JP2009160681A - Manufacturing method of mask blanking substrate, manufacturing method of substrate with multilayer reflective film, and manufacturing method of reflective mask blank as well as manufacturing method of reflective mask - Google Patents

Manufacturing method of mask blanking substrate, manufacturing method of substrate with multilayer reflective film, and manufacturing method of reflective mask blank as well as manufacturing method of reflective mask Download PDF

Info

Publication number
JP2009160681A
JP2009160681A JP2007341519A JP2007341519A JP2009160681A JP 2009160681 A JP2009160681 A JP 2009160681A JP 2007341519 A JP2007341519 A JP 2007341519A JP 2007341519 A JP2007341519 A JP 2007341519A JP 2009160681 A JP2009160681 A JP 2009160681A
Authority
JP
Japan
Prior art keywords
substrate
polishing
mask blank
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007341519A
Other languages
Japanese (ja)
Other versions
JP2009160681A5 (en
JP5455143B2 (en
Inventor
Kesahiro Koike
今朝広 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007341519A priority Critical patent/JP5455143B2/en
Publication of JP2009160681A publication Critical patent/JP2009160681A/en
Publication of JP2009160681A5 publication Critical patent/JP2009160681A5/ja
Application granted granted Critical
Publication of JP5455143B2 publication Critical patent/JP5455143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mask blanking substrate capable of reducing fine surface defects on a substrate surface, and having high smoothness and reduced variation in surface roughness among substrates and within a substrate plane, a reflective mask blank with high reflectance and reduced variation in reflectance among the substrates and within the substrate plane, and a reflective mask free from transfer pattern defects caused by the fine surface defects and the variation in the reflectance among the substrates and within the substrate plane. <P>SOLUTION: A manufacturing method includes a polishing step of supplying a polishing liquid containing polishing abrasive grains onto a surface of a glass substrate and polishing the surface of the glass substrate by relatively moving the glass substrate and a polishing pad, wherein the polishing abrasive grain is colloidal silica and the polishing liquid with pH ranging 1-5 and a negative (minus) sign of zeta-potential is used. A multilayer reflective film 2 and an absorber film 4 are formed on the obtained mask blanking substrate 1 to make the reflective mask blank 10, and the absorber film 4 in the reflective mask blank 10 is patterned to form an absorber pattern to make the reflective mask 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置の製造等に使用される、マスクブランク用基板の製造方法、該基板を用いた多層反射膜付き基板の製造方法、及び反射型マスクブランクの製造方法、並びに反射型マスクの製造方法に関する。   The present invention relates to a method for manufacturing a mask blank substrate, a method for manufacturing a substrate with a multilayer reflective film using the substrate, a method for manufacturing a reflective mask blank, and a method for manufacturing a reflective mask. It relates to a manufacturing method.

近年における超LSIデバイスの高密度化、高精度化により、マスクブランク用ガラス基板の表面平滑性や表面欠陥に対する要求は年々厳しくなる状況にある。ここで、従来のマスクブランク用ガラス基板の表面粗さを低減するための精密研磨方法としては、例えば、下記特許文献1(特開昭64−40267号公報)に記載されているものがある。この精密研磨方法は、酸化セリウムを主材とする研磨材を用いて研磨した後、コロイダルシリカを用いて仕上げ研磨するものである。
また、下記特許文献2(特開2006−35413号公報)には、平均一次粒子径が50nm以下のコロイダルシリカを含み、pHが0.5〜4の範囲となるように調整された研磨スラリーを用いてガラス基板表面を研磨する方法が開示されている。
The demand for surface smoothness and surface defects of a glass substrate for mask blanks is becoming more and more severe year by year due to the recent increase in density and accuracy of VLSI devices. Here, as a precision polishing method for reducing the surface roughness of a conventional glass substrate for mask blank, for example, there is one described in Patent Document 1 (Japanese Patent Laid-Open No. 64-40267). In this precision polishing method, polishing is performed using an abrasive mainly composed of cerium oxide, and then finish polishing is performed using colloidal silica.
Patent Document 2 below (Japanese Patent Laid-Open No. 2006-35413) includes a polishing slurry containing colloidal silica having an average primary particle size of 50 nm or less and adjusted to have a pH in the range of 0.5 to 4. A method of using and polishing a glass substrate surface is disclosed.

特開昭64−40267号公報JP-A 64-40267 特開2006−35413号公報JP 2006-35413 A

本発明者の検討によると、上述の先行技術文献で記載されている技術を使用したとしても、近年要求されている表面平滑性や表面欠陥に対する高いレベルの条件を満たさないことがわかった。すなわち、先行技術に挙げた研磨方法によって得られたガラス基板表面には、高さが数nm〜数十nm程度、大きさは数十nm〜2000nm程度の凸状の突起や、深さが数nm〜200nm程度、大きさは数十nm〜500nm程度の凹状の欠陥が形成されていることが判明した。これは、従来の目視検査では確認できない微小な凸状の突起や凹状の欠陥で、近年要請されるようになった高いレベルの表面欠陥フリーの要請を確認するために開発された欠陥検査装置によって始めて確認することができたものである。このような表面欠陥が形成されるのは、研磨加工中における研磨液のpH値(水素イオン濃度)が変動し、これに伴い研磨砥粒のゼータ電位が変動することにより、研磨砥粒の分散性が悪くなることが原因であると考えられる。つまり、研磨液中に分散する研磨砥粒はゼータ電位を有するが、ゼータ電位が0(ゼロ)mVに近い場合には、研磨砥粒の凝集が生じ易くなり、研磨液中の研磨砥粒の分散性が悪くなる。研磨砥粒として使用可能な標準的なコロイダルシリカの場合、ゼータ電位は、pH値によって+(プラス)にも−(マイナス)にもなりうる(例えばpHが5以下の酸性域ではゼータ電位が+(プラス)、pHが8以上のアルカリ性域ではゼータ電位が−(マイナス)となる)ので、その過程においてゼロに近づくことがある。   According to the study of the present inventor, it has been found that even if the technique described in the above-mentioned prior art document is used, it does not satisfy a high level condition for surface smoothness and surface defects demanded in recent years. That is, on the surface of the glass substrate obtained by the polishing method listed in the prior art, a convex protrusion having a height of about several nm to several tens of nm and a size of about several tens of nm to 2,000 nm, and a depth of several It was found that concave defects having a size of about nm to 200 nm and a size of about several tens of nm to 500 nm were formed. This is a defect inspection device developed to confirm the demand for high-level surface defect freeness that has recently been demanded for minute convex protrusions and concave defects that cannot be confirmed by conventional visual inspection. This was the first time I could confirm. Such surface defects are formed because the pH value (hydrogen ion concentration) of the polishing liquid during polishing changes, and the zeta potential of the polishing abrasive fluctuates accordingly. This is thought to be due to the deterioration of sex. That is, the abrasive grains dispersed in the polishing liquid have a zeta potential, but when the zeta potential is close to 0 (zero) mV, the abrasive grains are likely to aggregate, and the polishing abrasive grains in the polishing liquid tend to aggregate. Dispersibility deteriorates. In the case of standard colloidal silica that can be used as abrasive grains, the zeta potential can be either + (plus) or-(minus) depending on the pH value (for example, the zeta potential is + in the acidic range where the pH is 5 or less). (Plus), the zeta potential is-(minus) in an alkaline region where the pH is 8 or more), and may approach zero in the process.

例えば、基板表面にこのような微小な凸状の突起や凹状の欠陥が形成されたガラス基板上に多層反射膜及び吸収体膜を形成した反射型マスクブランク、及び反射型マスクを作製した場合、これらの表面欠陥は転写パターン欠陥の原因となる。つまり、マスク面のパターン近傍に凸状や凹状の欠陥が存在すると、反射光にはその欠陥に起因した位相の変化が起こる。この位相の変化は転写されるパターンの位置精度やコントラストを悪化させる原因となる。特に波長が0.2〜100nm程度の極端紫外(Extreme Ultra Violet、以下EUV)光のような短波長の光を露光光として用いる場合、マスク面上の微細な凹凸に対して位相の変化が非常に敏感となるため、転写像への影響が大きくなる。例えば凸状突起の高さが5nmの場合、露光波長が13.5nmで位相の変化は20度を超え、その結果、CD誤差不良となり、無視できない問題となる。反射型マスクブランクの場合、基板上に露光光に対する反射膜として、例えばSiとMoの交互積層膜の場合、数nm程度の薄膜を最低でも80層(40周期)以上積層した多層膜が用いられるため、基板表面上での欠陥は問題とならないような微小な欠陥であっても、上記多層反射膜の形成により基板表面の凹凸形状が増長された多層反射膜表面が形成されてしまう。   For example, when a reflective mask blank in which a multilayer reflective film and an absorber film are formed on a glass substrate in which such minute convex protrusions and concave defects are formed on the substrate surface, and a reflective mask are produced, These surface defects cause transfer pattern defects. In other words, if a convex or concave defect exists in the vicinity of the pattern on the mask surface, a phase change caused by the defect occurs in the reflected light. This change in phase causes the positional accuracy and contrast of the transferred pattern to deteriorate. In particular, when short-wavelength light such as extreme ultraviolet (Extreme Ultra Violet, hereinafter EUV) light having a wavelength of about 0.2 to 100 nm is used as exposure light, the phase change is very large with respect to fine irregularities on the mask surface. Therefore, the influence on the transferred image is increased. For example, when the height of the convex protrusion is 5 nm, the exposure wavelength is 13.5 nm and the phase change exceeds 20 degrees. As a result, the CD error is poor and cannot be ignored. In the case of a reflective mask blank, as a reflective film for exposure light on a substrate, for example, in the case of an alternating laminated film of Si and Mo, a multilayer film in which a thin film of about several nm is laminated at least 80 layers (40 cycles) or more is used. Therefore, even if the defect on the substrate surface is a minute defect that does not cause a problem, the formation of the multilayer reflection film results in the formation of a multilayer reflection film surface in which the uneven shape of the substrate surface is increased.

また、研磨加工中に、研磨砥粒のゼータ電位が変動し研磨砥粒の分散性が悪くなると、研磨加工速度が変化し、基板間での表面粗さのばらつきが発生するという問題がある。基板表面粗さのばらつきは、基板上に形成する多層反射膜における露光光反射率のばらつきの原因となるので、基板間での表面粗さのばらつきは、反射型マスクにおける基板間での反射率ばらつき、さらには転写パターン欠陥の原因となってしまう。また、このような基板間だけでなく、基板面内における表面粗さのばらつきも発生し、これが反射型マスクにおける基板面内での反射率ばらつき、さらには転写パターン欠陥の原因となってしまう。   Further, when the zeta potential of the abrasive grains is changed during polishing and the dispersibility of the abrasive grains is deteriorated, there is a problem that the polishing speed is changed and the surface roughness varies between substrates. Variations in the surface roughness of the substrate cause variations in the reflectance of the exposure light in the multilayer reflective film formed on the substrate, so variations in the surface roughness between the substrates are reflected between the substrates in the reflective mask. This causes variation and further transfer pattern defects. Further, not only between the substrates but also the variation in the surface roughness within the substrate surface occurs, which causes the variation in the reflectance within the substrate surface in the reflective mask, and further causes the transfer pattern defect.

このように、マスクブランク用基板(特にEUV露光用の反射型マスクブランク用基板)の表面平滑性及び表面欠陥に対する要求は非常に厳しく、上述した先行技術文献で記載されているような従来の研磨加工方法を適用し、最初は研磨液の状態を最適化したとしても、研磨加工中に研磨液のpH値や研磨砥粒のゼータ電位は変化し、研磨砥粒の分散性は不安定であるため、上記要求を満たすような高平滑で、しかも欠陥のない基板表面を安定的に得ることは実際には非常に困難である。 As described above, the requirements for the surface smoothness and surface defects of the mask blank substrate (particularly, the reflective mask blank substrate for EUV exposure) are very strict, and the conventional polishing as described in the above-mentioned prior art documents. Even if the processing method is applied and the state of the polishing liquid is optimized at the beginning, the pH value of the polishing liquid and the zeta potential of the abrasive grains change during the polishing process, and the dispersibility of the abrasive grains is unstable. Therefore, it is actually very difficult to stably obtain a highly smooth and defect-free substrate surface that satisfies the above requirements.

そこで、本発明は、基板表面の微小な表面欠陥を低減し、しかも高平滑で、基板間及び基板面内における表面粗さのばらつきを低減したマスクブランク用基板の製造方法を提供することを第一の目的とする。
また、本発明は、基板表面の微小な表面欠陥を低減し、しかも高反射率で、基板間及び基板面内における反射率ばらつきを低減した多層反射膜付き基板の製造方法、及び反射型マスクブランクの製造方法を提供することを第二の目的とする。
さらに、本発明は、基板表面の微小な表面欠陥に起因する位相欠陥やパターン欠陥、あるいは基板間及び基板面内の反射率ばらつきに起因する転写パターン欠陥のない反射型マスクの製造方法を提供することを第三の目的とする。
Accordingly, the present invention provides a mask blank substrate manufacturing method that reduces minute surface defects on the substrate surface, is highly smooth, and reduces variations in surface roughness between substrates and in the substrate surface. One purpose.
In addition, the present invention provides a method for manufacturing a substrate with a multilayer reflective film, in which minute surface defects on the substrate surface are reduced, and in addition, the reflectance variation between substrates and in the substrate surface is reduced, and a reflective mask blank. It is a second object to provide a manufacturing method.
Furthermore, the present invention provides a method for manufacturing a reflective mask free from phase defects and pattern defects caused by minute surface defects on the substrate surface, or transfer pattern defects caused by reflectance variations between substrates and in the substrate surface. This is the third purpose.

本発明者は、上述の課題を解決するため鋭意検討した結果、近年のマスクブランク用基板に要求されている表面平滑性や表面欠陥に対する高いレベルの要求を満足するためには、研磨加工中における研磨液の状態の変動を抑制する必要があるとの認識の下で、以下の構成を有する本発明を完成するに至った。 As a result of intensive studies to solve the above-described problems, the present inventors have found that during the polishing process in order to satisfy the high level requirements for surface smoothness and surface defects required for recent mask blank substrates. With the recognition that it is necessary to suppress fluctuations in the state of the polishing liquid, the present invention having the following configuration has been completed.

(構成1)ガラス基板の表面に研磨パッドを接触させ、前記ガラス基板の表面に研磨砥粒を含む研磨液を供給し、前記ガラス基板と前記研磨パッドとを相対的に移動させて前記ガラス基板の表面を研磨する研磨工程を有するマスクブランク用ガラス基板の製造方法であって、前記研磨砥粒はコロイダルシリカであって、前記研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用することを特徴とするマスクブランク用基板の製造方法。
構成1にあるように、研磨工程に用いる研磨液に含まれる研磨砥粒はコロイダルシリカであって、研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用することにより、研磨液のpHが1〜5の範囲の酸性域において、コロイダルシリカ砥粒を含む研磨液のゼータ電位の符号(極性)が−(マイナス)であることによって、研磨液中に分散するコロイダルシリカ砥粒が凝集することはなく分散性が良好な状態を保ち、研磨液の状態が安定であるため、基板表面の微小な表面欠陥を低減し、しかも高平滑で、基板間及び基板面内における表面粗さのばらつきを低減したマスクブランク用基板が得られる。
(Configuration 1) A polishing pad is brought into contact with the surface of the glass substrate, a polishing liquid containing abrasive grains is supplied to the surface of the glass substrate, and the glass substrate and the polishing pad are moved relative to each other to form the glass substrate. A method for producing a glass substrate for a mask blank having a polishing step of polishing the surface of the substrate, wherein the polishing abrasive grains are colloidal silica, and the pH of the polishing liquid is in the range of 1 to 5, and the sign of zeta potential A method for producing a mask blank substrate, wherein a polishing liquid having a (polarity) of-(minus) is used.
As in Configuration 1, the abrasive grains contained in the polishing liquid used in the polishing step are colloidal silica, the pH of the polishing liquid is in the range of 1 to 5, and the sign (polarity) of the zeta potential is − (minus). ), The sign (polarity) of the zeta potential of the polishing liquid containing colloidal silica abrasive grains is − (minus) in the acidic range where the pH of the polishing liquid is in the range of 1 to 5. Therefore, colloidal silica abrasive grains dispersed in the polishing liquid do not agglomerate and maintain a good dispersibility, and the state of the polishing liquid is stable, so that minute surface defects on the substrate surface are reduced and high A mask blank substrate is obtained which is smooth and reduces variations in surface roughness between substrates and within the substrate surface.

(構成2)前記研磨液は、pHが1〜5の範囲におけるゼータ電位の変動が、−30mV〜0(ゼロ)の範囲内であることを特徴とする請求項1に記載のマスクブランク用基板の製造方法。
とくに構成2にあるように、pHが1〜5の範囲におけるゼータ電位の変動が、−30mV〜0(ゼロ)の範囲内であるというようなゼータ電位の変動の少ない研磨液を使用することにより、長時間使用しても研磨砥粒の凝集等が起こらず研磨液が安定な状態を保つため、構成1の発明による効果がより一層発揮される。
(構成3) 前記研磨工程後の洗浄工程で使用する洗浄液として、ゼータ電位の符号(極性)が−(マイナス)である洗浄液を使用することを特徴とする構成1又は2に記載のマスクブランク用基板の製造方法。
そして、構成3のように、前記研磨工程後の洗浄工程で使用する洗浄液として、ゼータ電位の符号(極性)が−(マイナス)である洗浄液を使用することが好ましい。これにより、特に酸性やアルカリ性の強い洗浄液を使用しなくても、基板表面に残留する研磨砥粒を洗浄により確実に取り除くことができ、研磨砥粒の付着による凸欠陥の発生を防止することができる。
(Structure 2) The mask blank substrate according to claim 1, wherein the polishing liquid has a zeta potential fluctuation within a range of -30 mV to 0 (zero) in a pH range of 1 to 5. Manufacturing method.
In particular, as shown in Configuration 2, by using a polishing liquid having a small change in zeta potential such that the change in zeta potential in the range of pH 1 to 5 is in the range of −30 mV to 0 (zero). Further, even when used for a long time, the abrasive grains do not aggregate and the polishing liquid is kept in a stable state, so that the effect of the invention of Configuration 1 is further exhibited.
(Structure 3) The cleaning liquid for use in the mask blank according to Structure 1 or 2, wherein a cleaning liquid having a zeta potential sign (polarity) of-(minus) is used as a cleaning liquid used in the cleaning process after the polishing process. A method for manufacturing a substrate.
And like the structure 3, it is preferable to use the washing | cleaning liquid whose code | symbol (polarity) of zeta potential is-(minus) as a washing | cleaning liquid used by the washing | cleaning process after the said grinding | polishing process. This makes it possible to reliably remove the abrasive grains remaining on the substrate surface by washing without using a highly acidic or alkaline cleaning solution, and to prevent the occurrence of convex defects due to the adhesion of the abrasive grains. it can.

(構成4)前記基板は、多成分系ガラス基板であることを特徴とする構成1乃至3の何れか一に記載のマスクブランク用基板。
また、構成4にあるように、本発明は、マスクブランク用基板が多成分系ガラス基板である場合に好適である。多成分系ガラス基板は、酸性の研磨液を使用すると研磨加工速度を向上させることができる。
(構成5)前記基板は、SiOとTiOを含むガラス基板であることを特徴とする構成1又は2に記載のマスクブランク用基板。
そして、構成5のように、マスクブランク用基板が、例えばEUV露光用の反射型マスクブランクに多用されるSiOとTiOを含むガラス基板である場合に、表面欠陥を低減し高平滑性が得られる本発明は特に好適である。
(Structure 4) The mask blank substrate according to any one of Structures 1 to 3, wherein the substrate is a multi-component glass substrate.
Further, as in Configuration 4, the present invention is suitable when the mask blank substrate is a multi-component glass substrate. The multi-component glass substrate can improve the polishing speed when an acidic polishing liquid is used.
(Structure 5) The mask blank substrate according to Structure 1 or 2, wherein the substrate is a glass substrate containing SiO 2 and TiO 2 .
And, when the mask blank substrate is a glass substrate containing SiO 2 and TiO 2 that is frequently used for a reflective mask blank for EUV exposure, as in Configuration 5, surface defects are reduced and high smoothness is achieved. The resulting invention is particularly suitable.

(構成6)構成1乃至5の何れか一に記載のマスクブランク用基板の表面上に、露光光を反射する多層反射膜を形成することを特徴とする多層反射膜付き基板の製造方法。
構成6のように、上記マスクブランク用基板の表面上に、露光光を反射する多層反射膜を形成することにより、基板表面の微小な表面欠陥を低減し、しかも高反射率で、基板間及び基板面内における反射率ばらつきを低減した多層反射膜付き基板が得られる。
(構成7)構成6に記載の多層反射膜付き基板における前記多層反射膜上に、露光光の反射を防止する吸収体膜を形成することを特徴とする反射型マスクブランクの製造方法。
また、構成7のように、上記多層反射膜付き基板における多層反射膜上に、露光光の反射を防止する吸収体膜を形成することにより、基板表面の微小な表面欠陥を低減し、しかも高反射率で、基板間及び基板面内における反射率ばらつきを低減した反射型マスクブランクが得られる。
(Structure 6) A method for producing a substrate with a multilayer reflective film, comprising: forming a multilayer reflective film that reflects exposure light on the surface of the mask blank substrate according to any one of Structures 1 to 5.
As in Configuration 6, by forming a multilayer reflective film that reflects exposure light on the surface of the mask blank substrate, minute surface defects on the surface of the substrate are reduced, and between the substrates and with high reflectivity. A substrate with a multilayer reflective film with reduced reflectance variation in the substrate surface can be obtained.
(Structure 7) A method for producing a reflective mask blank, wherein an absorber film for preventing reflection of exposure light is formed on the multilayer reflective film in the substrate with a multilayer reflective film described in Structure 6.
Further, as in Configuration 7, by forming an absorber film that prevents reflection of exposure light on the multilayer reflective film in the substrate with the multilayer reflective film, minute surface defects on the substrate surface can be reduced and high A reflection type mask blank in which the reflectance variation between the substrates and in the substrate surface is reduced by the reflectance is obtained.

(構成8)構成7に記載の反射型マスクブランクの製造方法によって得られた反射型マスクブランクにおける前記吸収体膜をパターニングして吸収体パターンを形成することを特徴とする反射型マスクの製造方法。
また、構成8にあるように、上記反射型マスクブランクにおける吸収体膜をパターニングして吸収体パターンを形成することにより得られる反射型マスクによれば、半導体基板上へのパターン転写時に、基板表面の微小な表面欠陥に起因する位相欠陥やパターン欠陥、あるいは基板間及び基板面内の反射率ばらつきに起因する転写パターン欠陥の発生を防止することができる。
(Structure 8) A method for manufacturing a reflective mask, comprising forming an absorber pattern by patterning the absorber film in a reflective mask blank obtained by the method for manufacturing a reflective mask blank according to Structure 7. .
Moreover, according to the reflection type mask obtained by patterning the absorber film in the reflection type mask blank and forming the absorber pattern as in the configuration 8, the substrate surface is transferred during pattern transfer onto the semiconductor substrate. It is possible to prevent the occurrence of phase defects and pattern defects caused by minute surface defects, or transfer pattern defects caused by variations in reflectance between substrates and in the substrate surface.

本発明によれば、基板表面の微小な表面欠陥を低減し、しかも高平滑で、基板間及び基板面内における表面粗さのばらつきを低減したマスクブランク用基板を提供することができる。
また、本発明によれば、本発明によるマスクブランク用基板を用いて、基板表面の微小な表面欠陥を低減し、しかも高反射率で、基板間及び基板面内における反射率ばらつきを低減した多層反射膜付き基板、及び反射型マスクブランクを提供することができる。
また、本発明によれば、本発明による反射型マスクブランクを用いて、基板表面の微小な表面欠陥に起因する位相欠陥やパターン欠陥、あるいは基板間及び基板面内の反射率ばらつきに起因する転写パターン欠陥のない反射型マスクを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the board | substrate for mask blanks which reduced the surface defect on the surface of a board | substrate, and was highly smooth and reduced the dispersion | variation in the surface roughness between board | substrates and in a board | substrate surface can be provided.
In addition, according to the present invention, the mask blank substrate according to the present invention is used to reduce a minute surface defect on the substrate surface, and with high reflectivity, a multi-layer with reduced reflectivity variation between substrates and in the substrate surface. A substrate with a reflective film and a reflective mask blank can be provided.
Further, according to the present invention, using the reflective mask blank according to the present invention, transfer caused by phase defects and pattern defects caused by minute surface defects on the substrate surface, or reflectance variations between substrates and in the substrate surface. A reflective mask free of pattern defects can be provided.

以下、本発明を実施するための最良の形態にかかるマスクブランク用基板の製造方法、このマスクブランク用基板を用いた多層反射膜付き基板の製造方法、及び反射型マスクブランクの製造方法、並びにこの反射型マスクブランクを用いた反射型マスクの製造方法を詳細に説明する。 Hereinafter, a method for manufacturing a mask blank substrate according to the best mode for carrying out the present invention, a method for manufacturing a substrate with a multilayer reflective film using the mask blank substrate, a method for manufacturing a reflective mask blank, and this A manufacturing method of the reflective mask using the reflective mask blank will be described in detail.

本発明に係るマスクブランク用基板の製造方法は、ガラス基板の表面に研磨パッドを接触させ、前記ガラス基板の表面に研磨砥粒を含む研磨液を供給し、前記ガラス基板と前記研磨パッドとを相対的に移動させて前記ガラス基板の表面を研磨する研磨工程を有するマスクブランク用ガラス基板の製造方法であって、前記研磨砥粒はコロイダルシリカであって、前記研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用することを特徴とするものである。 In the method for manufacturing a mask blank substrate according to the present invention, a polishing pad is brought into contact with the surface of a glass substrate, a polishing liquid containing abrasive grains is supplied to the surface of the glass substrate, and the glass substrate and the polishing pad are combined. A method for producing a glass substrate for a mask blank having a polishing step of polishing the surface of the glass substrate by relatively moving, wherein the abrasive grains are colloidal silica, and the pH of the polishing liquid is 1-5. A polishing liquid having a zeta potential sign (polarity) of-(minus) is used.

このように、研磨工程に用いる研磨液に含まれる研磨砥粒はコロイダルシリカであって、研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用することにより、研磨液のpHが1〜5の範囲の酸性域において、コロイダルシリカ砥粒を含む研磨液のゼータ電位の符号(極性)が−(マイナス)であることによって、研磨液中に分散するコロイダルシリカ砥粒が凝集することはなく分散性が良好な状態を保てる。従って、研磨中は、研磨液の状態が常に安定であるため、このような安定な研磨液を用いて研磨加工を行うことにより、基板表面の微小な表面欠陥を低減でき、しかも高平滑で、基板間及び基板面内における表面粗さのばらつきを低減したマスクブランク用基板を得ることができる。また、このようなマスクブランク用基板上に、たとえば露光光を反射する多層反射膜を形成した場合、高反射率が得られ、しかも基板間及び基板面内における反射率ばらつきを低減することができる。   Thus, the abrasive grains contained in the polishing liquid used in the polishing step are colloidal silica, the pH of the polishing liquid is in the range of 1 to 5, and the sign (polarity) of the zeta potential is − (minus). By using the polishing liquid, the polishing liquid containing colloidal silica abrasive grains has a zeta potential sign (polarity) of-(minus) in the acidic range where the pH of the polishing liquid is in the range of 1 to 5. Colloidal silica abrasive grains dispersed in the liquid do not aggregate and can maintain a good dispersibility. Therefore, since the state of the polishing liquid is always stable during polishing, by performing polishing using such a stable polishing liquid, it is possible to reduce minute surface defects on the surface of the substrate, and it is highly smooth, A mask blank substrate with reduced variations in surface roughness between substrates and in the substrate surface can be obtained. In addition, when a multilayer reflective film that reflects exposure light, for example, is formed on such a mask blank substrate, high reflectance can be obtained, and variation in reflectance between substrates and in the substrate surface can be reduced. .

マスクブランク用基板としては、研磨により良好な平滑性、平坦性が得られることから、ガラス基板であることが好ましい。ガラス基板の材料は特に限定されない。ガラス基板の材料としては、例えば、合成石英ガラス、ホウケイ酸ガラス、アルミノシリケートガラス、アルミノボロシリケートガラス、ソーダライムガラス、無アルカリガラス、結晶化ガラス、低熱膨張性ガラス(例えばSiO−TiO系ガラス)などが挙げられる。
本発明は、マスクブランク用基板が多成分系ガラス基板である場合に好適である。多成分系ガラス基板の場合、とくに酸性の研磨液を使用すると研磨加工速度を向上させることができる。とりわけ、マスクブランク用基板が、例えばEUV露光用の反射型マスクブランクに多用されるSiOとTiOを含むガラス基板である場合に、表面欠陥を低減し高平滑性の基板が得られる本発明は特に好適である。
The mask blank substrate is preferably a glass substrate because good smoothness and flatness can be obtained by polishing. The material of the glass substrate is not particularly limited. Examples of the material of the glass substrate include synthetic quartz glass, borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali-free glass, crystallized glass, and low thermal expansion glass (for example, SiO 2 —TiO 2 type). Glass).
The present invention is suitable when the mask blank substrate is a multi-component glass substrate. In the case of a multi-component glass substrate, the polishing speed can be improved particularly when an acidic polishing liquid is used. In particular, when the mask blank substrate is a glass substrate containing SiO 2 and TiO 2 frequently used for a reflective mask blank for EUV exposure, for example, the present invention can reduce surface defects and obtain a highly smooth substrate. Is particularly preferred.

上記研磨工程では、たとえば、研磨パッドを貼着した研磨定盤にマスクブランク用基板(ガラス基板)を押し付け、研磨砥粒を含有した研磨液を供給しながら上記研磨定盤と上記基板とを相対的に移動(つまり研磨パッドと基板とを相対的に移動)させることにより、上記基板の表面を研磨する。この研磨工程には後述の遊星歯車方式の両面研磨装置などを使用することができる。なお、研磨は、両面研磨、片面研磨のどちらでも構わない。 In the polishing step, for example, a mask blank substrate (glass substrate) is pressed against a polishing surface plate to which a polishing pad is adhered, and the polishing surface plate and the substrate are relatively moved while supplying a polishing liquid containing polishing abrasive grains. The surface of the substrate is polished by moving the substrate (that is, relatively moving the polishing pad and the substrate). In this polishing step, a planetary gear type double-side polishing apparatus described later can be used. The polishing may be either double-side polishing or single-side polishing.

本発明においては、前記研磨液としては、研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用する。研磨液のpHが1〜5の範囲の酸性域において、コロイダルシリカ砥粒を含む研磨液のゼータ電位の符号(極性)が−(マイナス)であることにより、研磨液中に分散するコロイダルシリカ砥粒が凝集することはなく、研磨液中のコロイダルシリカ砥粒の分散性が良好で安定な状態を保つことができる。
本発明においては、前記研磨液は、pHが1〜5の範囲におけるゼータ電位の変動が、−30mV〜0(ゼロ)の範囲内である研磨液であることが特に好ましい。このようなpHが1〜5の酸性域においてゼータ電位の変動の少ない研磨液を使用することにより、長時間使用しても研磨砥粒の凝集等が起こらず研磨液が安定な状態を保つことができるため、本発明による効果をより一層発揮させることができる。
In the present invention, as the polishing liquid, a polishing liquid in which the pH of the polishing liquid is in the range of 1 to 5 and the sign (polarity) of the zeta potential is − (minus) is used. Colloidal silica abrasive dispersed in the polishing liquid when the sign (polarity) of the zeta potential of the polishing liquid containing colloidal silica abrasive grains is-(minus) in the acidic range where the pH of the polishing liquid is in the range of 1 to 5. The grains do not aggregate, and the dispersibility of the colloidal silica abrasive grains in the polishing liquid is good and a stable state can be maintained.
In the present invention, the polishing liquid is particularly preferably a polishing liquid in which the fluctuation of the zeta potential in the range of pH 1 to 5 is in the range of −30 mV to 0 (zero). By using a polishing liquid with little fluctuation in zeta potential in such an acidic range of pH 1 to 5, the polishing liquid does not aggregate even if used for a long time, and the polishing liquid remains stable. Therefore, the effect by this invention can be exhibited further.

本発明においては、前記研磨液は、pHが1〜5の範囲の酸性域としている。ガラス基板(とりわけ多成分系ガラス基板)の場合、酸性の研磨液により研磨加工速度を向上させることができる。このようにpHが1〜5の酸性域の研磨液とするために、研磨液に例えば無機酸を含むことによりpHを1〜5の範囲に調整することが好ましい。
上記無機酸としては、特に限定されるわけではないが、たとえば塩酸、硫酸、硝酸、燐酸、ホウ酸。ホスホン酸。ホスフィン酸等が挙げられ、この中でもとくに塩酸、硫酸、燐酸から選ばれる少なくとも一つであることが好ましい。これら塩酸、硫酸、燐酸を用いると、特に多成分系ガラス基板における基板表面の過度な浸食を抑制し、基板の表面荒れを防止することができるからである。
上記無機酸の含有量は、研磨液のpHを1〜5の酸性域に調整するための適当な含有量であればよい。
In the present invention, the polishing liquid has an acidic range with a pH in the range of 1 to 5. In the case of a glass substrate (especially a multicomponent glass substrate), the polishing speed can be improved by an acidic polishing liquid. As described above, in order to obtain a polishing liquid in an acidic region having a pH of 1 to 5, it is preferable to adjust the pH to a range of 1 to 5 by including, for example, an inorganic acid in the polishing liquid.
Although it does not necessarily limit as said inorganic acid, For example, hydrochloric acid, a sulfuric acid, nitric acid, phosphoric acid, boric acid. Phosphonic acid. Examples include phosphinic acid, and among these, at least one selected from hydrochloric acid, sulfuric acid, and phosphoric acid is particularly preferable. This is because when these hydrochloric acid, sulfuric acid, and phosphoric acid are used, excessive erosion of the substrate surface particularly in a multi-component glass substrate can be suppressed, and surface roughness of the substrate can be prevented.
The content of the inorganic acid may be an appropriate content for adjusting the pH of the polishing liquid to an acidic range of 1 to 5.

なお、研磨工程の過程において、ガラス基板に含まれているイオンが研磨液に溶出し、研磨液のpHが変動して研磨加工速度、研磨砥粒のゼータ電位等に影響を及ぼす場合があるので、本発明では、研磨中における研磨液のpHをできるだけ1〜5の範囲に保持するため、上記無機酸に加えて有機酸を含有することが好ましい。このような目的で本発明に好ましく使用しうる有機酸としては、たとえば酒石酸、マレイン酸、マロン酸等が挙げられる。
この有機酸の含有量は、使用する無機酸の種類、含有量、研磨液のpH値によっても異なるので一概には言えないが、概ね0.1重量%〜0.4重量%程度の範囲とすることが好ましい。好ましくは、有機酸の含有量は、0.2重量%〜0.3重量%が望ましい。
In addition, in the course of the polishing process, ions contained in the glass substrate are eluted into the polishing liquid, and the pH of the polishing liquid may fluctuate, affecting the polishing speed, the zeta potential of the abrasive grains, etc. In the present invention, in order to keep the pH of the polishing liquid during polishing in the range of 1 to 5 as much as possible, it is preferable to contain an organic acid in addition to the inorganic acid. Examples of organic acids that can be preferably used in the present invention for such purposes include tartaric acid, maleic acid, malonic acid and the like.
The content of the organic acid varies depending on the type of inorganic acid used, the content, and the pH value of the polishing liquid, so it cannot be said unconditionally, but is generally in the range of about 0.1 wt% to 0.4 wt%. It is preferable to do. Preferably, the organic acid content is 0.2 wt% to 0.3 wt%.

本発明では、研磨砥粒としては、ガラス基板の良好な平滑性、平坦性が得られる点からコロイダルシリカが好ましく用いられる。本発明においては、研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用するが、研磨液のゼータ電位の符号(極性)は主に研磨液中のコロイダルシリカのゼータ電位の符号(極性)によって決定されるため、本発明では、pHが1〜5の範囲において、ゼータ電位の符号(極性)が−(マイナス)であるコロイダルシリカが好ましく用いられる。すなわち、研磨液のpHが1〜5の範囲の酸性域において、コロイダルシリカ砥粒のゼータ電位の符号(極性)が−(マイナス)であることにより、研磨液中に分散する研磨砥粒が凝集することなく分散性が良好な状態を保てるからである。このように、pHが1〜5の範囲においてはゼータ電位の符号(極性)が−(マイナス)であるコロイダルシリカ砥粒であれば、ノニオン(非イオン)性コロイダルシリカ、アニオン性コロイダルシリカ、カチオン性コロイダルシリカのいずれを用いてもよい。また、コロイダルシリカ砥粒は、pHが1〜5の範囲におけるゼータ電位の符号(極性)が−(マイナス)であって、しかもpHが1〜5の範囲におけるゼータ電位の変動が、−30mV〜0(ゼロ)の範囲内であることが特に好ましい。このように、pHが1〜5の範囲におけるゼータ電位の変動の少ないコロイダルシリカ砥粒を使用することにより、長時間使用しても研磨砥粒の凝集等が起こらず研磨液の状態を安定に保つことができる。
なお、研磨砥粒を含有する研磨液の処方及び液温、研磨パッドの材質、加工圧力、研磨時間等の条件は、所望の平滑性が得られるように適宜設定される。
In the present invention, colloidal silica is preferably used as the abrasive grains from the viewpoint of obtaining good smoothness and flatness of the glass substrate. In the present invention, a polishing liquid in which the pH of the polishing liquid is in the range of 1 to 5 and the zeta potential sign (polarity) is − (minus) is used, but the zeta potential sign (polarity) of the polishing liquid is Since it is mainly determined by the sign (polarity) of the zeta potential of the colloidal silica in the polishing liquid, in the present invention, the colloidal whose zeta potential sign (polarity) is-(minus) in the pH range of 1 to 5. Silica is preferably used. That is, in the acidic range where the pH of the polishing liquid is in the range of 1 to 5, the sign (polarity) of the zeta potential of the colloidal silica abrasive grains is − (minus), so that the abrasive grains dispersed in the polishing liquid aggregate. This is because the dispersibility can be kept in a good state without doing so. Thus, when the colloidal silica abrasive grains have a zeta potential sign (polarity) of-(minus) in the pH range of 1 to 5, nonionic (nonionic) colloidal silica, anionic colloidal silica, cation Any of colloidal silica may be used. The colloidal silica abrasive grains have a zeta potential sign (polarity) of-(minus) in the pH range of 1-5, and the zeta potential fluctuation in the pH range of 1-5 is -30 mV- It is particularly preferable that it is within the range of 0 (zero). In this way, by using colloidal silica abrasive grains with little fluctuation in zeta potential in the pH range of 1 to 5, the abrasive grains do not aggregate even if used for a long time, and the state of the polishing liquid is stabilized. Can keep.
The conditions such as the formulation and temperature of the polishing liquid containing polishing abrasive grains, the material of the polishing pad, the processing pressure, and the polishing time are appropriately set so as to obtain desired smoothness.

上記研磨工程により所定の平滑性が得られるように基板表面を鏡面研磨した後、必要に応じて、該基板表面に局所加工を施す工程を実施してもよい。
たとえばEUV露光用のマスクブランク用基板としては、露光時の熱による転写パターンの歪みを抑えるために、低熱膨張性のガラス基板(例えばSiO−TiO系基板など)が通常使用される。EUV露光用のマスクブランク用基板の場合、パターン転写時のパターンの歪みや位置ずれを防止するために、高平滑性に加えて高平坦度であることが要求される。そこで、研磨工程の後、主に高平坦度化を目的とする局所加工を施してもよい。これは、研磨加工後の基板表面の表面形状を測定して、凸部位を特定し、凸部位の高さ(凸度)に応じた加工条件で凸部位に局所加工を施すものである。局所加工は、例えばプラズマエッチング、イオンビーム(ガスクラスターイオンビームなど)等によって行うことができる。ただし、このような局所加工によって、加工変質層が生じる場合があり、この場合は、局所加工後に、必要に応じて加工変質層の除去を目的とした短時間の研磨を行ってもよい。
After the substrate surface is mirror-polished so that predetermined smoothness can be obtained by the polishing step, a step of performing local processing on the substrate surface may be performed as necessary.
For example, as a mask blank substrate for EUV exposure, a glass substrate having a low thermal expansion (for example, a SiO 2 —TiO 2 substrate or the like) is usually used in order to suppress distortion of a transfer pattern due to heat during exposure. In the case of a mask blank substrate for EUV exposure, high flatness is required in addition to high smoothness in order to prevent pattern distortion and displacement during pattern transfer. Therefore, after the polishing process, local processing mainly for the purpose of increasing the flatness may be performed. In this method, the surface shape of the substrate surface after the polishing process is measured, the convex portion is specified, and the convex portion is locally processed under processing conditions corresponding to the height (convexity) of the convex portion. The local processing can be performed by, for example, plasma etching, ion beam (gas cluster ion beam, etc.) or the like. However, a work-affected layer may be generated by such local processing, and in this case, short-time polishing for the purpose of removing the work-affected layer may be performed as necessary after the local processing.

また、上記研磨工程(あるいは研磨工程及び局所加工工程)を施した後、基板表面に付着している研磨砥粒等を除去するために基板表面の洗浄を行うが、本発明では、このような研磨工程後の洗浄工程で使用する洗浄液として、ゼータ電位の符号(極性)が−(マイナス)である洗浄液を使用することが好ましい。これにより、洗浄後の基板表面荒れを生じやすい酸性やアルカリ性の強い洗浄液を使用しなくても、基板表面に残留する研磨砥粒を洗浄により確実に取り除くことができ、残留研磨砥粒の付着による凸欠陥の発生を防止することができるとともに、上記研磨工程等により得られる基板表面形態が洗浄後も良好に保たれる。
以上のようにして、基板表面の微小な表面欠陥を低減し、しかも高平滑で、基板間及び基板面内における表面粗さのばらつきを低減したマスクブランク用基板が得られる。
In addition, after the polishing step (or the polishing step and the local processing step) is performed, the substrate surface is washed to remove abrasive grains adhering to the substrate surface. As the cleaning liquid used in the cleaning process after the polishing process, it is preferable to use a cleaning liquid having a zeta potential sign (polarity) of-(minus). As a result, the polishing abrasive grains remaining on the substrate surface can be reliably removed by cleaning without using a strong acidic or alkaline cleaning liquid that tends to cause roughening of the substrate surface after cleaning. The occurrence of convex defects can be prevented, and the substrate surface form obtained by the polishing step or the like can be maintained well after cleaning.
As described above, a mask blank substrate can be obtained in which minute surface defects on the substrate surface are reduced, and the surface roughness is highly smooth and reduced in surface roughness between substrates and in the substrate surface.

次に、本発明によるマスクブランク用基板を用いた多層反射膜付き基板、反射型マスクブランク、及びこれらを用いた反射型マスクの製造について説明する。
本発明により得られるマスクブランク用基板の表面上に、露光光を反射する多層反射膜を形成することにより、多層反射膜表面の微小な表面欠陥を低減し、しかも高反射率で、基板間及び基板面内における反射率ばらつきを低減した多層反射膜付き基板が得られる。
また、上記多層反射膜付き基板における前記多層反射膜上に、露光光の反射を防止する吸収体膜を形成することにより、多層反射膜表面の微小な表面欠陥を低減し、しかも高反射率で、基板間及び基板面内における反射率ばらつきを低減した反射型マスクブランクが得られる。
Next, the production of a substrate with a multilayer reflective film using a mask blank substrate according to the present invention, a reflective mask blank, and a reflective mask using them will be described.
By forming a multilayer reflective film that reflects exposure light on the surface of the mask blank substrate obtained according to the present invention, minute surface defects on the surface of the multilayer reflective film are reduced, and the reflectance between the substrates and A substrate with a multilayer reflective film with reduced reflectance variation in the substrate surface can be obtained.
In addition, by forming an absorber film that prevents reflection of exposure light on the multilayer reflective film in the substrate with the multilayer reflective film, minute surface defects on the surface of the multilayer reflective film are reduced, and high reflectivity is achieved. Thus, a reflective mask blank with reduced reflectance variation between substrates and within the substrate surface can be obtained.

本発明に係る多層反射膜付き基板及び反射型マスクブランクの製造、並びにこれらを用いた反射型マスクの製造は、(1)基板の準備工程、(2)基板上への多層反射膜の成膜工程、(3)バッファ膜(中間層)の成膜工程、(4)露光光吸収体膜の成膜工程、(5)レジスト塗布工程、(6)描画工程、(7)エッチング工程、の各工程からなる。以下、図1を参照しながら説明する。 The production of a substrate with a multilayer reflective film and a reflective mask blank according to the present invention, and the production of a reflective mask using them include (1) a substrate preparation step, and (2) film formation of a multilayer reflective film on the substrate. (3) Buffer film (intermediate layer) film forming process, (4) Exposure light absorber film forming process, (5) Resist coating process, (6) Drawing process, (7) Etching process It consists of a process. Hereinafter, a description will be given with reference to FIG.

(1)基板の準備工程。基板1としては、低熱膨張係数を有し、平滑性、平坦度、およびマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましく、低熱膨張係数を有するガラス、例えばSiO2−TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を用いることも出来る。金属基板の例としては、インバー合金(Fe−Ni系合金)等を用いることができる。基板1としては、本発明のマスクブランク用基板を用いることにより、高反射率で、基板間及び基板面内における反射率ばらつきを低減した反射型マスクブランクが得られる。 (1) A substrate preparation step. The substrate 1 preferably has a low coefficient of thermal expansion, and is excellent in smoothness, flatness, and resistance to a cleaning solution used for cleaning a mask, etc., and glass having a low coefficient of thermal expansion, for example, SiO 2 —TiO 2 type Although glass etc. are used, it is not limited to this, Crystallized glass, quartz glass, silicon | silicone, a metal, etc. board | substrate which precipitated (beta) quartz solid solution can also be used. As an example of the metal substrate, an Invar alloy (Fe—Ni alloy) or the like can be used. By using the mask blank substrate of the present invention as the substrate 1, a reflective mask blank having high reflectivity and reduced reflectance variation between substrates and in the substrate surface can be obtained.

(2)基板上への多層反射膜の成膜工程(図1(a)参照)。多層反射膜2としては、MoとSiからなる交互積層膜が多用されているが、特定の波長域で高い反射率が得られる材料として、Ru/Si、Mo/Be、Mo化合物/Si化合物、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜およびSi/Ru/Mo/Ru周期多層膜、等でも良い。ただし、材料によって最適な膜厚は異なる。MoとSiからなる多層膜の場合、DCマグネトロンスパッタ法により、まずSiターゲットを用いて、Arガス雰囲気下でSi膜を成膜し、その後、Moターゲットを用いて、Arガス雰囲気下でMo膜を成膜し、これを1周期として、30〜60周期、好ましくは40周期積層した後、最後にSi膜を成膜する。この工程により、多層反射膜付き基板が得られる。 (2) Step of forming a multilayer reflective film on the substrate (see FIG. 1A). As the multilayer reflective film 2, an alternating laminated film made of Mo and Si is frequently used. As a material capable of obtaining a high reflectance in a specific wavelength range, Ru / Si, Mo / Be, Mo compound / Si compound, An Si / Nb periodic multilayer film, an Si / Mo / Ru periodic multilayer film, an Si / Mo / Ru / Mo periodic multilayer film, an Si / Ru / Mo / Ru periodic multilayer film, or the like may be used. However, the optimum film thickness varies depending on the material. In the case of a multilayer film composed of Mo and Si, a Si film is first formed in an Ar gas atmosphere using a Si target by a DC magnetron sputtering method, and then a Mo film is used in an Ar gas atmosphere using a Mo target. Is formed as a single cycle, and 30 to 60 cycles, preferably 40 cycles, are stacked, and finally a Si film is formed. By this step, a substrate with a multilayer reflective film is obtained.

(3)バッファ膜(中間層)の成膜工程(図1(a)参照)。バッファ膜(吸収体膜のエッチングによるパターニング時における多層反射膜へのエッチングストッパーとしての機能を有する)3の材料としてはCrNが多用されるが、吸収体膜4をエッチングする条件によっては、耐エッチング性の高い材料としてSiO等を用いても良い。CrNを用いる場合は、DCマグネトロンスパッタ法によりCrターゲットを用いてArと窒素の混合ガス雰囲気下で、前記多層反射膜2上へCrN膜を成膜するのが好ましい。 (3) A film forming process of the buffer film (intermediate layer) (see FIG. 1A). CrN is often used as the material of the buffer film 3 (which has a function as an etching stopper for the multilayer reflective film at the time of patterning by etching of the absorber film), but depending on the conditions for etching the absorber film 4, etching resistance SiO 2 or the like may be used as a highly material. When CrN is used, it is preferable to form a CrN film on the multilayer reflective film 2 using a Cr target by a DC magnetron sputtering method in a mixed gas atmosphere of Ar and nitrogen.

(4)露光光吸収体膜の成膜工程(図1(a)参照)。EUV光等の露光光の吸収体膜4の材料としては、Taを主成分とする材料、Taを主成分とし少なくともBを含む材料、Taを主成分とするアモルファス構造の材料、Taを主成分とし少なくともBを含んだアモルファス構造の材料(例えば、TaBで表されるBを25%程度含んだアモルファス構造の材料)、TaとBとNを含む材料(例えば、Taを主成分としBを15%、Nを10%程度含んだアモルファス構造の材料)等が挙げられる。さらに、マスク検査に使用する検査光(通常はDUV光)波長で反射率を下げるために、吸収体膜の上層に酸化物層を形成することで、マスク検査のコントラストを高めるのが一般的である。例えば、Crを主成分としN、O、Cから選ばれる少なくとも1つの成分を含有する材料(例えば、CrN、CrNにO、Cを添加した材料)等が好ましく挙げられる。しかし、これに限定されず、TaSi、TaSiN、TaGe、TaGeN、WN、Cr、TiN、等も使用可能である。 (4) Step of forming the exposure light absorber film (see FIG. 1A). As a material of the absorber film 4 for exposure light such as EUV light, a material containing Ta as a main component, a material containing Ta as a main component and containing at least B, an amorphous structure material containing Ta as a main component, and Ta as a main component And an amorphous structure material containing at least B (for example, an amorphous structure material containing about 25% of B represented by Ta 4 B), a material containing Ta, B, and N (for example, B containing Ta as a main component and B Material having an amorphous structure containing about 15% of N and about 10% of N). Furthermore, in order to reduce the reflectance at the wavelength of the inspection light (usually DUV light) used for mask inspection, it is common to increase the contrast of mask inspection by forming an oxide layer on the absorber film. is there. For example, a material containing Cr as a main component and containing at least one component selected from N, O, and C (for example, a material in which O and C are added to CrN and CrN) is preferable. However, the present invention is not limited to this, and TaSi, TaSiN, TaGe, TaGeN, WN, Cr, TiN, and the like can be used.

吸収体膜4は、単一層でも積層構成としてもよい。吸収体膜4の材料としてTaB化合物薄膜を用いる例では、DCマグネトロンスパッタ法により、まずTaBターゲットを用いて、Arガス雰囲気下でTaB膜を成膜し、引き続き、Arと酸素ガスの雰囲気で、例えばTaBO膜を成膜することが好ましい。
以上の工程により、反射型マスクブランク10(図1(a)参照)が得られる。
The absorber film 4 may be a single layer or a laminated structure. In an example in which a TaB compound thin film is used as the material of the absorber film 4, a TaB film is first formed in an Ar gas atmosphere using a TaB target by a DC magnetron sputtering method, and subsequently in an atmosphere of Ar and oxygen gas, For example, it is preferable to form a TaBO film.
Through the above steps, the reflective mask blank 10 (see FIG. 1A) is obtained.

(5)レジスト塗布工程。得られた反射型マスクブランク10の吸収体膜4にパターンを形成することにより反射型マスクを製造することができる。工程(4)で得られたマスクブランクにEBレジストを塗布しベーキングを行う。 (5) Resist application process. A reflective mask can be manufactured by forming a pattern on the absorber film 4 of the obtained reflective mask blank 10. An EB resist is applied to the mask blank obtained in step (4) and baked.

(6)描画工程。EBレジストを塗布したマスクブランクに例えばEB描画装置を用いて所定のパターン描画を行い、これを現像して、レジストパターン5aを形成する(図1(b)参照)。 (6) Drawing process. A predetermined pattern is drawn on the mask blank coated with the EB resist by using, for example, an EB drawing apparatus and developed to form a resist pattern 5a (see FIG. 1B).

(7)エッチング工程。このレジストパターン5aをマスクとして、吸収体膜4を例えばドライエッチングし、吸収体パターン4aを形成する(図1(b)参照)。そして、吸収体パターン上に残存するレジストパターンを例えば熱濃硫酸で除去する(図1(c)参照)。さらに、下地のバッファ膜3は、吸収体パターン4aに沿って例えばドライエッチングにより除去する。この工程により、反射型マスク20が得られる(図1(d)参照)。
なお、吸収体膜4の材料、エッチング条件によって多層反射膜へのダメージが少ない場合は、上記バッファ膜3を省く構成としてもよい。また、本発明でいう反射型マスクブランクは、上述の吸収体膜上にレジスト膜を形成した構成でも構わない。
(7) Etching process. Using the resist pattern 5a as a mask, the absorber film 4 is dry-etched, for example, to form the absorber pattern 4a (see FIG. 1B). Then, the resist pattern remaining on the absorber pattern is removed with, for example, hot concentrated sulfuric acid (see FIG. 1C). Further, the underlying buffer film 3 is removed by, for example, dry etching along the absorber pattern 4a. Through this step, the reflective mask 20 is obtained (see FIG. 1D).
If the damage to the multilayer reflective film is small depending on the material of the absorber film 4 and the etching conditions, the buffer film 3 may be omitted. The reflective mask blank referred to in the present invention may have a configuration in which a resist film is formed on the above-described absorber film.

本発明により得られる反射型マスクブランクにおける吸収体膜をパターニングして吸収体パターンを形成することにより得られる反射型マスクによれば、半導体基板上へのパターン転写時に、基板表面の微小な表面欠陥に起因する位相欠陥やパターン欠陥、あるいは基板間及び基板面内の反射率ばらつきに起因する転写パターン欠陥の発生を防止することができる。 According to the reflective mask obtained by patterning the absorber film in the reflective mask blank obtained by the present invention to form the absorber pattern, a minute surface defect on the substrate surface during pattern transfer onto the semiconductor substrate It is possible to prevent the occurrence of a transfer pattern defect due to a phase defect or a pattern defect due to the above, or a reflectance variation between substrates or in the substrate surface.

また、以上の説明では、本発明に係わるマスクブランク用基板を多層反射膜付き基板、反射型マスクブランクに適用する場合を説明したが、これには限定されず、例えば位相シフトマスクブランク用基板にも好適である。位相シフトマスクブランク用基板についても、平滑性と表面欠陥について非常に厳しい要求が求められており、本発明によれば、高平滑性と微小欠陥の低減が実現でき、微小な表面欠陥により発生する位相差変化を抑えることができることから位相シフトマスクブランク用ガラス基板にも好適である。   In the above description, the mask blank substrate according to the present invention is applied to a multilayer reflective film-coated substrate and a reflective mask blank. However, the present invention is not limited to this. Is also suitable. The substrate for a phase shift mask blank is also required to have extremely strict requirements for smoothness and surface defects. According to the present invention, high smoothness and reduction of minute defects can be realized, which are caused by minute surface defects. Since a change in phase difference can be suppressed, it is also suitable for a glass substrate for a phase shift mask blank.

以下、実施例に基づいて本発明をより具体的に説明する。以下の例では、マスクブランク用基板として、EUV露光用の反射型マスクブランク用ガラス基板(以下、単にガラス基板とも称する)を例に説明する。
まず、以下の実施例において研磨工程で使用する遊星歯車方式の両面研磨装置について図3を用いて説明する。
Hereinafter, based on an Example, this invention is demonstrated more concretely. In the following example, a reflective mask blank glass substrate for EUV exposure (hereinafter also simply referred to as a glass substrate) will be described as an example of the mask blank substrate.
First, a planetary gear type double-side polishing apparatus used in the polishing process in the following embodiments will be described with reference to FIG.

遊星歯車方式の両面研磨装置は、太陽歯車12と、その外方に同心円状に配置される内歯歯車13と、太陽歯車12及び内歯歯車13に噛み合い、太陽歯車12や内歯歯車13の回転に応じて公転及び自転するキャリア14と、このキャリア14に保持された被研磨加工物(ガラス基板1)を研磨パッド17が貼着された挟持可能な上定盤15及び下定盤16と、上定盤15と下定盤16との間に研磨液を供給する研磨液供給部(図示せず)とを備えている。
研磨加工時には、キャリア14に保持された被研磨加工物を上定盤15及び下定盤16とで挟持するとともに、上下定盤15,16の研磨パッド17と被研磨加工物との間に研磨液を供給しながら、太陽歯車12や内歯歯車13の回転に応じて、キャリア14が公転及び自転しながら、被研磨加工物の上下両面が研磨加工される。
The planetary gear type double-side polishing apparatus meshes with the sun gear 12, the internal gear 13 arranged concentrically on the outer side thereof, the sun gear 12 and the internal gear 13, and the sun gear 12 and the internal gear 13. A carrier 14 that revolves and rotates in response to rotation, and an upper surface plate 15 and a lower surface plate 16 that can hold a work piece (glass substrate 1) held by the carrier 14 to which a polishing pad 17 is attached; A polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between the upper surface plate 15 and the lower surface plate 16.
At the time of polishing, the workpiece to be polished held by the carrier 14 is sandwiched between the upper surface plate 15 and the lower surface plate 16, and the polishing liquid is provided between the polishing pad 17 of the upper and lower surface plates 15, 16 and the workpiece to be polished. As the sun gear 12 and the internal gear 13 rotate, the upper and lower surfaces of the workpiece are polished while the carrier 14 revolves and rotates.

以下の実施例1、2は、マスクブランク用ガラス基板の製造方法の具体例である。
(実施例1)
SiO−TiO系低熱膨張ガラス基板(152.4mm×152.4mm)の端面を面取加工、及び研削加工、更に酸化セリウム砥粒を含む研磨液で粗研磨処理を終えたガラス基板を上述の両面研磨装置のキャリアにセットし、以下の研磨条件で研磨加工(精密研磨)を行った。
研磨パッド:軟質ポリシャ(スウェードタイプ)
研磨液:アニオン性コロイダルシリカ砥粒(平均粒径100nm)を含む酸性水溶液(pH:1〜5)
加工圧力:50〜100g/cm
加工時間:60分
The following Examples 1 and 2 are specific examples of a method for producing a mask blank glass substrate.
Example 1
The glass substrate that has been subjected to the chamfering and grinding of the end face of the SiO 2 —TiO 2 -based low thermal expansion glass substrate (152.4 mm × 152.4 mm) and the rough polishing with the polishing liquid containing cerium oxide abrasive grains is described above. And was polished (precise polishing) under the following polishing conditions.
Polishing pad: Soft polisher (suede type)
Polishing liquid: acidic aqueous solution (pH: 1 to 5) containing anionic colloidal silica abrasive grains (average particle diameter 100 nm)
Processing pressure: 50 to 100 g / cm 2
Processing time: 60 minutes

なお、上記研磨液には、塩酸と酒石酸とを加え、pHが1〜5の範囲になるように予め調整した。また、上記アニオン性コロイダルシリカ砥粒は、pH1〜5の範囲においては、ゼータ電位は−30mV〜−10mVであった。このコロイダルシリカ砥粒を含む研磨液のpH1〜5の範囲におけるゼータ電位の符号(極性)は−(マイナス)であって、pH1〜5の範囲におけるゼータ電位の変動は−30mV〜0(ゼロ)の範囲内であった。   In addition, hydrochloric acid and tartaric acid were added to the said polishing liquid, and it adjusted beforehand so that pH might become the range of 1-5. The anionic colloidal silica abrasive grains had a zeta potential of −30 mV to −10 mV in the pH range of 1 to 5. The sign (polarity) of the zeta potential in the pH range of 1 to 5 of the polishing liquid containing the colloidal silica abrasive grains is − (minus), and the fluctuation of the zeta potential in the range of pH 1 to 5 is −30 mV to 0 (zero). It was in the range.

精密研磨終了後、このガラス基板の表面形状を光学干渉式の平坦度測定装置で測定した結果、基板の平坦度は0.2μm(凸形状)であった。得られた表面形状測定結果から、ガラス基板の平坦度がEUV露光用の反射型マスクブランク用ガラス基板に必要な平坦度となるように、ガスクラスタイオンビームで形状を調整した。クラスタイオンビームで形状調整を行った後、ガラス基板表面の平坦度を測定したところ、0.05μmと良好であった。   After the precision polishing, the surface shape of the glass substrate was measured with an optical interference type flatness measuring device. As a result, the flatness of the substrate was 0.2 μm (convex shape). From the obtained surface shape measurement results, the shape was adjusted with a gas cluster ion beam so that the flatness of the glass substrate was the flatness required for the glass substrate for a reflective mask blank for EUV exposure. After adjusting the shape with the cluster ion beam, the flatness of the glass substrate surface was measured and found to be as good as 0.05 μm.

こうして、精密研磨を施した後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を、ゼータ電位の符号(極性)が−(マイナス)であるアルカリ性洗浄液(NaOH:5重量%濃度)が入った洗浄槽に浸漬(超音波印加)し、10分間の洗浄を行った。
上述の精密研磨等を複数バッチ行い、ガラス基板(EUV露光用の反射型マスクブランク用ガラス基板)を100枚作製した。
In this way, in order to remove abrasive grains adhering to the glass substrate after precision polishing, the glass substrate is subjected to an alkaline cleaning liquid (NaOH: 5 wt% concentration) in which the sign (polarity) of the zeta potential is − (minus). Was immersed in a cleaning tank containing ultrasonic waves (applied with ultrasonic waves) and washed for 10 minutes.
A plurality of batches of the above-described precision polishing and the like were performed to produce 100 glass substrates (glass substrates for reflective mask blanks for EUV exposure).

この得られた100枚のガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.13nm以下と非常に良好であった。また、この得られた100枚のガラス基板における基板間及び各基板面内の表面粗さ(RMS)のばらつきはいずれも0.5〜1.0%以内であり、表面粗さのばらつきは非常に小さかった。なお、この表面粗さは、原子間力顕微鏡(AFM)により測定して得られたデータを基に算出した。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて微小な凸状と凹状の表面欠陥を調べたところ、微小な表面欠陥の発生個数は、0.02個/cmであった。
The surface roughness of the main surface of the 100 glass substrates thus obtained was very good at root mean square roughness (RMS) of 0.13 nm or less. In addition, the variation in surface roughness (RMS) between the substrates and in the surface of each of the 100 glass substrates thus obtained is within 0.5 to 1.0%, and the variation in surface roughness is extremely high. It was small. The surface roughness was calculated based on data obtained by measurement with an atomic force microscope (AFM).
Further, when the main surface of the obtained glass substrate was examined for minute convex and concave surface defects using a defect inspection apparatus using a laser interference confocal optical system, the number of minute surface defects generated was 0. It was 02 pieces / cm 2 .

(実施例2)
上述の実施例1において、精密研磨工程で使用する研磨液を、アニオン性コロイダルシリカ砥粒(平均粒径100nm)を含む酸性水溶液(pH:1〜5)とした。本実施例に使用する研磨液には、硫酸と酒石酸とを加え、pHが1〜5の範囲になるように予め調整した。また、上記コロイダルシリカ砥粒は、pH1〜5の範囲においては、ゼータ電位は−5mV〜−10mVであった。このコロイダルシリカ砥粒を含む研磨液のpH1〜5の範囲におけるゼータ電位の符号(極性)は−(マイナス)であって、pH1〜5の範囲におけるゼータ電位の変動は−30mV〜0(ゼロ)の範囲内であった。
本実施例では、上記組成の研磨液を使用したこと以外は、実施例1と同様にして、精密研磨、形状調整、洗浄を行い、ガラス基板(EUV露光用の反射型マスクブランクス用ガラス基板)100枚を作製した。
(Example 2)
In Example 1 described above, the polishing liquid used in the precision polishing step was an acidic aqueous solution (pH: 1 to 5) containing anionic colloidal silica abrasive grains (average particle diameter 100 nm). To the polishing liquid used in this example, sulfuric acid and tartaric acid were added, and the pH was adjusted in advance to be in the range of 1-5. The colloidal silica abrasive grains had a zeta potential of -5 mV to -10 mV in the pH range of 1-5. The sign (polarity) of the zeta potential in the pH range of 1 to 5 of the polishing liquid containing the colloidal silica abrasive grains is − (minus), and the fluctuation of the zeta potential in the range of pH 1 to 5 is −30 mV to 0 (zero). It was in the range.
In this example, except that the polishing liquid having the above composition was used, precision polishing, shape adjustment, and cleaning were performed in the same manner as in Example 1 to obtain a glass substrate (glass substrate for reflective mask blanks for EUV exposure). 100 sheets were produced.

この得られた100枚のガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.13nm以下と非常に良好であった。また、この得られた100枚のガラス基板における基板間及び各基板面内の表面粗さ(RMS)のばらつきはいずれも0.9〜1.4%以内であり、表面粗さのばらつきは非常に小さかった。
また、この得られたガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて微小な凸状と凹状の表面欠陥を調べたところ、微小な表面欠陥の発生個数は、0.08個/cmであった。
本実施例においても、高平滑で、表面粗さのばらつきが小さく、しかも微小表面欠陥の極めて少ないガラス基板が得られることがわかった。
The surface roughness of the main surface of the 100 glass substrates thus obtained was very good at root mean square roughness (RMS) of 0.13 nm or less. In addition, the variation in surface roughness (RMS) between the substrates and in the surface of each of the 100 glass substrates thus obtained is within 0.9 to 1.4%, and the variation in surface roughness is extremely high. It was small.
Further, when the main surface of the obtained glass substrate was examined for minute convex and concave surface defects using a defect inspection apparatus using a laser interference confocal optical system, the number of minute surface defects generated was 0. The number was 08 / cm 2 .
Also in this example, it was found that a glass substrate having high smoothness, small variation in surface roughness, and extremely few micro surface defects can be obtained.

(比較例1)
上述の実施例1において、精密研磨工程で使用する研磨液を、カチオン性コロイダルシリカ砥粒(平均粒径100nm)を含む酸性水溶液(pH:1〜5)とした。本比較例に使用する研磨液には、硫酸を加えて、pHが1〜5の範囲になるように予め調整した。なお、研磨液に酒石酸は加えなかった。研磨加工中は、研磨加工の経過に伴い研磨液のpH値は次第に上昇し、上記の範囲内に保持できなかった。また、上記カチオン性コロイダルシリカ砥粒は、pH1〜5の範囲においては、ゼータ電位は+(プラス)の値をとるが、pHが6以上になると、−(マイナス)の値をとる。
こうして本比較例では、上記組成の研磨液を使用したこと以外は、実施例1と同様にして、精密研磨、形状調整、洗浄を行い、ガラス基板(EUV露光用の反射型マスクブランクス用ガラス基板)100枚を作製した。
(Comparative Example 1)
In Example 1 described above, the polishing liquid used in the precision polishing step was an acidic aqueous solution (pH: 1 to 5) containing cationic colloidal silica abrasive grains (average particle diameter 100 nm). To the polishing liquid used in this comparative example, sulfuric acid was added to adjust the pH in the range of 1 to 5 in advance. Note that tartaric acid was not added to the polishing liquid. During the polishing process, the pH value of the polishing liquid gradually increased with the progress of the polishing process, and could not be maintained within the above range. Further, the cationic colloidal silica abrasive grains take a value of + (plus) in the range of pH 1 to 5, but take a value of-(minus) when the pH becomes 6 or more.
Thus, in this comparative example, except that the polishing liquid having the above composition was used, precision polishing, shape adjustment, and cleaning were performed in the same manner as in Example 1 to obtain a glass substrate (glass substrate for reflective mask blanks for EUV exposure). ) 100 sheets were produced.

この得られた100枚のガラス基板の主表面をレーザー干渉コンフォーカル光学系による欠陥検査装置を用いて微小な凸状と凹状の表面欠陥を調べたところ、微小な表面欠陥の発生個数は、2.8個/cmであり、微小表面欠陥が非常に多く発生していることがわかった。
また、この得られた100枚のガラス基板の主表面の表面粗さは、全て二乗平均平方根粗さ(RMS)で0.15nm以下であったが、この100枚のガラス基板における基板間及び各基板面内の表面粗さ(RMS)のばらつきはいずれも前述の実施例よりも大きくなってしまい、表面粗さのばらつきが大きかった。
When the main surface of the 100 glass substrates thus obtained was examined for minute convex and concave surface defects using a defect inspection apparatus using a laser interference confocal optical system, the number of minute surface defects generated was 2 a .8 pieces / cm 2, it was found that the microscopic surface defect occurs very much.
Further, the surface roughness of the main surface of the 100 glass substrates thus obtained was all the root mean square roughness (RMS) of 0.15 nm or less. The variation in the surface roughness (RMS) in the substrate surface was larger than that in the above-described example, and the variation in the surface roughness was large.

このように微小表面欠陥が多く発生したり、表面粗さのばらつきが大きくなってしまったことは、研磨加工中に研磨砥粒のゼータ電位が変動(たとえばゼロに近づく)して凝集等が起こり、研磨砥粒の分散性が劣化することにより、研磨加工中における研磨液の状態が不安定であったことが原因であると考えられる。 The large number of minute surface defects and the large variation in surface roughness are caused by fluctuations in the zeta potential of the abrasive grains during polishing (for example, approaching zero), resulting in agglomeration and the like. It is considered that this is because the state of the polishing liquid during the polishing process was unstable due to the deterioration of the dispersibility of the abrasive grains.

(実施例3)
上述の実施例1により得られたEUV露光用の反射型マスクブランク用ガラス基板の一主表面上に、多層反射膜2として、MoとSiを積層した。DCマグネトロンスパッタ法により、まずSiターゲットを用いて、Arガス0.1PaでSi膜を4.2nm成膜し、その後、Moターゲットを用いて、Arガス圧0.1PaでMo膜を2.8nm成膜し、これを1周期として、40周期積層した後、最後にSi膜を11nm成膜した。こうして、多層反射膜付き基板を作製した。波長13.5nmの露光光に対する多層反射膜の反射率は、65%であり、高反射率が得られた。また、基板面内における反射率ばらつきも±0.5%以内に収まっており、非常に小さかった。さらに、同様にして作製した100枚の多層反射膜付き基板における基板間の反射率ばらつきについても非常に小さかった。
(Example 3)
Mo and Si were laminated as the multilayer reflective film 2 on one main surface of the reflective mask blank glass substrate for EUV exposure obtained in Example 1 described above. By DC magnetron sputtering, an Si film is first formed with an Ar gas of 0.1 Pa using a Si target, and then a Mo film is formed with an Ar gas pressure of 0.1 Pa. A film was formed, and this was defined as one period. After 40 periods were laminated, a Si film was finally formed to a thickness of 11 nm. Thus, a substrate with a multilayer reflective film was produced. The reflectance of the multilayer reflective film with respect to exposure light having a wavelength of 13.5 nm was 65%, and a high reflectance was obtained. Further, the variation in reflectance within the substrate surface was within ± 0.5%, which was very small. Furthermore, the variation in the reflectance between the substrates in 100 substrates with multilayer reflection films produced in the same manner was also very small.

次に、多層反射膜2上に、Crターゲットを用いて、スパッタガスとして、Arガスに窒素を20%添加した混合ガスを用いて、CrN膜より構成されるバッファ膜3をDCマグネトロンスパッタ法によって、10nmの厚さに成膜した。 Next, a buffer film 3 composed of a CrN film is formed on the multilayer reflective film 2 by a DC magnetron sputtering method using a Cr target and using a mixed gas obtained by adding 20% nitrogen to Ar gas as a sputtering gas. The film was formed to a thickness of 10 nm.

最後に、上記CrN膜より構成されるバッファ膜3の上に、EUV光の吸収体膜4として、TaとBとNを含む膜(但し、Ta:B:N=70:15:15(原子数比))をDCマグネトロンスパッタ法によって、68nmの厚さで成膜した。こうして、反射型マスクブランク10を作製した。 Finally, on the buffer film 3 composed of the CrN film, a film containing Ta, B, and N (Ta: B: N = 70: 15: 15 (atom (Number ratio)) was deposited by DC magnetron sputtering to a thickness of 68 nm. Thus, a reflective mask blank 10 was produced.

次に、この反射型マスクブランクを用いて、32nmハーフピッチ(DRAM)(最小線幅が128nm)のデザインルールを有する反射型マスクを、以下の方法により作製した。
まず、上記反射型マスクブランク10上にEBレジストを塗布、乾燥し、EB描画によりレジストパターンを形成した。
このレジストパターンをマスクとして、TaBNからなる吸収体膜4を、塩素を用いてドライエッチングし、吸収体パターンを形成した。その後、吸収体パターン上に残存するレジストパターンを除去し、下地のCrN膜より構成されるバッファ膜3は、上記吸収体パターンをマスクとして、塩素と酸素の混合ガスを用いたドライエッチングで除去し、反射型マスクを作製した。
Next, using this reflective mask blank, a reflective mask having a design rule of 32 nm half pitch (DRAM) (minimum line width is 128 nm) was produced by the following method.
First, an EB resist was applied on the reflective mask blank 10 and dried, and a resist pattern was formed by EB drawing.
Using this resist pattern as a mask, the absorber film 4 made of TaBN was dry-etched using chlorine to form an absorber pattern. Thereafter, the resist pattern remaining on the absorber pattern is removed, and the buffer film 3 composed of the underlying CrN film is removed by dry etching using a mixed gas of chlorine and oxygen using the absorber pattern as a mask. A reflective mask was prepared.

作製した反射型マスクを用いて、図2に示すパターン転写装置(露光装置)により、半導体基板上へのパターン転写を行なった。図2に示すように、レーザープラズマX線源31から得られたEUV光(軟X線)を反射型マスク20に入射し、ここで反射された光を縮小光学系32を通して例えばSiウエハ基板33上に転写する。 Using the produced reflective mask, pattern transfer onto a semiconductor substrate was performed by a pattern transfer apparatus (exposure apparatus) shown in FIG. As shown in FIG. 2, EUV light (soft X-rays) obtained from a laser plasma X-ray source 31 is incident on the reflective mask 20, and the light reflected here passes through a reduction optical system 32, for example, a Si wafer substrate 33. Transfer on top.

縮小光学系32としてはX線反射ミラーを用いることができる、縮小光学系により反射型マスク20で反射されたパターンは通常1/4程度に縮小される。例えばSiウエハ基板33へのパターンの転写は、Si基板3上に形成させたレジスト膜にパターンを露光しこれを現像することによって行うことができる。露光波長として13〜14nmの波長帯を使用する場合には、通常光路が真空中になるように転写が行われる。
このようにして本実施例で得られた反射型マスクを用いて、図2に示すパターン転写装置により、半導体基板上へのパターン転写を行った結果、位相欠陥やパターン欠陥のない、高精度な微細パターンを形成できることを確認した。
An X-ray reflecting mirror can be used as the reduction optical system 32. The pattern reflected by the reflective mask 20 by the reduction optical system is usually reduced to about ¼. For example, the transfer of the pattern to the Si wafer substrate 33 can be performed by exposing the pattern to a resist film formed on the Si substrate 3 and developing the pattern. When a wavelength band of 13 to 14 nm is used as the exposure wavelength, transfer is usually performed so that the optical path is in a vacuum.
As a result of performing pattern transfer onto the semiconductor substrate by the pattern transfer apparatus shown in FIG. 2 using the reflective mask obtained in this embodiment, there is no phase defect or pattern defect and high accuracy. It was confirmed that a fine pattern could be formed.

(比較例2)
上述の比較例1により得られたEUV露光用の反射型マスクブランク用ガラス基板の一主表面上に、実施例3と同様に、多層反射膜2、バッファ膜3及び吸収体膜4を順次成膜して、反射型マスクブランクを作製した。
なお、波長13.5nmの露光光に対する多層反射膜の反射率は、62%であり、実施例3と比べると反射率は低下した。また、基板面内における反射率ばらつきは±1%となり、実施例3よりも大きかった。さらに、同様にして作製した100枚の多層反射膜付き基板における基板間の反射率ばらつきについても実施例3よりも大きかった。また、多層反射膜表面には、ガラス基板表面の微小な表面欠陥に起因する表面欠陥が認められた。
次に、この反射型マスクブランクを用いて、実施例3と同様に反射型マスクを作製した。
(Comparative Example 2)
On the main surface of the reflective mask blank glass substrate for EUV exposure obtained in Comparative Example 1, the multilayer reflective film 2, the buffer film 3, and the absorber film 4 are sequentially formed in the same manner as in Example 3. A reflective mask blank was prepared by coating.
The reflectance of the multilayer reflective film with respect to exposure light having a wavelength of 13.5 nm was 62%, which was lower than that in Example 3. Further, the variation in reflectance within the substrate surface was ± 1%, which was larger than that of Example 3. Furthermore, the variation in the reflectance between the substrates in 100 substrates with multilayer reflection films produced in the same manner was also larger than that in Example 3. In addition, surface defects due to minute surface defects on the glass substrate surface were observed on the surface of the multilayer reflective film.
Next, using this reflective mask blank, a reflective mask was fabricated in the same manner as in Example 3.

このようにして本比較例で得られた反射型マスクを用いて、図2に示すパターン転写装置により、半導体基板上へのパターン転写を行った結果、位相欠陥やパターン欠陥が発生し、さらに転写像のパターン精度も悪かった。これは、本比較例では、ガラス基板表面の微小な表面欠陥や、基板間及び基板面内における表面粗さのばらつきがあることに起因する、多層反射膜表面での表面欠陥の発生、反射率ばらつきが大きいことによるものと考えられる。 As a result of performing pattern transfer onto the semiconductor substrate by the pattern transfer apparatus shown in FIG. 2 using the reflective mask obtained in this comparative example, phase defects and pattern defects are generated, and further transfer is performed. The pattern accuracy of the image was also poor. This is because, in this comparative example, the occurrence of surface defects on the surface of the multilayer reflective film due to the presence of minute surface defects on the surface of the glass substrate and variations in surface roughness between and within the substrate surface, the reflectance This is probably due to the large variation.

反射型マスクの製造工程を示す模式的断面図である。It is typical sectional drawing which shows the manufacturing process of a reflection type mask. パターン転写装置(露光装置)の構成図である。It is a block diagram of a pattern transfer apparatus (exposure apparatus). 研磨工程で使用する遊星歯車方式の両面研磨装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the double-side polish apparatus of the planetary gear system used in a grinding | polishing process.

符号の説明Explanation of symbols

1 ガラス基板
2 多層反射膜
3 バッファ膜
4 吸収体膜
10 反射型マスクブランク
12 太陽歯車
13 内歯歯車
14 キャリア
15 上定盤
16 下定盤
17 研磨パッド
20 反射型マスク
50 パターン転写装置
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Multilayer reflective film 3 Buffer film 4 Absorber film 10 Reflective mask blank 12 Sun gear 13 Internal gear 14 Carrier 15 Upper surface plate 16 Lower surface plate 17 Polishing pad 20 Reflective mask 50 Pattern transfer apparatus

Claims (8)

ガラス基板の表面に研磨パッドを接触させ、前記ガラス基板の表面に研磨砥粒を含む研磨液を供給し、前記ガラス基板と前記研磨パッドとを相対的に移動させて前記ガラス基板の表面を研磨する研磨工程を有するマスクブランク用ガラス基板の製造方法であって、
前記研磨砥粒はコロイダルシリカであって、前記研磨液のpHが1〜5の範囲であり、ゼータ電位の符号(極性)が−(マイナス)である研磨液を使用することを特徴とするマスクブランク用基板の製造方法。
A polishing pad is brought into contact with the surface of the glass substrate, a polishing liquid containing abrasive grains is supplied to the surface of the glass substrate, and the surface of the glass substrate is polished by relatively moving the glass substrate and the polishing pad. A method of manufacturing a mask blank glass substrate having a polishing step to perform,
The mask is characterized in that the polishing abrasive is colloidal silica, and the polishing solution has a pH of 1 to 5 and a polishing solution having a zeta potential sign (polarity) of-(minus). A method for manufacturing a blank substrate.
前記研磨液は、pHが1〜5の範囲におけるゼータ電位の変動が、−30mV〜0(ゼロ)の範囲内であることを特徴とする請求項1に記載のマスクブランク用基板の製造方法。   2. The method of manufacturing a mask blank substrate according to claim 1, wherein the polishing liquid has a zeta potential fluctuation in a range of pH of 1 to 5 in a range of −30 mV to 0 (zero). 前記研磨工程後の洗浄工程で使用する洗浄液として、ゼータ電位の符号(極性)が−(マイナス)である洗浄液を使用することを特徴とする請求項1又は2に記載のマスクブランク用基板の製造方法。   The mask blank substrate according to claim 1 or 2, wherein a cleaning liquid having a zeta potential sign (polarity) of-(minus) is used as a cleaning liquid used in the cleaning step after the polishing step. Method. 前記基板は、多成分系ガラス基板であることを特徴とする請求項1乃至3の何れか一に記載のマスクブランク用基板の製造方法。   The method for producing a mask blank substrate according to any one of claims 1 to 3, wherein the substrate is a multi-component glass substrate. 前記基板は、SiOとTiOを含むガラス基板であることを特徴とする請求項4に記載のマスクブランク用基板の製造方法。 The method for manufacturing a mask blank substrate according to claim 4, wherein the substrate is a glass substrate containing SiO 2 and TiO 2 . 請求項1乃至5の何れか一に記載のマスクブランク用基板の製造方法により得られるマスクブランク用基板の表面上に、露光光を反射する多層反射膜を形成することを特徴とする多層反射膜付き基板の製造方法。   A multilayer reflective film for reflecting exposure light is formed on the surface of a mask blank substrate obtained by the method for producing a mask blank substrate according to any one of claims 1 to 5. A method for manufacturing a substrate with a substrate. 請求項6に記載の多層反射膜付き基板における前記多層反射膜上に、露光光の反射を防止する吸収体膜を形成することを特徴とする反射型マスクブランクの製造方法。   A method for producing a reflective mask blank, comprising: forming an absorber film for preventing reflection of exposure light on the multilayer reflective film in the substrate with a multilayer reflective film according to claim 6. 請求項7に記載の反射型マスクブランクの製造方法によって得られた反射型マスクブランクにおける前記吸収体膜をパターニングして吸収体パターンを形成することを特徴とする反射型マスクの製造方法。
A method for manufacturing a reflective mask, comprising forming an absorber pattern by patterning the absorber film in a reflective mask blank obtained by the method for manufacturing a reflective mask blank according to claim 7.
JP2007341519A 2007-12-29 2007-12-29 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask Active JP5455143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341519A JP5455143B2 (en) 2007-12-29 2007-12-29 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341519A JP5455143B2 (en) 2007-12-29 2007-12-29 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask

Publications (3)

Publication Number Publication Date
JP2009160681A true JP2009160681A (en) 2009-07-23
JP2009160681A5 JP2009160681A5 (en) 2011-01-27
JP5455143B2 JP5455143B2 (en) 2014-03-26

Family

ID=40963874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341519A Active JP5455143B2 (en) 2007-12-29 2007-12-29 Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask

Country Status (1)

Country Link
JP (1) JP5455143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214095A (en) * 2013-07-03 2013-10-17 Hoya Corp Method for producing substrate for mask blank, method for producing substrate with multilayer reflective film, method for producing reflective mask blank, and method for producing reflective mask
JP2014083597A (en) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd Polishing method of glass substrate
JP2015147713A (en) * 2014-02-07 2015-08-20 旭硝子株式会社 Method for cleaning photomask-forming glass substrate
TWI594069B (en) * 2011-09-21 2017-08-01 Hoya Corp Method of manufacturing a transfer mask

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007399A (en) * 2004-06-29 2006-01-12 Kao Corp Method for increasing polishing speed
JP2006035413A (en) * 2004-06-22 2006-02-09 Asahi Glass Co Ltd Polishing method of glass substrate and glass substrate
WO2006028759A2 (en) * 2004-09-08 2006-03-16 Praxair S. T. Technology, Inc Aqueous slurry containing metallate-modified silica particles
JP2007054944A (en) * 2005-07-25 2007-03-08 Hoya Corp Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask
JP2007299942A (en) * 2006-04-28 2007-11-15 Fujifilm Corp Metal polishing composition, and chemical-mechanical polishing method using it
JP2007301721A (en) * 2007-08-29 2007-11-22 Kao Corp Polishing liquid composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035413A (en) * 2004-06-22 2006-02-09 Asahi Glass Co Ltd Polishing method of glass substrate and glass substrate
JP2006007399A (en) * 2004-06-29 2006-01-12 Kao Corp Method for increasing polishing speed
WO2006028759A2 (en) * 2004-09-08 2006-03-16 Praxair S. T. Technology, Inc Aqueous slurry containing metallate-modified silica particles
JP2007054944A (en) * 2005-07-25 2007-03-08 Hoya Corp Method for manufacturing substrate for mask blank, method for manufacturing mask blank, and method for manufacturing mask
JP2007299942A (en) * 2006-04-28 2007-11-15 Fujifilm Corp Metal polishing composition, and chemical-mechanical polishing method using it
JP2007301721A (en) * 2007-08-29 2007-11-22 Kao Corp Polishing liquid composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594069B (en) * 2011-09-21 2017-08-01 Hoya Corp Method of manufacturing a transfer mask
JP2014083597A (en) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd Polishing method of glass substrate
JP2013214095A (en) * 2013-07-03 2013-10-17 Hoya Corp Method for producing substrate for mask blank, method for producing substrate with multilayer reflective film, method for producing reflective mask blank, and method for producing reflective mask
JP2015147713A (en) * 2014-02-07 2015-08-20 旭硝子株式会社 Method for cleaning photomask-forming glass substrate

Also Published As

Publication number Publication date
JP5455143B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5317092B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
US10295900B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
US10620527B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
JP6002528B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask, and manufacturing method of imprint mold
KR102107799B1 (en) Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
JP2019086802A (en) Reflective mask blank and reflective mask
JP5455143B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
WO2020196555A1 (en) Substrate for mask blank, substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2013214095A (en) Method for producing substrate for mask blank, method for producing substrate with multilayer reflective film, method for producing reflective mask blank, and method for producing reflective mask
JP5306644B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
JP2017181731A (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and manufacturing method of semiconductor device
JP2016122751A (en) Substrate with multilayer reflection film, reflection type mask blank, reflection type mask, and method of manufacturing semiconductor device
JP2008116571A (en) Method of manufacturing substrate for mask blank and method of manufacturing mask blank, and method of manufacturing transfer mask
JP2018054960A (en) Mask blank substrate, multilayer-reflector coated substrate, mask blank, transfer mask, and semiconductor device manufacturing method
JP6297321B2 (en) Manufacturing method of substrate with functional film, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, and manufacturing method of transfer mask
US20230142180A1 (en) Mask blank, transfer mask, and method of manufacturing semiconductor device
JP2014109670A (en) Method of producing member for lithography, method of producing reflection type mask blank, method of producing mask blank, method of producing reflection type mask, method of producing mask and washing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131228

R150 Certificate of patent or registration of utility model

Ref document number: 5455143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250