JP2009165294A - Totally enclosed fan-cooled motor - Google Patents

Totally enclosed fan-cooled motor Download PDF

Info

Publication number
JP2009165294A
JP2009165294A JP2008001802A JP2008001802A JP2009165294A JP 2009165294 A JP2009165294 A JP 2009165294A JP 2008001802 A JP2008001802 A JP 2008001802A JP 2008001802 A JP2008001802 A JP 2008001802A JP 2009165294 A JP2009165294 A JP 2009165294A
Authority
JP
Japan
Prior art keywords
fan
frame
cooling
shaped
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008001802A
Other languages
Japanese (ja)
Inventor
Yasushi Yamaguchi
康 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008001802A priority Critical patent/JP2009165294A/en
Publication of JP2009165294A publication Critical patent/JP2009165294A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the flow speed of cooling gas drops to degrade cooling efficiency of a motor, since the flow speed vector of the gas exhausted from a cooling fan of a totally enclosed fan-cooled motor has a component in radial direction as well as the component in circumferential direction, the flow speed vector deflected in the direction along the surface of a frame by a fan cover also has the component parallel to a plate-like heat radiation fin as well as the component in vertical direction, and the component in vertical direction to the heat radiation fin of the flow speed vector interferes with the heat radiation fin to cause a significant pressure loss. <P>SOLUTION: The totally enclosed fan-cooled motor comprises a frame 3 that encloses a stator, a plurality of heatsinks 31 provided on the outer peripheral surface of the frame, a cooling fan 8 attached to the rotating shaft protruding outside the machine, and a fan cover 9 which deflects the airstream energized by the cooling fan to the direction along the outer peripheral surface. The heatsink has a pin shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、回転電機の機外に突出する回転軸に取り付けられた冷却ファンを回転させて発生した気流を、回転電機のフレームの外周面に設けた放熱体に流すようにした全閉外扇形回転電機に関する。   The present invention provides a fully-enclosed outer fan-shaped rotation in which an air flow generated by rotating a cooling fan attached to a rotating shaft protruding outside the rotating electric machine flows through a radiator provided on the outer peripheral surface of the rotating electric machine frame. It relates to electric machinery.

従来の全閉外扇形回転電機として、固定子枠における冷却フィン(放熱体)のファン側の端面を、該冷却フィンの上辺から基部側に向うに従ってフィン長さが短辺となって傾斜する状態に形成することで、ファンにより送風される冷却ガスを冷却フィンの基部側に偏向させるように構成し、これにより固定子枠の冷却フィンの隙間に沿って冷却ガスと冷却フィンとの間で熱交換効率を向上し得、回転電機本体内部の温度上昇を抑制するようにしたものがある(例えば特許文献1参照。)。   As a conventional fully-enclosed fan-shaped rotating electrical machine, the fan-side end face of the cooling fin (heat radiating body) in the stator frame is inclined so that the fin length becomes a short side from the upper side of the cooling fin toward the base side. By forming, it is configured to deflect the cooling gas blown by the fan toward the base side of the cooling fin, thereby heat exchange between the cooling gas and the cooling fin along the gap between the cooling fins of the stator frame There is one that can improve the efficiency and suppress the temperature rise inside the rotating electrical machine main body (see, for example, Patent Document 1).

特許第3253709号公報(第3頁、図1)Japanese Patent No. 3253709 (page 3, FIG. 1)

上記のように構成された従来の全閉外扇形回転電機では、放熱体の形状がプレート形であり、かつその放熱体が回転軸に平行になるようにフレームに設けられている。そのため、冷却ファンの回転に伴って吸気口からファンカバー内に流入した冷却気体は、冷却ファンにより加圧されて回転軸にほぼ垂直な面内方向に排出されるが、冷却ファンから排出された冷却気体の流速ベクトルは、半径方向の成分と円周方向の成分を持ち、ファンカバーによってフレームの表面に沿う方向に偏向された後の流速ベクトルもプレート形の放熱体に平行方向の成分と垂直方向の成分を持つ。流速ベクトルの放熱体に垂直方向の成分は、放熱体と干渉して大きな圧力損失を生じる。このため、冷却気体の流速が低下して回転電機の冷却効率が低下するという課題があった。   In the conventional fully-enclosed fan-shaped rotating electrical machine configured as described above, the shape of the heat radiating body is a plate shape, and the heat radiating body is provided on the frame so as to be parallel to the rotation axis. Therefore, the cooling gas flowing into the fan cover from the intake port as the cooling fan rotates is pressurized by the cooling fan and discharged in the in-plane direction substantially perpendicular to the rotation axis, but is discharged from the cooling fan. The flow velocity vector of the cooling gas has a radial component and a circumferential component, and the flow velocity vector after being deflected in the direction along the surface of the frame by the fan cover is also perpendicular to the component parallel to the plate-shaped radiator. Has a directional component. The component of the flow velocity vector in the direction perpendicular to the heat dissipator interferes with the heat dissipator and causes a large pressure loss. For this reason, there existed a subject that the flow velocity of cooling gas fell and the cooling efficiency of a rotary electric machine fell.

この発明は、上記のような従来技術の課題を解消するためになされたもので、冷却ファンによる冷却効率が向上された全閉外扇形回転電機を提供することを目的としている。   The present invention has been made to solve the above-described problems of the prior art, and an object thereof is to provide a fully enclosed outer fan-shaped rotating electrical machine in which the cooling efficiency by the cooling fan is improved.

この発明による回転電機は、固定子の周りを包囲するフレームと、このフレームの外周面に設けられた複数の放熱体と、機外に突出された回転軸に取り付けられた冷却ファンと、この冷却ファンによって付勢された気流を上記フレームの外周面に沿う方向に偏向するファンカバーとを備えた全閉外扇形回転電機において、上記放熱体がピン形に形成されていることを特徴とするものである。   A rotating electrical machine according to the present invention includes a frame surrounding a stator, a plurality of heat radiators provided on an outer peripheral surface of the frame, a cooling fan attached to a rotating shaft protruding outside the machine, and the cooling A fully-enclosed fan-shaped rotating electrical machine having a fan cover for deflecting an airflow energized by a fan in a direction along the outer peripheral surface of the frame, wherein the radiator is formed in a pin shape. is there.

この発明においては、フレームの外周面に設けられた複数の放熱体がピン形に形成されていることにより、冷却ファンによって付勢された気流が流速ベクトルに沿う方向に流れるようになるため、冷却気体と放熱体の干渉が小さくなり、冷却気体が放熱体の間を通過する際の圧力損失が低減される。これにより、冷却気体の流速が増加して冷却気体と放熱体の間の熱交換が促進され、効果的に回転電機を冷却することができる。   In this invention, since the plurality of heat dissipating bodies provided on the outer peripheral surface of the frame are formed in a pin shape, the air flow urged by the cooling fan flows in the direction along the flow velocity vector. The interference between the gas and the heat radiating body is reduced, and the pressure loss when the cooling gas passes between the heat radiating bodies is reduced. Thereby, the flow velocity of the cooling gas is increased, heat exchange between the cooling gas and the heat radiating body is promoted, and the rotating electrical machine can be effectively cooled.

実施の形態1.
図1〜図5はこの発明の実施の形態1に係る全閉外扇形回転電機の一例としての全閉外扇形電動機(以下、単に電動機と略す)を説明する図であり、図1は回転軸に沿う縦断面図、図2は図1に示されたファンカバーを取り外したときの外観を概念的に示す平面図、図3は図1に示されたファンカバーを示す正面図、図4は図1に示されたファンを示す正面図、図5は図1に示された電動機の実施例について測定されたフレームの温度上昇を、従来の電動機(比較例)と比較して示す特性図である。図において、電動機1は、円筒状の固定子2、この固定子2を固定すると共に該固定子2の周りを包囲するフレーム3、フレーム3の外周面に多数立設されたピン形の放熱体31、固定子2の内周面に対して所定の間隙を有するように設けられた回転子4、回転子4の回転中心を貫いて設けられ該回転子4に固着された回転軸5、負荷側(図1の右側)に突出する回転軸5を軸受6Aを介して支承する負荷側ブラケット7A、反負荷側に突出する回転軸5を軸受6Bを介して支承する反負荷側ブラケット7B、反負荷側に突出する回転軸5に固定された冷却ファン8、冷却ファン8によって付勢された気流をフレーム3の外周面に沿う方向に偏向するファンカバー9を備えている。
Embodiment 1 FIG.
1 to 5 are views for explaining a fully-enclosed external fan motor (hereinafter simply abbreviated as an electric motor) as an example of a fully-enclosed external fan-shaped rotating electrical machine according to Embodiment 1 of the present invention, and FIG. FIG. 2 is a plan view conceptually showing the external appearance when the fan cover shown in FIG. 1 is removed, FIG. 3 is a front view showing the fan cover shown in FIG. 1, and FIG. FIG. 5 is a characteristic diagram showing the temperature rise of the frame measured for the embodiment of the electric motor shown in FIG. 1 in comparison with a conventional electric motor (comparative example). In the figure, an electric motor 1 includes a cylindrical stator 2, a frame 3 that fixes the stator 2 and surrounds the stator 2, and a plurality of pin-shaped radiators that are erected on the outer peripheral surface of the frame 3. 31, a rotor 4 provided so as to have a predetermined gap with respect to the inner peripheral surface of the stator 2, a rotating shaft 5 provided through the rotation center of the rotor 4 and fixed to the rotor 4, a load Load side bracket 7A for supporting the rotating shaft 5 protruding to the side (right side in FIG. 1) via a bearing 6A, anti-load side bracket 7B for supporting the rotating shaft 5 protruding to the opposite load side via a bearing 6B, A cooling fan 8 fixed to the rotating shaft 5 protruding to the load side, and a fan cover 9 for deflecting the airflow urged by the cooling fan 8 in a direction along the outer peripheral surface of the frame 3 are provided.

固定子2は回転軸方向(図1の左右方向)に積層された鉄心21と、鉄心21に形成された複数の溝(図示省略)に巻装された固定子巻線22からなる。フレーム3、負荷側ブラケット7A、及び反負荷側ブラケット7Bによって機体の内外が仕切られており、負荷側ブラケット7A、及び反負荷側ブラケット7Bは電動機1の軸方向の端面を形成している。軸受6A、6Bに回転自在に支持された回転軸5は、両端部が機外に突出され、冷却ファン8は反負荷側ブラケット7Bの機外側に突出した部分に固定されている。なお、回転軸5の負荷側ブラケット7Aの外側に突出した部分には図示省略している負荷が接続される。上記冷却ファン8としては、電動機1の回転方向によらずに同一の送風性能を発揮させるためにラジアルファンが採用されており、図4に示すように複数の羽根81が回転軸5に対して放射状に配置されている。   The stator 2 includes an iron core 21 stacked in the rotation axis direction (left-right direction in FIG. 1) and a stator winding 22 wound in a plurality of grooves (not shown) formed in the iron core 21. The frame 3, the load side bracket 7 </ b> A, and the anti-load side bracket 7 </ b> B partition the inside and outside of the machine body, and the load-side bracket 7 </ b> A and the anti-load side bracket 7 </ b> B form an end face in the axial direction of the electric motor 1. Both ends of the rotating shaft 5 rotatably supported by the bearings 6A and 6B protrude from the machine, and the cooling fan 8 is fixed to a part of the anti-load side bracket 7B protruding to the outside of the machine. A load (not shown) is connected to a portion of the rotating shaft 5 that protrudes outside the load side bracket 7A. As the cooling fan 8, a radial fan is employed in order to exert the same air blowing performance regardless of the rotation direction of the electric motor 1, and a plurality of blades 81 are attached to the rotating shaft 5 as shown in FIG. 4. They are arranged radially.

ファンカバー9は冷却ファン8を覆うと共に、ピン形の放熱体31の略全体を包囲するように気流の下流方向に伸びて、フレーム3の外表面との間の空間で冷却気体の流路を形成しており、反負荷側端面には外部から冷却ファン8に冷却気体を導入するためのハニカム状の吸気口9aが設けられ、負荷側端面には放熱体31から奪った熱を気流と共に排出するための排気口9bが形成されている。なお、ファンカバー9は図示省略している固定手段によりフレーム3に固定されている。その他の構成は従来の全閉外扇形電動機と同様であるので説明を省略する。   The fan cover 9 covers the cooling fan 8 and extends in the downstream direction of the air flow so as to surround substantially the entire pin-shaped radiator 31, and provides a cooling gas flow path in a space between the outer surface of the frame 3. A honeycomb-shaped intake port 9a for introducing cooling gas from the outside to the cooling fan 8 is provided on the end surface on the side opposite to the load, and the heat taken from the radiator 31 is discharged along with the airflow on the end surface on the load side. An exhaust port 9b is formed. The fan cover 9 is fixed to the frame 3 by fixing means (not shown). Since other configurations are the same as those of the conventional fully-enclosed fan motor, the description thereof is omitted.

この実施の形態1の特徴部分は、
1.フレーム3は、例えばアルミダイカストのように比較的自由に所望の形状を形成できる製法で製造され、その外周面に形成された放熱体31が円柱状のピン形である。尚、放熱体31の形状は円柱状に限定されるものではなく、ピン形であれば例えば楕円柱状、四角柱状など他の形状としても差し支えない。
2.ピン形の放熱体31は、図2に示すようにフレーム3の外表面を流れる冷却気体の流速ベクトルV2に沿うようにV2に略平行に配列されている。
3.ファンカバー9は、図1に示すようにフレーム3に形成された全ての放熱体31を覆うように負荷側端面部近傍まで延びてダクト状に形成されている。
4.ファンカバー9の吸気口9aは、図3に示すようにハニカム形状である。
The characteristic part of this Embodiment 1 is
1. The frame 3 is manufactured by a manufacturing method in which a desired shape can be formed relatively freely, such as aluminum die casting, for example, and the radiator 31 formed on the outer peripheral surface thereof has a cylindrical pin shape. In addition, the shape of the heat radiator 31 is not limited to a cylindrical shape, and may be other shapes such as an elliptical column shape and a square column shape as long as the shape is a pin shape.
2. As shown in FIG. 2, the pin-shaped heat radiator 31 is arranged substantially parallel to V <b> 2 so as to follow the flow velocity vector V <b> 2 of the cooling gas flowing on the outer surface of the frame 3.
3. As shown in FIG. 1, the fan cover 9 is formed in a duct shape so as to extend to the vicinity of the load side end surface portion so as to cover all the radiators 31 formed on the frame 3.
4). The inlet 9a of the fan cover 9 has a honeycomb shape as shown in FIG.

次に、上記のように構成された実施の形態1の動作について説明する。電動機1を駆動すると、回転軸5を介して冷却ファン8も回転し、ファンカバー9の吸気口9aから冷却気体がファンカバー9内に流入する。このとき吸気口9aを構成する貫通孔の形状がハニカム形状であるため、他の穴形状の場合と比較して開口率および開口面積を大きく取ることが可能になり、冷却気体が吸気口9aを通過する際の圧力損失が低減され、ファンカバー9に流入する冷却気体の流量が増加する。さらにハニカム形状であるため、開口面積を大きく取っても比較的高い強度を保てると同時に、同じ外径であれば成形等で製作する場合に必要とする材料が少なくて済むという利点もある。ファンカバー9内に流入した冷却気体は、冷却ファン8により回転軸5にほぼ垂直な面内方向に付勢される。図4に示すように、このとき冷却ファン8から排出される冷却気体の流速ベクトルV1は、半径方向の成分Vrと円周方向の成分Vωを持つ。   Next, the operation of the first embodiment configured as described above will be described. When the electric motor 1 is driven, the cooling fan 8 also rotates through the rotating shaft 5, and the cooling gas flows into the fan cover 9 from the air inlet 9 a of the fan cover 9. At this time, since the shape of the through-holes constituting the intake port 9a is a honeycomb shape, it is possible to increase the aperture ratio and the open area as compared with the other hole shapes, and the cooling gas passes through the intake port 9a. The pressure loss when passing is reduced, and the flow rate of the cooling gas flowing into the fan cover 9 is increased. Furthermore, since it has a honeycomb shape, a relatively high strength can be maintained even if the opening area is large, and at the same time, there is an advantage that less material is required for manufacturing by molding or the like if the outer diameter is the same. The cooling gas flowing into the fan cover 9 is urged by the cooling fan 8 in an in-plane direction substantially perpendicular to the rotation shaft 5. As shown in FIG. 4, the flow velocity vector V1 of the cooling gas discharged from the cooling fan 8 at this time has a radial component Vr and a circumferential component Vω.

ここで図2、図4に示すように冷却ファン8の外径をD、羽根81の幅をE、角速度をω、風量の設計値をQとすると、流速ベクトルV1の半径方向の成分Vrと円周方向の成分Vωは、それぞれ下記の式1、式2に示す通りとなる。
Vr=Q/(πDE)・・・・・(式1)
Vω=ωD/2・・・・・(式2)
従ってVrとVωの合成ベクトルである流速ベクトルV1が、円周方向の成分Vωに対してなす角βは、下記の式3に示す通りとなる。
β=tan−1(Vr/Vω)・・・・・(式3)
2 and 4, when the outer diameter of the cooling fan 8 is D, the width of the blade 81 is E, the angular velocity is ω, and the design value of the air volume is Q, the radial component Vr of the flow velocity vector V1 is The components Vω in the circumferential direction are as shown in the following formulas 1 and 2, respectively.
Vr = Q / (πDE) (Equation 1)
Vω = ωD / 2 (Formula 2)
Accordingly, the angle β formed by the flow velocity vector V1 which is a combined vector of Vr and Vω with respect to the circumferential component Vω is as shown in the following Expression 3.
β = tan −1 (Vr / Vω) (Equation 3)

冷却ファン8から排出された冷却気体は、ファンカバー9によってフレーム3の外表面に沿う方向に偏向されるが、偏向後の流速ベクトルV2は図2に示すように、回転軸5に平行方向の成分Vpと垂直方向の成分Vvを持つ。流速ベクトルV1から流速ベクトルV2に偏向される前後で流速ベクトルの成分の比は略保たれるため、流速ベクトルV2が回転軸5に垂直方向の成分Vvに対してなす角も上記式3に示す角βに略等しくなる。   The cooling gas discharged from the cooling fan 8 is deflected in the direction along the outer surface of the frame 3 by the fan cover 9, and the flow velocity vector V2 after the deflection is parallel to the rotating shaft 5 as shown in FIG. It has a component Vp and a component Vv in the vertical direction. Since the ratio of the components of the flow velocity vector is substantially maintained before and after being deflected from the flow velocity vector V1 to the flow velocity vector V2, the angle formed by the flow velocity vector V2 with respect to the component Vv perpendicular to the rotating shaft 5 is also expressed by the above equation 3. Is approximately equal to the angle β.

この実施の形態1では、放熱体31がフレーム3の外表面を流れる冷却気体の流速ベクトルV2に略平行になるように、回転軸5に対して±(π/2−β)の角度を持って配列されているため、冷却気体と放熱体31の干渉が小さくなり、冷却気体が放熱体31の間をスムーズに流れる。その結果、冷却気体が放熱体31の間を通過する際の圧力損失が低減されるため、冷却気体の流量が増加する。また、ラジアルファンが採用され、放熱体31の形状がピン形であるため、冷却ファン8の回転方向によらずに同様に動作させ、同様の効果を得ることができる。さらに、冷却気体の流速ベクトルV2の回転軸5に垂直方向の成分Vvにより、冷却気体は放熱体31の外側に漏れ出そうとするが、ファンカバー9が全ての放熱体31を覆うように軸方向に延びてダクト状に形成されているため、冷却気体の流れの下流に配置された放熱体31まで冷却気体が到達して放熱に寄与する。   In the first embodiment, the radiator 31 has an angle of ± (π / 2−β) with respect to the rotating shaft 5 so that the radiator 31 is substantially parallel to the flow velocity vector V2 of the cooling gas flowing on the outer surface of the frame 3. Therefore, the interference between the cooling gas and the radiator 31 is reduced, and the cooling gas flows smoothly between the radiators 31. As a result, since the pressure loss when the cooling gas passes between the radiators 31 is reduced, the flow rate of the cooling gas increases. Further, since a radial fan is adopted and the shape of the heat radiating body 31 is a pin shape, the same operation can be obtained regardless of the rotation direction of the cooling fan 8 and the same effect can be obtained. Further, due to the component Vv in the direction perpendicular to the rotational axis 5 of the flow velocity vector V2 of the cooling gas, the cooling gas tends to leak out of the radiator 31, but the axis is so that the fan cover 9 covers all the radiators 31. Since it extends in the direction and is formed in a duct shape, the cooling gas reaches the heat dissipating body 31 disposed downstream of the flow of the cooling gas and contributes to heat dissipation.

上記実施の形態1の具体的な一実施例として、冷却ファン8の回転数1400rpm、ピン形の放熱体31についてはアルミダイカストによる成形性を考慮して、高さを10〜15mm、直径を2〜3mmとし、フレーム3を正面から見たときに放熱体31の配列と回転軸5の成す角度、即ち図2において±(π/2−β)を約80°、放熱体31の配列間隔を2〜18mmとした電動機1について測定されたフレーム3の温度上昇を、同等サイズのプレート形の放熱体を、回転軸に平行な方向に10mmの間隔で配列した電動機(比較例)のフレームの温度上昇と比較した結果を図5に示す。なお、図5の横軸はピン形の放熱体31の配列間隔(mm)、縦軸は上記比較例の温度上昇を1としたときの上記実施例の温度上昇を放熱体31の配列間隔をパラメータとして示す相対値である。   As a specific example of the first embodiment, the cooling fan 8 has a rotational speed of 1400 rpm, and the pin-shaped radiator 31 has a height of 10 to 15 mm and a diameter of 2 in consideration of formability by aluminum die casting. When the frame 3 is viewed from the front, the angle between the arrangement of the radiators 31 and the rotary shaft 5, that is, ± (π / 2−β) in FIG. 2 is about 80 °, and the arrangement interval of the radiators 31 is The temperature of the frame 3 of the motor (comparative example) in which the temperature rise of the frame 3 measured for the motor 1 of 2 to 18 mm is arranged with plate-shaped radiators of the same size arranged at intervals of 10 mm in the direction parallel to the rotation axis. The result compared with the rise is shown in FIG. The horizontal axis in FIG. 5 is the arrangement interval (mm) of the pin-shaped radiators 31, and the vertical axis is the arrangement interval of the radiators 31 with the temperature rise of the above embodiment when the temperature rise of the comparative example is 1. It is a relative value shown as a parameter.

図5から明らかなように、上記実施例の場合、ピン形の放熱体31の配列間隔が約8〜12.5mmの間で、放熱体をプレート形とした従来装置に相当する比較例よりも温度上昇が低くなり、該配列間隔が約10mmのときにフレーム3の温度上昇が最も小さく、温度上昇を約15%低減することができた。なお、上記実施例の構成は発明の効果を検証するための一例に過ぎず、寸法、材料、角度、冷却ファン8の回転数等、該実施例に限定されないことは言うまでもない。また、実施の形態1の説明では、放熱体31をピン形とすると共に、該放熱体31をフレーム3の外表面を流れる冷却気体の流速ベクトルV2に略平行に配列し、ファンカバー9がフレーム3に形成された全ての放熱体31を覆うように延長し、ファンカバー9の吸気口9aをハニカム形状とする最良の形態について説明したが、第1の特徴部分である放熱体31をピン形にした他は従来と同様の電動機であっても、冷却ファン8によって付勢された冷却気体の一部が流速ベクトルV2の方向に沿うようにフレーム3の外表面を流れるので、流速ベクトルV2の方向の流れを生じないプレート形の放熱体よりも冷却効果が高められるというこの発明の効果が得られる。   As is apparent from FIG. 5, in the case of the above-described embodiment, the arrangement interval of the pin-shaped radiators 31 is between about 8 to 12.5 mm, compared to a comparative example corresponding to a conventional device in which the radiators are plate-shaped. When the arrangement interval was about 10 mm, the temperature increase of the frame 3 was the smallest, and the temperature increase could be reduced by about 15%. The configuration of the above embodiment is merely an example for verifying the effect of the invention, and it goes without saying that the dimensions, material, angle, number of rotations of the cooling fan 8 and the like are not limited to the embodiment. In the description of the first embodiment, the heat dissipating body 31 has a pin shape, the heat dissipating body 31 is arranged substantially parallel to the flow velocity vector V2 of the cooling gas flowing on the outer surface of the frame 3, and the fan cover 9 is mounted on the frame. 3 has been described so as to cover all of the heat dissipating bodies 31 formed on the cover 3, and the intake port 9a of the fan cover 9 is formed into a honeycomb shape. Other than the above, even if the electric motor is the same as the conventional motor, a part of the cooling gas energized by the cooling fan 8 flows on the outer surface of the frame 3 along the direction of the flow velocity vector V2. The effect of the present invention is obtained in that the cooling effect is enhanced as compared with a plate-shaped radiator that does not generate a directional flow.

上記のように、この実施の形態1によれば、フレーム3の外周面にピン形の放熱体31を設けるようにしたので、冷却気体の流量が増加して放熱体31の間を通過する冷却気体の流速が大きくなり、冷却気体と放熱体31の間の熱交換が促進され、電動機1を効果的に冷却することができる。加えて、該放熱体31の配列を、フレーム3の外表面を流れる冷却気体の流速ベクトルV2に略平行となるように配設したので、冷却気体の流量及び流速が一層増し、電動機1の冷却効果が更に高まる。また、放熱体31の略全体が覆われるようにファンカバー9がダクト状に延びて形成されているため、冷却気体が放熱体31の間を通過する距離が長くなり、冷却気体と放熱体31の間の熱交換が一層促進される。さらに、ファンカバー9の吸気口9aをハニカム形状としたため、冷却気体が吸気口9aを通過する際の圧力損失が低減され、ファンカバー9に流入する冷却気体の流量が増加するという顕著な効果が得られる。   As described above, according to the first embodiment, since the pin-shaped heat radiator 31 is provided on the outer peripheral surface of the frame 3, the cooling that increases the flow rate of the cooling gas and passes between the heat radiators 31. The flow rate of the gas is increased, heat exchange between the cooling gas and the radiator 31 is promoted, and the electric motor 1 can be effectively cooled. In addition, since the arrangement of the radiators 31 is arranged so as to be substantially parallel to the flow velocity vector V2 of the cooling gas flowing on the outer surface of the frame 3, the flow rate and flow velocity of the cooling gas are further increased, and the cooling of the electric motor 1 is performed. The effect is further increased. Further, since the fan cover 9 is formed in a duct shape so as to cover substantially the entire radiator 31, the distance that the cooling gas passes between the radiators 31 becomes long, and the cooling gas and the radiator 31 are increased. Heat exchange between the two is further promoted. Furthermore, since the intake port 9a of the fan cover 9 has a honeycomb shape, the pressure loss when the cooling gas passes through the intake port 9a is reduced, and the remarkable effect that the flow rate of the cooling gas flowing into the fan cover 9 is increased. can get.

実施の形態2.
図6、図7はこの発明の実施の形態2に係る全閉外扇形回転電機の一例としての全閉外扇形電動機を説明する図であり、図6は回転軸に沿う縦断面図、図7は図6に示された全閉外扇形電動機について測定された圧力損失特性を従来の全閉外扇形電動機と比較して示す特性図である。なお、実施の形態1と同一の部分は同一の符号を付して説明を省略し、異なる部分についてのみ説明する。図において、電動機1Aにおける円柱形状のピン形の放熱体31Aは冷却気体の流れの上流にあたるフレーム3外周面の反負荷側の端面部から下流方向にフレーム3の中間部にわたって設けられ、フレーム3の中間部から下流側の部分には、回転軸5と平行にプレート形の放熱体32が設けられている。そして、ファンカバー9Aは、ピン形の放熱体31A部分の外周部を覆うようにフレーム3の中間部までダクト状に延びて設けられている。なお、ピン形の放熱体31Aは実施の形態1と同様にフレーム3の表面を流れる冷却気体の流速ベクトルV2に略平行に配列されている。また、放熱体31Aは円柱形状に限定されず、ピン形であれば四角柱など他の形状としても差し支えない。なお、ファンカバー9Aはプレート形の放熱体32の部分までを覆うように延長しても差し支えない。
Embodiment 2. FIG.
6 and 7 are views for explaining a fully-enclosed external fan motor as an example of a fully-enclosed external fan-shaped rotating electrical machine according to Embodiment 2 of the present invention. FIG. 6 is a longitudinal sectional view along the rotation axis, and FIG. FIG. 6 is a characteristic diagram showing the pressure loss characteristics measured for the fully-enclosed external fan motor shown in FIG. 6 in comparison with a conventional fully-enclosed external fan motor. In addition, the same part as Embodiment 1 attaches | subjects the same code | symbol, description is abbreviate | omitted, and only a different part is demonstrated. In the figure, a cylindrical pin-shaped heat radiating body 31A in the electric motor 1A is provided from the end surface portion on the non-load side of the outer peripheral surface of the frame 3 which is upstream of the flow of the cooling gas, to the intermediate portion of the frame 3 in the downstream direction. A plate-shaped radiator 32 is provided in parallel with the rotating shaft 5 at a portion downstream from the intermediate portion. The fan cover 9 </ b> A is provided so as to extend in a duct shape up to an intermediate portion of the frame 3 so as to cover the outer peripheral portion of the pin-shaped radiator 31 </ b> A. The pin-shaped radiator 31A is arranged substantially parallel to the flow velocity vector V2 of the cooling gas flowing on the surface of the frame 3 as in the first embodiment. Further, the heat radiating body 31A is not limited to a cylindrical shape, and may have other shapes such as a quadrangular column as long as it has a pin shape. Note that the fan cover 9A may be extended so as to cover up to the plate-shaped radiator 32.

この実施の形態2は、フレーム3の回転軸方向の寸法が大きい場合でも効果的に冷却できるようにしたものである。即ち、上記実施の形態1の発明をフレーム3およびファンカバー9Aの回転軸方向の寸法が大きい機種にそのまま適用した場合、ファンカバー9Aによる圧力損失が大きくなって、特に冷却気体の流れの下流において流速ベクトルV2の回転軸5に垂直な方向の成分Vvの減衰が大きくなり、回転軸5に平行な方向の成分Vpが支配的になる。そのような場合は、冷却気体の下流における流速ベクトルV2が回転軸5に略平行になるため、ピン形の放熱体よりもプレート形の放熱体の方が放熱効率が良いと想定される。かかる観点から、この実施の形態2では回転軸方向の寸法が大きい場合に、フレーム3における冷却気体の流れの上流に相当する部分にはピン形の放熱体31Aを配設して流速ベクトルV2の回転軸5に垂直方向の成分Vvによる冷却効果を有効に活用し、冷却気体の流れの下流に相当する部分にはプレート形の放熱体32を配設して、この領域で流速ベクトルV2に支配的な回転軸5に平行方向の成分Vpによる冷却効果を有効に活用するように構成したものである。   In the second embodiment, the frame 3 can be effectively cooled even when the dimension in the rotation axis direction of the frame 3 is large. That is, when the invention of the first embodiment is applied as it is to a model in which the dimensions of the frame 3 and the fan cover 9A in the rotation axis direction are large, the pressure loss due to the fan cover 9A becomes large, particularly in the downstream of the flow of the cooling gas. The attenuation of the component Vv in the direction perpendicular to the rotation axis 5 of the flow velocity vector V2 increases, and the component Vp in the direction parallel to the rotation axis 5 becomes dominant. In such a case, since the flow velocity vector V2 downstream of the cooling gas is substantially parallel to the rotation shaft 5, it is assumed that the heat radiation efficiency is better for the plate-shaped heat radiator than for the pin-shaped heat radiator. From this point of view, in the second embodiment, when the dimension in the direction of the rotation axis is large, a pin-shaped radiator 31A is disposed in a portion corresponding to the upstream of the flow of the cooling gas in the frame 3 to provide the flow velocity vector V2. The cooling effect by the component Vv in the direction perpendicular to the rotating shaft 5 is effectively utilized, and a plate-shaped radiator 32 is provided in the portion corresponding to the downstream of the flow of the cooling gas, and is governed by the flow velocity vector V2 in this region. The cooling effect by the component Vp in the direction parallel to the typical rotation shaft 5 is effectively utilized.

図7は、上記のように構成された実施の形態2による電動機の冷却効果を確認するために測定された風路圧損の低減効果の一例を、従来の全閉外扇形電動機(比較例)と比較して示したものである。図7において、横軸は風量(m/min)、縦軸は圧力損失(mmAq)を示し、曲線Aは用いた冷却ファン8の送風特性であるP−Q特性、曲線Bは実施の形態2に係る電動機1Aのシステム全体の圧力損失特性であるR−Q特性、曲線Cは比較例として用いた従来の電動機(図示省略)のシステム全体の圧力損失特性であるR−Q特性を示す。図7から明らかなように、フレーム3の外周面に形成する放熱体としてピン形の放熱体31Aとプレート形の放熱体32を併用することで、従来のようにプレート形の放熱体だけを配置した場合と比較して、放熱体の間を通過する風量が増加することにより効果的に電動機1Aが冷却されるという効果がある。 FIG. 7 compares an example of the effect of reducing the wind path pressure loss measured in order to confirm the cooling effect of the electric motor according to the second embodiment configured as described above with a conventional fully-enclosed external fan motor (comparative example). It is shown. In FIG. 7, the horizontal axis indicates the air volume (m 3 / min), the vertical axis indicates the pressure loss (mmAq), the curve A is the PQ characteristic that is the blowing characteristic of the cooling fan 8 used, and the curve B is the embodiment. 2 shows an RQ characteristic which is a pressure loss characteristic of the entire system of the electric motor 1A according to No. 2, and a curve C shows an RQ characteristic which is a pressure loss characteristic of the entire system of a conventional electric motor (not shown) used as a comparative example. As can be seen from FIG. 7, by using a pin-shaped radiator 31A and a plate-shaped radiator 32 together as a radiator formed on the outer peripheral surface of the frame 3, only a plate-shaped radiator is disposed as in the prior art. Compared with the case where it does, there exists an effect that 1 A of motors are cooled effectively by the air volume which passes between heat radiators increasing.

なお、上記実施の形態1、2では回転電機が電動機の場合について説明したが、発電機などでも同様の効果が得られることはいうまでもない。また、吸気孔9aの形状、冷却ファン8の羽根形状、フレーム3の形成方法等、例示したものに限定されるものではない。さらに、ピン形の放熱体31について、図2では発明の理解を容易にするために上面側のピンが周方向の所定範囲で同一の方向を向いているように図示しているが、必ずしも図示のものに限定されるものではなく、例えば回転軸5に対して放射状に設けても良い。その他、例えばブラケットの一方をフレームと一体に形成する等、この発明の精神の範囲内で種々の変形や変更ができることは当然である。   In the first and second embodiments, the case where the rotating electrical machine is an electric motor has been described. Needless to say, the same effect can be obtained by using a generator. Further, the shape of the intake hole 9a, the blade shape of the cooling fan 8, the method of forming the frame 3, etc. are not limited to those exemplified. Further, in FIG. 2, the pin-shaped heat radiator 31 is illustrated so that the pins on the upper surface face in the same direction within a predetermined range in the circumferential direction in order to facilitate understanding of the invention. For example, it may be provided radially with respect to the rotating shaft 5. In addition, for example, it is natural that various modifications and changes can be made within the spirit of the present invention, for example, one of the brackets is formed integrally with the frame.

本発明の実施の形態1に係る全閉外扇形回転電機の一例としての全閉外扇形電動機の回転軸に沿う縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which follows the rotating shaft of the full-closed external fan-shaped electric motor as an example of the full-closed external fan-shaped rotary electric machine which concerns on Embodiment 1 of this invention. 図1に示されたファンカバーを取り外した状態の全閉外扇形電動機を示す平面図。The top view which shows the fully-closed outer fan type motor of the state which removed the fan cover shown by FIG. 図1に示されたファンカバーを示す正面図。The front view which shows the fan cover shown by FIG. 図1に示されたファンを示す正面図。The front view which shows the fan shown by FIG. 図1に示された電動機について測定されたフレームの温度上昇を、同等サイズのプレート形の放熱体を設けた従来の電動機(比較例)と比較して示す特性図。The characteristic view which shows the temperature rise of the flame | frame measured about the electric motor shown by FIG. 1 compared with the conventional electric motor (comparative example) which provided the plate-shaped heat radiator of the equivalent size. 本発明の実施の形態2に係る全閉外扇形回転電機の一例としての全閉外扇形電動機の回転軸に沿う縦断面図。The longitudinal cross-sectional view which follows the rotating shaft of the full-closed outer fan type electric motor as an example of the full-closed outer fan-shaped rotary electric machine which concerns on Embodiment 2 of this invention. 図6に示された電動機について測定された圧力損失特性を従来の全閉外扇形電動機と比較して示す特性図。The characteristic view which shows the pressure loss characteristic measured about the electric motor shown by FIG. 6 in comparison with the conventional fully enclosed outside fan motor.

符号の説明Explanation of symbols

1、1A 全閉外扇形電動機(電動機)、2 固定子、 3 フレーム、 31、31A (ピン形の)放熱体、 32 (プレート形の)放熱体、 4 回転子、 5 回転軸、 6A、6B 軸受、 7A 負荷側ブラケット、 7B 反負荷側ブラケット、 8 冷却ファン、 81 羽根、 9、9A ファンカバー、 9a 吸気口、 9b 排気口。   1, 1A Fully-enclosed fan motor (motor), 2 stator, 3 frame, 31, 31A (pin type) radiator, 32 (plate type) radiator, 4 rotor, 5 rotating shaft, 6A, 6B bearing 7A Load side bracket, 7B Anti-load side bracket, 8 Cooling fan, 81 blades, 9, 9A Fan cover, 9a Intake port, 9b Exhaust port.

Claims (6)

固定子の周りを包囲するフレームと、このフレームの外周面に設けられた複数の放熱体と、機外に突出された回転軸に取り付けられた冷却ファンと、この冷却ファンによって付勢された気流を上記フレームの外周面に沿う方向に偏向するファンカバーとを備えた全閉外扇形回転電機において、上記放熱体がピン形に形成されてなることを特徴とする全閉外扇形回転電機。   A frame surrounding the stator, a plurality of radiators provided on the outer peripheral surface of the frame, a cooling fan attached to a rotating shaft protruding outside the machine, and an air current energized by the cooling fan And a fan cover that deflects the fan in a direction along the outer peripheral surface of the frame, wherein the radiator is formed in a pin shape. 上記ピン形の放熱体は、上記フレームの外周面を流れる気流の流速ベクトルの方向に沿って配列されていることを特徴とする請求項1に記載の全閉外扇形回転電機。   2. The fully-enclosed external fan-shaped rotating electrical machine according to claim 1, wherein the pin-shaped heat radiator is arranged along a direction of a flow velocity vector of an airflow flowing on an outer peripheral surface of the frame. 上記ファンカバーは、上記ピン形の放熱体を包囲するように上記気流の下流方向に伸びて形成されたことを特徴とする請求項1または請求項2に記載の全閉外扇形回転電機。   The fully-enclosed external fan-type rotating electrical machine according to claim 1, wherein the fan cover is formed to extend in a downstream direction of the airflow so as to surround the pin-shaped heat radiator. 上記フレームの外周面にプレート形の放熱体を設けたことを特徴とする請求項1から請求項3の何れかに記載の全閉外扇形回転電機。   The fully-enclosed fan-shaped rotating electrical machine according to any one of claims 1 to 3, wherein a plate-shaped heat radiator is provided on an outer peripheral surface of the frame. 上記気流の上流部に上記ピン形の放熱体を設け、上記気流の下流部に上記プレート形の放熱体を設けたことを特徴とする請求項4に記載の全閉外扇形回転電機。   The fully-enclosed fan-shaped rotating electrical machine according to claim 4, wherein the pin-shaped heat radiator is provided in an upstream portion of the airflow, and the plate-shaped heat radiator is provided in a downstream portion of the airflow. 上記ファンカバーは、吸気口がハニカム形状の貫通穴であることを特徴とする請求項1から請求項5の何れかに記載の全閉外扇形回転電機。   The fully-enclosed fan-shaped rotating electrical machine according to any one of claims 1 to 5, wherein the fan cover has a honeycomb-shaped through hole at an intake port.
JP2008001802A 2008-01-09 2008-01-09 Totally enclosed fan-cooled motor Pending JP2009165294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001802A JP2009165294A (en) 2008-01-09 2008-01-09 Totally enclosed fan-cooled motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001802A JP2009165294A (en) 2008-01-09 2008-01-09 Totally enclosed fan-cooled motor

Publications (1)

Publication Number Publication Date
JP2009165294A true JP2009165294A (en) 2009-07-23

Family

ID=40967248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001802A Pending JP2009165294A (en) 2008-01-09 2008-01-09 Totally enclosed fan-cooled motor

Country Status (1)

Country Link
JP (1) JP2009165294A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050317A (en) * 2010-07-26 2012-03-08 Nippon Soken Inc Electric motor
JP2014050173A (en) * 2012-08-30 2014-03-17 Fuji Electric Co Ltd Cooling fin structure of air-cooling rotary electric machine
CN104823372A (en) * 2012-08-09 2015-08-05 朱利安·罗梅罗-贝尔特伦 Motor
CN105099053A (en) * 2015-09-08 2015-11-25 浙江双菱新能源科技有限公司 Integrated water cooling shell of motor
WO2015111018A3 (en) * 2014-01-26 2015-12-10 Skiping D.O.O. Electric machine heat sink with incorporated pin fin arangement means
CN109921569A (en) * 2019-04-16 2019-06-21 倪世章 A kind of New-type electric machine
CN110323885A (en) * 2019-07-16 2019-10-11 无锡市亨达电机有限公司 A kind of New-type electric machine radiator structure
EP3553925A1 (en) * 2018-04-12 2019-10-16 Siemens Aktiengesellschaft Cooling optimized housing of a machine
JP2020044483A (en) * 2018-09-18 2020-03-26 ヤヨイ化学工業株式会社 Agitator
CN111092519A (en) * 2019-12-13 2020-05-01 陈虎威 Multifunctional inner rotor direct-drive permanent magnet synchronous motor
JP2020104027A (en) * 2018-12-26 2020-07-09 ヤヨイ化学工業株式会社 Stirrer
CN112134406A (en) * 2020-09-04 2020-12-25 孙永林 Double-fan-swinging heat dissipation type motor based on self-vibration phenomenon
CN113241900A (en) * 2021-05-28 2021-08-10 天津中德应用技术大学 Integrated motor with high reliability
WO2022092732A1 (en) * 2020-10-27 2022-05-05 삼성전자 주식회사 Motor assembly
CN116191774A (en) * 2023-04-25 2023-05-30 佛山市顺德龙佳微电机实业有限公司 Heat dissipation structure of alternating-current permanent magnet synchronous motor shell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993865A (en) * 1995-09-29 1997-04-04 Hitachi Ltd Induction motor
JPH11275812A (en) * 1998-03-23 1999-10-08 Meidensha Corp Frame cooling fin structure of finned cooling motor
JP2005508130A (en) * 2001-11-08 2005-03-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Three-phase AC alternator for electric machines, preferably automobiles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993865A (en) * 1995-09-29 1997-04-04 Hitachi Ltd Induction motor
JPH11275812A (en) * 1998-03-23 1999-10-08 Meidensha Corp Frame cooling fin structure of finned cooling motor
JP2005508130A (en) * 2001-11-08 2005-03-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Three-phase AC alternator for electric machines, preferably automobiles

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050317A (en) * 2010-07-26 2012-03-08 Nippon Soken Inc Electric motor
CN104823372A (en) * 2012-08-09 2015-08-05 朱利安·罗梅罗-贝尔特伦 Motor
JP2014050173A (en) * 2012-08-30 2014-03-17 Fuji Electric Co Ltd Cooling fin structure of air-cooling rotary electric machine
WO2015111018A3 (en) * 2014-01-26 2015-12-10 Skiping D.O.O. Electric machine heat sink with incorporated pin fin arangement means
US10230287B2 (en) 2014-01-26 2019-03-12 Mahle International Gmbh Electric machine heat sink with incorporated pin fin arrangement
CN105099053A (en) * 2015-09-08 2015-11-25 浙江双菱新能源科技有限公司 Integrated water cooling shell of motor
WO2019197158A1 (en) * 2018-04-12 2019-10-17 Siemens Aktiengesellschaft Cooling-optimised housing of a machine
CN112042080A (en) * 2018-04-12 2020-12-04 西门子股份公司 Housing for optimized cooling of a machine
EP3553925A1 (en) * 2018-04-12 2019-10-16 Siemens Aktiengesellschaft Cooling optimized housing of a machine
JP2020044483A (en) * 2018-09-18 2020-03-26 ヤヨイ化学工業株式会社 Agitator
JP7193837B2 (en) 2018-09-18 2022-12-21 ヤヨイ化学工業株式会社 mixer
JP2020104027A (en) * 2018-12-26 2020-07-09 ヤヨイ化学工業株式会社 Stirrer
JP7281169B2 (en) 2018-12-26 2023-05-25 ヤヨイ化学工業株式会社 mixer
CN109921569A (en) * 2019-04-16 2019-06-21 倪世章 A kind of New-type electric machine
CN110323885A (en) * 2019-07-16 2019-10-11 无锡市亨达电机有限公司 A kind of New-type electric machine radiator structure
CN111092519A (en) * 2019-12-13 2020-05-01 陈虎威 Multifunctional inner rotor direct-drive permanent magnet synchronous motor
CN112134406A (en) * 2020-09-04 2020-12-25 孙永林 Double-fan-swinging heat dissipation type motor based on self-vibration phenomenon
CN112134406B (en) * 2020-09-04 2021-12-14 淮北中易光电科技有限公司 Double-fan-swinging heat dissipation type motor based on self-vibration phenomenon
WO2022092732A1 (en) * 2020-10-27 2022-05-05 삼성전자 주식회사 Motor assembly
CN113241900A (en) * 2021-05-28 2021-08-10 天津中德应用技术大学 Integrated motor with high reliability
CN113241900B (en) * 2021-05-28 2022-07-15 天津中德应用技术大学 Integrated motor with high reliability
CN116191774A (en) * 2023-04-25 2023-05-30 佛山市顺德龙佳微电机实业有限公司 Heat dissipation structure of alternating-current permanent magnet synchronous motor shell

Similar Documents

Publication Publication Date Title
JP2009165294A (en) Totally enclosed fan-cooled motor
JP5762012B2 (en) Electric motor
JP2015208101A (en) Squirrel-cage motor
JP6376981B2 (en) Rotating device
BRPI0716803A2 (en) ELECTRIC MACHINE WITH AN INTERNALLY COOLED ROTOR
JP6665344B2 (en) Vehicle electric motor
WO2012080566A1 (en) An electrical machine
JP2014033584A (en) Wind cooling structure of rotary electric machine
JP6504754B2 (en) Electric blower and vacuum cleaner using the same
JP2002218704A (en) Fully-enclosed fan-cooled electric motor
JP2013029034A (en) Electric blower and vacuum cleaner
US10186936B2 (en) Electric machine with a baffle
KR101407999B1 (en) Motor cooling apparatus for vehicle
JPH07184351A (en) Dynamo-electric machine
JP5724301B2 (en) Generator cooling structure
FI123727B (en) Arrangement and method for cooling an electrical machine
JPH07184349A (en) Dynamo-electric machine
JPH07184350A (en) Dynamo-electric machine
JP2015228768A (en) Rotary machine
JP2019124205A (en) Air blower
JPH089594A (en) Totally-enclosed fan-cooled motor
WO2020208730A1 (en) Electric motor
JP5508704B2 (en) Rotating electric machine
JPH06169554A (en) Totally-feclosed fan-cooled rotary electric machine
JP7414706B2 (en) rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403