JP2009162658A - Surface modification method of liquid contact part of channel tip made of polymer resin - Google Patents

Surface modification method of liquid contact part of channel tip made of polymer resin Download PDF

Info

Publication number
JP2009162658A
JP2009162658A JP2008001466A JP2008001466A JP2009162658A JP 2009162658 A JP2009162658 A JP 2009162658A JP 2008001466 A JP2008001466 A JP 2008001466A JP 2008001466 A JP2008001466 A JP 2008001466A JP 2009162658 A JP2009162658 A JP 2009162658A
Authority
JP
Japan
Prior art keywords
polymer resin
liquid contact
channel chip
flow path
contact part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001466A
Other languages
Japanese (ja)
Other versions
JP5039894B2 (en
Inventor
Shotaro Takahashi
正太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008001466A priority Critical patent/JP5039894B2/en
Publication of JP2009162658A publication Critical patent/JP2009162658A/en
Application granted granted Critical
Publication of JP5039894B2 publication Critical patent/JP5039894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface modification method of a liquid contact part of a channel chip made of polymer resin, which can provide long lasting improved hydrophilicity to a liquid contact part. <P>SOLUTION: The surface modification method of a liquid contact part of a channel chip made of polymer resin comprises: introducing an application solution containing a silane coupling agent, and polyethylene glycol and/or polyvinyl alcohol into the inside of a channel 12 of a polymer resin channel chip 1; forming an applied coating on a liquid contact part 12a; and drying the applied coating under conditions of a humidity of 70% and a temperature of 100°C or lower. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高分子樹脂製流路チップ接液部の表面改質方法に関する。   The present invention relates to a method for modifying the surface of a polymer resin flow channel tip wetted portion.

たとえば、核酸やタンパク質等の生体分子の分析においては、例えば、μ−TAS(Micro Total Analysis System)のような、ポンプ、バルブ、センサ、流路等を有する高分子樹脂製流路チップを用いた分析を行うことにより、様々な種類の試料を分析することが広く行われている。このような分析法は、低コスト、かつ短時間で大量の分析を行えるという利点がある。また、分析に必要な作業を自動化することにより、煩雑な作業や熟練した技術等を必要とせず、簡便に分析を行うことができる。そのため、特に医療や環境測定の分野において好適に用いられる。   For example, in the analysis of biomolecules such as nucleic acids and proteins, for example, a flow path chip made of a polymer resin having a pump, a valve, a sensor, a flow path, etc., such as μ-TAS (Micro Total Analysis System) was used. It is widely performed to analyze various types of samples by performing analysis. Such an analysis method has an advantage that a large amount of analysis can be performed at a low cost and in a short time. Further, by automating the work necessary for the analysis, it is possible to easily perform the analysis without requiring troublesome work and skilled techniques. Therefore, it is suitably used particularly in the fields of medical care and environmental measurement.

このような分析においては、試料溶液が高分子樹脂製流路チップの流路を通過する際、試料溶液内の核酸やタンパク質、また標識化合物として用いられる蛍光性有機化合物等が流路の接液部(内壁面)に吸着すると、分析の定量性及び精度が低くなり、信頼性が低下する。特に検量線を必要とするようなμ−TASの場合にはその影響は大きくなる。高分子樹脂製流路チップの材質としては、一般に環状オレフィン、ポリメチルメタアクリレート、ポリイミド、シリコンゴム等の疎水性の高分子樹脂が用いられる。そのため、高分子樹脂製流路チップの接液部に、核酸、タンパク質、蛍光性有機化合物等の試料が吸着することを抑えることが求められている。   In such an analysis, when the sample solution passes through the flow path of the polymer resin flow path chip, the nucleic acid and protein in the sample solution, the fluorescent organic compound used as the labeling compound, etc. are in contact with the flow path. When adsorbed on the inner wall (inner wall surface), the quantitativeness and accuracy of the analysis are lowered and the reliability is lowered. In particular, in the case of μ-TAS that requires a calibration curve, the effect becomes large. As the material of the polymer resin flow channel chip, generally, a hydrophobic polymer resin such as cyclic olefin, polymethyl methacrylate, polyimide, silicon rubber or the like is used. Therefore, it is required to suppress the adsorption of samples such as nucleic acids, proteins, fluorescent organic compounds, etc. on the liquid contact part of the polymer resin flow channel chip.

核酸等の生体分子が高分子樹脂製流路チップの接液部に吸着するのを抑える方法としては、接液部の親水性を向上させ、接液部と、試料溶液中の核酸等の生体分子との相互作用を弱める方法が知られている。
具体的には、たとえば、生体分子との相互作用が弱いことが知られている血清アルブミン、生体膜を構成するリン脂質成分を接液部に吸着により保持させる方法がある(特許文献1)。
特開2006−292472号公報
As a method for suppressing the adsorption of biomolecules such as nucleic acids to the wetted part of the polymer resin flow channel chip, the hydrophilicity of the wetted part is improved, and the wetted part and the living body such as nucleic acid in the sample solution There are known methods for weakening the interaction with molecules.
Specifically, for example, there is a method in which serum albumin, which is known to have a weak interaction with biomolecules, and a phospholipid component constituting a biological membrane are held in the wetted part by adsorption (Patent Document 1).
JP 2006-292472 A

しかし、特許文献1の方法では、高分子樹脂材料の種類によっては血清アルブミンやリン脂質成分が接液部に吸着し難く、保持効率が悪いため、試料中の生体分子等の吸着を抑える効果が充分に得られないことがある。また、接液部に吸着させた血清アルブミンやリン脂質成分が、試料溶液中に脱離してきてしまうという問題もあった。
そのため、高分子樹脂製流路チップの接液部の親水性を向上させることができ、かつ付与した親水性の持続力が高い表面改質方法が望まれている。
However, in the method of Patent Document 1, depending on the type of polymer resin material, serum albumin and phospholipid components are difficult to adsorb on the wetted part, and the retention efficiency is poor. Therefore, the effect of suppressing the adsorption of biomolecules in the sample is effective. It may not be obtained sufficiently. There is also a problem that serum albumin and phospholipid components adsorbed on the wetted part are desorbed into the sample solution.
Therefore, there is a demand for a surface modification method that can improve the hydrophilicity of the liquid contact portion of the polymer resin flow channel chip and has a high hydrophilic sustainability.

そこで本発明は、接液部の親水性を向上させることができ、かつ付与した親水性の持続力が高い、高分子樹脂製流路チップ接液部の表面改質方法を目的とする。   Accordingly, the present invention is directed to a method for modifying the surface of a polymer resin flow channel tip wetted part, which can improve the hydrophilicity of the wetted part and has a high hydrophilic sustainability.

本発明の高分子樹脂製流路チップ接液部の表面改質方法は、高分子樹脂製流路チップの流路内に、ポリエチレングリコール及び/又はポリビニルアルコールとシランカップリング剤とを含む塗布溶液を導入し、流路の接液部に塗布膜を形成させ、該塗布膜を湿度70%以上、100℃以下の条件で乾燥する工程を含むことを特徴とする方法である。これにより、前記流路の接液部に、シランカップリング剤と親水性高分子とを含有する改質膜を形成することができる。   The method for modifying the surface of a polymer resin channel chip wetted part according to the present invention includes a coating solution containing polyethylene glycol and / or polyvinyl alcohol and a silane coupling agent in the channel of the polymer resin channel chip. And forming a coating film on the liquid contact portion of the flow path, and drying the coating film under conditions of a humidity of 70% or more and 100 ° C. or less. Thereby, the modified film containing the silane coupling agent and the hydrophilic polymer can be formed in the liquid contact portion of the flow path.

また、本発明の高分子樹脂製流路チップ接液部の表面改質方法は、前記乾燥を、50〜100℃の熱処理により行うことが好ましい。これにより、塗布膜中の溶媒の蒸発が早く、改質膜が短時間で形成される。
また、前記塗布溶液(100質量%)中の前記親水性高分子の含有量が、1〜20質量%であることが好ましい。親水性高分子の含有量を前記範囲内とすることにより、低コストで成形体表面の親水性が向上する。
前記塗布溶液(100質量%)中の前記シランカップリング剤の含有量が、5〜30質量%であることが好ましい。シランカップリング剤の含有量を前記範囲内とすることにより、改質膜の膜厚を厚くしすぎずに親水性高分子を固定することが容易になる。
In the method for modifying the surface of the polymer resin flow channel tip wetted part of the present invention, the drying is preferably performed by heat treatment at 50 to 100 ° C. As a result, the solvent in the coating film evaporates quickly, and the modified film is formed in a short time.
Moreover, it is preferable that content of the said hydrophilic polymer in the said coating solution (100 mass%) is 1-20 mass%. By setting the content of the hydrophilic polymer within the above range, the hydrophilicity of the surface of the molded body is improved at a low cost.
The content of the silane coupling agent in the coating solution (100% by mass) is preferably 5 to 30% by mass. By setting the content of the silane coupling agent within the above range, it becomes easy to fix the hydrophilic polymer without increasing the film thickness of the modified film.

本発明の方法によれば、高分子樹脂製流路チップの接液部の親水性を向上させることができ、また付与した親水性が長期間持続する。   According to the method of the present invention, the hydrophilicity of the liquid contact portion of the polymer resin channel chip can be improved, and the imparted hydrophilicity lasts for a long time.

本発明の高分子樹脂製流路チップ接液部の表面改質方法は、高分子樹脂製流路チップの流路に塗布溶液を導入し、接液部に塗布膜を形成させ、該塗布膜を乾燥する工程を含む方法である。
本発明の表面改質方法の一実施形態例として、図1〜3に例示する高分子樹脂製流路チップ1(以下、流路チップ1という)の接液部の親水性を向上させる方法について説明する。
In the method for modifying the surface of a polymer resin flow channel chip wetted part according to the present invention, a coating solution is introduced into the flow path of the polymer resin flow channel chip, and a coating film is formed on the liquid wetted part. It is a method including the process of drying.
As an embodiment of the surface modification method of the present invention, a method for improving the hydrophilicity of the wetted part of the polymer resin flow channel chip 1 (hereinafter referred to as the flow channel chip 1) illustrated in FIGS. explain.

[高分子樹脂製流路チップ]
流路チップ1は、図3に示すように、長尺の上側基板2と、該上側基板2と同様の形状の下側基板3とが接合されている。また、上側基板2には、該上側基板2の長手方向に沿って凹条2a(3つ)が形成されており、上側基板2と下側基板3とが接合されることにより、流路12が形成されている。
また、流路チップ1は、図1及び図2に示すように、試料溶液20を投入する開口11と、試料溶液20を排出する開口13とを有している。そのため、開口11より投入された試料溶液20が流路12内を通過し、開口13から排出されることにより、例えば、流路12の途中にセンサ等を配置することで様々な試料を連続的に測定できる。
[Polymer resin channel chip]
As shown in FIG. 3, the flow path chip 1 is formed by joining a long upper substrate 2 and a lower substrate 3 having the same shape as the upper substrate 2. Further, the upper substrate 2 is formed with recesses 2 a (three) along the longitudinal direction of the upper substrate 2, and the upper substrate 2 and the lower substrate 3 are joined together, whereby the flow path 12. Is formed.
Further, as shown in FIGS. 1 and 2, the flow channel chip 1 has an opening 11 for introducing the sample solution 20 and an opening 13 for discharging the sample solution 20. Therefore, the sample solution 20 introduced from the opening 11 passes through the flow path 12 and is discharged from the opening 13, so that various samples can be continuously obtained by arranging a sensor or the like in the middle of the flow path 12. Can be measured.

流路チップ1の上側基板2及び下側基板3の材質としては、たとえば、環状オレフィン、ポリメチルメタアクリレート、ポリイミド、シリコンゴム等の疎水性高分子からなる高分子樹脂材料が挙げられる。このような高分子樹脂材料からなる流路チップ1の接液部12a(流路12の内壁面)は疎水性である。上側基板2及び下側基板3の材質は、同じであっても異なっていてもよい。   Examples of the material of the upper substrate 2 and the lower substrate 3 of the flow path chip 1 include polymer resin materials made of a hydrophobic polymer such as cyclic olefin, polymethyl methacrylate, polyimide, and silicon rubber. The liquid contact portion 12a (the inner wall surface of the flow channel 12) of the flow channel chip 1 made of such a polymer resin material is hydrophobic. The material of the upper substrate 2 and the lower substrate 3 may be the same or different.

[塗布溶液]
流路チップ1の接液部12aに塗布膜を形成するのに用いる塗布溶液は、溶媒中に親水性高分子及びシランカップリング剤を含有する。
溶媒としては、エタノール、n−ヘキサノール、1,4−ジオキサン等の有機溶媒が挙げられ、前記有機溶媒と水との混合溶媒であってもよい。また、これら溶媒には、酢酸、塩酸、硫酸等の酸が添加されていることが好ましい。
[Coating solution]
The coating solution used to form the coating film on the liquid contact portion 12a of the flow path chip 1 contains a hydrophilic polymer and a silane coupling agent in the solvent.
Examples of the solvent include organic solvents such as ethanol, n-hexanol, and 1,4-dioxane, and may be a mixed solvent of the organic solvent and water. Moreover, it is preferable that acids, such as an acetic acid, hydrochloric acid, and a sulfuric acid, are added to these solvents.

(親水性高分子)
親水性高分子は、流路チップ1の接液部12aに固定されることにより表面の親水性を向上させる役割を果たす。
親水性高分子としては、ポリビニルアルコール及び/又はポリエチレングリコールが使用できる。
親水性高分子として酸性度定数(pKa)の値が小さいポリビニル硫酸塩等を用いると、流路12内においてポリビニル硫酸塩が解離した状態で存在するため、静電的な相互作用により接液部12aに核酸やタンパク質等の試料が吸着してしまう。本発明の表面改質方法では、ポリビニルアルコールやポリエチレングリコールを用いることにより、そのような静電的な相互作用による試料の吸着を避けることができる。
(Hydrophilic polymer)
The hydrophilic polymer plays a role of improving the hydrophilicity of the surface by being fixed to the liquid contact part 12a of the flow path chip 1.
Polyvinyl alcohol and / or polyethylene glycol can be used as the hydrophilic polymer.
When polyvinyl sulfate or the like having a low acidity constant (pKa) is used as the hydrophilic polymer, since the polyvinyl sulfate exists in the dissociated state in the flow path 12, the wetted part is caused by electrostatic interaction. Samples such as nucleic acids and proteins are adsorbed to 12a. In the surface modification method of the present invention, adsorption of the sample due to such electrostatic interaction can be avoided by using polyvinyl alcohol or polyethylene glycol.

ポリエチレングリコールの平均分子量は、400〜8000であることが好ましく、600〜6000であることがより好ましく、600〜4000であることがさらに好ましい。平均分子量が600以上であれば、ポリエチレングリコールの膜表面密度が高まりやすい。平均分子量が6000以下であれば、コーティング液への溶解性を確保しやすい。
ポリビニルアルコールの重合度は、1000〜3000であることが好ましく、1500〜2000であることがより好ましい。重合度が1500以上であれば、ポリビニルアルコールの膜表面密度が高めやすい。重合度が2000以下であれば、コーティング液への溶解性を確保しやすい。
The average molecular weight of polyethylene glycol is preferably 400 to 8000, more preferably 600 to 6000, and even more preferably 600 to 4000. If the average molecular weight is 600 or more, the film surface density of polyethylene glycol tends to increase. If the average molecular weight is 6000 or less, it is easy to ensure solubility in the coating solution.
The polymerization degree of polyvinyl alcohol is preferably 1000 to 3000, and more preferably 1500 to 2000. If the degree of polymerization is 1500 or more, the film surface density of polyvinyl alcohol is likely to be increased. If the degree of polymerization is 2000 or less, it is easy to ensure solubility in the coating solution.

塗布溶液(100質量%)中の親水性高分子の含有量は、1〜20質量%であることが好ましく、3〜15質量%であることがより好ましく、5〜10質量%であることがさらに好ましい。
親水性高分子の含有量が1質量%以上であれば、高分子樹脂材料表面の親水性を向上させやすい。また、親水性高分子の含有量が20質量%を超えると親水性を向上させる効果はほとんど変化しなくなる。
親水性高分子としてポリビニルアルコール及びポリエチレングリコールを併用する場合には、それらの合計量が前記範囲を満たすようにすることが好ましい。
The content of the hydrophilic polymer in the coating solution (100% by mass) is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and 5 to 10% by mass. Further preferred.
If the content of the hydrophilic polymer is 1% by mass or more, it is easy to improve the hydrophilicity of the surface of the polymer resin material. Further, when the content of the hydrophilic polymer exceeds 20% by mass, the effect of improving the hydrophilicity hardly changes.
When polyvinyl alcohol and polyethylene glycol are used in combination as the hydrophilic polymer, it is preferable that the total amount thereof satisfies the above range.

(シランカップリング剤)
シランカップリング剤は、塗布溶液を導入して形成した塗布膜を乾燥することにより接液部12aに改質膜を形成させ、該改質膜に親水性高分子を固定する役割を果たす。
シランカップリング剤としては、たとえば、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラエトキシシラン、ビニルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノメチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノメチル)−3−アミノプロピルミチルジメチキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリルオキシプロピルトリメトキシシラン、3−メタクリルオキシプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ヘキサメチルシラザン、1,3−ビス(3−グリシドキシプロピル)−1,1,3,3−テトラメチルジシロキサン、フェニルトリエトキシシラン等が挙げられる。
シランカップリング剤は、1種のみを単独で使用してもよく、2種以上を併用してもよい。
(Silane coupling agent)
The silane coupling agent plays a role of forming a modified film on the liquid contact portion 12a by drying a coated film formed by introducing a coating solution, and fixing a hydrophilic polymer to the modified film.
Examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, vinyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminomethyl) -3-aminopropyltri Methoxysilane, N- (2-aminomethyl) -3-aminopropylmityldimethyoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, hexamethylsilazane, 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane, phenyltrie G Shishiran, and the like.
A silane coupling agent may be used individually by 1 type, and may use 2 or more types together.

塗布溶液(100質量%)中のシランカップリング剤の含有量は、5〜30質量%であることが好ましく、10〜20質量%であることがより好ましく、12〜16質量%であることがさらに好ましい。
シランカップリング剤の含有量が10質量%以上であれば、高分子樹脂材料表面に親水性高分子を固定しやすい。また、シランカップリング剤の含有量が20質量%以下であれば、乾燥後の改質膜の膜厚が厚くなりすぎるのを防ぎやすい。
シランカップリング剤を2種以上併用する場合には、それらの合計量が前記範囲を満たすようにすることが好ましい。
The content of the silane coupling agent in the coating solution (100% by mass) is preferably 5 to 30% by mass, more preferably 10 to 20% by mass, and 12 to 16% by mass. Further preferred.
When the content of the silane coupling agent is 10% by mass or more, it is easy to fix the hydrophilic polymer on the surface of the polymer resin material. Moreover, if content of a silane coupling agent is 20 mass% or less, it will be easy to prevent the film thickness of the modified film after drying becoming too thick.
When using 2 or more types of silane coupling agents together, it is preferable to make the total amount satisfy the above range.

[表面改質方法]
本発明の表面改質方法は、流路チップ1の流路12内に塗布溶液を導入し、接液部12aに塗布膜を形成し、該塗布膜を湿度70%以上、100℃以下の条件で乾燥する工程を含む。
接液部12aに塗布膜を形成する方法としては、特に制限はなく、例えば、シリンジ等を用いて開口11から前記塗布溶液を押し込んで流路12に導入し、一定期間馴染ませた後に空気を導入することにより余分な塗布溶液を除去して塗布膜を形成する方法が挙げられる。また、開口13側から減圧することにより、開口11から塗布溶液を流路12内に引き込んで馴染ませた後、前記と同様にして余分な塗布溶液を除去する方法であってもよい。また、流路12内に塗布溶液を導入するのは開口13側からであってもよい。
[Surface modification method]
In the surface modification method of the present invention, a coating solution is introduced into the flow channel 12 of the flow channel chip 1 to form a coating film on the liquid contact portion 12a, and the coating film is subjected to conditions of a humidity of 70% or more and 100 ° C. or less. The process of drying with.
The method for forming the coating film on the liquid contact portion 12a is not particularly limited. For example, the coating solution is pushed into the flow path 12 using a syringe or the like and introduced into the flow path 12, and the air is conditioned after a certain period of time. A method of forming a coating film by removing an excessive coating solution by introducing is mentioned. Alternatively, after reducing the pressure from the opening 13 side, the coating solution is drawn into the flow path 12 from the opening 11 to be acclimatized, and then the excess coating solution is removed in the same manner as described above. Further, the coating solution may be introduced into the flow path 12 from the opening 13 side.

本発明の方法では、塗布膜を乾燥後に親水性高分子とシランカップリング剤により形成される改質膜と、接液部12aとの結合強度を向上させるために、流路12内に塗布溶液を導入する前に接液部12aの表面処理を施していてもよい。
たとえば、流路チップ1がポリイミド樹脂材料からなる場合には、流路12内に水酸化ナトリウム水溶液等を導入することによりアルカリ加水分解を行い、接液部12aにカルボキシ基及びアミノ基を露出させる必要がある。
In the method of the present invention, in order to improve the bonding strength between the modified film formed by the hydrophilic polymer and the silane coupling agent after drying the coating film and the liquid contact portion 12a, the coating solution is provided in the flow path 12. The surface treatment of the wetted part 12a may be performed before introducing.
For example, when the channel chip 1 is made of a polyimide resin material, alkali hydrolysis is performed by introducing a sodium hydroxide aqueous solution or the like into the channel 12 to expose the carboxy group and amino group in the liquid contact part 12a. There is a need.

接液部12aに形成した塗布膜は、乾燥時の湿度が70%以上である工程を含むことにより、流路チップ1の接液部12aの親水性を充分に向上させることができる。また、湿度70%以上の条件における乾燥後、さらに湿度70%未満の条件における乾燥を行ってもよい。この場合、湿度50〜80%で乾燥することが好ましい。
湿度は、流路12内に前記湿度の空気を導入することにより調節することができ、流路12内の塗布溶液の除去を兼ねることが好ましい。
The coating film formed on the liquid contact part 12a can sufficiently improve the hydrophilicity of the liquid contact part 12a of the flow path chip 1 by including a step in which the humidity during drying is 70% or more. Further, after drying under conditions of 70% or higher humidity, drying may be performed under conditions of less than 70% humidity. In this case, it is preferable to dry at a humidity of 50 to 80%.
The humidity can be adjusted by introducing air of the humidity into the flow path 12, and it is preferable that the humidity also serves as removal of the coating solution in the flow path 12.

また、本発明の方法では、乾燥は100℃以下で行う。乾燥は、50〜100℃での熱処理により行うことが好ましく、85〜95℃の熱処理により行うことがより好ましい。
乾燥温度を50℃以上とすれば、塗布膜の乾燥をより短時間で行うことができるため、親水性の高い接液部12aを有する流路チップ1の製造効率が向上する。また、乾燥温度を95℃以下とすれば、乾燥時に溶媒が急激に蒸発することにより、形成される改質膜にクラックが入ってしまうのを防止しやすい。
In the method of the present invention, drying is performed at 100 ° C. or lower. Drying is preferably performed by heat treatment at 50 to 100 ° C, and more preferably by heat treatment at 85 to 95 ° C.
When the drying temperature is set to 50 ° C. or higher, the coating film can be dried in a shorter time, so that the manufacturing efficiency of the flow channel chip 1 having the highly hydrophilic liquid contact portion 12a is improved. Further, if the drying temperature is 95 ° C. or lower, it is easy to prevent cracks from occurring in the modified film formed by the rapid evaporation of the solvent during drying.

また、前記湿度条件における乾燥後、さらに湿度70%以下の条件における乾燥を行う場合、乾燥温度は前記乾燥温度と同様に100℃以下とする。また、好ましい温度条件も同じである。   Moreover, after drying on the said humidity conditions, when drying on the conditions of 70% or less of humidity, a drying temperature shall be 100 degrees C or less similarly to the said drying temperature. The preferable temperature conditions are also the same.

接液部12aに形成される改質膜の膜厚は、0.01〜2μmであることが好ましい。膜厚を0.01μm以上とすれば、接液部12aの親水性を向上させやすい。また、膜厚を2μm以下とすれば、試料溶液20の通液を阻害して分析性能を低下させるおそれが少ない。   The film thickness of the modified film formed on the liquid contact portion 12a is preferably 0.01 to 2 μm. If the film thickness is 0.01 μm or more, it is easy to improve the hydrophilicity of the liquid contact part 12a. Moreover, if the film thickness is 2 μm or less, there is little risk of impeding the passage of the sample solution 20 and reducing the analytical performance.

以上説明した本発明の方法によれば、低コストで高分子樹脂製流路チップの接液部を改質し、親水性を向上させることができる。また、得られた高分子樹脂製流路チップ接液部の親水性表面は、従来の方法によるものと比較して持続力が優れている。そのため、試料溶液20中の核酸、タンパク質、標識化合物である蛍光性有機化合物等の試料が接液部に吸着するのを抑えることができるため、分析の定量性及び精度が向上し、信頼性が高くなる。
該理由は、シランカップリング剤により形成される膜に親水性高分子を含有させることにより、親水性高分子を接液部に強固に固定できるためであると考えられる。
According to the method of the present invention described above, it is possible to improve the hydrophilicity by modifying the liquid contact portion of the polymer resin channel chip at low cost. In addition, the hydrophilic surface of the obtained polymer resin flow channel tip wetted part is superior in sustainability compared to the conventional method. Therefore, it is possible to prevent the sample such as nucleic acid, protein, and fluorescent organic compound that is a labeling compound in the sample solution 20 from adsorbing to the wetted part, thereby improving the quantitativeness and accuracy of the analysis and improving the reliability. Get higher.
The reason is considered to be that the hydrophilic polymer can be firmly fixed to the wetted part by including the hydrophilic polymer in the film formed of the silane coupling agent.

また、本発明では乾燥時の湿度を70%以上とする工程を含むため、接液部に高い親水性を付与することができる。該理由としては、高い湿度条件で乾燥を行うことにより、乾燥時に気相に存在する水分子と、塗布膜中のシランカップリング剤が有するヒドロキシ基との間で相互作用(水素結合等)が生じ、乾燥後に形成された改質膜表面近傍のシランカップリング剤のヒドロキシ基の密度が高くなるためであると考えられる。   In addition, since the present invention includes a step of setting the humidity during drying to 70% or higher, high hydrophilicity can be imparted to the wetted part. The reason for this is that, by drying under high humidity conditions, there is an interaction (hydrogen bond, etc.) between water molecules present in the gas phase at the time of drying and the hydroxy group of the silane coupling agent in the coating film. This is considered to be because the density of hydroxy groups of the silane coupling agent near the surface of the modified film formed after drying is increased.

以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によって限定されるものではない。
[実施例1]
図4に示すような高分子樹脂製流路チップ4(以下、流路チップ4)を用意した。流路チップ4は、長尺の上側基板5と、該上側基板5と同様の形状の下側基板6とが接合されている。また、上側基板5には、該上側基板5の長手方向に沿って凹条5a(1つ)が形成されており、上側基板5と下側基板6とが接合されて、流路32が形成されている(図6)。
また、流路チップ4は、図4及び図5に示すように、試料溶液を投入する開口31と、試料溶液を排出する開口33とを有している。上側基板5及び下側基板6は環状オレフィン樹脂(COC樹脂)からなる。
また、エタノール(20mL)、n−ヘキサノール(2mL)、酢酸(0.9mL)、及び0.01N塩酸(4.3mL)からなる溶媒に、フェニルトリエトキシシラン(1mL)、メチルトリエトキシシラン(1mL)、及びアミノプロピルトリエトキシシラン(0.5mL)を順次加え、よく混和させた。ついで、室温下で一定期間放置した後、平均分子量3000のポリエチレングリコール(2g)を含むエタノール―水混合溶液(10mL)を添加し、よく混和して塗布溶液とした。
ついで、前記塗布溶液を開口31から流路32内に1mL容量の樹脂製シリンジを用いて導入することにより充填した。その後、室温(25℃)下で5分間放置して、塗布溶液を流路32の接液部32aに馴染ませ、50mLシリンジポンプを用いて5分間、湿度80%の空気を流路32内に導入して余分な塗布溶液を除去し、接液部32aに塗布膜を形成した。
ついで、加湿調整機能付き加熱装置(TEMP. & HUMID. CHAMBER SH-240、ESPEC社製)により、湿度80%、温度95℃で12時間連続加熱後、さらに無加湿状態(乾燥開始時の湿度は80%であり、時間経過と共に乾燥状態となる)、温度95℃で12時間連続乾燥した後、約3時間かけて室温に戻すことにより、接液部32aにポリエチレングリコールを固定化した流路チップ4Aを得た。
なお、流路チップ4Aの流路の切断断面の電子顕微鏡写真から、改質膜の膜厚は0.16μmと推測できた。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
[Example 1]
A polymer resin channel chip 4 (hereinafter, channel chip 4) as shown in FIG. 4 was prepared. The flow path chip 4 is formed by joining a long upper substrate 5 and a lower substrate 6 having the same shape as the upper substrate 5. Further, the upper substrate 5 is formed with a groove 5a (one) along the longitudinal direction of the upper substrate 5, and the upper substrate 5 and the lower substrate 6 are joined together to form the flow path 32. (FIG. 6).
Further, as shown in FIGS. 4 and 5, the flow path chip 4 has an opening 31 for introducing the sample solution and an opening 33 for discharging the sample solution. The upper substrate 5 and the lower substrate 6 are made of a cyclic olefin resin (COC resin).
In addition, to a solvent composed of ethanol (20 mL), n-hexanol (2 mL), acetic acid (0.9 mL), and 0.01N hydrochloric acid (4.3 mL), phenyltriethoxysilane (1 mL), methyltriethoxysilane (1 mL) ) And aminopropyltriethoxysilane (0.5 mL) were sequentially added and mixed well. Next, after standing at room temperature for a certain period, an ethanol-water mixed solution (10 mL) containing polyethylene glycol (2 g) having an average molecular weight of 3000 was added and mixed well to obtain a coating solution.
Next, the coating solution was filled by introducing it into the flow path 32 through the opening 31 using a 1 mL capacity resin syringe. After that, the coating solution is allowed to stand at room temperature (25 ° C.) for 5 minutes, and the coating solution is made to conform to the liquid contact part 32a of the flow path 32. The excess coating solution was removed by introduction, and a coating film was formed on the liquid contact part 32a.
Next, using a heating device with a humidification adjustment function (TEMP. & HUMID. CHAMBER SH-240, manufactured by ESPEC), continuously heated at 80% humidity and a temperature of 95 ° C for 12 hours. It is 80%, and it becomes dry with the passage of time.) After continuously drying at a temperature of 95 ° C. for 12 hours, it is returned to room temperature over a period of about 3 hours, thereby fixing the polyethylene glycol to the liquid contact part 32a. 4A was obtained.
In addition, from the electron micrograph of the cut cross section of the flow path of the flow path chip 4A, it was estimated that the film thickness of the modified film was 0.16 μm.

[実施例2〜3]
加湿調整機能付き加熱装置による乾燥条件を表1に示す通りに変更した以外は、実施例1と同様にして流路チップ4B及び4Cを得た。
[Examples 2-3]
Except having changed the drying conditions by the heating apparatus with a humidification adjustment function as shown in Table 1, it carried out similarly to Example 1, and obtained flow-path chip 4B and 4C.

[実施例4]
流路チップとして、ポリイミド樹脂からなる流路チップ4を用い、流路32内に1N水酸化ナトリウム水溶液を導入して15分間アルカリ加水分解し、イオン交換水で水洗して、接液部32aにカルボキシ基及びアミノ基を露出させた。
また、エタノール(20mL)、n−ヘキサノール(2mL)、酢酸(0.9mL)、及び0.01N塩酸(4.3mL)からなる溶媒に、フェニルトリエトキシシラン(1mL)、メチルトリエトキシシラン(1mL)、及びアミノプロピルトリエトキシシラン(0.5mL)を順次加え、よく混和させた。ついで、室温下で一定期間放置した後、重合度1700、ケン化度99.5モル%のポリビニルアルコール(2g)を含む水溶液(10mL)を添加し、よく混和して塗布溶液とした。
前記塗布溶液を用いた、流路チップ4の接液部32aへの塗布膜の形成、該塗布膜の乾燥は、実施例1と同様の方法で行い、流路チップ4Dを得た。
[Example 4]
As the flow path chip, the flow path chip 4 made of polyimide resin is used, and a 1N sodium hydroxide aqueous solution is introduced into the flow path 32 and subjected to alkali hydrolysis for 15 minutes, washed with ion-exchanged water, and brought into contact with the liquid contact portion 32a. The carboxy group and amino group were exposed.
In addition, to a solvent composed of ethanol (20 mL), n-hexanol (2 mL), acetic acid (0.9 mL), and 0.01N hydrochloric acid (4.3 mL), phenyltriethoxysilane (1 mL), methyltriethoxysilane (1 mL) ) And aminopropyltriethoxysilane (0.5 mL) were sequentially added and mixed well. Next, after standing at room temperature for a certain period, an aqueous solution (10 mL) containing polyvinyl alcohol (2 g) having a polymerization degree of 1700 and a saponification degree of 99.5 mol% was added and mixed well to obtain a coating solution.
Formation of a coating film on the liquid contact part 32a of the channel chip 4 and drying of the coating film using the coating solution were performed in the same manner as in Example 1 to obtain a channel chip 4D.

[比較例1]
本発明の表面改質方法を施していない高分子樹脂製流路チップを流路チップ4Eとした。
[Comparative Example 1]
A flow channel chip made of a polymer resin not subjected to the surface modification method of the present invention was defined as a flow channel chip 4E.

[比較例2〜3]
接液部に塗布膜を形成後、乾燥条件を表1に示す通りに変更した以外は、実施例1と同様にして流路チップ4F及び4Gを得た。
[Comparative Examples 2-3]
Flow channel chips 4F and 4G were obtained in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1 after forming the coating film on the liquid contact portion.

本実施例で得られた高分子樹脂製流路チップ接液部の親水性の評価は、以下に示す接触角の測定、及び吸着性の測定により行った。
[接触角の測定]
実施例及び比較例で得られた流路チップ4A〜4Gについて、流路チップを切断した後、接液部に100μLのイオン交換水を滴下し、その液滴の接触角を測定した。接触角の測定は、接触角計CA−X型(協和界面科学社製)を用い、25℃の条件下で行った。
The hydrophilicity evaluation of the polymer resin channel chip wetted part obtained in this example was performed by the following contact angle measurement and adsorptivity measurement.
[Measurement of contact angle]
For the channel chips 4A to 4G obtained in the examples and comparative examples, after the channel chip was cut, 100 μL of ion-exchanged water was dropped on the liquid contact part, and the contact angle of the droplets was measured. The contact angle was measured using a contact angle meter CA-X type (manufactured by Kyowa Interface Science Co., Ltd.) at 25 ° C.

[吸着性の測定]
ニワトリ卵白アルブミン(2×10−7M)を10倍モル量の4−ニトロ−7−クロロベンゾトリアゾールで蛍光修飾したタンパク質を含む試料溶液を調製し、実施例及び比較例で得られた流路チップ4A〜4G内に前記試料溶液を50μL/分の流速で10分間連続して流し、その前後における試料溶液中のタンパク質濃度変化を蛍光スペクトル強度から評価した。蛍光スペクトル測定は、蛍光分光器650(日立製作所社製)を用いて行った。
実施例及び比較例で得られた流路チップ4A〜4Gにおける、接触角の測定結果及び吸着性の測定結果を表1に示す。ただし、吸着性の測定結果は、流路チップ内に流した後の試料溶液の蛍光スペクトル強度であり、流路チップ内に流す前の試料溶液の蛍光スペクトル強度を基準(100)とした値である。
[Measurement of adsorptivity]
A sample solution containing a protein in which chicken ovalbumin (2 × 10 −7 M) was fluorescently modified with 10-fold molar amount of 4-nitro-7-chlorobenzotriazole was prepared, and channels obtained in Examples and Comparative Examples The sample solution was continuously flowed into the chips 4A to 4G at a flow rate of 50 μL / min for 10 minutes, and the change in protein concentration in the sample solution before and after that was evaluated from the fluorescence spectrum intensity. The fluorescence spectrum measurement was performed using a fluorescence spectrometer 650 (manufactured by Hitachi, Ltd.).
Table 1 shows the measurement results of the contact angle and the adsorptivity of the flow path chips 4A to 4G obtained in the examples and comparative examples. However, the adsorptive measurement result is the fluorescence spectrum intensity of the sample solution after flowing into the channel chip, and is a value based on the fluorescence spectrum intensity of the sample solution before flowing into the channel chip as a reference (100). is there.

Figure 2009162658
Figure 2009162658

COC樹脂からなる流路チップの接液部を本発明の方法により改質した実施例1〜3では、乾燥後の接触角が非常に小さな値となり、高い親水性を有していた。また、10日後もその接触角が維持されており、付与した親水性の持続力が高かった。また、吸着性の測定では、流路チップ内に流した試料溶液の蛍光スペクトル強度が通液前と全く変化しておらず、優れた低吸着性を示した。
また、ポリイミド樹脂からなる流路チップの接液部を本発明の方法により改質した実施例4では、実施例1〜3と同様に、乾燥後の接触角が非常に小さな値となり、高い親水性を有していた。また、10日後もその接触角が維持されており、付与した親水性の持続力が高かった。また、吸着性の測定では、流路チップ内に流した試料溶液の蛍光スペクトル強度が通液前と全く変化しておらず、優れた低吸着性を示した。
In Examples 1 to 3 in which the liquid contact part of the channel chip made of the COC resin was modified by the method of the present invention, the contact angle after drying was a very small value and had high hydrophilicity. Moreover, the contact angle was maintained after 10 days, and the imparted hydrophilic sustainability was high. In addition, in the measurement of the adsorptivity, the fluorescence spectrum intensity of the sample solution flowed in the flow channel chip was not changed at all from that before the passage, indicating an excellent low adsorptivity.
Further, in Example 4 in which the liquid contact part of the channel chip made of polyimide resin was modified by the method of the present invention, the contact angle after drying was a very small value, as in Examples 1 to 3, and high hydrophilicity. Had sex. Moreover, the contact angle was maintained after 10 days, and the imparted hydrophilic sustainability was high. In addition, in the measurement of the adsorptivity, the fluorescence spectrum intensity of the sample solution flowed in the flow channel chip was not changed at all from that before the passage, indicating an excellent low adsorptivity.

一方、COC樹脂からなる流路チップの接液部を改質していない比較例1では、接触角は65度であり、親水性が低い。また、流路チップ内に流した試料溶液の蛍光スペクトル強度が通液前の75%となり、流路チップの接液部への試料の吸着が見られた。
また、接液部に形成させた塗布膜の熱処理を乾燥状態で行った比較例2では、実施例に比べて親水性が劣っていた。
また、接液部に形成させた塗布膜の熱処理を湿度60%で行った比較例3でも、実施例に比べて親水性が劣っていた。
On the other hand, in Comparative Example 1 in which the liquid contact part of the channel chip made of COC resin is not modified, the contact angle is 65 degrees and the hydrophilicity is low. In addition, the fluorescence spectrum intensity of the sample solution flowed into the flow channel chip was 75% before liquid passage, and the sample was adsorbed on the liquid contact part of the flow channel chip.
Moreover, in Comparative Example 2 in which the heat treatment of the coating film formed in the liquid contact portion was performed in a dry state, the hydrophilicity was inferior compared to the Examples.
Further, even in Comparative Example 3 in which the heat treatment of the coating film formed on the liquid contact portion was performed at a humidity of 60%, the hydrophilicity was inferior to that of the Example.

本発明の表面改質法は、高分子樹脂製流路チップの接液部を改質し、高い親水性を付与することができ、かつその親水性が長期間維持できる。そのため、核酸、タンパク質等の生体分子や、標識化合物である蛍光性有機化合物等の接液部への吸着を抑えることができ、分析の定量性、精度を向上させ、信頼性を高めることができる。したがって、医療や環境測定等の分野において好適に使用できる。   The surface modification method of the present invention can modify the wetted part of the polymer resin flow channel chip, impart high hydrophilicity, and maintain the hydrophilicity for a long period of time. Therefore, adsorption of biological molecules such as nucleic acids and proteins and fluorescent organic compounds that are labeling compounds to the wetted part can be suppressed, and quantitative and accurate analysis can be improved and reliability can be improved. . Therefore, it can be suitably used in fields such as medical care and environmental measurement.

高分子樹脂製流路チップの一例を示した斜視図である。It is the perspective view which showed an example of the polymeric resin-made flow-path chips. 図1の高分子樹脂製流路チップをA−A’線で切断した断面図である。It is sectional drawing which cut | disconnected the polymeric resin flow-path chip | tip of FIG. 1 by the A-A 'line. 図1の高分子樹脂製流路チップをB−B’線で切断した断面図である。FIG. 2 is a cross-sectional view of the polymer resin flow channel chip of FIG. 1 cut along line B-B ′. 本実施例で用いた高分子樹脂製流路チップを示した斜視図である。It is the perspective view which showed the polymeric resin-made flow-path chip | tip used in the present Example. 図4の高分子樹脂製流路チップをC−C’線で切断した断面図である。FIG. 5 is a cross-sectional view of the polymer resin flow channel chip of FIG. 4 cut along line C-C ′. 図4の高分子樹脂製流路チップをD−D’線で切断した断面図である。FIG. 5 is a cross-sectional view of the polymer resin flow channel chip of FIG. 4 cut along line D-D ′.

符号の説明Explanation of symbols

1 高分子樹脂製流路チップ 12 流路 12a 接液部   1 Polymer resin channel chip 12 Channel 12a Wetted part

Claims (4)

高分子樹脂製流路チップの流路内に、ポリエチレングリコール及び/又はポリビニルアルコールとシランカップリング剤とを含む塗布溶液を導入し、流路の接液部に塗布膜を形成させ、該塗布膜を湿度70%以上、100℃以下の条件で乾燥する工程を含むことを特徴とする高分子樹脂製流路チップ接液部の表面改質方法。   A coating solution containing polyethylene glycol and / or polyvinyl alcohol and a silane coupling agent is introduced into the flow path of the polymer resin flow path chip, and a coating film is formed at the liquid contact portion of the flow path. A method for modifying the surface of a wetted part made of a polymer resin flow channel chip, comprising a step of drying at a humidity of 70% to 100 ° C. 前記乾燥を、50〜100℃の熱処理により行う、請求項1に記載の高分子樹脂製流路チップ接液部の表面改質方法。   The surface modification method for a polymer resin flow channel chip wetted part according to claim 1, wherein the drying is performed by heat treatment at 50 to 100C. 前記塗布溶液(100質量%)中の前記親水性高分子の含有量が、1〜20質量%である、請求項1又は2に記載の高分子樹脂製流路チップ接液部の表面改質方法。   The surface modification of the polymer resin channel chip wetted part according to claim 1 or 2, wherein the content of the hydrophilic polymer in the coating solution (100% by mass) is 1 to 20% by mass. Method. 前記塗布溶液(100質量%)中の前記シランカップリング剤の含有量が、5〜30質量%である、請求項1〜3のいずれかに記載の高分子樹脂製流路チップ接液部の表面改質方法。   Content of the said silane coupling agent in the said application | coating solution (100 mass%) is 5-30 mass% of the polymer resin channel chip wetted part in any one of Claims 1-3 Surface modification method.
JP2008001466A 2008-01-08 2008-01-08 Surface modification method for polymer resin flow channel tip wetted part Expired - Fee Related JP5039894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001466A JP5039894B2 (en) 2008-01-08 2008-01-08 Surface modification method for polymer resin flow channel tip wetted part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001466A JP5039894B2 (en) 2008-01-08 2008-01-08 Surface modification method for polymer resin flow channel tip wetted part

Publications (2)

Publication Number Publication Date
JP2009162658A true JP2009162658A (en) 2009-07-23
JP5039894B2 JP5039894B2 (en) 2012-10-03

Family

ID=40965435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001466A Expired - Fee Related JP5039894B2 (en) 2008-01-08 2008-01-08 Surface modification method for polymer resin flow channel tip wetted part

Country Status (1)

Country Link
JP (1) JP5039894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103867B2 (en) 2017-12-13 2021-08-31 International Business Machines Corporation Localized surface modification for microfluidic applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052574A1 (en) * 1998-04-10 1999-10-21 Massachusetts Institute Of Technology Biopolymers resistant coatings
JP2006292472A (en) * 2005-04-07 2006-10-26 Konica Minolta Medical & Graphic Inc Micro comprehensive analysis system
JP2007254602A (en) * 2006-03-23 2007-10-04 Kohjin Co Ltd Gas barrier film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052574A1 (en) * 1998-04-10 1999-10-21 Massachusetts Institute Of Technology Biopolymers resistant coatings
JP2006292472A (en) * 2005-04-07 2006-10-26 Konica Minolta Medical & Graphic Inc Micro comprehensive analysis system
JP2007254602A (en) * 2006-03-23 2007-10-04 Kohjin Co Ltd Gas barrier film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103867B2 (en) 2017-12-13 2021-08-31 International Business Machines Corporation Localized surface modification for microfluidic applications

Also Published As

Publication number Publication date
JP5039894B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP6930978B2 (en) Solid-phase microextraction coating
US9891150B2 (en) Method for measuring or identifying a component of interest in a biological system
CN1137761C (en) Cast membrane structures for sample preparation
Yang et al. Coupling on‐chip solid‐phase extraction to electrospray mass spectrometry through an integrated electrospray tip
Szultka et al. Microextraction sample preparation techniques in biomedical analysis
JP6422131B2 (en) Capillary device for separation analysis, microfluidic chip for separation analysis, protein or peptide analysis method, electrophoresis apparatus, and microfluidic chip electrophoresis apparatus for separation analysis
CN104849338B (en) The manufacturing method of chip including miniature flow path and the chip thus manufactured
JP7212940B2 (en) Micro-substance detection method and micro-substance detection device
Kašička Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019)
CA2499657A1 (en) Polymer entrapped particles
WO2006049333A1 (en) Spray needle for esi and process for producing the same
Carlier et al. Integrated microfabricated systems including a purification module and an on-chip nano electrospray ionization interface for biological analysis
JP5039894B2 (en) Surface modification method for polymer resin flow channel tip wetted part
JP2024028971A (en) Container for storing body fluids
CN101010334B (en) Fractionation apparatus
Chen et al. A radiate microstructure MALDI chip for sample concentration and detection
CN104497334B (en) The method of ion complementary type self-assembling peptide hydrophobic coating modified dimethyl polysiloxane
Střelec et al. Modification of capillary electrophoresis capillaries by poly (hydroxyethyl methacrylate), poly (diethylene glycol monomethacrylate) and poly (triethylene glycol monomethacrylate)
JP4854577B2 (en) Method for measuring hemoglobins
JP2007155398A (en) Concentration element and chemical analyzer using it
Myasein et al. Sub-microlitre dialysis system to enable trace level peptide detection from volume-limited biological samples using MALDI-TOF-MS
JP4649845B2 (en) Modified substrate
CN103772728A (en) Polydimethylsiloxane surface modification method based on hydrophobin/methylcellulose
JP4314109B2 (en) Material separation element and manufacturing method thereof
JP4286282B2 (en) Separation capillary electrophoresis gel specifically manufactured for single-stranded nucleic acid separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees