JP2009161404A - Method for manufacturing silicon nanowire - Google Patents

Method for manufacturing silicon nanowire Download PDF

Info

Publication number
JP2009161404A
JP2009161404A JP2008001931A JP2008001931A JP2009161404A JP 2009161404 A JP2009161404 A JP 2009161404A JP 2008001931 A JP2008001931 A JP 2008001931A JP 2008001931 A JP2008001931 A JP 2008001931A JP 2009161404 A JP2009161404 A JP 2009161404A
Authority
JP
Japan
Prior art keywords
region
high temperature
silicon
gas
temperature region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008001931A
Other languages
Japanese (ja)
Inventor
Kazumasa Ueda
和正 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008001931A priority Critical patent/JP2009161404A/en
Publication of JP2009161404A publication Critical patent/JP2009161404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon nanowire of high purity at a low temperature. <P>SOLUTION: [1] The silicon nanowire is manufactured by allowing a mixed gas of silicon tetrachloride gas and an inert gas or silicon tetrachloride gas 5 to flow through a high temperature region 3 into a region at a temperature lower than that of the high temperature region (low temperature region 4), providing aluminum at the high temperature region 3, and crystallizing the silicon nanowire at the region 4 at a temperature lower than that of the high temperature region. [2] The method is characterized by setting a temperature in a high temperature region at 700 to 1,100°C in the method described in [1]. [3] The method is characterized by setting a temperature in the region with a temperature lower than that of the high temperature region at 600 to 900°C in the method described in [1] or [2]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はシリコンナノワイヤーの製造方法に関する。   The present invention relates to a method for producing silicon nanowires.

シリコンナノワイヤーはナノマシン用や半導体情報通信用デバイス用等の部材として注目されている。
従来、シリコンナノワイヤーは、溶融法(特許文献1)、蒸発法(特許文献2)、触媒法(特許文献3)により製造されることが知られている。
Silicon nanowires are attracting attention as members for nanomachines and semiconductor information communication devices.
Conventionally, it is known that silicon nanowires are produced by a melting method (Patent Document 1), an evaporation method (Patent Document 2), and a catalytic method (Patent Document 3).

特開2003−142680号公報(特許請求の範囲、段落0006、0014〜0016、0019〜0021)JP 2003-142680 A (claims, paragraphs 0006, 0014 to 0016, 0019 to 0021) 特開2004−296750号公報(特許請求の範囲、段落0011〜0015)JP 2004-296750 A (Claims, paragraphs 0011 to 0015) 特開2006−117475号公報(特許請求の範囲、段落0014〜0018)JP 2006-117475 A (Claims, paragraphs 0014 to 0018)

しかしながら、溶融法では1500Kを越える高い温度が必要であり、蒸発法でもシリコンを蒸発させるために1300℃を越える温度が必要である。高温の場合、使用に耐えうる装置材質に制約が生じる、あるいはエネルギーの消費が大きいといった問題がある。
一方、触媒法では低温でシリコンナノワイヤーを製造することが可能であるが、製法上触媒を要するため、シリコンナノワイヤー中に触媒成分が含まれてしまうという問題がある。
However, the melting method requires a high temperature exceeding 1500 K, and the evaporation method also requires a temperature exceeding 1300 ° C. in order to evaporate silicon. When the temperature is high, there is a problem that the material of the device that can withstand use is restricted or the energy consumption is large.
On the other hand, although it is possible to manufacture silicon nanowires at a low temperature by the catalytic method, there is a problem that a catalyst component is contained in the silicon nanowires because a catalyst is required in the manufacturing method.

本発明の目的は、高純度のシリコンナノワイヤーを低温で製造する方法を提供することにある。   An object of the present invention is to provide a method for producing high-purity silicon nanowires at a low temperature.

本発明者らは、シリコンナノワイヤーの製造方法について鋭意検討した結果、本発明を完成させるに至った。   As a result of intensive studies on a method for producing silicon nanowires, the present inventors have completed the present invention.

すなわち本発明は、〔1〕四塩化珪素ガスと不活性ガスとの混合ガスまたは四塩化珪素ガスを、高温領域を通って、前記高温領域よりも温度の低い領域へ流通し、該高温領域にアルミニウムを供給し、前記高温領域よりも温度の低い領域においてシリコンナノワイヤーを析出させるシリコンナノワイヤーの製造方法に係るものである。
更に、本発明は、〔2〕前記高温領域における温度が700℃以上1100℃以下である〔1〕記載の方法、
〔3〕前記高温領域よりも温度の低い領域における温度が600℃以上900℃以下である〔1〕または〔2〕記載の方法に係るものである。
本発明において、シリコンナノワイヤーとは、シリコンからなる直径がナノメーターオーダーの線状物をいう。例えば、シリコンからなる、直径が1〜500nm、または20〜300nmの線状物が挙げられる。
That is, the present invention provides: [1] A mixed gas of silicon tetrachloride gas and an inert gas or silicon tetrachloride gas is circulated through a high temperature region to a region having a temperature lower than that of the high temperature region. The present invention relates to a method for producing silicon nanowires in which aluminum is supplied and silicon nanowires are deposited in a region having a temperature lower than that of the high temperature region.
Furthermore, the present invention provides [2] the method according to [1], wherein the temperature in the high temperature region is 700 ° C. or higher and 1100 ° C. or lower.
[3] The method according to [1] or [2], wherein a temperature in a region lower than the high temperature region is 600 ° C. or higher and 900 ° C. or lower.
In the present invention, the silicon nanowire refers to a linear material having a diameter of nanometer order made of silicon. For example, a linear material having a diameter of 1 to 500 nm or 20 to 300 nm made of silicon can be used.

本発明の製造方法によれば、低温で高純度のシリコンナノワイヤーを製造することができる。   According to the production method of the present invention, high-purity silicon nanowires can be produced at a low temperature.

〔四塩化珪素〕
本発明のシリコンナノワイヤーの製造方法は、四塩化珪素ガスと不活性ガスとの混合ガスまたは四塩化珪素ガスを用いる。
四塩化珪素ガスは6N以上の高純度品が容易に入手可能である。
四塩化珪素ガスは単独で供給しても良く、あるいは反応性を制御するために四塩化珪素を不活性ガスにて希釈して四塩化珪素ガスと不活性ガスとの混合ガスにして供給しても良い。混合ガス中の四塩化珪素ガス濃度は5vol%以上であることが好ましく、20vol%以上であることがより好ましく、50vol%以上であることが更に好ましい。不活性ガスとしては、例えば、アルゴン、ヘリウムが挙げられ、アルゴンが好ましい。
四塩化珪素ガスの供給方法は公知の方法を用いることができる。具体的には、液体の四塩化珪素を充填した容器に不活性ガスを送り込んでバブリングさせることにより、四塩化珪素ガスと不活性ガスの混合ガスとして供給する方法、あるいは、液体の四塩化珪素を定量ポンプで加熱された容器(気化器)に送液し、四塩化珪素ガスとして供給する方法が挙げられる。
[Silicon tetrachloride]
The method for producing silicon nanowires of the present invention uses a mixed gas of silicon tetrachloride gas and an inert gas or silicon tetrachloride gas.
Silicon tetrachloride gas is easily available as a high purity product of 6N or more.
Silicon tetrachloride gas may be supplied alone, or in order to control reactivity, silicon tetrachloride is diluted with an inert gas and supplied as a mixed gas of silicon tetrachloride gas and an inert gas. Also good. The silicon tetrachloride gas concentration in the mixed gas is preferably 5 vol% or more, more preferably 20 vol% or more, and further preferably 50 vol% or more. Examples of the inert gas include argon and helium, and argon is preferable.
A known method can be used as a method for supplying the silicon tetrachloride gas. Specifically, a method of supplying an inert gas into a container filled with liquid silicon tetrachloride and bubbling it to supply as a mixed gas of silicon tetrachloride gas and an inert gas, or liquid silicon tetrachloride There is a method in which liquid is supplied to a container (vaporizer) heated by a metering pump and supplied as silicon tetrachloride gas.

〔アルミニウム〕
本発明において、高温領域にアルミニウムを供給する。
本発明で用いるアルミニウムは、得られるシリコンの純度を向上させる観点から、高純度のものが好ましく、例えば、純度99.9%以上が好ましく、更に好ましくは99.99%である。
このような高純度アルミニウムとしては、汎用品を公知の方法で精製したものが挙げられる。例えば、高純度アルミニウムは、電解還元アルミニウム(普通アルミニウム)を偏析凝固法、三層電解法などによって精製することにより得られる。
本発明において、用いられるアルミニウムの形状は、反応性を高める観点から好ましくは微粒子状である。該アルミニウム微粒子は、通常、篩別により粒径500μm以下とした粒子であり、好ましくは212μm以下とした粒子であり、より好ましくは150μm以下とした粒子である。
アルミニウム微粒子は、微粒子を高温領域に保持させておいてもよいが、温度が高い場合には溶融により反応性が低下する場合があるため、好ましくはアルミニウムを微粒子状態で高温領域に供給し、直ぐに反応させてもよい。具体的には、溶融アルミニウムを噴霧ノズル等で高温領域に噴霧させて、高温領域に供給する方法が挙げられる。
〔aluminum〕
In the present invention, aluminum is supplied to the high temperature region.
The aluminum used in the present invention is preferably high-purity from the viewpoint of improving the purity of the obtained silicon. For example, the purity is preferably 99.9% or more, more preferably 99.99%.
Examples of such high-purity aluminum include those obtained by purifying general-purpose products by a known method. For example, high-purity aluminum can be obtained by refining electrolytically reduced aluminum (ordinary aluminum) by a segregation solidification method, a three-layer electrolytic method, or the like.
In the present invention, the shape of the aluminum used is preferably fine particles from the viewpoint of increasing the reactivity. The aluminum fine particles are usually particles having a particle size of 500 μm or less by sieving, preferably 212 μm or less, more preferably 150 μm or less.
The aluminum fine particles may be kept in the high temperature region, but if the temperature is high, the reactivity may decrease due to melting. Therefore, preferably, aluminum is supplied in the fine particle state to the high temperature region immediately. You may make it react. Specifically, there is a method in which molten aluminum is sprayed to a high temperature region with a spray nozzle or the like and supplied to the high temperature region.

高温領域は、公知の方法で適宜形成できる。例えば、高周波誘導加熱法、抵抗加熱法を用いる方法などが挙げられる。
高温領域の温度は、800℃以上1000℃以下が好ましい。高温領域の温度が800℃より低い場合には、シリコンの収率が低下することがあり、1000℃を超える場合には、コストが高くなることがある。 高温領域の雰囲気中の四塩化珪素濃度は、5vol%以上であることが好ましく、20vol%以上であることがより好ましく、50vol%以上であることが更に好ましい。該高温領域の雰囲気は、反応進行の観点から、水、酸素のようなガスを含まないことがより好ましい。
The high temperature region can be appropriately formed by a known method. For example, a method using a high frequency induction heating method, a resistance heating method, or the like can be given.
The temperature in the high temperature region is preferably 800 ° C. or higher and 1000 ° C. or lower. When the temperature in the high temperature region is lower than 800 ° C., the yield of silicon may decrease, and when it exceeds 1000 ° C., the cost may increase. The silicon tetrachloride concentration in the atmosphere in the high temperature region is preferably 5 vol% or more, more preferably 20 vol% or more, and further preferably 50 vol% or more. The atmosphere in the high temperature region preferably contains no gas such as water and oxygen from the viewpoint of reaction progress.

〔シリコンナノワイヤーの析出〕
本発明のシリコンナノワイヤーの製造方法においては、四塩化珪素ガスと不活性ガスとの混合ガスまたは四塩化珪素ガスの流通下流域であって、前記高温領域よりも温度の低い領域(以下、低温領域ということがある。)において、シリコンナノワイヤーを析出させる。前記低温領域の温度は、600℃〜1000℃以下が好ましい。
[Deposition of silicon nanowires]
In the method for producing silicon nanowires of the present invention, it is a flow downstream region of a mixed gas of silicon tetrachloride gas and an inert gas or silicon tetrachloride gas and has a lower temperature than the high temperature region (hereinafter referred to as a low temperature). In this case, silicon nanowires are deposited. The temperature in the low temperature region is preferably 600 ° C to 1000 ° C.

本発明におけるシリコンナノワイヤーの製造は、通常、高温領域の温度での耐熱性があり、生成物であるシリコンナノワイヤーを汚染しない材質からなる容器内で行われる。該容器の材質は、例えば、炭素、炭化珪素、窒化珪素、窒化アルミニウム、アルミナ、石英が挙げられる。   The production of silicon nanowires in the present invention is usually carried out in a container made of a material that has heat resistance at a temperature in a high temperature region and does not contaminate silicon nanowires that are products. Examples of the material of the container include carbon, silicon carbide, silicon nitride, aluminum nitride, alumina, and quartz.

図1は、本発明の製造方法を実施するための装置の一例を示した構成図である。図1においては、加熱炉2に設置された反応管1中で、四塩化珪素ガスと不活性ガスとの混合ガスまたは四塩化珪素ガス5を下方より上方へ、高温領域3を通って、低温領域へ流通する。高温領域3にアルミニウム微粒子を保持しておくと、低温領域4において、シリコンナノワイヤーが析出する。   FIG. 1 is a configuration diagram showing an example of an apparatus for carrying out the manufacturing method of the present invention. In FIG. 1, in a reaction tube 1 installed in a heating furnace 2, a mixed gas of silicon tetrachloride gas and an inert gas or a silicon tetrachloride gas 5 is passed from the lower side to the upper side, through the high temperature region 3, and at a low temperature. Distribute to the area. When aluminum fine particles are held in the high temperature region 3, silicon nanowires are deposited in the low temperature region 4.

上記において、本発明の実施の形態を説明したが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれらの実施の形態に限定されない。本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含む。   Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments. The scope of the present invention is defined by the terms of the claims, and includes all modifications within the scope and meaning equivalent to the terms of the claims.

本発明を実施例によってさらに詳細に説明するが、本発明はこれらによって限定されるものではない。   The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

実施例1
図1において、高温領域3に相当する箇所にカーボンペーパーを敷き、その上にアルミニウム微粒子(篩別により粒径150μm以下とした粒子、30mg)を保持させた。
高温領域の温度を895℃、低温領域の温度を790℃まで昇温した。
45℃に保った四塩化珪素(トリケミカル研究所製)を充填した容器にアルゴンを流速80ml/分で通過させ、四塩化珪素とアルゴンガスとの混合ガスを高温領域に送り込んだ。このようにして、高温領域を四塩化珪素とアルゴンガスとの混合ガス雰囲気とした。
四塩化珪素ガスとアルゴンガスとの混合ガスを10分間供給後、アルゴンガスに切替えて、温度を室温まで降下させた。
冷却後、装置内部を確認したところ、カーボンノズル(低温領域に相当)表面に綿状物質が析出しているのが確認された。該綿状物質は、電子線マイクロアナリシス(EPMA: Electron Probe Micro-Analysis)法による分析の結果、シリコンであることを確認した。該綿状物質は、直線状であり、透過電子顕微鏡観察の結果、直径が20nm〜300nmの線状物の集合体であり、シリコンナノワイヤーの生成を確認した。
Example 1
In FIG. 1, carbon paper was laid on a portion corresponding to the high temperature region 3, and aluminum fine particles (particles having a particle size of 150 μm or less by sieving, 30 mg) were held thereon.
The temperature in the high temperature region was raised to 895 ° C., and the temperature in the low temperature region was raised to 790 ° C.
Argon was passed at a flow rate of 80 ml / min through a container filled with silicon tetrachloride (manufactured by Trichemical Laboratories) maintained at 45 ° C., and a mixed gas of silicon tetrachloride and argon gas was sent to the high temperature region. In this way, the high temperature region was a mixed gas atmosphere of silicon tetrachloride and argon gas.
After supplying a mixed gas of silicon tetrachloride gas and argon gas for 10 minutes, the gas was switched to argon gas, and the temperature was lowered to room temperature.
When the inside of the apparatus was checked after cooling, it was confirmed that a cotton-like substance was deposited on the surface of the carbon nozzle (corresponding to a low temperature region). As a result of analysis by an electron probe micro-analysis (EPMA) method, the cotton-like substance was confirmed to be silicon. The cotton-like substance was linear, and as a result of transmission electron microscope observation, it was an aggregate of linear objects having a diameter of 20 nm to 300 nm, and the production of silicon nanowires was confirmed.

反応装置を例示した構成図。The block diagram which illustrated the reaction apparatus. 実施例1で生成したシリコンナノワイヤーの走査型電子顕微鏡像。The scanning electron microscope image of the silicon nanowire produced | generated in Example 1. FIG.

符号の説明Explanation of symbols

1 反応管
2 加熱炉
3 高温領域(反応部)
4 低温領域(析出部)
5 四塩化珪素ガスと不活性ガスとの混合ガスまたは四塩化珪素ガス
1 Reaction tube 2 Heating furnace 3 High temperature zone (reaction zone)
4 Low temperature region (precipitation part)
5 Mixed gas of silicon tetrachloride gas and inert gas or silicon tetrachloride gas

Claims (3)

四塩化珪素ガスと不活性ガスとの混合ガスまたは四塩化珪素ガスを、高温領域を通って、前記高温領域よりも温度の低い領域へ流通し、該高温領域にアルミニウムを供給し、前記高温領域よりも温度の低い領域においてシリコンナノワイヤーを析出させることを特徴とするシリコンナノワイヤーの製造方法。   A mixed gas of silicon tetrachloride gas and an inert gas or silicon tetrachloride gas is passed through a high temperature region to a region having a temperature lower than that of the high temperature region, and aluminum is supplied to the high temperature region. A method for producing silicon nanowires, comprising depositing silicon nanowires in a region where the temperature is lower than that. 前記高温領域における温度が700℃以上1100℃以下であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the temperature in the high temperature region is 700 ° C. or higher and 1100 ° C. or lower. 前記高温領域よりも温度の低い領域における温度が600℃以上900℃以下であることを特徴とする請求項1または2記載の方法。   3. The method according to claim 1, wherein a temperature in a region lower than the high temperature region is 600 ° C. or more and 900 ° C. or less.
JP2008001931A 2008-01-09 2008-01-09 Method for manufacturing silicon nanowire Pending JP2009161404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001931A JP2009161404A (en) 2008-01-09 2008-01-09 Method for manufacturing silicon nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001931A JP2009161404A (en) 2008-01-09 2008-01-09 Method for manufacturing silicon nanowire

Publications (1)

Publication Number Publication Date
JP2009161404A true JP2009161404A (en) 2009-07-23

Family

ID=40964464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001931A Pending JP2009161404A (en) 2008-01-09 2008-01-09 Method for manufacturing silicon nanowire

Country Status (1)

Country Link
JP (1) JP2009161404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249279A (en) * 2008-04-03 2009-10-29 Qinghua Univ Method for manufacturing silicon nano-structure
JP2012041235A (en) * 2010-08-20 2012-03-01 Kyoto Univ Method for manufacturing silicon nanowire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249279A (en) * 2008-04-03 2009-10-29 Qinghua Univ Method for manufacturing silicon nano-structure
JP2012041235A (en) * 2010-08-20 2012-03-01 Kyoto Univ Method for manufacturing silicon nanowire

Similar Documents

Publication Publication Date Title
Lew et al. Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates
Liang et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles
Zhang et al. Synthesis of thin Si whiskers (nanowires) using SiCl4
Lo et al. Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS)
Hao et al. Synthesis and characterization of bamboo-like SiC nanofibers
Wei et al. Self-catalysed growth of zinc oxide nanowires
EP2021279A2 (en) Production of silicon through a closed-loop process
Xu et al. Synthesis and characterization of high purity GaN nanowires
Guo et al. Metal-layer-assisted coalescence of Au nanoparticles and its effect on diameter control in vapor-liquid-solid growth of oxide nanowires
Kar et al. Catalytic and non-catalytic growth of amorphous silica nanowires and their photoluminescence properties
TW200526824A (en) Manufacturing method of silicon nanowire
Chong et al. Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition
TW201009136A (en) Skull reactor
JP2009161404A (en) Method for manufacturing silicon nanowire
Cao et al. SiC/SiO2 core–shell nanowires with different shapes: Synthesis and field emission properties
Chang et al. Ultrafast growth of single-crystalline Si nanowires
JP5176925B2 (en) CNT synthesis substrate, method for producing the same, and method for producing CNT
JP4016105B2 (en) Manufacturing method of silicon nanowires
WO1990007022A1 (en) Production method of zinc oxide whisker
Wang et al. Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation
Zhang et al. Catalyzed-assisted growth of well-aligned silicon oxide nanowires
Hutagalung et al. Oxide-assisted growth of silicon nanowires by carbothermal evaporation
Ishiyama et al. Silicon nanowires grown by metal-catalyst-free VLS process
Zhang et al. Molten Pb as a catalyst for large-scale growth of highly aligned silicon oxide nanowires
Jeon et al. Synthesis of gallium-catalyzed silicon nanowires by hydrogen radical-assisted deposition method