JP2009161820A - Nanoparticle manufacturing method and separation method - Google Patents

Nanoparticle manufacturing method and separation method Download PDF

Info

Publication number
JP2009161820A
JP2009161820A JP2008001391A JP2008001391A JP2009161820A JP 2009161820 A JP2009161820 A JP 2009161820A JP 2008001391 A JP2008001391 A JP 2008001391A JP 2008001391 A JP2008001391 A JP 2008001391A JP 2009161820 A JP2009161820 A JP 2009161820A
Authority
JP
Japan
Prior art keywords
nanoparticles
layer
unevenly distributed
organic matter
organic substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001391A
Other languages
Japanese (ja)
Other versions
JP4840369B2 (en
Inventor
Masayuki Fujii
雅之 藤井
Yoshimasa Hijikata
啓暢 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008001391A priority Critical patent/JP4840369B2/en
Publication of JP2009161820A publication Critical patent/JP2009161820A/en
Application granted granted Critical
Publication of JP4840369B2 publication Critical patent/JP4840369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide nanoparticle manufacturing method and separation method by which the amount of a solvent used for removing surplus organic matters can be minimized. <P>SOLUTION: This nanoparticle manufacturing method comprises: a first step of preparing a mixture in which nanoparticles having organic matter therearound and surplus organic matter are intermingled; and a second step of separating, in the mixture, the nanoparticles and the surplus organic matter. The second step comprises: a step A of heating and liquefy the mixture; and a step B of cooling the resulting liquid slowly to solidify it again in such a state that a layer where the nanoparticles are unevenly distributed and a layer where the surplus organic matter is unevenly distributed are separated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ナノ粒子を製造する方法、及びナノ粒子と余剰の有機物とが混在する混合物からナノ粒子を分離する方法に関する。 The present invention relates to a method for producing nanoparticles, and a method for separating nanoparticles from a mixture of nanoparticles and excess organic matter.

ナノ粒子は、触媒効果や量子サイズ効果等の全く新しい特性を発現し、従来では考えられなかった様々な用途展開が可能となる。ナノ粒子を製造する方法としては、二相還元法が知られている(非特許文献1参照)。 Nanoparticles exhibit completely new characteristics such as a catalytic effect and a quantum size effect, and can be used in various applications that have not been considered in the past. A two-phase reduction method is known as a method for producing nanoparticles (see Non-Patent Document 1).

二相還元法では、ナノ粒子の周囲に有機物を存在させることで、ナノ粒子を液中で分散させるが、有機物は通常、ナノ粒子に対して過剰に配合されるので、後に、余剰の有機物を除去する工程が必要となる。二相還元法によるナノ粒子の合成、及びそれに続く余剰の有機物の除去は、以下のように行われる。
(i)二相還元法等でナノ粒子を合成する。このとき、図2(a)に示すように、容器P1の底に、周囲を有機物で覆われたナノ粒子と、余剰の有機物との混合物P2が存在する。
(ii)図2(b)に示すように、容器P1にアルコール+トルエンP3を注入する。そして、攪拌し、図2(c)に示すように、アルコール+トルエン中に、ナノ粒子、及び余剰の有機物が分散した状態とする。
(iii)遠心分離をかける、または放置することで、図2(d)に示すように、ナノ粒子が存在する層P4と、余剰の有機物の一部を溶解したアルコール層P5とに分離させる。
(iv) 図2(e)に示すように、余剰の有機物を溶解したアルコール層P5を廃棄する。
(v)図2(f)に示すように、新しいアルコールP6を注入する。
上記(ii)〜(v)の工程を数十回繰り返し、アルコールに余剰の有機物を溶かしこみながらナノ粒子と余剰の有機物とを分ける。
Mathias Brust、外4名、“Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System“、J.CHEM.SOC.,COMMUN.,1994 P801〜
In the two-phase reduction method, the nanoparticles are dispersed in the liquid by allowing organic substances to exist around the nanoparticles. However, since the organic substances are usually excessively mixed with the nanoparticles, the excess organic substances are later added. A process of removing is necessary. The synthesis of nanoparticles by the two-phase reduction method and the subsequent removal of excess organic substances are performed as follows.
(i) The nanoparticles are synthesized by a two-phase reduction method or the like. At this time, as shown to Fig.2 (a), the mixture P2 of the nanoparticle with which the circumference | surroundings were covered with the organic substance, and the excess organic substance exists in the bottom of the container P1.
(ii) As shown in FIG. 2B, alcohol + toluene P3 is injected into the container P1. And it stirs and it is set as the state which the nanoparticle and the excess organic substance disperse | distributed in alcohol + toluene, as shown in FIG.2 (c).
(iii) Centrifugation or leaving, as shown in FIG. 2 (d), separates into a layer P4 in which nanoparticles are present and an alcohol layer P5 in which a part of excess organic matter is dissolved.
(iv) As shown in FIG. 2 (e), the alcohol layer P5 in which excess organic matter is dissolved is discarded.
(v) As shown in FIG. 2 (f), new alcohol P6 is injected.
The steps (ii) to (v) are repeated several tens of times to separate the nanoparticles and the surplus organic matter while dissolving the surplus organic matter in the alcohol.
Mathias Brust, 4 others, “Synthesis of Thiol-derivatized Gold Nanoparticles in a Two-phase Liquid-Liquid System”, J.CHEM.SOC., COMMUN., 1994 P801〜

しかしながら、二相還元法で用いられる有機物は、アルコールに溶解する量が少ないため、上記の方法でアルコールを除去しようとすると、上記(ii)〜(v)の工程を多数回繰り返す必要があり、結果として、アルコールが大量に必要となってしまう。   However, since the organic substance used in the two-phase reduction method has a small amount dissolved in the alcohol, it is necessary to repeat the steps (ii) to (v) many times when trying to remove the alcohol by the above method, As a result, a large amount of alcohol is required.

本発明は以上の点に鑑みなされたものであり、余剰の有機物を除去するために用いるアルコール等の溶媒の使用量が少なくて済む、ナノ粒子製造方法及び分離方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a nanoparticle production method and a separation method that require a small amount of a solvent such as alcohol used for removing excess organic matter. .

(1)請求項1の発明は、周囲に有機物が存在するナノ粒子と、余剰の有機物とが混在する混合物に対し、加熱して液化するA工程と、徐冷して、ナノ粒子が偏在する層と、余剰の有機物が偏在する層とが分かれた状態にて再び固化させるB工程とを行うことにより、ナノ粒子が偏在する層と、余剰の有機物が偏在する層とを分離することができる。よって、ナノ粒子が偏在する層のみを取り出せば、余剰の有機物の大部分を除去することができるので、その後に、溶媒(例えばアルコール)を用いて有機物を除去する工程の回数は少なくて済み、溶媒の使用量が少なくて済む。 (1) In the invention of claim 1, the nano-particles are unevenly distributed by heating and liquefying a mixture of nanoparticles in which organic substances are present and surplus organic substances are mixed, and gradually cooling. By performing the B step in which the layer and the layer in which the surplus organic matter is unevenly separated are again solidified, the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed can be separated. . Therefore, if only the layer in which the nanoparticles are unevenly distributed is taken out, most of the excess organic matter can be removed, and thereafter, the number of steps of removing the organic matter using a solvent (for example, alcohol) can be reduced. The amount of solvent used is small.

前記第1工程では、例えば、2相還元法を用いて、周囲に有機物が存在するナノ粒子と、余剰の有機物とが混在する混合物を製造することができる。
前記ナノ粒子とは、例えば、粒径が10nm以下である粒子をいう。
In the first step, for example, a two-phase reduction method can be used to produce a mixture in which nanoparticles having an organic substance around them and excess organic substances are mixed.
The said nanoparticle means the particle | grains whose particle size is 10 nm or less, for example.

前記ナノ粒子の材質としては、例えば、金(Au)、銀(Ag)、銅(Cu)、鉄(Fe)、ニッケル(Ni)等の金属、シリコン(Si)、フッ素(F)等の無機物、アルミナ(Al23)、酸化マグネシウム(MgO)、酸化銅(CuO)、三酸化二鉄(Fe23)、酸化チタン(TiO)等の酸化物、あるいは樹脂等からなるポリマーを用いることができる。ナノ粒子は、2種以上の材質から成っていてもよい。すなわち、ナノ粒子のうちの一部と、残りの部分とは、異なる材質から成っていてもよい。 Examples of the material of the nanoparticles include metals such as gold (Au), silver (Ag), copper (Cu), iron (Fe), nickel (Ni), and inorganic materials such as silicon (Si) and fluorine (F). A polymer made of oxide such as alumina (Al 2 O 3 ), magnesium oxide (MgO), copper oxide (CuO), diiron trioxide (Fe 2 O 3 ), titanium oxide (TiO), or a resin is used. be able to. The nanoparticles may be made of two or more kinds of materials. That is, a part of the nanoparticles and the remaining part may be made of different materials.

前記ナノ粒子の周囲に存在する有機物としては、例えば、ナノ粒子と物理的、あるいは化学的な結びつきを有する有機物が挙げられる。具体的には、ナノ粒子の表面に化学的に吸着している有機物、あるいは、凹部を有し、その凹部にナノ粒子を物理的に収容する有機物等が挙げられる。このナノ粒子の周囲に存在する有機物は、B工程において、主として、ナノ粒子とともに、ナノ粒子が偏在する層に移行する。   Examples of the organic substance present around the nanoparticles include organic substances having physical or chemical bonds with the nanoparticles. Specifically, an organic substance that is chemically adsorbed on the surface of the nanoparticle, or an organic substance that has a recess and physically accommodates the nanoparticle in the recess is exemplified. In the B process, the organic matter present around the nanoparticles is transferred together with the nanoparticles to a layer in which the nanoparticles are unevenly distributed.

前記余剰の有機物は、ナノ粒子と化学的、又は物理的な結びつきを持たない(あるいは結びつきが弱い)有機物であり、例えば、二相還元法でナノ粒子を製造するとき、ナノ粒子に対して過剰に添加された有機物である。余剰の有機物は、B工程において、主として、ナノ粒子が偏在する層とは別の層に移行する。   The surplus organic substance is an organic substance that does not have a chemical or physical association (or weak association) with the nanoparticle. For example, when the nanoparticle is produced by a two-phase reduction method, it is excessive with respect to the nanoparticle. It is an organic substance added to. The surplus organic matter mainly moves to a layer different from the layer in which the nanoparticles are unevenly distributed in the step B.

前記有機物としては、例えば、硫黄原子を少なくとも1つ以上含む有機物、直鎖状有機物、環状有機物、4級アンモニウムを含む有機物、1級アミンを含む有機物、ジスルフィドを有する有機物(特に直鎖状の分子構造を有するもの)、n−オクタデカンチオール、メルカトプコハク酸等を用いることができる。   Examples of the organic substance include organic substances containing at least one sulfur atom, linear organic substances, cyclic organic substances, organic substances containing quaternary ammonium, organic substances containing primary amines, organic substances having disulfides (particularly linear molecules). Having a structure), n-octadecanethiol, mercaptosuccinic acid, and the like can be used.

前記A工程における加熱の条件(例えば、温度、昇温速度、加熱時間等)は、混合物が十分に液化し、且つ有機物の変性等の悪影響が生じない範囲で、ナノ粒子や有機物の種類に応じて個々に設定することができる。
(2)請求項2の発明は、徐冷の速度を、1℃/min以下とすることにより、ナノ粒子が偏在する層と、余剰の有機物が偏在する層との分離を一層顕著にすることができる。その結果、余剰の有機物を一層効率的に除去することができる。
The heating conditions in the step A (for example, temperature, temperature increase rate, heating time, etc.) depend on the type of the nanoparticles and organic substances as long as the mixture is sufficiently liquefied and no adverse effects such as modification of organic substances occur. Can be set individually.
(2) The invention of claim 2 makes the separation between the layer in which nanoparticles are unevenly distributed and the layer in which excessive organic substances are unevenly distributed more remarkable by setting the slow cooling rate to 1 ° C./min or less. Can do. As a result, excess organic matter can be removed more efficiently.

徐例の速度は、ナノ粒子が偏在する層と、余剰の有機物が偏在する層との分離を一層顕著にするという点から、0.5℃/min以下とすることが好ましく、0.3℃/min以下とすることが更に好ましい。
(3)請求項3の発明は、有機物としてテトラオクチルアンモニウムブロミド及び/又はオクタデカンチオールを用いることにより、例えば2相還元法により、ナノ粒子の製造を効率良く行うことができる。
(4)請求項4の発明は、周囲に有機物が存在するナノ粒子と、余剰の有機物とが混在する混合物に対し、加熱して液化するA工程と、徐冷して、ナノ粒子が偏在する層と、余剰の有機物が偏在する層とが分かれた状態にて再び固化させるB工程とを行うことにより、ナノ粒子が偏在する層と、余剰の有機物が偏在する層とを分離することができる。よって、ナノ粒子が偏在する層のみを取り出せば、余剰の有機物の大部分を除去することができるので、その後に、溶媒(例えばアルコール)を用いて有機物を除去する工程の回数は少なくて済み、溶媒の使用量が少なくて済む。
(5)請求項5の発明は、徐冷の速度を、1℃/min以下とすることにより、ナノ粒子が偏在する層と、余剰の有機物が偏在する層との分離を一層顕著にすることができる。その結果、余剰の有機物を一層効率的に除去することができる。
The speed of the gradual example is preferably set to 0.5 ° C./min or less from the viewpoint that separation between the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed is 0.3 ° C./min. / Min or less is more preferable.
(3) According to the invention of claim 3, by using tetraoctylammonium bromide and / or octadecanethiol as the organic substance, it is possible to efficiently produce nanoparticles by, for example, a two-phase reduction method.
(4) According to the invention of claim 4, the nano-particles are unevenly distributed by heating and liquefying a mixture of nanoparticles containing organic substances in the surroundings and surplus organic substances and gradual cooling. By performing the B step in which the layer and the layer in which the surplus organic matter is unevenly separated are again solidified, the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed can be separated. . Therefore, if only the layer in which the nanoparticles are unevenly distributed is taken out, most of the excess organic matter can be removed, and thereafter, the number of steps of removing the organic matter using a solvent (for example, alcohol) can be reduced. The amount of solvent used is small.
(5) The invention of claim 5 makes the separation between the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed by making the slow cooling rate 1 ° C./min or less. Can do. As a result, excess organic matter can be removed more efficiently.

徐例の速度は、ナノ粒子が偏在する層と、余剰の有機物が偏在する層との分離を一層顕著にするという点から、0.5℃/min以下とすることが好ましく、0.3℃/min以下とすることが更に好ましい。
(6)請求項6の発明は、有機物としてテトラオクチルアンモニウムブロミド及び/又はオクタデカンチオールを用いることにより、ナノ粒子と余剰の有機物との分離を効率良く行うことができる。
The speed of the gradual example is preferably set to 0.5 ° C./min or less from the viewpoint that separation between the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed is 0.3 ° C./min. / Min or less is more preferable.
(6) In the invention of claim 6, by using tetraoctylammonium bromide and / or octadecanethiol as the organic substance, it is possible to efficiently separate the nanoparticles from the excess organic substance.

本発明の実施例を説明する。   Examples of the present invention will be described.

1.金ナノ粒子の製造方法
次のようにして、金ナノ粒子を製造した。
(i)濃度30mmol/LのHAuCl4水溶液50mlと、トルエン100mlにテトラオクチルアンモニウムブロミド3.75mmolを加えた溶液とを混合し、十分撹拌した。
(ii)オクタデカンチオール4.5mmolを加え十分撹拌した後、NaBH4を15mmol含む水溶液を混合し、十分撹拌した。この(i)、(ii)の工程は二相還元法であり、得られた液中には、周囲に有機物(テトラオクチルアンモニウムブロミドとオクタデカンチオール)が存在することにより液中で分散した金ナノ粒子と、余剰の有機物とが混在している。
(iii)水分を取り除き、トルエンを揮発させると、図1(a)に示すように、固化した。
(iv)固化した、金ナノ粒子と余剰の有機物との混合物を80℃に加熱して液化させた。それを0.3℃/minで徐冷することにより、図2(b)に示すように、金ナノ粒子が偏在する層1と、余剰の有機物(テトラオクチルアンモニウムブロミドとオクタデカンチオール)が偏在する層2とに分離した状態で固化した。なお、金ナノ粒子が偏在する層1と、余剰の有機物が偏在する層2とは、目視により識別することができる。次に、図1(c)に示すように、金ナノ粒子が偏在する層1のみをナイフまたはホットワイヤ等で切断し取り出した。
(v)取り出した、金ナノ粒子が偏在する層1にトルエンを10ml加えて溶解させ、そこにアルコール120mlを入れ攪拌して残った有機物をアルコールに溶かし、遠心分離にて沈殿した金ナノ粒子のみ取り出した。
(vi)再度アルコール120mlを入れ、遠心分離にて金ナノ粒子を分離した。
(vii)アルコールを揮発させ、金ナノ粒子を得た。
1. Method for Producing Gold Nanoparticles Gold nanoparticles were produced as follows.
(i) 50 ml of an aqueous solution of HAuCl 4 having a concentration of 30 mmol / L and a solution obtained by adding 3.75 mmol of tetraoctylammonium bromide to 100 ml of toluene were mixed and sufficiently stirred.
(ii) After adding 4.5 mmol of octadecanethiol and sufficiently stirring, an aqueous solution containing 15 mmol of NaBH 4 was mixed and sufficiently stirred. The steps (i) and (ii) are a two-phase reduction method. In the obtained liquid, the presence of organic substances (tetraoctylammonium bromide and octadecanethiol) in the surroundings causes gold nano-particles dispersed in the liquid. Particles and excess organic matter are mixed.
(iii) When water was removed and toluene was volatilized, it solidified as shown in FIG.
(iv) The solidified mixture of gold nanoparticles and excess organic matter was heated to 80 ° C. to be liquefied. By slowly cooling it at 0.3 ° C./min, as shown in FIG. 2B, the layer 1 in which the gold nanoparticles are unevenly distributed and the surplus organic substances (tetraoctylammonium bromide and octadecanethiol) are unevenly distributed. Solidified in a state separated into layer 2. The layer 1 in which gold nanoparticles are unevenly distributed and the layer 2 in which excess organic substances are unevenly distributed can be visually identified. Next, as shown in FIG. 1C, only the layer 1 in which the gold nanoparticles are unevenly distributed was cut out with a knife or a hot wire.
(v) 10 ml of toluene is added to the taken-out layer 1 where gold nanoparticles are unevenly distributed and dissolved, 120 ml of alcohol is added and stirred, and the remaining organic matter is dissolved in alcohol. Only gold nanoparticles precipitated by centrifugation are precipitated. I took it out.
(vi) 120 ml of alcohol was added again, and gold nanoparticles were separated by centrifugation.
(vii) The alcohol was volatilized to obtain gold nanoparticles.

尚、上記(iv)〜(vii)の工程は、周囲に有機物が存在する金ナノ粒子と、余剰の有機物とが混在する混合物において、金ナノ粒子と余剰の有機物とを分離する方法に該当する。
2.金ナノ粒子製造方法の評価
上記のようにして得られた金ナノ粒子を分析すると、余剰の有機物は十分に除去されていた。また、余剰の有機物を除去するために用いるアルコールの量は少量で足りた。
(比較例)
(i)前記実施例における(i)〜(iii)の工程を行い、周囲に有機物(テトラオクチルアンモニウムブロミドとオクタデカンチオール)が存在する金ナノ粒子と、余剰の有機物とが混在している固形物を得た。
(ii)固形物にトルエンを10ml加え、溶解させた。そこにアルコール120mlを入れ、攪拌して有機分をアルコールに溶かした。次に、遠心分離を行うと、主として金ナノ粒子を含む沈殿が生じ、この沈殿を取り出した。
(iii)再度アルコール120mlを入れ、攪拌して有機分をアルコールに溶かした。次に、遠心分離を行うと、主として金ナノ粒子を含む沈殿が生じ、この沈殿を分離した。
The steps (iv) to (vii) correspond to a method of separating gold nanoparticles and surplus organic matter in a mixture of gold nanoparticles having organic matter in the surroundings and surplus organic matter. .
2. Evaluation of Gold Nanoparticle Production Method When the gold nanoparticles obtained as described above were analyzed, surplus organic substances were sufficiently removed. Moreover, a small amount of alcohol was sufficient for removing excess organic matter.
(Comparative example)
(i) The solid matter in which the steps (i) to (iii) in the above-described embodiment are performed and gold nanoparticles having organic substances (tetraoctylammonium bromide and octadecanethiol) in the surroundings and excess organic substances are mixed. Got.
(ii) 10 ml of toluene was added to the solid and dissolved. 120 ml of alcohol was put there and stirred to dissolve the organic component in the alcohol. Next, when centrifugation was performed, a precipitate mainly containing gold nanoparticles was generated, and this precipitate was taken out.
(iii) 120 ml of alcohol was added again and stirred to dissolve the organic component in the alcohol. Next, when centrifugation was performed, a precipitate mainly containing gold nanoparticles was generated, and this precipitate was separated.

この(iii)の工程を20回繰り返した。なお、この(iii)の工程を繰り返す回数を減らすと、余剰の有機物を十分除去することができなかった。よって、余剰の有機物を除去するためには、大量のアルコールが必要であった。   This step (iii) was repeated 20 times. Note that when the number of times of repeating the step (iii) was reduced, excess organic substances could not be sufficiently removed. Therefore, a large amount of alcohol is required to remove excess organic matter.

尚、本発明は前記実施の形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、ナノ粒子は、金ナノ粒子の代わりに、例えば、銀(Ag)、銅(Cu)、鉄(Fe)、ニッケル(Ni)等の金属のナノ粒子、シリコン(Si)、フッ素(F)等の無機物のナノ粒子、アルミナ(Al23)、酸化マグネシウム(MgO)、酸化銅(CuO)、三酸化二鉄(Fe23)、酸化チタン(TiO)等の酸化物のナノ粒子、あるいは樹脂等からなるポリマーのナノ粒子を用いることができる。また、ナノ粒子は、2種以上の材質から成っていてもよい。すなわち、ナノ粒子のうちの一部と、残りの部分とは、異なる材質から成っていてもよい。
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
For example, instead of gold nanoparticles, for example, nanoparticles of metal such as silver (Ag), copper (Cu), iron (Fe), nickel (Ni), silicon (Si), fluorine (F) Nanoparticles of inorganic substances such as alumina, nanoparticles of oxides such as alumina (Al 2 O 3 ), magnesium oxide (MgO), copper oxide (CuO), diiron trioxide (Fe 2 O 3 ), titanium oxide (TiO) Alternatively, polymer nanoparticles made of a resin or the like can be used. Moreover, the nanoparticles may be made of two or more kinds of materials. That is, a part of the nanoparticles and the remaining part may be made of different materials.

また、有機物は、テトラオクチルアンモニウムブロミド、オクタデカンチオールのうちの一方、又は両方に代えて、他の有機物を用いても良い。他の有機物としては、例えば、硫黄原子を少なくとも1つ以上含む有機物、直鎖状有機物、環状有機物、4級アンモニウムを含む有機物、1級アミンを含む有機物、ジスルフィドを有する有機物(特に直鎖状の分子構造を有するもの)、n−オクタデカンチオール、メルカトプコハク酸等を用いることができる。   Moreover, instead of one or both of tetraoctylammonium bromide and octadecanethiol, other organic substances may be used as the organic substance. Other organic substances include, for example, organic substances containing at least one sulfur atom, linear organic substances, cyclic organic substances, organic substances containing quaternary ammonium, organic substances containing primary amines, organic substances having disulfides (particularly linear organic substances). That have a molecular structure), n-octadecanethiol, mercaptosuccinic acid, and the like can be used.

前記実施例における徐冷の速度は、金ナノ粒子が偏在する層1と、余剰の有機物が偏在する層2との分離を損なわない範囲で高めることができる。例えば、徐例の速度を、0.5℃/min、1℃/minとすることができる。   The slow cooling rate in the above embodiment can be increased as long as the separation between the layer 1 in which gold nanoparticles are unevenly distributed and the layer 2 in which excess organic substances are unevenly distributed is not impaired. For example, the gradual speed can be 0.5 ° C./min and 1 ° C./min.

金ナノ粒子を製造する方法を表す工程図である。It is process drawing showing the method of manufacturing a gold nanoparticle. ナノ粒子を製造する従来の方法を表す工程図である。It is process drawing showing the conventional method of manufacturing a nanoparticle.

符号の説明Explanation of symbols

1・・・金ナノ粒子が偏在する層
2・・・余剰の有機物が偏在する層
1 ... layer in which gold nanoparticles are unevenly distributed 2 ... layer in which surplus organic substances are unevenly distributed

Claims (6)

周囲に有機物が存在するナノ粒子と、余剰の有機物とが混在する混合物を製造する第1工程と、
前記混合物において、前記ナノ粒子と前記余剰の有機物とを分離する第2工程と、を備えるナノ粒子製造方法であって、
前記第2工程は、
前記混合物を加熱して液化するA工程と、
徐冷して、前記ナノ粒子が偏在する層と、前記余剰の有機物が偏在する層とが分かれた状態にて再び固化させるB工程と、
を含むことを特徴とするナノ粒子製造方法。
A first step of producing a mixture in which nanoparticles having organic substances in the surroundings and surplus organic substances are mixed;
A second step of separating the nanoparticles and the surplus organic matter in the mixture, and a method for producing nanoparticles comprising:
The second step includes
A step of heating and liquefying the mixture;
B step of gradually cooling and solidifying again in a state where the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed;
A method for producing nanoparticles, comprising:
前記徐冷の速度は、1℃/min以下であることを特徴とする請求項1記載のナノ粒子製造方法。   The method for producing nanoparticles according to claim 1, wherein the slow cooling rate is 1 ° C / min or less. 前記有機物が、テトラオクチルアンモニウムブロミド及び/又はオクタデカンチオールであることを特徴とする請求項1又は2記載のナノ粒子製造方法。   The method for producing nanoparticles according to claim 1 or 2, wherein the organic substance is tetraoctylammonium bromide and / or octadecanethiol. 周囲に有機物が存在するナノ粒子と、余剰の有機物とが混在する混合物において、前記ナノ粒子と前記余剰の有機物とを分離する分離方法であって、
前記混合物を加熱して液化するA工程と、
徐冷して、前記ナノ粒子が偏在する層と、前記余剰の有機物が偏在する層とが分かれた状態にて再び固化させるB工程と、
を含むことを特徴とする分離方法。
In a mixture in which nanoparticles having organic substances present around them and surplus organic substances are mixed, the separation method separates the nanoparticles from the surplus organic substances,
A step of heating and liquefying the mixture;
B step of gradually cooling and solidifying again in a state where the layer in which the nanoparticles are unevenly distributed and the layer in which the surplus organic matter is unevenly distributed;
A separation method comprising:
前記徐冷の速度は、1℃/min以下であることを特徴とする請求項4記載の分離方法。   The separation method according to claim 4, wherein the slow cooling rate is 1 ° C./min or less. 前記有機物が、テトラオクチルアンモニウムブロミド及び/又はオクタデカンチオールであることを特徴とする請求項4又は5記載の分離方法。   6. The separation method according to claim 4, wherein the organic substance is tetraoctylammonium bromide and / or octadecanethiol.
JP2008001391A 2008-01-08 2008-01-08 Nanoparticle production method and separation method Expired - Fee Related JP4840369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001391A JP4840369B2 (en) 2008-01-08 2008-01-08 Nanoparticle production method and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001391A JP4840369B2 (en) 2008-01-08 2008-01-08 Nanoparticle production method and separation method

Publications (2)

Publication Number Publication Date
JP2009161820A true JP2009161820A (en) 2009-07-23
JP4840369B2 JP4840369B2 (en) 2011-12-21

Family

ID=40964757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001391A Expired - Fee Related JP4840369B2 (en) 2008-01-08 2008-01-08 Nanoparticle production method and separation method

Country Status (1)

Country Link
JP (1) JP4840369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492840B2 (en) 2013-12-02 2016-11-15 Samsung Electronics Co., Ltd. Methods of removing surface ligand compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928540A (en) * 1982-08-06 1984-02-15 Sumitomo Metal Mining Co Ltd Concentration of bismuth
JPS59174661A (en) * 1983-03-23 1984-10-03 Fukuda Kinzoku Hakufun Kogyo Kk Copper powder for conductive coating
JPS59179671A (en) * 1983-03-31 1984-10-12 Fukuda Kinzoku Hakufun Kogyo Kk Copper powder for use in electrically conductive paint
JPH10183207A (en) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk Ultrafine grain and production thereof
JP2002233846A (en) * 2001-02-06 2002-08-20 Yazaki Corp Method of separating metal and inorganic particle from metallic inorganic particle composite material
JP2002294309A (en) * 2000-07-24 2002-10-09 Mitsuboshi Belting Ltd Method for producing fine metallic particle
JP2004176147A (en) * 2002-11-28 2004-06-24 Asahi Kasei Corp Method of producing copper hyperfine grain

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928540A (en) * 1982-08-06 1984-02-15 Sumitomo Metal Mining Co Ltd Concentration of bismuth
JPS59174661A (en) * 1983-03-23 1984-10-03 Fukuda Kinzoku Hakufun Kogyo Kk Copper powder for conductive coating
JPS59179671A (en) * 1983-03-31 1984-10-12 Fukuda Kinzoku Hakufun Kogyo Kk Copper powder for use in electrically conductive paint
JPH10183207A (en) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk Ultrafine grain and production thereof
JP2002294309A (en) * 2000-07-24 2002-10-09 Mitsuboshi Belting Ltd Method for producing fine metallic particle
JP2002233846A (en) * 2001-02-06 2002-08-20 Yazaki Corp Method of separating metal and inorganic particle from metallic inorganic particle composite material
JP2004176147A (en) * 2002-11-28 2004-06-24 Asahi Kasei Corp Method of producing copper hyperfine grain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492840B2 (en) 2013-12-02 2016-11-15 Samsung Electronics Co., Ltd. Methods of removing surface ligand compounds
US9925568B2 (en) 2013-12-02 2018-03-27 Samsung Electronics Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP4840369B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Bhattarai et al. Green synthesis of gold and silver nanoparticles: Challenges and opportunities
JP5070153B2 (en) Method for producing metal nanoparticles
Im et al. Large‐scale synthesis of silver nanocubes: the role of hcl in promoting cube perfection and monodispersity
Yang et al. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis
JP4520969B2 (en) Metal nanoparticles and method for producing the same
Wei et al. Rational strategy for shaped nanomaterial synthesis in reverse micelle reactors
Nazar et al. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures
JP5377962B2 (en) Electronic grade metal nanostructure
CN103827035B (en) The preparation method of the amount of metal submanifold of molecule constraint form
EP3332042B1 (en) Method of recycling precious metals from waste materials and use of precious metal nanoparticles obtained by this method
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
Chng et al. Semiconductor‐Gold Nanocomposite Catalysts for the Efficient Three‐Component Coupling of Aldehyde, Amine and Alkyne in Water
JP4248857B2 (en) Method for producing silver fine particles
CN1762622A (en) A kind of method for preparing silver-colored nano-hollow ball by displacement reaction
Ruditskiy et al. Oxidative etching of Pd decahedral nanocrystals with a penta-twinned structure and its impact on their growth behavior
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
Gao et al. Synthesis of single‐crystal gold nano‐and microprisms using a solvent‐reductant‐template ionic liquid
JP4840369B2 (en) Nanoparticle production method and separation method
Zhou et al. Pencil-like Ag Nanorods Asymmetrically Capped by Pd
JP5062506B2 (en) Extraction method of metal fine particles
Yang et al. Metal-based composite nanomaterials
JP5120929B2 (en) Method for producing metal nanoparticles using reverse micelle liquid-liquid extraction method
JP2003147417A (en) Nano-size metal particles and method for manufacturing the same
KR101696204B1 (en) Methods of preparing composite metal nano particles
JP2006104572A (en) Metal ultramicroparticle organosol, method for producing the same, metal ultramicroparticle, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees