JP2009166458A - Method and apparatus for molding foamed resin molding - Google Patents

Method and apparatus for molding foamed resin molding Download PDF

Info

Publication number
JP2009166458A
JP2009166458A JP2008010293A JP2008010293A JP2009166458A JP 2009166458 A JP2009166458 A JP 2009166458A JP 2008010293 A JP2008010293 A JP 2008010293A JP 2008010293 A JP2008010293 A JP 2008010293A JP 2009166458 A JP2009166458 A JP 2009166458A
Authority
JP
Japan
Prior art keywords
mold
molding
pressure
foam
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008010293A
Other languages
Japanese (ja)
Inventor
Junichi Ogawa
淳一 小川
Mitsuharu Kaneko
満晴 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008010293A priority Critical patent/JP2009166458A/en
Publication of JP2009166458A publication Critical patent/JP2009166458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a part connected to the pressurization attachment part of a foamed main part from sinking to the side of the foamed main part by pressurization power during attachment to a mating member when the pressurization attachment part in a state of non-foaming or a low expansion ratio is molded to protrude integrally from the foamed main part of a foamed resin molding. <P>SOLUTION: When the foamed main part 11 of a work 10 is foamed by core-backing a mold part 25 corresponding to the foamed main parts of the molds by the use of an expandable resin packed in molds 21 and 25, and the pressurization attachment part 13 made of a foaming suppressing resin part attached to a mating member by being pressurized is molded to protrude integrally from the foamed main part, in the part connected to the pressurization attachment part of the foamed main part, a pressurization attachment part base 14 which is molded while a core-backing quantity rate when the mold part is core-backed is set to be smaller than that of the other part of the foamed main part is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、樹脂に発泡剤を含有させた発泡性樹脂から成形されてなる発泡樹脂成形品の成形方法及び成形装置に関する。   The present invention relates to a molding method and a molding apparatus for a foamed resin molded product formed from a foamable resin containing a foaming agent in a resin.

従来、例えば自動車用部品などの種々の工業用部品の分野においては、軽量性や断熱性などに優れた発泡樹脂成形品が幅広く採用されている。かかる発泡樹脂成形品は、使用される目的及び用途などに応じて、好適な使用材料を選定し、また、成形品内部の気泡の形態や発泡倍率などの諸条件を好適に設定して製作されている。   Conventionally, in the field of various industrial parts such as automobile parts, foamed resin molded products excellent in light weight and heat insulating properties have been widely used. Such foamed resin molded products are manufactured by selecting suitable materials according to the purpose and application to be used, and by suitably setting various conditions such as the form of bubbles inside the molded product and the expansion ratio. ing.

このような発泡樹脂成形品の成形方法として、樹脂に発泡剤を含有させた発泡性樹脂を成形型の成形キャビティ内に注入した後に、キャビティの容積を拡大させるように成形型のコア部を移動させることにより、発泡性樹脂の発泡を促進させるようにした成形方法(所謂コアバック法)は公知である。このコアバック法を用いることにより、発泡セル径のバラツキが小さい発泡樹脂成形品を得ることができることが知られている。   As a method of molding such a foamed resin molded product, after injecting a foamable resin containing a foaming agent into the resin into the molding cavity of the molding die, the core of the molding die is moved so as to increase the volume of the cavity A molding method (so-called core back method) in which foaming of the foamable resin is promoted by causing the foaming resin to be promoted is known. It is known that by using this core back method, it is possible to obtain a foamed resin molded product having a small variation in the foamed cell diameter.

例えば特許文献1には、発泡剤が含有される繊維含有溶融熱可塑性樹脂を材料に用い、この材料樹脂を金型のキャビティ内に射出した後に、金型キャビティの容積が拡大する方向に可動型を後退させることにより、繊維含有溶融熱可塑性樹脂を膨張させて成形した繊維強化軽量樹脂成形品およびその製造方法が開示されている。   For example, in Patent Document 1, a fiber-containing molten thermoplastic resin containing a foaming agent is used as a material, and after the material resin is injected into the cavity of the mold, the movable mold is expanded in the direction in which the volume of the mold cavity increases. A fiber-reinforced lightweight resin molded product formed by expanding the fiber-containing molten thermoplastic resin by retreating the fiber and a method for producing the same are disclosed.

また、例えば特許文献2には、全体としては発泡体の特性を維持しながら強度が必要な特定箇所のみをソリッド化させることを企図して、発泡性樹脂を成形型のキャビティ内に注入して発泡性樹脂を発泡させた後に、キャビティの特定部分についてはその容積を縮小または消失させるように成形型のコア部を移動させることにより、強度が必要な特定箇所のみを部分的にソリッド化させるようにした成形方法が開示されている。   Further, for example, Patent Document 2 intends to solidify only a specific portion requiring strength while maintaining the properties of the foam as a whole, and injecting a foamable resin into the cavity of the mold. After foaming the foamed resin, move the core part of the mold so that the volume of the specific part of the cavity is reduced or eliminated, so that only the specific part that needs strength is solidified. A forming method is disclosed.

ところで、発泡樹脂成形品を他の部品もしくは部材(以下、相手部材という)に取り付けて使用する場合、その取付構造として、発泡樹脂成形品にその表面から突出する所定高さの突起状の取付部(加圧取付部)を一体成形しておき、この加圧取付部を相手部材に当接させ加圧して取り付ける構造は一般に良く知られている。   By the way, when the foamed resin molded product is used by being attached to another part or member (hereinafter referred to as a mating member), the mounting structure is a protruding mounting portion having a predetermined height protruding from the surface of the foamed resin molded product. A structure in which the (pressure attaching portion) is integrally formed and the pressure attaching portion is brought into contact with a mating member and attached by pressure is well known.

例えば、自動車等の車両用の空調装置に付設する空調ダクトには、軽量性や断熱性などに優れた発泡樹脂成形品が多用されているが、この空調ダクトを車室前端に位置するインストルメントパネルの背面を通して配設する場合、発泡樹脂成形品の空調ダクトの取付座面に該取付座面から突出する所定高さの突起状の加圧取付部を一体成形しておき、該加圧取付部をインストルメントパネルの背面に加圧当接させ、振動溶着法を適用して、当接部に加圧状態で振動を加えることにより、空調ダクトをインストルメントパネルの背面に取り付ける(溶着する)ことが考えられる。   For example, air-conditioning ducts attached to air-conditioning equipment for vehicles such as automobiles often use foamed resin molded products with excellent lightness and heat insulation properties, but this air-conditioning duct is located at the front end of the passenger compartment. When installing through the back of the panel, the pressure mounting part of a predetermined height protruding from the mounting seat surface is integrally formed on the mounting seat surface of the air conditioning duct of the foamed resin molded product, and the pressure mounting The air conditioning duct is attached (welded) to the back of the instrument panel by applying pressure welding to the back of the instrument panel and applying vibration welding to the contact part in a pressurized state. It is possible.

このようにして突起状の加圧取付部で発泡樹脂成形品を相手部材に取り付ける場合、強度が必要とされる加圧取付部自体は、一般に、発泡樹脂成形品の成形過程で成形型に接触することによる冷却効果で発泡が抑制され、非発泡状態(つまりソリッド状態)又は発泡倍率が非常に低い状態に維持されるように、諸条件が設定される。   When the foamed resin molded product is attached to the mating member with the protruding pressure mounting portion in this way, the pressure mounting portion itself that requires strength is generally in contact with the mold during the molding process of the foamed resin molded product. Various conditions are set so that foaming is suppressed by the cooling effect caused by this, and the non-foamed state (that is, the solid state) or the foaming ratio is maintained at a very low state.

図11及び図12は、従来例に係る突起状の加圧取付部およびその周辺の発泡成形を模式的に示す説明図で、図11は成形キャビティ内に発泡樹脂を充填した状態を、図12は成形キャビティの容積を拡大させて材料樹脂を発泡させた状態を、それぞれ示している。   FIG. 11 and FIG. 12 are explanatory diagrams schematically showing a protrusion-like pressure mounting portion according to the conventional example and foam molding around it, and FIG. 11 shows a state in which foam resin is filled in the molding cavity. Shows the state in which the volume of the molding cavity is expanded to foam the material resin.

固定型221と可動型225とで形成された成形キャビティ229内に発泡性樹脂231を充填し(図11参照)、その後、可動型225を後退させて所謂コアバックを行うことにより、成形キャビティ229が拡大されて材料樹脂231が発泡し、成形品210の本体部分211(発泡本体部)が発泡成形されるのであるが(図12参照)、この場合、突起状の加圧取付部213については、固定型221内に突出している関係上、固定型221との接触面積が非常に大きく、固定型221による冷却効果が非常に高く、その全体について、発泡を抑制して非発泡状態または低発泡倍率状態に維持される。尚、成形型221、225に接触する発泡本体部211の表面およびその近傍部分についても、成形型221、225に熱を奪われることにより発泡が抑制され、通常、非発泡状態または低発泡倍率状態に維持される。
特開平11−156881号公報 特開2002−067111号公報
The molding cavity 229 formed by the fixed mold 221 and the movable mold 225 is filled with a foamable resin 231 (see FIG. 11), and then the movable mold 225 is retracted to perform so-called core back, thereby forming the molding cavity 229. Is expanded and the material resin 231 is foamed, and the main body portion 211 (foaming main body portion) of the molded product 210 is foam-molded (see FIG. 12). The contact area with the fixed mold 221 is very large due to the protrusion in the fixed mold 221, and the cooling effect of the fixed mold 221 is very high. The magnification is maintained. In addition, the foaming of the surface of the foaming main body portion 211 that is in contact with the molds 221 and 225 and the vicinity thereof is also suppressed by the heat deprived by the molds 221 and 225. Maintained.
Japanese Patent Laid-Open No. 11-156881 Japanese Patent Laid-Open No. 2002-067111

このようにして成形された発泡樹脂成形品210では、加圧取付部213自体は、前述のように発泡が抑制されて非発泡状態または低発泡倍率状態に維持されることで高い強度及び/又は剛性を有しているのであるが、発泡本体部211の前記加圧取付部213を支える部分(つまり加圧取付部213に連続する部分)は発泡状態で成形されているので、加圧取付部213に比して強度及び/又は剛性がかなり低くなっている。   In the foamed resin molded product 210 molded in this way, the pressure mounting portion 213 itself has a high strength and / or strength by suppressing foaming and maintaining the non-foamed state or the low foaming ratio state as described above. Although it has rigidity, the portion that supports the pressure mounting portion 213 of the foam main body portion 211 (that is, the portion that continues to the pressure mounting portion 213) is molded in a foamed state, so the pressure mounting portion Compared to 213, the strength and / or rigidity is considerably low.

この発泡樹脂成形品210を、図13に模式的に示すように、加圧取付部213の先端を樹脂製の相手部材216の表面に当接させ、振動溶着法にて相手部材216に取り付ける場合、図14に示すように、振動溶着時の加圧力によって発泡本体部211の加圧取付部213に連続する部分212が発泡本体部211側に沈み込んで取付座面(加圧取付部213を支持する支持面)も変形し、加圧取付部213が発泡本体部211内にめり込む。このため、加圧取付部213の先端と相手部材216の表面との間で必要な摩擦力が得られなくなり、溶着不良を招くという問題が生じる。尚、このような不具合を伴わない場合には、図15に示すように、発泡本体部211の加圧取付部213に連続する部分212に変形が生じることはなく、加圧取付部213の先端が相手部材216の表面に支障なく溶着される。   When the foamed resin molded product 210 is attached to the mating member 216 by vibration welding, with the tip of the pressure mounting portion 213 brought into contact with the surface of the mating member 216 made of resin, as schematically shown in FIG. As shown in FIG. 14, the portion 212 continuing to the pressure mounting portion 213 of the foam main body 211 sinks to the foam main body 211 due to the pressure applied during vibration welding, and the mounting seat surface (the pressure mounting portion 213 is The supporting surface is also deformed, and the pressure attachment portion 213 is recessed into the foam main body portion 211. For this reason, a necessary frictional force cannot be obtained between the front end of the pressure mounting portion 213 and the surface of the mating member 216, which causes a problem of poor welding. In the case where such a problem does not occur, as shown in FIG. 15, the portion 212 continuing to the pressure mounting portion 213 of the foam main body 211 is not deformed, and the tip of the pressure mounting portion 213 is not formed. Is welded to the surface of the counterpart member 216 without hindrance.

この発明は、前記技術的課題に鑑みてなされたもので、非発泡状態または低発泡倍率状態の加圧取付部を発泡樹脂成形品の発泡本体部から一体的に突出するように成形するに際して、相手部材への取付時の加圧力によって、発泡本体部の加圧取付部に連続する部分が発泡本体部側へ沈み込むことを防止できるようにすることを、基本的な目的とする。   This invention has been made in view of the above technical problem, and when molding the pressure mounting portion in a non-foamed state or a low foaming magnification state so as to protrude integrally from the foamed main body portion of the foamed resin molded product, It is a basic object to prevent a portion continuing to the pressure mounting portion of the foam main body portion from sinking into the foam main body portion side due to the applied pressure at the time of attachment to the mating member.

このため、本願の請求項1に係る発明(第1の発明)は、成形型内に充填された発泡性樹脂により、発泡樹脂成形品の発泡本体部を前記成形型の前記発泡本体部に対応する成形型部をコアバックさせることにより発泡成形すると共に、加圧されることにより相手部材に取り付けられる発泡抑制樹脂部から成る加圧取付部を前記発泡本体部から一体的に突出するように成形する、発泡樹脂成形品の成形方法であって、前記発泡本体部の前記加圧取付部に連続する部分に、前記発泡本体部の他の部分よりも、前記成形型部をコアバックさせるときのコアバック量率が小さく設定されて成形される加圧取付部基部を形成する、ことを特徴としたものである。
ここに、「発泡抑制樹脂部」とは、発泡が抑制されて非発泡状態(ソリッド状態)に保たれる部分のみならず、発泡はしてもその発泡倍率が非常に低い状態に保たれる部分も含むものであり、「コアバック量率」とは、成形型の発泡本体部に対応する成形型部をコアバックさせるときに、コアバック前の成形キャビティ厚さに対するコアバック後の成形キャビティ厚さの割合をいうものとする。
For this reason, the invention according to claim 1 of the present application (the first invention) corresponds to the foam main body portion of the foamed resin molded product corresponding to the foam main body portion of the mold by the foamable resin filled in the mold. Foam molding is performed by making the mold part to be cored back, and the pressure mounting part composed of the foam suppression resin part that is attached to the mating member when pressed is formed so as to protrude integrally from the foam main body part. A method for molding a foamed resin molded product, wherein the molding die portion is core-backed to a portion continuous with the pressure mounting portion of the foam main body portion rather than other portions of the foam main body portion. A pressure attachment base is formed that is formed with a core back amount rate set to a small value.
Here, the “foaming suppression resin part” is not only a part where foaming is suppressed and kept in a non-foamed state (solid state), but even when foaming, the foaming ratio is kept very low. The "core back amount ratio" is the molding cavity after the core back with respect to the molding cavity thickness before the core back when the molding die part corresponding to the foaming main body part of the molding die is cored back. The ratio of thickness shall be said.

また、本願の請求項2に係る発明(第2の発明)は、前記第1の発明において、前記加圧取付部基部は前記加圧取付部よりも幅広に形成される、ことを特徴としたものである。   The invention according to claim 2 of the present application (second invention) is characterized in that, in the first invention, the pressure attachment base is formed wider than the pressure attachment. Is.

更に、本願の請求項3に係る発明(第3の発明)は、前記第1又は第2の発明において、前記コアバックに先立って、前記成形型の前記加圧取付部に対応する成形型部内の発泡性樹脂を当該成形型部によって冷却することにより、前記加圧取付部を成形する、ことを特徴としたものである。   Furthermore, the invention according to claim 3 of the present application (third invention) is the first or second invention, in the mold part corresponding to the pressure mounting part of the mold prior to the core back. The pressure mounting part is formed by cooling the foamable resin by the mold part.

また更に、本願の請求項4に係る発明(第4の発明)は、前記第1から第3の発明の何れか一において、前記発泡性樹脂は物理発泡剤を含有している、ことを特徴としたものである。   Furthermore, the invention according to claim 4 of the present application (fourth invention) is characterized in that, in any one of the first to third inventions, the foamable resin contains a physical foaming agent. It is what.

また更に、本願の請求項5に係る発明(第5の発明)は、前記第4の発明において、前記物理発泡剤が超臨界状態の流体である、ことを特徴としたものである。   Furthermore, the invention according to claim 5 of the present application (fifth invention) is characterized in that, in the fourth invention, the physical foaming agent is a fluid in a supercritical state.

また更に、本願の請求項6に係る発明(第6の発明)は、互いに組み合わされて成形キャビティを形成する固定型と可動型とを有する成形型と、樹脂に発泡剤を含有させた発泡性樹脂を前記成形キャビティ内に注入する注入手段と、前記可動型を前記成形キャビティの容積を変化させるように前記固定型に対して移動させる可動型駆動手段と、を備え、前記発泡性樹脂を前記成形キャビティ内に注入し、前記成形キャビティ内に充填された発泡性樹脂によって発泡樹脂成形品の発泡本体部を前記可動型の前記発泡本体部に対応する成形型部をコアバックさせることにより発泡成形すると共に、加圧されることにより相手部材に取り付けられる発泡抑制樹脂部から成る加圧取付部を前記発泡本体部から一体的に突出するように成形する、発泡樹脂成形品の成形装置であって、前記発泡本体部の前記加圧取付部に連続する部分に、前記発泡本体部の他の部分よりも、前記成形型部をコアバックさせるときのコアバック量率が小さく設定されて成形される加圧取付部基部を形成する加圧取付部基部形成手段を更に備えている、ことを特徴としたものである。
ここに、「発泡抑制樹脂部」とは、発泡が抑制されて非発泡状態(ソリッド状態)に保たれる部分のみならず、発泡はしてもその発泡倍率が非常に低い状態に保たれる部分も含むものであり、「コアバック量率」とは、成形型の発泡本体部に対応する成形型部をコアバックさせるときに、コアバック前の成形キャビティ厚さに対するコアバック後の成形キャビティ厚さの割合をいうものとする。
Further, the invention according to claim 6 of the present application (sixth invention) is a mold having a fixed mold and a movable mold which are combined with each other to form a mold cavity, and a foaming property in which a foaming agent is contained in the resin. Injection means for injecting resin into the molding cavity; and movable mold drive means for moving the movable mold relative to the fixed mold so as to change the volume of the molding cavity; and Foam molding is performed by injecting into the molding cavity and core-backing the foaming body part of the foamed resin molded product with the foaming body part of the movable mold by the foamable resin filled in the molding cavity. And forming a pressure attachment portion composed of a foam suppression resin portion attached to the mating member by being pressurized so as to protrude integrally from the foam main body portion. A molding apparatus for a molded product, wherein the core back amount rate when the molding die part is cored back to the part continuing to the pressure mounting part of the foaming body part rather than the other part of the foaming body part Is further provided with a pressure attachment base portion forming means for forming a pressure attachment portion base portion that is set to be small.
Here, the “foaming suppression resin part” is not only a part where foaming is suppressed and kept in a non-foamed state (solid state), but even when foaming, the foaming ratio is kept very low. The "core back amount ratio" is the molding cavity after the core back with respect to the molding cavity thickness before the core back when the molding die part corresponding to the foaming main body part of the molding die is cored back. The ratio of thickness shall be said.

また更に、本願の請求項7に係る発明(第7の発明)は、前記第6の発明において、前記加圧取付部基部形成手段は、前記加圧取付部よりも幅広の加圧取付部基部を形成する、ことを特徴としたものである。   Furthermore, the invention according to claim 7 of the present application (seventh invention) is that, in the sixth invention, the pressure attachment base portion forming means is a pressure attachment portion base wider than the pressure attachment portion. It is characterized by forming.

また更に、本願の請求項8に係る発明(第8の発明)は、前記第6又は第7の発明において、前記コアバックに先立って、前記固定型の前記加圧取付部に対応する成形型部内の発泡性樹脂を当該成形型部によって冷却することにより、前記加圧取付部を成形する、ことを特徴としたものである。   Furthermore, the invention according to claim 8 of the present application (eighth invention) is the molding die corresponding to the pressure mounting portion of the fixed die prior to the core back in the sixth or seventh invention. The pressure mounting part is formed by cooling the foamable resin in the part by the mold part.

また更に、本願の請求項9に係る発明(第9の発明)は、前記第6から第8の発明の何れか一において、前記注入手段は物理発泡剤を含有する発泡性樹脂を注入する、ことを特徴としたものである。   Still further, an invention according to claim 9 of the present application (ninth invention) is any one of the sixth to eighth inventions, wherein the injection means injects a foamable resin containing a physical foaming agent. It is characterized by that.

また更に、本願の請求項10に係る発明(第10の発明)は、前記第9の発明において、前記注入手段は、前記物理発泡剤として超臨界状態の流体を含有する発泡性樹脂を注入する、ことを特徴としたものである。   Furthermore, the invention according to claim 10 of the present application (tenth invention) is the ninth invention, wherein the injection means injects a foamable resin containing a fluid in a supercritical state as the physical foaming agent. , Is characterized by that.

本願の第1の発明によれば、発泡本体部の加圧取付部に連続する部分に、発泡本体部の他の部分よりも、成形型部をコアバックさせるときのコアバック量率が小さく設定されて成形される加圧取付部基部を形成するようにしたことにより、発泡本体部の加圧取付部に連続する部分の強度及び/又は剛性を高めることができる。これにより、相手部材への取付時の加圧力に起因して、発泡本体部の加圧取付部に連続する部分が発泡本体部側へ沈み込むことを抑制し、取付不良を招くことを防止できる。   According to the first invention of the present application, the core back amount rate when the molding die portion is core-backed is set smaller than the other portion of the foam main body portion in the portion continuing to the pressure mounting portion of the foam main body portion. The strength and / or rigidity of the portion continuing to the pressure mounting portion of the foamed main body portion can be increased by forming the pressure mounting portion base that is molded. Thereby, it can suppress that the part which continues to the pressurization attachment part of a foaming main-body part sinks to the foaming main-body part side resulting from the applied pressure at the time of attachment to a counterpart member, and it can prevent that it causes attachment failure. .

また、本願の第2の発明によれば、前記加圧取付部基部を前記加圧取付部よりも幅広に形成したことにより、発泡本体部の加圧取付部に連続する部分のより広範な領域について強度及び/又は剛性を高めることができ、前記第1の発明の作用効果をより確実に得ることができる。   Further, according to the second invention of the present application, by forming the pressure attachment base portion wider than the pressure attachment portion, a wider area of a portion continuous with the pressure attachment portion of the foam main body portion. The strength and / or rigidity can be increased, and the operational effects of the first invention can be obtained more reliably.

更に、本願の第3の発明によれば、基本的には前記第1又は第2の発明と同様の作用効果を奏することができる。特に、前記コアバックに先立って、成形型の加圧取付部に対応する成形型部内の発泡性樹脂を当該成形型部によって冷却することにより、前記加圧取付部を成形するので、比較的に簡単な手段によって加圧取付部の成形を確実に行うことができる。   Furthermore, according to the third invention of the present application, basically the same operational effects as those of the first or second invention can be obtained. In particular, prior to the core back, the pressure mounting portion is molded by cooling the foamable resin in the molding die portion corresponding to the pressure mounting portion of the mold by the molding die portion. The pressure mounting portion can be reliably formed by simple means.

また更に、本願の第4の発明によれば、前記発泡性樹脂に物理発泡剤が含有されていることにより、前記第1から第3の何れか一の発明の作用効果をより確実に奏することができる。   Still further, according to the fourth invention of the present application, when the foamable resin contains a physical foaming agent, the effects of any one of the first to third inventions can be more reliably achieved. Can do.

また更に、本願の第5の発明によれば、前記物理発泡剤が超臨界状態の流体であることにより、前記第4の発明の作用効果を更に助長することができる。物理発泡剤として超臨界状態の流体を用いることで、より微細な発泡セルを有する発泡樹脂成形品を成形することができ、発泡樹脂成形品の全体的な物性をさらに向上させることができる。   Still further, according to the fifth invention of the present application, since the physical foaming agent is a fluid in a supercritical state, the operational effects of the fourth invention can be further promoted. By using a fluid in a supercritical state as the physical foaming agent, a foamed resin molded product having finer foam cells can be molded, and the overall physical properties of the foamed resin molded product can be further improved.

また更に、本願の第6の発明によれば、加圧取付部基部形成手段によって、発泡本体部の加圧取付部に連続する部分に、発泡本体部の他の部分よりも、成形型部をコアバックさせるときのコアバック量率が小さく設定されて成形される加圧取付部基部を形成するようにしたことにより、発泡本体部の加圧取付部に連続する部分の強度及び/又は剛性を高めることができる。これにより、相手部材への取付時の加圧力に起因して、発泡本体部の加圧取付部に連続する部分が発泡本体部側へ沈み込むことを抑制し、取付不良を招くことを防止できる。   Still further, according to the sixth invention of the present application, the pressure attaching part base forming means is configured so that the part of the foaming main body part continuous with the pressure attaching part is more than the other part of the foaming main body part. By forming the pressure attachment base that is molded with the core back amount rate set to be small when the core is made back, the strength and / or rigidity of the portion continuing to the pressure attachment of the foam main body is increased. Can be increased. Thereby, it can suppress that the part which continues to the pressurization attachment part of a foaming main-body part sinks to the foaming main-body part side resulting from the applied pressure at the time of attachment to a counterpart member, and it can prevent that it causes attachment failure. .

また更に、本願の第7の発明によれば、前記加圧取付部基部が前記加圧取付部よりも幅広に形成されることにより、発泡本体部の加圧取付部に連続する部分のより広範な領域について強度及び/又は剛性を高めることができ、前記第6の発明の作用効果をより確実に得ることができる。   Still further, according to the seventh invention of the present application, since the pressure attachment base portion is formed wider than the pressure attachment portion, a wider portion of the portion continuing to the pressure attachment portion of the foam main body portion is formed. The strength and / or rigidity of such a region can be increased, and the operational effects of the sixth invention can be obtained more reliably.

更に、本願の第8の発明によれば、基本的には前記第6又は第7の発明と同様の作用効果を奏することができる。特に、前記コアバックに先立って、固定型の加圧取付部に対応する成形型部内の発泡性樹脂を当該成形型部によって冷却することにより、前記加圧取付部を成形するので、比較的に簡単な手段によって加圧取付部の成形を確実に行うことができる。   Furthermore, according to the eighth invention of the present application, basically, the same operational effects as those of the sixth or seventh invention can be achieved. In particular, prior to the core back, the pressure mounting portion is molded by cooling the foamable resin in the molding die portion corresponding to the pressure mounting portion of the fixed mold by the molding die portion. The pressure mounting portion can be reliably formed by simple means.

また更に、本願の第9の発明によれば、注入手段で物理発泡剤が含有されている発泡性樹脂を注入することにより、前記第6から第8の何れか一の発明の作用効果をより確実に奏することができる。   Still further, according to the ninth invention of the present application, by injecting a foamable resin containing a physical foaming agent in the injection means, the operational effect of any one of the sixth to eighth inventions is further improved. It can be played reliably.

また更に、本願の第10の発明によれば、注入手段で物理発泡剤として超臨界状態の流体を含有する発泡性樹脂を注入することにより、前記第9の発明の作用効果を助長することができる。物理発泡剤として超臨界状態の流体を用いることで、より微細な発泡セルを有する発泡樹脂成形品を成形することができ、発泡樹脂成形品の全体的な物性をさらに向上させることができる。   Still further, according to the tenth invention of the present application, the effect of the ninth invention can be promoted by injecting a foamable resin containing a supercritical fluid as a physical foaming agent by the injection means. it can. By using a fluid in a supercritical state as the physical foaming agent, a foamed resin molded product having finer foam cells can be molded, and the overall physical properties of the foamed resin molded product can be further improved.

以下、本発明の実施形態を、添付図面を参照しながら説明する。本実施形態は、例えば、自動車等の車両用の空調装置に付設する空調ダクトを発泡樹脂成形品で形成し、この空調ダクトを車室前端に位置するインストルメントパネルの背面に取り付けることを想定した場合についてのものである。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the present embodiment, for example, it is assumed that an air conditioning duct attached to an air conditioner for a vehicle such as an automobile is formed of a foamed resin molded product, and this air conditioning duct is attached to the back of an instrument panel located at the front end of the passenger compartment. Is about the case.

図1は、本実施形態に係る発泡樹脂成形品としての前記空調ダクトの断面構造を示す断面説明図である。この図に示すように、前記空調ダクト1は、所定厚さを有する略半円状の断面を備えたダクト本体部2と、該ダクト本体部2の上下の端末部に形成された取付フランジ部3とを備え、各取付フランジ部3には、所定高さの突起状の取付部4(加圧取付部)が一体的に設けられている。   FIG. 1 is a cross-sectional explanatory view showing a cross-sectional structure of the air conditioning duct as a foamed resin molded product according to the present embodiment. As shown in the figure, the air-conditioning duct 1 includes a duct main body 2 having a substantially semicircular cross section having a predetermined thickness, and mounting flange portions formed at upper and lower end portions of the duct main body 2. 3, and each mounting flange portion 3 is integrally provided with a projecting mounting portion 4 (pressure mounting portion) having a predetermined height.

本実施形態では、この空調ダクト全体が、一体の発泡樹脂成形品1として成形されており、取付フランジ部3に一体成形された加圧取付部4をインストルメントパネル6の背面に加圧当接させ、振動溶着法を適用して、その当接部に加圧状態で振動を加えることにより、空調ダクト1がインストルメントパネル6の背面に溶着され、両者1、6間に通風路9が形成されるようになっている。このように空調ダクト1を発泡樹脂成形品としたことにより、軽量で断熱性に優れた空調ダクト1が得られる。   In the present embodiment, the entire air conditioning duct is molded as an integral foamed resin molded product 1, and the pressure mounting portion 4 integrally molded with the mounting flange portion 3 is pressed against the back surface of the instrument panel 6. By applying the vibration welding method and applying vibration to the contact portion in a pressurized state, the air-conditioning duct 1 is welded to the back surface of the instrument panel 6, and the ventilation path 9 is formed between the two 1 and 6. It has come to be. Thus, the air-conditioning duct 1 which was lightweight and excellent in heat insulation is obtained by making the air-conditioning duct 1 into the foamed resin molded product.

次に、前記空調ダクトの成形に用いた発泡樹脂成形法について説明する。この説明では、発泡樹脂成形品として、略板状の本体部に加圧取付部が一体成形されたワークが、簡略化されたモデルとして用いられている。図2は、前記ワークを発泡樹脂成形するための成形装置を模式的に示す断面図である。また、図3は、コアバック前における図2の要部を拡大して示す拡大断面図、図4は、コアバック後における図2の要部を拡大して示す拡大断面図である。   Next, the foamed resin molding method used for molding the air conditioning duct will be described. In this description, as a foamed resin molded product, a workpiece in which a pressure mounting portion is integrally formed with a substantially plate-shaped main body portion is used as a simplified model. FIG. 2 is a cross-sectional view schematically showing a molding apparatus for molding the workpiece with foamed resin. 3 is an enlarged cross-sectional view showing an enlarged main part of FIG. 2 before the core back, and FIG. 4 is an enlarged cross-sectional view showing an enlarged main part of FIG. 2 after the core back.

図4から分かるように、発泡樹脂成形品10(ワーク)は、略板状の本体部11(発泡本体部)と、該発泡本体部11から突出する所定高さの突起状の取付部13(加圧取付部)とを一体成形して構成されている。また、後述するように、発泡樹脂成形品10では、発泡本体部11の加圧取付部13に連続する部分に、発泡本体部11の他の部分よりもコアバック量率が小さく設定されて成形される加圧取付部基部14が形成されている。   As can be seen from FIG. 4, the foamed resin molded product 10 (workpiece) includes a substantially plate-like main body 11 (foaming main body) and a protruding mounting portion 13 (a predetermined height projecting from the foaming main body 11). The pressure attachment portion) is integrally formed. Further, as will be described later, in the foamed resin molded product 10, the core back amount ratio is set to be smaller than the other part of the foamed main body part 11 in the part continuing to the pressure attachment part 13 of the foamed main body part 11. A pressure attachment base 14 is formed.

図2に示すように、成形装置Mは、開閉可能な成形型20と、成形型20内の成形キャビティ29に発泡性樹脂を注入する注入手段としての射出装置30とを備えている。成形型20は、常時静止状態に維持される固定型21と、該固定型21に対して成形型20の開閉方向に移動可能に設けられた可動型25とで構成され、両者21、25を互いに組み合わせることで、ワーク形状に対応した成形キャビティ29が形成されている。可動型25は、図示しない可動型駆動機構に連結されており、該可動型駆動機構によって成形型20の開閉方向(図2の矢印Ya、Yb方向)に移動することができるようになっている。   As shown in FIG. 2, the molding apparatus M includes a mold 20 that can be opened and closed, and an injection apparatus 30 that serves as injection means for injecting a foamable resin into a molding cavity 29 in the mold 20. The mold 20 includes a fixed mold 21 that is always kept stationary, and a movable mold 25 that is movable with respect to the fixed mold 21 in the opening and closing direction of the mold 20. By combining each other, a molding cavity 29 corresponding to the workpiece shape is formed. The movable mold 25 is connected to a movable drive mechanism (not shown), and can be moved in the opening / closing direction of the mold 20 (arrows Ya and Yb in FIG. 2) by the movable drive mechanism. .

固定型21の型合わせ面の中央部分には所定高さの柱状の凸状部22が形成される一方、可動型25の型合わせ面の中央部分には、固定型21の凸状部22と組み合わされる凹状部26が形成されている。固定型21と可動型25とを組み合わせることにより、固定型21の凸状部22の外周面22sの外側に、可動型25の凹状部26の内周面26sが成形型20の開閉方向へ摺動可能に嵌合している。この嵌合状態で、固定型21の凸状部22の型面22fと、可動型25の凹状部26の型面26f及び内周面26sとで、成形キャビティ29が形成されている。   A columnar convex portion 22 having a predetermined height is formed in the central portion of the mold matching surface of the fixed mold 21, while the convex portion 22 of the fixed die 21 is formed in the central portion of the mold matching surface of the movable mold 25. A concave portion 26 to be combined is formed. By combining the fixed mold 21 and the movable mold 25, the inner peripheral surface 26 s of the concave section 26 of the movable mold 25 slides in the opening / closing direction of the molding mold 20 outside the outer peripheral surface 22 s of the convex section 22 of the fixed mold 21. It is movably fitted. In this fitted state, a mold cavity 29 is formed by the mold surface 22 f of the convex portion 22 of the fixed mold 21 and the mold surface 26 f and the inner peripheral surface 26 s of the concave portion 26 of the movable mold 25.

成形型20では、固定型21の凸状部22に、発泡樹脂成形品10の加圧取付部13に対応して型面22fから掘られた加圧取付部形成用溝部22gが設けられ、可動型25の凹状部26に、発泡樹脂成形品10の加圧取付部13に連続する部分に形成される加圧取付部基部14に対応して型面26fから掘られた加圧取付部基部形成用溝部26gが設けられ、加圧取付部基部形成用溝部26gは、その幅D2が加圧取付部形成用溝部22gの幅D1より広く設定されている。成形型20を型閉じした状態で、成形型20の開閉方向における成形キャビティ厚さは、型面26fに溝部26gのある部分の成形キャビティ厚さH2が、型面26fに溝部26gのない部分の成形キャビティ厚さH1より厚くなっている。   In the mold 20, the convex portion 22 of the fixed mold 21 is provided with a pressure mounting portion forming groove 22 g dug from the mold surface 22 f corresponding to the pressure mounting portion 13 of the foamed resin molded product 10. In the concave portion 26 of the mold 25, a pressure mounting portion base portion dug from the mold surface 26 f corresponding to the pressure mounting portion base portion 14 formed in a portion continuous with the pressure mounting portion 13 of the foamed resin molded product 10 is formed. The groove portion 26g for use is provided, and the pressure mounting portion base forming groove portion 26g has a width D2 wider than the width D1 of the pressure mounting portion forming groove portion 22g. With the molding die 20 closed, the molding cavity thickness in the opening / closing direction of the molding die 20 is such that the molding cavity thickness H2 of the portion having the groove 26g on the die surface 26f is the portion of the die surface 26f having no groove 26g. It is thicker than the molding cavity thickness H1.

固定型21の凸状部22の外周面22sと可動型25の凹状部26の内周面26sとの隙間(クリアランス)は、可動型25が固定型21に対して開閉方向へスムースに摺動でき、且つ、成形キャビティ29を形成した状態で、成形キャビティ29の内部に充填された発泡性樹脂が外部に漏洩することがないようにシール性を維持できる範囲内に設定されている。   A clearance (clearance) between the outer peripheral surface 22 s of the convex portion 22 of the fixed mold 21 and the inner peripheral surface 26 s of the concave portion 26 of the movable mold 25 is slid smoothly in the opening / closing direction of the movable mold 25 with respect to the fixed mold 21. It is set within a range in which the sealing property can be maintained so that the foamable resin filled in the molding cavity 29 does not leak to the outside in a state where the molding cavity 29 is formed.

また、固定型21と可動型25とによって成形キャビティ29を形成した状態で、前記可動型駆動機構(不図示)によって、可動型25を成形型20の型開き方向(図4の矢印Ya方向)へ所定量Eだけ移動させることにより、成形キャビティ29の容積を拡大させることができる。成形キャビティ29内に発泡性樹脂を注入した後に可動型25を型開き方向へ所定量Eだけ移動させて成形キャビティ29の容積を拡大させることにより、キャビティ29内の発泡性樹脂の発泡を促進する、所謂、コアバックを行うことができる。このコアバックでの可動型25の移動量Eは、可動型25の凹状部26の内周面26sが固定型21の凸状部22の外周面22sから離脱しない範囲で所定値に設定される。かかるコアバック法は、従来公知の手法と基本的には同じものである。   Further, in a state where the molding cavity 29 is formed by the fixed mold 21 and the movable mold 25, the movable mold 25 is moved in the mold opening direction of the molding mold 20 (the direction of the arrow Ya in FIG. 4) by the movable mold driving mechanism (not shown). The volume of the molding cavity 29 can be increased by moving it by a predetermined amount E. After injecting the foamable resin into the molding cavity 29, the movable mold 25 is moved by a predetermined amount E in the mold opening direction to increase the volume of the molding cavity 29, thereby promoting foaming of the foamable resin in the cavity 29. So-called core back can be performed. The movement amount E of the movable mold 25 in the core back is set to a predetermined value within a range in which the inner peripheral surface 26s of the concave portion 26 of the movable mold 25 does not separate from the outer peripheral surface 22s of the convex portion 22 of the fixed mold 21. . The core back method is basically the same as a conventionally known method.

本実施形態では、加圧取付部形成用溝部22gに対応して、具体的には対向して加圧取付部基部形成用溝部26gが設けられるので、可動型25を成形型20の型開き方向へ所定量Eだけ移動して成形キャビティ29の容積を拡大させて発泡性樹脂の発泡を促進させる際に、発泡本体部11の加圧取付部13に連続する部分に、コアバック量率が小さく設定されて成形される加圧取付部基部14が形成される。ここで、「コアバック量率」とは、成形型20の発泡本体部11に対応する成形型部、具体的には可動型25をコアバックさせるときに、コアバック前の成形キャビティ厚さに対するコアバック後の成形キャビティ厚さの割合をいうものとする。   In the present embodiment, since the pressure mounting portion base forming groove portion 26g is provided so as to correspond to the pressure mounting portion forming groove portion 22g, specifically, the movable die 25 is moved in the mold opening direction. When the volume of the molding cavity 29 is increased by moving a predetermined amount E to promote foaming of the foamable resin, the core back amount ratio is small in the portion continuing to the pressure mounting portion 13 of the foam main body portion 11. A pressure mounting base 14 that is set and molded is formed. Here, the “core back amount rate” refers to the mold cavity thickness before the core back when the mold part corresponding to the foaming main body part 11 of the mold 20, specifically, the movable mold 25 is core-backed. The ratio of the thickness of the molding cavity after the core back shall be said.

図4に示すように、可動型25を成形型20の型開き方向へ所定量Eだけ移動して成形キャビティ29の容積を拡大させると、型面26fに溝部26gのある部分の成形型20の開閉方向における成形キャビティ厚さがH2+Eとなり、型面26fに溝部26gのない部分の成形型20の開閉方向における成形キャビティ厚さがH1+Eとなる。これにより、成形キャビティ29のコアバック量率は、型面26fに溝部26gのある部分の成形キャビティ29のコアバック量率が(H2+E)/H2となり、型面26fに溝部26gのない部分の成形キャビティ29のコアバック量率が(H1+E)/H1となり、型面26fに溝部26gを設けることで、成形キャビティ29のコアバック量率が小さく設定されている。   As shown in FIG. 4, when the movable mold 25 is moved by a predetermined amount E in the mold opening direction of the mold 20 to increase the volume of the mold cavity 29, the part of the mold 20 having the groove 26 g on the mold surface 26 f is expanded. The molding cavity thickness in the opening / closing direction is H2 + E, and the molding cavity thickness in the opening / closing direction of the molding die 20 at the portion where the mold surface 26f does not have the groove 26g is H1 + E. As a result, the core back amount rate of the molding cavity 29 is (H2 + E) / H2 in the portion of the molding cavity 29 where the groove 26g is on the mold surface 26f, and the portion of the mold surface 26f where the groove 26g is not present. The core back amount ratio of the cavity 29 is (H1 + E) / H1, and the core back amount ratio of the molding cavity 29 is set small by providing the groove portion 26g on the mold surface 26f.

射出装置30は、樹脂に発泡剤を含有させた発泡性樹脂を成形型20の成形キャビティ29内に注入するもので、例えば樹脂ペレットとして供給される材料樹脂32を混錬溶融させるシリンダ33を備えている。該シリンダ33の内部には、回転スクリュー34が配設され、このスクリュー34の後端には、具体的には図示しなかったが、スクリュー34を回転駆動する回転駆動機構、及びスクリュー34を前進動させて溶融樹脂を成形キャビティ29に向けて射出する射出機構が連結されている。射出装置30では、シリンダ33内に投入された材料樹脂32が、シリンダ33の周囲に設けられた加熱ヒータ(不図示)によって順次加熱されると共に、スクリュー34によって混錬される。   The injection device 30 is for injecting a foamable resin containing a foaming agent into a resin into the molding cavity 29 of the mold 20, and includes a cylinder 33 for kneading and melting a material resin 32 supplied as resin pellets, for example. ing. A rotary screw 34 is disposed inside the cylinder 33, and although not specifically shown at the rear end of the screw 34, a rotary drive mechanism that rotates the screw 34 and the screw 34 are moved forward. An injection mechanism for moving and injecting the molten resin toward the molding cavity 29 is connected. In the injection device 30, the material resin 32 put into the cylinder 33 is sequentially heated by a heater (not shown) provided around the cylinder 33 and is kneaded by a screw 34.

射出装置30には、二酸化炭素又は窒素等の不活性ガスを貯留したボンベ35、前記不活性ガスを超臨界状態にする超臨界流体発生装置36、及び超臨界状態にされた不活性ガスをシリンダ33内に注入する超臨界流体注入装置37が付設されている。そして、ボンベ35から供給され超臨界流体発生装置36によって超臨界状態にされた不活性ガスが、超臨界流体注入装置37によって、シリンダ33内で混錬溶融された樹脂32に注入され、樹脂32に発泡剤を含有させた発泡性樹脂31が形成されるようになっている。   The injection device 30 includes a cylinder 35 storing an inert gas such as carbon dioxide or nitrogen, a supercritical fluid generator 36 for bringing the inert gas into a supercritical state, and a cylinder containing the inert gas brought into the supercritical state. A supercritical fluid injecting device 37 for injecting into the inside 33 is attached. Then, the inert gas supplied from the cylinder 35 and brought into the supercritical state by the supercritical fluid generator 36 is injected by the supercritical fluid injector 37 into the resin 32 kneaded and melted in the cylinder 33. A foamable resin 31 containing a foaming agent is formed.

シリンダ33内の発泡性樹脂31は、スクリュー34が前記回転駆動機構によって回転されるとともに前記射出機構によって前進動させられることにより、成形型20の成形キャビティ29内に注入される。成形型20には、具体的には固定型21には、発泡性樹脂31を成形キャビティ29に向かって注入するための樹脂通路24が設けられている。   The foamable resin 31 in the cylinder 33 is injected into the molding cavity 29 of the molding die 20 as the screw 34 is rotated by the rotation driving mechanism and moved forward by the injection mechanism. Specifically, the molding die 20 is provided with a resin passage 24 for injecting the foamable resin 31 toward the molding cavity 29 in the stationary die 21.

材料樹脂32としては、例えば、ポリプロピレン樹脂などの熱可塑性樹脂が用いられる。また、本実施形態では、発泡性樹脂31に含有される発泡剤に、物理発泡剤として超臨界状態にある流体を用いているが、その他の物理発泡剤を用いてもよい。或いは、化学発泡剤を使用することもできる。   As the material resin 32, for example, a thermoplastic resin such as a polypropylene resin is used. Moreover, in this embodiment, although the fluid in a supercritical state is used as a physical foaming agent for the foaming agent contained in the foamable resin 31, other physical foaming agents may be used. Alternatively, chemical blowing agents can be used.

尚、物理発泡剤を樹脂に含有させた場合には、化学発泡剤を用いた場合に比して、一般に、発泡圧が高くなり発泡し易くなることが知られている。また、物理発泡剤として超臨界状態の流体を用いることで、より微細な発泡セルを有する発泡樹脂成形品を成形することができ、発泡樹脂成形品の全体的な物性をさらに向上させることができる。   In addition, when a physical foaming agent is contained in a resin, it is generally known that the foaming pressure becomes higher and foaming is easier than when a chemical foaming agent is used. Further, by using a fluid in a supercritical state as a physical foaming agent, a foamed resin molded product having finer foam cells can be molded, and the overall physical properties of the foamed resin molded product can be further improved. .

具体的には図示しなかったが、成形装置Mは、該成形装置Mを総合的に制御する制御ユニットを備えている。該制御ユニットは、例えばマイクロコンピュータを主要部として構成されており、成形型20の作動制御、射出装置30の作動制御等の各種制御を行う。   Although not specifically shown, the molding apparatus M includes a control unit that comprehensively controls the molding apparatus M. The control unit includes, for example, a microcomputer as a main part, and performs various controls such as operation control of the mold 20 and operation control of the injection device 30.

次に、成形装置Mを用いた発泡樹脂成形品10(ワーク)の成形について説明する。先ず、可動型25が固定型21と組み合わされ、固定型21の凸状部22の外側部分に可動型25の凹状部26の外側部分がほぼ当接した状態(図2参照)で、成形キャビティ29に、樹脂32に発泡剤として超臨界状態の流体を含有させた発泡性樹脂31が射出装置30から注入される。   Next, molding of the foamed resin molded product 10 (work) using the molding apparatus M will be described. First, the movable die 25 is combined with the fixed die 21, and the molding cavity is in a state where the outer portion of the concave portion 26 of the movable die 25 is substantially in contact with the outer portion of the convex portion 22 of the fixed die 21 (see FIG. 2). 29, a foamable resin 31 containing a resin 32 containing a fluid in a supercritical state as a foaming agent is injected from the injection device 30.

成形キャビティ29に発泡性樹脂31が充填されると、図3に示されるように、突起状の加圧取付部13については、固定型21の凸状部22内に突出している関係上、固定型21との接触面積が非常に大きく、固定型21の加圧取付部13に対応する成形型部22aによる冷却効果が高く、発泡が抑制されて非発泡状態(ソリッド状態)または低発泡倍率状態に加圧取付部13が成形される。後続する工程でコアバックを行っても、加圧取付部13は、非発泡状態または発泡倍率が極めて低い状態に維持され、加圧取付部13の強度及び/又は剛性を高めることができる。   When the foaming resin 31 is filled in the molding cavity 29, as shown in FIG. 3, the protruding pressure mounting portion 13 is fixed because it protrudes into the convex portion 22 of the fixed mold 21. The contact area with the mold 21 is very large, the cooling effect by the molding die portion 22a corresponding to the pressure mounting portion 13 of the fixed die 21 is high, and the foaming is suppressed so that the foaming is suppressed (solid state) or the low foaming ratio state. The pressure mounting portion 13 is molded. Even if the core back is performed in the subsequent process, the pressure attachment portion 13 is maintained in a non-foamed state or a state where the expansion ratio is extremely low, and the strength and / or rigidity of the pressure attachment portion 13 can be increased.

その後、図4に示されるように、可動型25を所定量Eだけ後退させてコアバックを行うことにより、成形キャビティ29が拡大されて発泡性樹脂31が発泡し、ワーク10の本体部分11(発泡本体部)が発泡成形されるのであるが、発泡本体部11のうち加圧取付部13に連続した所定範囲の部分14(加圧取付部基部)については、加圧取付部13に対応して加圧取付部基部形成用溝部26gが設けられ、成形キャビティ29のコアバック量率が小さく設定されて成形されるので、発泡本体部11の他の部分よりも、発泡が効果的に抑制され、発泡倍率が低い状態に維持され、その強度及び/又は剛性が高められている。   Thereafter, as shown in FIG. 4, by moving the movable die 25 by a predetermined amount E and performing core back, the molding cavity 29 is expanded and the foamable resin 31 is foamed, and the main body portion 11 ( The foamed main body part) is foam-molded, but a portion 14 (pressurized mounting base) of the foamed main body part 11 that is continuous with the pressure mounting part 13 corresponds to the pressure mounting part 13. Since the pressure mounting portion base forming groove portion 26g is provided and the molding cavity 29 is molded with the core back amount ratio set to be small, foaming is more effectively suppressed than the other portions of the foam main body portion 11. The foaming ratio is maintained at a low state, and the strength and / or rigidity thereof is increased.

尚、このように発泡本体部11の成形にコアバック法を適用したことにより、発泡セル径のバラツキが小さい発泡本体部11の成形を行うことができる。また、本実施例では、化学発泡剤を用いた場合に比して、一般に、発泡圧が高くなり発泡し易くなる物理発泡剤を樹脂に含有させたが、かかる物理発泡剤を適用した場合でも、加圧取付部13及び加圧取付部基部14について、効果的に発泡を抑制することができた。しかも、比較的に簡単な手段によって加圧取付部の成形をより確実に行うことができる。特に、物理発泡剤として超臨界状態の流体を用いたことで、より微細な発泡セルを有する発泡樹脂成形品10(ワーク)を成形し、ワーク10の全体的な物性をさらに向上させることができた。   In addition, by applying the core back method to the molding of the foam main body 11 as described above, the foam main body 11 having a small variation in the foam cell diameter can be molded. Further, in this example, compared with the case where a chemical foaming agent is used, generally, a physical foaming agent that increases foaming pressure and easily foams is contained in the resin, but even when such a physical foaming agent is applied. In addition, the pressure attachment portion 13 and the pressure attachment portion base portion 14 were able to effectively suppress foaming. In addition, the pressure mounting portion can be more reliably formed by a relatively simple means. In particular, by using a fluid in a supercritical state as a physical foaming agent, it is possible to form a foamed resin molded product 10 (work) having finer foam cells and further improve the overall physical properties of the work 10. It was.

前記コアバック工程を終えると、可動型25が更に型開き方向へ移動させられて型開きが行われ、発泡樹脂成形されたワーク10が取り出される。以上で1サイクルの成形工程が終了する。   When the core back process is finished, the movable mold 25 is further moved in the mold opening direction, the mold opening is performed, and the work 10 molded with the foamed resin is taken out. This completes one cycle of the molding process.

このように成形されたワーク10は、振動溶着法を適用して合成樹脂製の所定の相手部材に取り付けられる。図5は、このワーク10の相手部材への振動溶着工程を模式的に示す断面図である。この図に示されるように、振動溶着装置40は、接離可能に設けられた一対の金型(例えば、上型41、下型45)を備えており、下型45に合成樹脂製の相手部材16が保持される。一方、上型41には、ワークホルダ42(保持具)を介して、前記ワーク10が加圧取付部13を下方に向けて保持される。   The workpiece 10 thus molded is attached to a predetermined mating member made of synthetic resin by applying a vibration welding method. FIG. 5 is a cross-sectional view schematically showing the vibration welding process of the workpiece 10 to the mating member. As shown in this figure, the vibration welding apparatus 40 includes a pair of molds (for example, an upper mold 41 and a lower mold 45) provided so as to be able to contact and separate, and the lower mold 45 is made of a synthetic resin counterpart. The member 16 is held. On the other hand, the work 10 is held by the upper die 41 with the pressure mounting portion 13 facing downward via a work holder 42 (holding tool).

下型45は、付設された駆動装置(不図示)により上型41に対して進退動可能で、上型41側に前進することで、ワーク10の加圧取付部13と相手部材16とを当接させ、加圧状態に維持することができる。上型41は、付設された加振装置(不図示)によって、例えば上下左右および斜め方向に所定の振幅および振動数で加振することができる。そして、図5に示したようにワーク10と相手部材16をそれぞれ上型41と下型45にセットした状態で、下型45を前進させて、ワーク10の加圧取付部13と相手部材16とを当接させ加圧状態とし、その状態で上型41を加振することにより、ワーク10が加圧取付部13で相手部材16に溶着される。   The lower die 45 can be moved back and forth with respect to the upper die 41 by an attached driving device (not shown), and moves forward to the upper die 41 side, thereby connecting the pressure mounting portion 13 of the workpiece 10 and the counterpart member 16. It can be contacted and maintained in a pressurized state. The upper die 41 can be vibrated with a predetermined amplitude and frequency, for example, vertically and horizontally, and obliquely by an attached vibration device (not shown). Then, as shown in FIG. 5, with the workpiece 10 and the counterpart member 16 set on the upper die 41 and the lower die 45, respectively, the lower die 45 is advanced, and the pressure mounting portion 13 and the counterpart member 16 of the workpiece 10 are moved forward. Are brought into a pressurized state, and the upper die 41 is vibrated in that state, whereby the workpiece 10 is welded to the mating member 16 by the pressure mounting portion 13.

本実施形態では、例えば、次の条件で振動溶着を行った。
・加圧力:1〜4MPa
・振動数:100〜250Hz
・振幅 :0.5〜3.0mm
・加振方向:上下、左右、斜め
・加振時間:数秒間
In this embodiment, for example, vibration welding is performed under the following conditions.
・ Pressure force: 1-4 MPa
・ Frequency: 100-250Hz
・ Amplitude: 0.5 to 3.0 mm
・ Excitation direction: Up and down, left and right, diagonal ・ Excitation time: Several seconds

以上の条件で振動溶着を行った結果、加圧取付部13の先端面の沈み量は、1〜2mmであり、前記図14に模式的に示すように、発泡本体部11の加圧取付部13に連続する部分に変形が生じることはなく、加圧取付部13の先端を相手部材16の表面に支障なく溶着させることができた。   As a result of performing vibration welding under the above conditions, the amount of sinking of the tip surface of the pressure mounting portion 13 is 1 to 2 mm, and as schematically shown in FIG. 14, the pressure mounting portion of the foam main body portion 11. No deformation occurred in the portion continuing to 13, and the tip of the pressure mounting portion 13 could be welded to the surface of the mating member 16 without hindrance.

以上、説明したように、本実施形態によれば、ワーク10の発泡本体部11の加圧取付部13に連続する部分に、発泡本体部11の他の部分よりも、コアバック量率が小さく設定されて成形される加圧取付部基部14を形成するようにしたことにより、発泡本体部11の加圧取付部13に連続する部分の強度及び/又は剛性を高めることができる。これにより、相手部材16への取付時の加圧力に起因して、発泡本体部11の加圧取付部13に連続する部分が発泡本体部11側へ沈み込むことを抑制し、取付不良を招くことを有効に防止できるのである。   As described above, according to the present embodiment, the core back amount rate is smaller in the portion continuing to the pressure mounting portion 13 of the foam main body portion 11 of the work 10 than in the other portions of the foam main body portion 11. By forming the pressure attachment base 14 that is set and molded, the strength and / or rigidity of the portion of the foam main body 11 that is continuous with the pressure attachment 13 can be increased. Thereby, due to the applied pressure at the time of attachment to the counterpart member 16, it is possible to suppress the portion of the foam main body portion 11 continuing to the pressure attachment portion 13 from sinking to the foam main body portion 11 side, resulting in poor attachment. This can be effectively prevented.

なお、発泡本体部11のコアバック量率が小さく設定されて形成される加圧取付部基部14は、発泡本体部11の加圧取付部13に連続する部分全体に、あるいはその一部に形成するようにしてもよい。図6は、加圧取付部基部形成用溝部の形状を説明するために、該溝部の形状を反映した成形型の成形キャビティを示す斜視図であり、図6の(a)は、発泡本体部の加圧取付部に連続する部分全体に加圧取付部基部を形成するための成形型の成形キャビティを示し、図6の(b)は、発泡本体部の加圧取付部に連続する部分の一部に加圧取付部基部を形成するための成形型の成形キャビティを示している。   The pressure attachment base 14 formed by setting the core back amount ratio of the foam main body 11 to be small is formed on the entire portion of the foam main body 11 continuous to the pressure attachment 13 or on a part thereof. You may make it do. FIG. 6 is a perspective view showing a molding cavity of a molding die reflecting the shape of the groove for explaining the shape of the pressure mounting portion base forming groove, and FIG. FIG. 6B shows a molding cavity of a molding die for forming a pressure mounting base at the entire portion continuing to the pressure mounting portion of FIG. A molding cavity of a molding die for forming a pressure attachment base portion in part is shown.

本実施形態では、図6(a)に示すように、加圧取付部形成用溝部22gの形状を反映し成形キャビティ29の板状の本体部分29aから突出する部分29bと、加圧取付部基部形成用溝部26gの形状を反映し成形キャビティ29の板状の本体部分29aから矩形状に突出する部分29cとを備える成形キャビティ29を形成する成形型20を用いることができる。成形キャビティ29の溝部26gの形状を反映した部分29cから分かるように、加圧取付部基部形成用溝部26gは、加圧取付部形成用溝部22gに沿って連続的に形成されている。かかる溝部26gを備えた成形型20を用いて成形される発泡樹脂成形品10では、発泡本体部11の加圧取付部13に連続する部分全体に加圧取付部基部14が形成される。   In this embodiment, as shown in FIG. 6A, a portion 29b that projects from the plate-like main body portion 29a of the molding cavity 29 reflecting the shape of the pressure attachment portion forming groove 22g, and a pressure attachment portion base portion A molding die 20 that forms a molding cavity 29 that includes a portion 29c that protrudes in a rectangular shape from a plate-like main body portion 29a of the molding cavity 29 reflecting the shape of the forming groove 26g can be used. As can be seen from the portion 29c reflecting the shape of the groove portion 26g of the molding cavity 29, the pressure attachment portion base forming groove portion 26g is continuously formed along the pressure attachment portion forming groove portion 22g. In the foamed resin molded product 10 molded using the molding die 20 provided with the groove 26g, the pressure attachment base 14 is formed on the entire portion of the foam main body 11 continuous with the pressure attachment 13.

また、図6(b)に示すように、加圧取付部形成用溝部22gの形状を反映し成形キャビティ29の板状の本体部分29aから突出する部分29bと、加圧取付部基部形成用溝部26gの形状を反映し成形キャビティ29の板状の本体部分29aから円柱状に突出する部分29dとを備える成形キャビティ29を形成する成形型20を用いることができる。成形キャビティ29の溝部26gの形状を反映した部分29dから分かるように、加圧取付部基部形成用溝部26gは、溝部22gに沿って連続的でなく溝部22gの一部に対応して形成させるようにしてもよい。かかる溝部26gを備えた成形型20を用いて成形される発泡樹脂成形品10では、発泡本体部11の加圧取付部13に連続する部分の一部に加圧取付部基部14が形成される。なお、図6(b)では、成形キャビティ29の円柱状に突出した部分29dが1つのみ示されているが、所定間隔毎に複数設けられるように溝部26gを形成するようにしてもよい。   Further, as shown in FIG. 6B, a portion 29b protruding from the plate-like main body portion 29a of the molding cavity 29 reflecting the shape of the pressure mounting portion forming groove portion 22g, and a pressure mounting portion base forming groove portion A molding die 20 that forms a molding cavity 29 that includes a portion 29d that reflects the shape of 26g and protrudes in a cylindrical shape from the plate-like main body portion 29a of the molding cavity 29 can be used. As can be seen from the portion 29d reflecting the shape of the groove portion 26g of the molding cavity 29, the pressure mounting portion base forming groove portion 26g is not formed continuously along the groove portion 22g but corresponding to a part of the groove portion 22g. It may be. In the foamed resin molded article 10 molded using the molding die 20 provided with the groove 26g, the pressure attachment base 14 is formed in a part of the portion of the foam main body 11 continuous to the pressure attachment 13. . In FIG. 6B, only one portion 29d protruding in a columnar shape of the molding cavity 29 is shown, but the groove 26g may be formed so as to be provided at a predetermined interval.

前述した実施形態では、発泡樹脂成形品10の成形に際して、発泡本体部11の加圧取付部13に連続する部分に発泡本体部11の他の部分よりもコアバック量率が小さく設定されて成形される加圧取付部基部14を形成するために、可動型25に加圧取付部基部形成用溝部26gが設けられているが、加圧取付部基部形成用溝部を固定型21に設けるようにしてもよい。   In the above-described embodiment, when the foamed resin molded product 10 is molded, the core back amount ratio is set to be smaller than the other parts of the foamed main body part 11 at the part continuing to the pressure mounting part 13 of the foamed main body part 11. In order to form the pressure mounting base 14 to be formed, the movable mounting 25 is provided with a pressure mounting base base forming groove 26g, but the pressure mounting base base forming groove 26 is provided in the fixed mold 21. May be.

図7は、前記成形装置に用いる成形型の第1の変形例を示す要部断面図であり、図7の(a)は、前記成形型の成形キャビティ内に発泡性樹脂が充填された状態を示し、図7の(b)は、成形キャビティの容積を拡大させて材料樹脂を発泡させた状態を示している。前記成形型50は、固定型51と可動型55とが互いに組み合わされて成形キャビティ59が形成され、固定型51には、加圧取付部形成用溝部52gと、該溝部52gに連続して半円状の断面を有し該溝部52gより幅広に形成される加圧取付部基部形成用溝部53gとが、固定型51の型面52fから掘られて形成されている。   FIG. 7 is a cross-sectional view of an essential part showing a first modification of the mold used in the molding apparatus. FIG. 7A shows a state in which a foamable resin is filled in the molding cavity of the mold. FIG. 7B shows a state in which the volume of the molding cavity is enlarged and the material resin is foamed. In the molding die 50, a fixed die 51 and a movable die 55 are combined with each other to form a molding cavity 59. The fixed die 51 includes a pressure attachment portion forming groove portion 52g and a half portion continuous with the groove portion 52g. A pressure mounting portion base forming groove 53g having a circular cross section and formed wider than the groove 52g is formed by digging from the mold surface 52f of the fixed mold 51.

発泡性樹脂31が成形キャビティ59に注入されると、固定型51の加圧取付部に対応する成形型部52a内の発泡性樹脂31が当該成形型部52aによって冷却され、加圧取付部63が成形される。そして、図7(b)に示すように、可動型55を所定量だけ(図7のYa方向に)後退させてコアバックを行うことにより、成形キャビティ59が拡大されて発泡性樹脂31が発泡し、ワーク60の発泡本体部61が発泡成形される。   When the foamable resin 31 is injected into the molding cavity 59, the foamable resin 31 in the molding die portion 52 a corresponding to the pressure mounting portion of the fixed mold 51 is cooled by the molding die portion 52 a, and the pressure mounting portion 63. Is formed. Then, as shown in FIG. 7B, by moving the movable die 55 backward by a predetermined amount (in the Ya direction in FIG. 7) and performing the core back, the molding cavity 59 is expanded and the foamable resin 31 is foamed. Then, the foam main body 61 of the workpiece 60 is foam-molded.

しかしながら、発泡本体部61のうち加圧取付部63に連続した所定範囲の部分64(加圧取付部基部)については、固定型51に加圧取付部基部形成用溝部53gが設けられコアバック量率が小さく設定されて成形されるので、発泡本体部61の他の部分よりも、発泡が効果的に抑制され、発泡倍率が低い状態で成形され、その強度及び/又は剛性を高めることができる。   However, for a portion 64 (pressure attachment base portion) in a predetermined range that is continuous with the pressure attachment portion 63 in the foam main body portion 61, the fixed die 51 is provided with a pressure attachment portion base forming groove 53g, and the core back amount. Since the ratio is set to be small, the foaming is effectively suppressed as compared with the other parts of the foam main body 61, the foaming ratio is low, and the strength and / or rigidity can be increased. .

また、加圧取付部が発泡本体部から一体的に突出するように成形される発泡樹脂成形品の成形に際し、発泡本体部の加圧取付部に連続する部分に発泡本体部の他の部分よりもコアバック量率が小さく設定されて成形される加圧取付部基部を形成するために、加圧取付部基部形成用溝部を設けることなく、発泡本体部のコアバック方向における肉厚の差を利用して、発泡本体部のコアバック方向における肉厚が発泡本体部の他の部分より厚い部分に加圧取付部を形成するようにしてもよい。   In addition, when molding a foamed resin molded product that is molded so that the pressure mounting portion protrudes integrally from the foam main body portion, the other portion of the foam main body portion is connected to the portion continuing to the pressure mounting portion of the foam main body portion. In order to form a pressure attachment base that is molded with a small core back amount ratio, the difference in thickness in the core back direction of the foam main body can be obtained without providing a pressure attachment base forming groove. The pressure attachment portion may be formed in a portion where the thickness of the foam main body portion in the core back direction is thicker than other portions of the foam main body portion.

図8は、前記成形装置に用いる成形型の第2の変形例を示す断面説明図であり、図8の(a)は、前記成形型の成形キャビティ内に発泡性樹脂が充填された状態を示し、図8の(b)は、成形キャビティの容積を拡大させて材料樹脂を発泡させた状態を示している。前記成形型70は、固定型71と可動型75とが互いに組み合わされて成形キャビティ79が形成され、固定型71の型面72fは、成形型70の開閉方向に垂直な縦面部72sと成形型70の開閉方向に対して所定角度傾斜した斜面部72tとを備え、可動型75の型面76fは、成形型70の開閉方向に垂直な縦面部76sと成形型70の開閉方向に対して所定角度傾斜した斜面部76tと備えている。   FIG. 8 is a cross-sectional explanatory view showing a second modification of the mold used in the molding apparatus. FIG. 8A shows a state in which a foamable resin is filled in the molding cavity of the mold. FIG. 8B shows a state where the volume of the molding cavity is enlarged and the material resin is foamed. In the molding die 70, a fixed die 71 and a movable die 75 are combined with each other to form a molding cavity 79. A mold surface 72f of the fixed die 71 has a vertical surface portion 72s perpendicular to the opening / closing direction of the molding die 70 and a molding die. The mold surface 76f of the movable mold 75 is inclined with respect to the opening / closing direction of the mold 70, and the mold surface 76f of the movable mold 75 is predetermined with respect to the vertical surface section 76s perpendicular to the opening / closing direction of the molding mold 70 and the opening / closing direction of the molding mold 70. It is provided with an inclined slope portion 76t.

図8(a)に示すように、成形型70では、型面72fの縦面部72sと型面76fの縦面部76sとが所定距離隔てて対向して設けられ、型面72fの斜面部72tと型面76fの斜面部76tとが所定距離隔てて対向して設けられ、所定厚さを有する成形キャビティ79が形成されている。   As shown in FIG. 8A, in the molding die 70, the vertical surface portion 72s of the mold surface 72f and the vertical surface portion 76s of the mold surface 76f are provided facing each other with a predetermined distance therebetween, and the inclined surface portion 72t of the mold surface 72f. A molding cavity 79 having a predetermined thickness is formed so as to face the inclined surface 76t of the mold surface 76f with a predetermined distance.

したがって、成形型70の開閉方向における成形キャビティ厚さは、斜面部72t、76tによって形成される成形キャビティ79の厚さが、縦面部72s、76sによって形成される成形キャビティ79の厚さより厚く形成されている。また、加圧取付部形成用溝部72gは、固定型71の型面72fから、具体的には型面72fの斜面部72tから掘られて形成される。   Therefore, the molding cavity thickness in the opening and closing direction of the molding die 70 is formed such that the thickness of the molding cavity 79 formed by the slope portions 72t and 76t is larger than the thickness of the molding cavity 79 formed by the vertical surface portions 72s and 76s. ing. Further, the pressure attaching portion forming groove 72g is formed by digging from the mold surface 72f of the fixed mold 71, specifically from the inclined surface 72t of the mold surface 72f.

成形型70においても、発泡性樹脂31が成形キャビティ79に注入されると、固定型71の加圧取付部に対応する成形型部72a内の発泡性樹脂31が当該成形型部72aによって冷却され、加圧取付部83が成形される。図8(b)に示すように、可動型75を所定量だけ(図8(b)のYa方向に)後退させてコアバックを行うことにより、成形キャビティ79が拡大されて発泡性樹脂31が発泡し、ワーク80の発泡本体部81が発泡成形される。   Also in the molding die 70, when the foamable resin 31 is injected into the molding cavity 79, the foamable resin 31 in the molding die portion 72a corresponding to the pressure mounting portion of the fixed die 71 is cooled by the molding die portion 72a. Then, the pressure attachment portion 83 is formed. As shown in FIG. 8B, by moving the movable die 75 back by a predetermined amount (in the Ya direction in FIG. 8B) and performing the core back, the molding cavity 79 is expanded and the foamable resin 31 is expanded. Foaming is performed, and the foam main body 81 of the workpiece 80 is foam-molded.

しかしながら、発泡本体部81のうち加圧取付部83に連続した所定範囲の部分、具体的には斜面部72t、76tによって形成される成形キャビティにより成形される部分84(加圧取付部基部)については、コアバック前の成形型70の開閉方向における成形キャビティ厚さが厚く形成されコアバック量率が小さく設定されて成形されるので、発泡本体部81の他の部分、具体的には縦面部72s、76sによって形成される成形キャビティにより成形される部分よりも、発泡が効果的に抑制され、発泡倍率が非常に低い状態で成形され、その強度及び/又は剛性を高めることができる。   However, a portion of the foam main body 81 within a predetermined range continuous to the pressure mounting portion 83, specifically, a portion 84 (pressure mounting portion base) formed by a molding cavity formed by the slope portions 72t and 76t. Since the molding cavity thickness in the opening and closing direction of the molding die 70 before the core back is formed thick and the core back amount ratio is set small, the other part of the foam main body 81, specifically, the vertical surface part is formed. Foaming is suppressed more effectively than the portion formed by the molding cavity formed by 72s and 76s, and the molding is performed in a state where the expansion ratio is very low, and the strength and / or rigidity thereof can be increased.

図9は、前記成形装置に用いる成形型の第3の変形例を示す断面説明図であり、図9の(a)は、前記成形型の成形キャビティ内に発泡性樹脂が充填された状態を示し、図9の(b)は、成形キャビティの容積を拡大させて材料樹脂を発泡させた状態を示している。前記成形型90においても、固定型91と可動型95とが互いに組み合わされて成形キャビティ99が形成されている。   FIG. 9 is a cross-sectional explanatory view showing a third modification of the mold used in the molding apparatus. FIG. 9A shows a state in which a foamable resin is filled in the molding cavity of the mold. FIG. 9B shows a state where the volume of the molding cavity is enlarged and the material resin is foamed. Also in the molding die 90, the stationary die 91 and the movable die 95 are combined with each other to form a molding cavity 99.

また、固定型91の型面92fは、成形型90の開閉方向に垂直な縦面部92sと成形型90の開閉方向に対して所定角度傾斜した2つの斜面部92tとを備え、2つの斜面部92tは、成形型90の開閉方向に対して対称に設けられている。一方、可動型95の型面96fは、成形型90の開閉方向に垂直な縦面部96sと成形型90の開閉方向に対して所定角度傾斜した2つの斜面部96tと備え、2つの斜面部96tは、成形型90の開閉方向に対して対称に設けられる。   The mold surface 92f of the fixed mold 91 includes a vertical surface portion 92s perpendicular to the opening / closing direction of the forming die 90 and two inclined surface portions 92t inclined at a predetermined angle with respect to the opening / closing direction of the forming die 90. 92 t is provided symmetrically with respect to the opening / closing direction of the mold 90. On the other hand, the mold surface 96f of the movable die 95 includes a vertical surface portion 96s perpendicular to the opening / closing direction of the forming die 90 and two inclined surface portions 96t inclined at a predetermined angle with respect to the opening / closing direction of the forming die 90. Are provided symmetrically with respect to the opening and closing direction of the mold 90.

図9(a)に示すように、成形型90では、型面92fの縦面部92sと型面96fの縦面部96sとが所定距離隔てて対向して設けられ、型面92fの斜面部92tと型面96fの斜面部96tとが所定距離隔てて対向して設けられ、所定厚さを有する成形キャビティ79が形成されている。   As shown in FIG. 9A, in the mold 90, the vertical surface portion 92s of the mold surface 92f and the vertical surface portion 96s of the mold surface 96f are provided to face each other with a predetermined distance therebetween, and the inclined surface portion 92t of the mold surface 92f is provided. A molding cavity 79 having a predetermined thickness is formed so as to face the inclined surface portion 96t of the mold surface 96f with a predetermined distance.

したがって、成形型90の開閉方向における成形キャビティ厚さは、斜面部92t、96tによって形成される成形キャビティ99の厚さが、縦面部92s、96sによって形成される成形キャビティ99の厚さより厚く形成されている。また、加圧取付部形成用溝部92gは、固定型91の型面92f、具体的には2つの斜面部92tによって略V字状に切り欠かれる部分の谷部に形成される。   Therefore, the molding cavity thickness in the opening and closing direction of the molding die 90 is formed such that the thickness of the molding cavity 99 formed by the slope portions 92t and 96t is thicker than the thickness of the molding cavity 99 formed by the vertical surface portions 92s and 96s. ing. Further, the pressure attaching portion forming groove portion 92g is formed in a trough portion of a portion that is cut out in a substantially V shape by the mold surface 92f of the fixed die 91, specifically, the two inclined surface portions 92t.

成形型90においても、発泡性樹脂31が成形キャビティ99に注入されると、固定型91の加圧取付部に対応する成形型部92a内の発泡性樹脂31が当該成形型部92aによって冷却され、加圧取付部103が成形される。図9(b)に示すように、可動型95を所定量だけ(図9(b)のYa方向に)後退させてコアバックを行うことにより、成形キャビティ99が拡大されて発泡性樹脂31が発泡し、ワーク100の発泡本体部101が発泡成形される。   Also in the mold 90, when the foamable resin 31 is injected into the mold cavity 99, the foamable resin 31 in the mold 92a corresponding to the pressure mounting portion of the fixed mold 91 is cooled by the mold 92a. Then, the pressure mounting portion 103 is formed. As shown in FIG. 9B, by moving the movable die 95 back by a predetermined amount (in the Ya direction in FIG. 9B) and performing the core back, the molding cavity 99 is expanded and the foamable resin 31 is expanded. Foaming is performed, and the foam main body 101 of the workpiece 100 is foam-molded.

しかしながら、発泡本体部101のうち加圧取付部103に連続した所定範囲の部分、具体的には斜面部92t、96tによって形成される成形キャビティにより成形される部分104(加圧取付部基部)については、コアバック前の成形型90の開閉方向における成形キャビティ厚さが厚く形成されコアバック量率が小さく設定されて成形されるので、発泡本体部101の他の部分、具体的には縦面部92s、96sによって形成される成形キャビティにより成形される部分よりも、発泡が効果的に抑制され、発泡倍率が非常に低い状態で成形され、その強度及び/又は剛性を高めることができる。   However, a portion of the foam main body 101 that is in a predetermined range continuous to the pressure attachment portion 103, specifically, a portion 104 (pressure attachment portion base) formed by a molding cavity formed by the slope portions 92t and 96t. Since the molding cavity thickness in the opening / closing direction of the molding die 90 before core back is formed thick and the core back amount ratio is set small, the other part of the foam main body 101, specifically, the vertical surface part Foaming is effectively suppressed and molding is performed in a state where the expansion ratio is very low, and the strength and / or rigidity thereof can be increased as compared with the portion molded by the molding cavity formed by 92s and 96s.

また、加圧取付部が発泡本体部から一体的に突出するように成形される発泡樹脂成形品の成形に際し、可動型にスライドコア部を設けて、発泡本体部の加圧取付部に連続する部分に発泡本体部の他の部分よりもコアバック量率が小さく設定されて成形される加圧取付部基部を形成するようにしてもよい。   In addition, when molding a foamed resin molded product that is molded so that the pressure mounting portion protrudes integrally from the foam main body portion, a movable core is provided with a slide core portion that is continuous with the pressure mounting portion of the foam main body portion. You may make it form the pressurization attachment part base part which a core back amount rate is set smaller than the other part of a foaming main-body part, and is shape | molded in a part.

図10は、前記成形装置に用いる成形型の第4の変形例を示す断面説明図であり、図10の(a)は、前記成形型の成形キャビティ内に発泡性樹脂が充填された状態を示し、図10の(b)は、成形キャビティの容積を拡大させて材料樹脂を発泡させた状態を示している。前記成形型110は、可動型115に成形型110の開閉方向に移動可能なスライドコア部125が設けられること以外は、成形型20と同様の構成を備えているので、同様の構成については同一符号を付して説明を省略する。   FIG. 10 is a cross-sectional explanatory view showing a fourth modification of the mold used in the molding apparatus, and FIG. 10A shows a state in which a foamable resin is filled in the molding cavity of the mold. FIG. 10B shows a state where the volume of the molding cavity is enlarged and the material resin is foamed. The mold 110 has the same configuration as the mold 20 except that the movable mold 115 is provided with a slide core portion 125 that can move in the opening and closing direction of the mold 110. The reference numerals are attached and the description is omitted.

成形型110は、固定型21と可動型115とが互いに組み合わされて成形キャビティ119が形成され、可動型115には、成形型110の開閉方向に移動可能なスライドコア部125が組み込まれている。このスライドコア部125は、可動型115を成形型110の開閉方向(図10の矢印Ya、Yb方向)に移動させる可動型駆動機構(不図示)によって可動型125とは独立して成形型110の開閉方向(図10の矢印Yc、Yd方向)に移動することができるようになっている。   In the mold 110, the fixed mold 21 and the movable mold 115 are combined with each other to form a molding cavity 119. The movable mold 115 incorporates a slide core portion 125 that can move in the opening and closing direction of the mold 110. . The slide core portion 125 is formed independently of the movable die 125 by a movable drive mechanism (not shown) that moves the movable die 115 in the opening / closing direction of the molding die 110 (arrows Ya and Yb in FIG. 10). It is possible to move in the opening / closing direction (in the directions of arrows Yc and Yd in FIG. 10).

図10(a)に示すように、可動型115は、該可動型115の型面116fから窪んだ状態でスライドコア部125が位置付けられ、可動型115には、スライドコア部126の型面126fと、スライドコア部126の外周面と摺接する可動型115の摺接面116sとによって加圧取付部基部用溝部116gが形成される。   As shown in FIG. 10A, the movable mold 115 has the slide core portion 125 positioned in a state of being recessed from the mold surface 116f of the movable mold 115. The movable mold 115 has a mold surface 126f of the slide core portion 126. The pressure attaching portion base groove portion 116g is formed by the sliding contact surface 116s of the movable mold 115 that is in sliding contact with the outer peripheral surface of the slide core portion 126.

成形型110においても、発泡性樹脂31が成形キャビティ119に注入されると、固定型21の加圧取付部に対応する成形型部22a内の発泡性樹脂31が当該成形型部22aによって冷却され、加圧取付部133が成形される。成形型110では、図10(b)に示すように、可動型115の型面116fとスライドコア部125の型面126fとが面一状になるように可動型115を(図10のYa方向に)後退させるとともにスライドコア部125を(図10のYc方向に)後退させてコアバックを行うことにより、成形キャビティ119が拡大されて発泡性樹脂31が発泡し、ワーク130の発泡本体部131が発泡成形される。   Also in the molding die 110, when the foamable resin 31 is injected into the molding cavity 119, the foamable resin 31 in the molding die portion 22a corresponding to the pressure mounting portion of the fixed die 21 is cooled by the molding die portion 22a. The pressure attaching part 133 is formed. In the mold 110, as shown in FIG. 10 (b), the movable mold 115 is arranged so that the mold surface 116f of the movable mold 115 and the mold surface 126f of the slide core portion 125 are flush with each other (the Ya direction in FIG. And by moving the slide core part 125 backward (in the Yc direction in FIG. 10) to perform the core back, the molding cavity 119 is expanded and the foamable resin 31 is foamed, and the foam main body part 131 of the workpiece 130 is expanded. Is foam-molded.

しかしながら、発泡本体部131のうち加圧取付部133に連続した所定範囲の部分134(加圧取付部基部)については、コアバック前の成形キャビティ厚さが厚く形成されコアバック量率が小さく設定されて成形されるので、発泡本体部131の他の部分よりも、発泡が効果的に抑制され、発泡倍率が非常に低い状態で成形され、その強度及び/又は剛性を高めることができる。   However, for a portion 134 (pressure attachment base) that is continuous to the pressure attachment portion 133 in the foam main body 131, the molding cavity thickness before the core back is formed thick and the core back amount rate is set small. Therefore, the foaming is effectively suppressed as compared with the other parts of the foam main body 131, the foaming ratio is very low, and the strength and / or rigidity can be increased.

以上の実施形態では、車両用の空調ダクト及びこれを簡略化したモデルの成形を例にとったものであるが、本発明は、成形型内に充填された発泡性樹脂により発泡樹脂成形品の発泡本体部を発泡成形すると共に、加圧されることにより相手部材に取り付けられる発泡抑制樹脂部から成る加圧取付部を前記発泡本体部から一体的に突出するように成形する、種々の他の発泡樹脂成形品を成形する場合にも適用することができる。このように、本発明は、例示された実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能であることは言うまでもない。   In the above embodiment, an air conditioning duct for a vehicle and a model of a simplified model thereof are taken as examples. However, the present invention provides a foamed resin molded product by a foamable resin filled in a mold. The foaming main body part is formed by foaming, and a pressure attaching part composed of a foam suppressing resin part attached to the counterpart member by being pressurized is formed so as to protrude integrally from the foaming main body part. The present invention can also be applied when molding a foamed resin molded product. Thus, it goes without saying that the present invention is not limited to the illustrated embodiments, and various improvements and design changes can be made without departing from the scope of the present invention.

本発明は、樹脂に発泡剤を含有させた発泡性樹脂から成形されてなる発泡樹脂成形品の成形方法及び成形装置に関し、例えば、車両用の空調ダクトなど、軽量性や断熱性などに優れた発泡樹脂成形品を成形する場合に、好適に適用可能である。   The present invention relates to a molding method and a molding apparatus for a foamed resin molded product formed from a foamable resin containing a foaming agent in a resin, and is excellent in lightness and heat insulation, for example, an air conditioning duct for a vehicle. It can be suitably applied when molding a foamed resin molded product.

本実施形態に係る発泡樹脂成形品としての前記空調ダクトの断面構造を示す断面説明図である。It is sectional explanatory drawing which shows the cross-section of the said air-conditioning duct as a foamed resin molded product which concerns on this embodiment. 本実施形態に係るワークを発泡樹脂成形するための成形装置を模式的に示す断面図である。It is sectional drawing which shows typically the shaping | molding apparatus for carrying out foaming resin shaping | molding of the workpiece | work which concerns on this embodiment. コアバック前における図2の要部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the principal part of FIG. 2 before a core back. コアバック後における図2の要部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the principal part of FIG. 2 after a core back. 前記ワークの相手部材への振動溶着工程を模式的に示す断面図である。It is sectional drawing which shows typically the vibration welding process to the other member of the said workpiece | work. 加圧取付部基部形成用溝部の形状を説明するために、該溝部の形状を反映した成形型の成形キャビティを示す斜視図である。FIG. 6 is a perspective view showing a molding cavity of a molding die reflecting the shape of the groove portion in order to explain the shape of the pressure attachment portion base forming groove portion. 前記成形装置に用いる成形型の第1の変形例を示す断面説明図である。It is sectional explanatory drawing which shows the 1st modification of the shaping | molding die used for the said shaping | molding apparatus. 前記成形装置に用いる成形型の第2の変形例を示す断面説明図である。It is sectional explanatory drawing which shows the 2nd modification of the shaping | molding die used for the said shaping | molding apparatus. 前記成形装置に用いる成形型の第3の変形例を示す断面説明図である。It is sectional explanatory drawing which shows the 3rd modification of the shaping | molding die used for the said shaping | molding apparatus. 前記成形装置に用いる成形型の第4の変形例を示す断面説明図である。It is sectional explanatory drawing which shows the 4th modification of the shaping | molding die used for the said shaping | molding apparatus. 従来例に係る加圧取付部およびその周辺の発泡成形を説明するために、成形キャビティ内に発泡樹脂を充填した状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which filled the foaming resin in the shaping | molding cavity, in order to demonstrate the pressure attachment part which concerns on a prior art example, and the foam molding of the periphery. 従来例に係る加圧取付部およびその周辺の発泡成形を説明するために、成形キャビティの容積を拡大させて材料樹脂を発泡させた状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which expanded the volume of the shaping | molding cavity and foamed material resin, in order to demonstrate the pressure attachment part which concerns on a prior art example, and its periphery foam molding. 従来例に係る加圧取付部を備えた発泡樹脂成形品と相手部材とを模式的に示す説明図である。It is explanatory drawing which shows typically the foamed resin molded product provided with the pressurization attachment part which concerns on a prior art example, and a counterpart member. 従来例に係る加圧取付部を備えた発泡樹脂成形品と相手部材との振動溶着を説明するための模式的な説明図である。It is typical explanatory drawing for demonstrating the vibration welding of the foaming resin molded product provided with the pressurization attachment part which concerns on a prior art example, and a counterpart member. 加圧取付部を備えた発泡樹脂成形品と相手部材との良好な振動溶着を説明するための模式的な説明図である。It is typical explanatory drawing for demonstrating the favorable vibration welding of the foaming resin molded product provided with the pressurization attachment part, and the other party member.

符号の説明Explanation of symbols

10、60、80、100、130 発泡樹脂成形品
11、61、81、101、131 発泡本体部
13、63、83、103、133 加圧取付部
14、64、84、104、134 発泡本体部の加圧取付部基部
16 相手部材
20、50、70、90、110 成形型
21、51、71、91 固定型
22a、52a、72a、92a 成形型の加圧取付部に対応する成形型部
25、55、75、95、115 可動型
29、59、79、99、119 成形キャビティ
30 射出装置
31 発泡性樹脂
D1 加圧取付部の幅
D2 加圧取付部基部の幅
E コアバック量
M 成形装置
10, 60, 80, 100, 130 Foamed resin molded article 11, 61, 81, 101, 131 Foam body part 13, 63, 83, 103, 133 Pressure attachment part 14, 64, 84, 104, 134 Foam body part 16 pressure fitting part base 16 mating member 20, 50, 70, 90, 110 Mold 21, 21, 71, 91 Fixed mold 22a, 52a, 72a, 92a Mold 25 corresponding to the pressure fitting part of the mold , 55, 75, 95, 115 Movable mold 29, 59, 79, 99, 119 Molding cavity 30 Injection device 31 Foamable resin D1 Width of pressure mounting portion D2 Width of pressure mounting portion base E Core back amount M Molding device

Claims (10)

成形型内に充填された発泡性樹脂により、発泡樹脂成形品の発泡本体部を前記成形型の前記発泡本体部に対応する成形型部をコアバックさせることにより発泡成形すると共に、加圧されることにより相手部材に取り付けられる発泡抑制樹脂部から成る加圧取付部を前記発泡本体部から一体的に突出するように成形する、発泡樹脂成形品の成形方法であって、
前記発泡本体部の前記加圧取付部に連続する部分に、前記発泡本体部の他の部分よりも、前記成形型部をコアバックさせるときのコアバック量率が小さく設定されて成形される加圧取付部基部を形成する、ことを特徴とする発泡樹脂成形品の成形方法。
The foam body filled in the mold is foam-molded by causing the foam body portion of the foamed resin molded product to core-back the mold body portion corresponding to the foam body portion of the mold and is pressurized. A method for molding a foamed resin molded product, wherein a pressure mounting part composed of a foam suppression resin part attached to a mating member is molded so as to protrude integrally from the foam main body part,
The portion of the foam main body portion that is continuous with the pressure mounting portion is molded with a core back amount rate that is set to be smaller than the other portion of the foam main body portion when the mold portion is core back. A method for forming a foamed resin molded product, comprising forming a pressure attachment base portion.
前記加圧取付部基部は前記加圧取付部よりも幅広に形成される、ことを特徴とする請求項1に記載の発泡樹脂成形品の成形方法。   The method for molding a foamed resin molded product according to claim 1, wherein the pressure attachment base portion is formed wider than the pressure attachment portion. 前記コアバックに先立って、前記成形型の前記加圧取付部に対応する成形型部内の発泡性樹脂を当該成形型部によって冷却することにより、前記加圧取付部を成形する、ことを特徴とする請求項1又は2に記載の発泡樹脂成形品の成形方法。   Prior to the core back, the pressure mounting part is molded by cooling the foamable resin in the molding part corresponding to the pressure mounting part of the mold by the molding part. The method for molding a foamed resin molded product according to claim 1 or 2. 前記発泡性樹脂は物理発泡剤を含有している、ことを特徴とする請求項1から3の何れか一に記載の発泡樹脂成形品の成形方法。   The method for molding a foamed resin molded article according to any one of claims 1 to 3, wherein the foamable resin contains a physical foaming agent. 前記物理発泡剤が超臨界状態の流体である、ことを特徴とする請求項4に記載の発泡樹脂成形品の成形方法。   The method for molding a foamed resin molded article according to claim 4, wherein the physical foaming agent is a fluid in a supercritical state. 互いに組み合わされて成形キャビティを形成する固定型と可動型とを有する成形型と、樹脂に発泡剤を含有させた発泡性樹脂を前記成形キャビティ内に注入する注入手段と、前記可動型を前記成形キャビティの容積を変化させるように前記固定型に対して移動させる可動型駆動手段と、を備え、
前記発泡性樹脂を前記成形キャビティ内に注入し、前記成形キャビティ内に充填された発泡性樹脂によって発泡樹脂成形品の発泡本体部を前記可動型の前記発泡本体部に対応する成形型部をコアバックさせることにより発泡成形すると共に、加圧されることにより相手部材に取り付けられる発泡抑制樹脂部から成る加圧取付部を前記発泡本体部から一体的に突出するように成形する、発泡樹脂成形品の成形装置であって、
前記発泡本体部の前記加圧取付部に連続する部分に、前記発泡本体部の他の部分よりも、前記成形型部をコアバックさせるときのコアバック量率が小さく設定されて成形される加圧取付部基部を形成する加圧取付部基部形成手段を更に備えている、ことを特徴とする発泡樹脂成形品の成形装置。
A mold having a fixed mold and a movable mold which are combined with each other to form a mold cavity, injection means for injecting a foamable resin containing a foaming agent into a resin, and the movable mold into the mold Movable drive means for moving relative to the fixed mold so as to change the volume of the cavity,
The foamable resin is injected into the molding cavity, and the foaming body portion of the foamed resin molded product is cored with the foaming body portion of the movable mold by the foamable resin filled in the molding cavity. Foamed resin molded product, which is molded by foaming by backing up and molding a pressure mounting part composed of a foam suppression resin part attached to a mating member by being pressed so as to protrude integrally from the foaming main body part. The molding apparatus of
The portion of the foam main body portion that is continuous with the pressure mounting portion is molded with a core back amount rate that is set to be smaller than the other portion of the foam main body portion when the mold portion is core back. A molding apparatus for a foamed resin molded product, further comprising a pressure mounting portion base forming means for forming a pressure mounting portion base.
前記加圧取付部基部形成手段は、前記加圧取付部よりも幅広の加圧取付部基部を形成する、ことを特徴とする請求項6に記載の発泡樹脂成形品の成形装置。   7. The molding apparatus for a foamed resin molded product according to claim 6, wherein the pressure attachment base portion forming means forms a pressure attachment portion base wider than the pressure attachment portion. 前記コアバックに先立って、前記固定型の前記加圧取付部に対応する成形型部内の発泡性樹脂を当該成形型部によって冷却することにより、前記加圧取付部を成形する、ことを特徴とする請求項6又は7に記載の発泡樹脂成形品の成形装置。   Prior to the core back, the pressure mounting portion is molded by cooling the foamable resin in the molding die portion corresponding to the pressure mounting portion of the fixed mold by the molding die portion. An apparatus for molding a foamed resin molded product according to claim 6 or 7. 前記注入手段は物理発泡剤を含有する発泡性樹脂を注入する、ことを特徴とする請求項6から8の何れか一に記載の発泡樹脂成形品の成形装置。   The apparatus for molding a foamed resin molded article according to any one of claims 6 to 8, wherein the injection means injects a foamable resin containing a physical foaming agent. 前記注入手段は、前記物理発泡剤として超臨界状態の流体を含有する発泡性樹脂を注入する、ことを特徴とする請求項9に記載の発泡樹脂成形品の成形装置。   The said injection | pouring means inject | pours the foamable resin containing the fluid of a supercritical state as the said physical foaming agent, The molding apparatus of the foamed resin molded product of Claim 9 characterized by the above-mentioned.
JP2008010293A 2008-01-21 2008-01-21 Method and apparatus for molding foamed resin molding Pending JP2009166458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010293A JP2009166458A (en) 2008-01-21 2008-01-21 Method and apparatus for molding foamed resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010293A JP2009166458A (en) 2008-01-21 2008-01-21 Method and apparatus for molding foamed resin molding

Publications (1)

Publication Number Publication Date
JP2009166458A true JP2009166458A (en) 2009-07-30

Family

ID=40968190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010293A Pending JP2009166458A (en) 2008-01-21 2008-01-21 Method and apparatus for molding foamed resin molding

Country Status (1)

Country Link
JP (1) JP2009166458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098654A (en) * 2017-12-05 2019-06-24 南条装備工業株式会社 Resin molding apparatus and resin molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326539A (en) * 2002-05-16 2003-11-19 Denso Corp Resin molded product and manufacturing method therefor
JP2005324422A (en) * 2004-05-13 2005-11-24 Toyoda Gosei Co Ltd Foamed molded product and its manufacturing method
JP2006175708A (en) * 2004-12-22 2006-07-06 Gp Daikyo Corp Resin molding
JP2006255966A (en) * 2005-03-15 2006-09-28 Daikyoo Nishikawa Kk Resin molded product and its molding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326539A (en) * 2002-05-16 2003-11-19 Denso Corp Resin molded product and manufacturing method therefor
JP2005324422A (en) * 2004-05-13 2005-11-24 Toyoda Gosei Co Ltd Foamed molded product and its manufacturing method
JP2006175708A (en) * 2004-12-22 2006-07-06 Gp Daikyo Corp Resin molding
JP2006255966A (en) * 2005-03-15 2006-09-28 Daikyoo Nishikawa Kk Resin molded product and its molding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098654A (en) * 2017-12-05 2019-06-24 南条装備工業株式会社 Resin molding apparatus and resin molding method
CN110418705A (en) * 2017-12-05 2019-11-05 南条装备工业株式会社 Resin molding apparatus and resin molding method
CN110418705B (en) * 2017-12-05 2022-02-18 南条装备工业株式会社 Resin molding apparatus and resin molding method
US11338482B2 (en) 2017-12-05 2022-05-24 NANJO Auto Interior Co., Ltd. Resin molding device and method

Similar Documents

Publication Publication Date Title
JP4839728B2 (en) Thermoplastic resin multilayer molding method and multilayer molding apparatus
US20170305046A1 (en) Method for molding foamed resin molded article, mold, and foamed resin molded article
JP2007054993A (en) Injection foam molding method of thermoplastic resin
JP5262106B2 (en) Molding method for foamed resin molded products
JP2009226872A (en) Method and apparatus for molding foamed resin molding
JP2009166458A (en) Method and apparatus for molding foamed resin molding
JP4737295B2 (en) Molding method and molding apparatus for foamed resin molded product
JP5233216B2 (en) Molding method and molding apparatus for foamed resin molded product
JP5315702B2 (en) Molding method and molding apparatus for foamed resin molded product
JP2006281698A (en) Shaping method for foamed molded product, and shaping device for foamed molded product
JP2007223104A (en) Trim part for automobile and its manufacturing method
JPH08300392A (en) Injection molding of foamable plastic composition
JP2009166314A (en) Method and apparatus for molding foamed resin molding
JP2009096109A (en) Method for producing foamed resin molded member
JP5321083B2 (en) Molding method and molding apparatus for foamed resin molded product
JP4476673B2 (en) Mold for foam molding
JP2009066941A (en) Molding method for foamed resin molded article
JP2009061592A (en) Method of molding foamed resin molded article and molding apparatus
JP2005288745A (en) Method for producing injection-molded article
JP5381124B2 (en) Molding method and molding apparatus for foamed resin molded product
JP4973434B2 (en) Method for producing foamed resin molded product member
JP2009226784A (en) Method and apparatus for forming resin molded article
JP2009066953A (en) Molding method and molding equipment for foam resin molded product
JP2009226867A (en) Method and apparatus for molding foamed resin molding
JP2009066954A (en) Molding method and molding equipment for foam resin molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204