に、実施例5に係る赤外線遮蔽膜形成用塗料を、ロールコーターを用いてPETフィルム(50μm厚)上に塗布し塗膜とした。   Next, the coating material for forming an infrared shielding film according to Example 5 was applied onto a PET film (thickness: 50 μm) using a roll coater to form a coating film.

そして、この塗膜を80℃で60秒間乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させて赤外線遮蔽膜とし、この赤外線遮蔽膜とPETフィルムとで構成される赤外線遮蔽フィルム(赤外線遮蔽体)を得た。   The coating film was dried at 80 ° C. for 60 seconds to evaporate the solvent, and then cured with a high-pressure mercury lamp to form an infrared shielding film. An infrared shielding film (infrared ray) composed of the infrared shielding film and a PET film. A shield was obtained.

次に、実施例5に係る赤外線遮蔽フィルムの光学特性を測定したところ、可視光透過率は71%であり、可視光領域の光を十分透過していることが確認された。但し、ヘイズは2.0%と高く、他の実施例に較べて若干不良であった。   Next, when the optical characteristic of the infrared shielding film according to Example 5 was measured, the visible light transmittance was 71%, and it was confirmed that the light in the visible light region was sufficiently transmitted. However, the haze was as high as 2.0%, which was slightly poor compared to the other examples.

更に、上記評価基準に従って得られた赤外線遮蔽膜を判定したところ、横断ムラに関しては比較例1より改善されていた(△)が、ヌケが若干多く(×に近い△)他の実施例に較べて塗布性が若干劣っていた。   Furthermore, when the infrared shielding film obtained according to the above-mentioned evaluation criteria was determined, the crossing unevenness was improved from Comparative Example 1 (Δ), but there was a little more missing (Δ close to x) compared to other examples. The applicability was slightly inferior.

本発明に係る赤外線遮蔽膜形成用塗料を用いて形成された赤外線遮蔽膜と透明基材とで構成される赤外線遮蔽体は精密な面内均一性を有しており、可視光領域においては透明で近赤外線領域においては優れた遮蔽特性を具備している。従って、本発明に係る赤外線遮蔽膜形成用塗料を用いて得られた赤外線遮蔽体は、可視光領域の光を透過し近赤外領域の光を遮蔽する光学フィルターや窓材等に用いられる産業上の利用可能性を有している。   The infrared shielding body composed of the infrared shielding film formed using the infrared shielding film forming paint according to the present invention and a transparent substrate has a precise in-plane uniformity and is transparent in the visible light region. In the near infrared region, it has excellent shielding properties. Therefore, the infrared shielding body obtained by using the coating material for forming an infrared shielding film according to the present invention is an industry used for optical filters and window materials that transmit light in the visible light region and shield light in the near infrared region. Has the above applicability.

Claims (7)

一般式MWO(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、かつ、0.001≦Y≦1.0、2.2≦Z≦3.0)で表記されかつ六方晶系の結晶構造を有する複合タングステン酸化物微粒子と、界面活性剤およびバインダー樹脂が溶媒中に分散若しくは溶解されていることを特徴とする赤外線遮蔽膜形成用塗料。 General formula M Y WO Z (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo , Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is tungsten, O is oxygen, and 0.001 ≦ Y ≦ 1.0, 2.2 ≦ Infrared shielding film formation characterized in that composite tungsten oxide fine particles represented by Z ≦ 3.0) and having a hexagonal crystal structure, a surfactant and a binder resin are dispersed or dissolved in a solvent Paint. 上記界面活性剤の含有量が、塗料全体を100重量部とした場合に0.001〜10重量部であることを特徴とする請求項1に記載の赤外線遮蔽膜形成用塗料。   The infrared shielding film-forming coating material according to claim 1, wherein the content of the surfactant is 0.001 to 10 parts by weight when the entire coating material is 100 parts by weight. 上記複合タングステン酸化物微粒子が、粒子直径が1nm以上800nm以下である複合タングステン酸化物の微粒子であることを特徴とする請求項1または2に記載の赤外線遮蔽膜形成用塗料。   3. The infrared shielding film forming paint according to claim 1, wherein the composite tungsten oxide fine particles are fine particles of composite tungsten oxide having a particle diameter of 1 nm to 800 nm. 上記界面活性剤が、陽イオン、陰イオン、両イオンまたは非イオン界面活性剤から選択された少なくとも一種であることを特徴とする請求項1に記載の赤外線遮蔽膜形成用塗料。   2. The infrared shielding film-forming coating material according to claim 1, wherein the surfactant is at least one selected from a cation, an anion, both ions, or a nonionic surfactant. 上記非イオン界面活性剤が、疎水基がジメチルポリシロキサン、親水基がポリアルキレンオキサイドであるシリコーン系化合物により構成されたシリコーン系界面活性剤であることを特徴とする請求項4に記載の赤外線遮蔽膜形成用塗料。   The infrared shielding material according to claim 4, wherein the nonionic surfactant is a silicone surfactant composed of a silicone compound in which a hydrophobic group is dimethylpolysiloxane and a hydrophilic group is polyalkylene oxide. Film forming paint. 上記シリコーン系界面活性剤が、下記化学式(1)〜(6)の内から選択された1種以上であることを特徴とする請求項5に記載の赤外線遮蔽膜形成用塗料。
Figure 2009167330
Figure 2009167330
Figure 2009167330
Figure 2009167330
Figure 2009167330
Figure 2009167330
[但し、化学式(1)〜(6)中において、Rはアルキル基または水素を示し、R’はアルキレン基を示し、また、a、bはそれぞれ1〜500の整数、m、nはそれぞれ1〜200の整数である。]
6. The infrared shielding film-forming paint according to claim 5, wherein the silicone-based surfactant is at least one selected from the following chemical formulas (1) to (6).
Figure 2009167330
Figure 2009167330
Figure 2009167330
Figure 2009167330
Figure 2009167330
Figure 2009167330
[In the chemical formulas (1) to (6), R represents an alkyl group or hydrogen, R ′ represents an alkylene group, a and b are each an integer of 1 to 500, and m and n are 1 respectively. It is an integer of ~ 200. ]
請求項1〜6のいずれかに記載の赤外線遮蔽膜形成用塗料を透明基材の面上に塗布しかつ形成された塗布膜を板状、フィルム状または薄膜状に成形して成る赤外線遮蔽膜と、上記透明基材とで構成されることを特徴とする赤外線遮蔽体。   An infrared shielding film formed by coating the coating material for forming an infrared shielding film according to any one of claims 1 to 6 on a surface of a transparent substrate, and forming the formed coating film into a plate shape, a film shape, or a thin film shape. And an infrared shielding body comprising the transparent substrate.
JP2008008774A 2008-01-18 2008-01-18 Paint for forming infrared ray shielding film and infrared ray shielding material Pending JP2009167330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008774A JP2009167330A (en) 2008-01-18 2008-01-18 Paint for forming infrared ray shielding film and infrared ray shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008774A JP2009167330A (en) 2008-01-18 2008-01-18 Paint for forming infrared ray shielding film and infrared ray shielding material

Publications (1)

Publication Number Publication Date
JP2009167330A true JP2009167330A (en) 2009-07-30

Family

ID=40968889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008774A Pending JP2009167330A (en) 2008-01-18 2008-01-18 Paint for forming infrared ray shielding film and infrared ray shielding material

Country Status (1)

Country Link
JP (1) JP2009167330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229388A (en) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film
CN109485097A (en) * 2018-12-17 2019-03-19 深圳大学 A kind of caesium hafnium tungsten bronze and the preparation method and application thereof
CN110088215A (en) * 2017-02-03 2019-08-02 三菱综合材料株式会社 Infrared ray shielding film formation coating, transparent base and its manufacturing method with infrared ray shielding film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229388A (en) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film
CN110088215A (en) * 2017-02-03 2019-08-02 三菱综合材料株式会社 Infrared ray shielding film formation coating, transparent base and its manufacturing method with infrared ray shielding film
CN110088215B (en) * 2017-02-03 2024-01-12 三菱综合材料株式会社 Coating material for forming infrared shielding film, transparent substrate with infrared shielding film, and method for producing same
CN109485097A (en) * 2018-12-17 2019-03-19 深圳大学 A kind of caesium hafnium tungsten bronze and the preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5712100B2 (en) Antireflection film manufacturing method, antireflection film, coating composition
TWI522642B (en) Optical film, polarizer, display panel and display
KR101910753B1 (en) Hydrophilic materials including sulfonate copolymer and amino resin
TWI410679B (en) Curable resin composition for antiglare layer and antiglare layer
JP6514657B2 (en) Antireflection optical member
JP2010271400A (en) Optical sheet
JP5411477B2 (en) Hollow organic-inorganic hybrid fine particles, antireflection resin composition, coating agent for antireflection film, antireflection laminate and antireflection film
JP6552186B2 (en) Coating composition and super water repellent film
TWI674302B (en) Method for manufacturing silver nanowire ink and silver nanowire ink and transparent conductive coating film
WO2016006324A1 (en) Light-blocking material for optical devices, and production method therefor
CN108885282B (en) Anti-reflection film
WO2011052307A1 (en) Light-blocking member for use in optical equipment
JP2011228018A (en) Transparent planar heating laminate
JP2013083722A (en) Light reflection film, method for manufacturing light reflection film and light reflector using the same
CN108291990B (en) Electromagnetic energy absorptive optical product and method of making same
JP2007086455A (en) Antireflection laminate
JP2009167330A (en) Paint for forming infrared ray shielding film and infrared ray shielding material
JP2009096952A (en) Infrared shielding film-forming coating material and infrared shielded product
KR101226776B1 (en) Near-infrared absorbing film
JP2008156430A (en) Antistatic composition and antistatic hard coat-formed article
JP2005316425A (en) Low refractive index layer and image display device using the same
JP2008208291A (en) Polyvinyl alcohol film
JP2005316426A (en) Reflection preventive laminate with antistatic layer and low refractive index layer and image display device using the same
JP2007041238A (en) Antireflection film
JP2009242475A (en) Hollow organic-inorganic hybrid fine particle, antireflective resin composition, coating agent for antireflective film, antireflective laminated product and antireflective film