JP2009159757A - Conductor for gas-insulating bus - Google Patents

Conductor for gas-insulating bus Download PDF

Info

Publication number
JP2009159757A
JP2009159757A JP2007336481A JP2007336481A JP2009159757A JP 2009159757 A JP2009159757 A JP 2009159757A JP 2007336481 A JP2007336481 A JP 2007336481A JP 2007336481 A JP2007336481 A JP 2007336481A JP 2009159757 A JP2009159757 A JP 2009159757A
Authority
JP
Japan
Prior art keywords
gas
conductor
insulated bus
bus conductor
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007336481A
Other languages
Japanese (ja)
Other versions
JP5075617B2 (en
Inventor
Osamu Nakano
修 中野
Hiroshi Kaneda
浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007336481A priority Critical patent/JP5075617B2/en
Publication of JP2009159757A publication Critical patent/JP2009159757A/en
Application granted granted Critical
Publication of JP5075617B2 publication Critical patent/JP5075617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor for a gas-insulating bus which conductor has a configuration and a shape that suppress displacement caused by the electromagnetic force of shirt-circuit current and resonation caused by earthquake vibrations to improve mechanical strength and exert fine insulating performance and current-passing performance, thus contributes to an increase in the length and a decrease in the diameter of the gas-insulating bus. <P>SOLUTION: The conductor 41A is composed of a central member 41a of a solid shape and both end members 4b and 4c of a pipe shape. The central member 41a is made of a copper material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体に係り、特に、長尺化及び小径化に適したガス絶縁母線用導体に関するものである。   The present invention relates to a gas insulated bus conductor provided in a sealed metal container filled with an insulating gas, and more particularly to a gas insulated bus conductor suitable for lengthening and reducing the diameter.

近年、電力設備間を接続する母線として、ガス絶縁母線が主流となっている。ガス絶縁母線は、絶縁ガスを封入した密閉金属容器内に通電用の導体を収納して構成されたものである。ガス絶縁母線の長さは電力設備の規模に比例し、電力設備の規模が大きくなれば、ガス絶縁母線も長尺化する。このとき、ガス絶縁母線の長尺化に伴って、金属容器は勿論のこと、そこに収納されるガス絶縁母線用導体も長くなる。   In recent years, gas-insulated buses have become mainstream as buses for connecting power facilities. The gas-insulated bus is configured by housing a current-carrying conductor in a sealed metal container filled with an insulating gas. The length of the gas insulated bus is proportional to the scale of the power facility, and the gas insulated bus becomes longer as the scale of the power facility increases. At this time, along with the lengthening of the gas insulated bus, not only the metal container but also the gas insulated bus conductor accommodated therein becomes longer.

ただし、電力設備同士を接続するほどの長さにわたって、金属容器及び導体を単体で形成することが不可能である。そこで、金属容器及び導体は、複数個に分割し、それらを連続して接続することによって、構成している(例えば、特許文献1参照)。なお、ガス絶縁母線に使用される金属容器は、基本的に、円筒形状の本体部からなり、その両端部に、隣接機器との接続用フランジを溶接一体化して形成している。   However, it is impossible to form the metal container and the conductor as a single unit over such a length that the power facilities are connected to each other. Therefore, the metal container and the conductor are configured by dividing into a plurality of pieces and connecting them continuously (for example, see Patent Document 1). The metal container used for the gas-insulated bus is basically composed of a cylindrical main body, and a flange for connection with an adjacent device is integrally formed at both ends thereof by welding.

また、導体は通常、中空のパイプ状部材からなり、支持絶縁物によってこれを金属容器内に支持している。さらに、ガス絶縁母線としては、従来、3相各相の単相型のガス絶縁母線が使用されていたが、最近では、ガス絶縁母線全体の設置スペースの縮小化を図るべく、3相の導体を同じ容器内に一括収納してなる3相一括型のガス絶縁母線が普及している。   The conductor is usually made of a hollow pipe-like member and is supported in a metal container by a support insulator. Further, as a gas-insulated bus, a single-phase gas-insulated bus of three phases has been conventionally used. Recently, a three-phase conductor has been used to reduce the installation space of the entire gas-insulated bus. A three-phase collective gas-insulated bus is widely used.

ここで、電力系統における同軸円筒構造のガス絶縁母線の従来例について、図15を参照して、具体的に説明する。すなわち、図15に示すように、接地電位の密閉された同軸円筒形の金属容器1の内部には、絶縁性媒体として絶縁ガス6が高圧充填されている。金属容器1の両端には絶縁スペーサ2a、2bが設けられ、これら絶縁スペーサ2a、2bには通電用の接触子3a、3bが設けられている。   Here, a conventional example of a gas-insulated bus having a coaxial cylindrical structure in a power system will be specifically described with reference to FIG. That is, as shown in FIG. 15, the inside of a coaxial cylindrical metal container 1 sealed with a ground potential is filled with an insulating gas 6 as an insulating medium at a high pressure. Insulating spacers 2a and 2b are provided at both ends of the metal container 1, and contacts 3a and 3b for energization are provided in these insulating spacers 2a and 2b.

また、金属容器1内には通電用の導体4が配置されている。導体4はパイプ状部材から構成され、アルミニウムや銅など単一材料が用いられている。また、導体4の両端部にはスライドコンタクト5a、5bが設けられ、絶縁スペーサ2a、2bの接触子3a、3bと電気的に接続されている。なお、図中の符号Lは、導体4の支持スパンを示している。   In addition, a conductive conductor 4 is disposed in the metal container 1. The conductor 4 is composed of a pipe-like member, and a single material such as aluminum or copper is used. In addition, slide contacts 5a and 5b are provided at both ends of the conductor 4, and are electrically connected to the contacts 3a and 3b of the insulating spacers 2a and 2b. In addition, the code | symbol L in a figure has shown the support span of the conductor 4. FIG.

ところで、ガス絶縁母線用導体には、機械的強度・絶縁性能・通電性能が必要である。このうち、機械的強度に関しては、短絡時の短絡電流によって他相の導体との間に電磁力が働く際、この電磁力による変位によって、導体が破壊されないだけの強さ、さらには地震振動により共振しない強さが求められている。   By the way, the gas-insulated bus conductor needs to have mechanical strength, insulation performance, and energization performance. Among these, regarding the mechanical strength, when an electromagnetic force acts between the conductors of other phases due to a short-circuit current at the time of a short circuit, the displacement due to the electromagnetic force causes a strength that does not cause the conductor to be destroyed, and further due to earthquake vibration. The strength that does not resonate is required.

また、絶縁性能に関しては、導体表面が滑らかで高電圧の印加に耐えることは勿論のこと、電磁力などにより変位した状態でも絶縁性能を維持することが要求される。さらに、通電性能については、通電電流による発熱量及び温度上昇値が規定値以下であることが要請されている。
特許第3564182号公報
In addition, regarding the insulation performance, it is required that the conductor surface is smooth and can withstand the application of a high voltage, and that the insulation performance is maintained even when the conductor surface is displaced by electromagnetic force. Furthermore, with regard to the energization performance, it is required that the amount of heat generated by the energization current and the temperature rise value are not more than specified values.
Japanese Patent No. 3564182

しかしながら、ガス絶縁母線の長尺化に応じて、従来のガス絶縁母線用導体を長尺化した場合、次のような問題点があった。すなわち、導体の長尺化によって、短絡時の短絡電流による電磁力が増えると、導体の機械的強度が足りずに破壊するおそれがある。さらに、導体長が長くなると、固有振動数が下がるので地震振動により共振し易くなるといった課題があった。   However, when the conventional gas insulated bus conductor is lengthened in accordance with the lengthening of the gas insulated bus, there are the following problems. That is, if the electromagnetic force due to the short-circuit current at the time of short-circuiting increases due to the lengthening of the conductor, there is a possibility that the mechanical strength of the conductor is insufficient and breaks. In addition, when the conductor length is increased, the natural frequency is decreased, so that there is a problem that resonance is easily caused by earthquake vibration.

また、導体の破壊にまで至らなくとも、電磁力により変位量が増えることで、導体が金属容器の内周部に接近して絶縁距離が減少する。これにより、導体の絶縁性能が不足する心配がある。特に、電磁力による変位量の増大は、ガス絶縁母線(より詳しくは金属容器)を小径化した場合に、絶縁距離の減少度合いが大きくなるため、導体の絶縁性能の確保が問題となっている。   Even if the conductor does not break down, the amount of displacement increases due to electromagnetic force, so that the conductor approaches the inner periphery of the metal container and the insulation distance decreases. Thereby, there exists a possibility that the insulation performance of a conductor may run short. In particular, the increase in displacement due to electromagnetic force has a problem in securing the insulation performance of the conductor because the degree of decrease in the insulation distance increases when the diameter of the gas insulated bus (more specifically, the metal container) is reduced. .

さらに、ガス絶縁母線の小径化を進めると、熱容量が小さくなるので、通電電流による発熱量が同じでも、温度上昇値は上がる。したがって、導体の通電性能が不足するという不具合があった。ガス絶縁母線の小径化は、電力設備のコンパクト化を実現する上で、重要な要素であるため、優れた絶縁性能及び通電性能を備えたガス絶縁母線用導体の開発が待たれていた。   Furthermore, if the diameter of the gas-insulated bus is reduced, the heat capacity decreases, so that the temperature rise value increases even if the amount of heat generated by the energizing current is the same. Therefore, there is a problem that the current-carrying performance of the conductor is insufficient. Since the reduction of the diameter of the gas insulated bus is an important factor in realizing the compactness of the power equipment, development of a gas insulated bus conductor having excellent insulation performance and energization performance has been awaited.

一般的に、導体の機械的強度を強くする場合、単に材料自体の強度が高いものを用いるのではなく、所定の通電性能を確保しなくてはならない。このため、導電率が良好なアルミ材又は銅材を用いて、導体の機械的強度を上げることが考えられる。ただし、銅はアルミより導電率及び通電性能は良い分、重く、且つ高価なので、これらの材料を導体全体に使用するとなると、組立作業性・経済性が低下するという問題点があった。 In general, when the mechanical strength of a conductor is increased, a predetermined current-carrying performance must be ensured instead of simply using a material having a high strength. For this reason, it is conceivable to increase the mechanical strength of the conductor by using an aluminum material or a copper material having good conductivity. However, copper is heavier and more expensive than aluminum because of its better electrical conductivity and current-carrying performance. Therefore, when these materials are used for the entire conductor, there is a problem that assembly workability and economy are lowered.

本発明は、上記の問題点を解決するために提案されたものであり、導体の構成及び形状によって、短絡電流の電磁力による変位量と地震振動による共振を抑制して機械的強度を上げると共に、良好な絶縁性能及び通電性能を発揮することができ、これによりガス絶縁母線の長尺化と小径化に寄与するガス絶縁母線用導体を提供することを目的とする。   The present invention has been proposed in order to solve the above-mentioned problems, and the mechanical strength is increased by suppressing the displacement due to the electromagnetic force of the short-circuit current and the resonance due to the seismic vibration depending on the configuration and shape of the conductor. It is an object of the present invention to provide a gas insulated bus conductor that can exhibit good insulation performance and energization performance, thereby contributing to lengthening and diameter reduction of the gas insulated bus.

上記目的を達成するために、本発明は、絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、一部分を中実部又は他の部分よりも肉厚の厚いパイプからなる高強度部とし、該他の部分をパイプとして、両者を接合したことを特徴としている。   In order to achieve the above object, according to the present invention, in a gas insulated bus conductor provided in a sealed metal container filled with an insulating gas as an insulating medium, a part of the conductor is thicker than a solid part or other parts. A high strength portion made of a thick pipe is used, and the other portion is used as a pipe.

以上のような本発明では、導体の一部分に、中実部又は肉厚の厚いパイプから構成した高強度部を設けることにより、地震発生時の共振を防ぐと同時に、導体を全てパイプで構成した場合よりも、短絡時の短絡電流による電磁力に対する導体の機械的強度を強くすることができる。また、電磁力による導体の変位量も減るので、絶縁距離の確保が容易であり、高い絶縁性能を得ることができる。さらに、導体の断面積が増えるため、通電電流による発熱量は減り、熱容量の増加と合わせて温度上昇が小さくなる。したがって、優れた通電性能を獲得することが可能である。   In the present invention as described above, by providing a high-strength portion composed of a solid portion or a thick-walled pipe in a part of the conductor, resonance at the occurrence of an earthquake is prevented, and at the same time, the conductor is entirely composed of pipes. As compared with the case, the mechanical strength of the conductor against the electromagnetic force due to the short-circuit current at the time of short-circuit can be increased. In addition, since the amount of displacement of the conductor due to electromagnetic force is reduced, it is easy to secure an insulation distance, and high insulation performance can be obtained. Furthermore, since the cross-sectional area of the conductor increases, the amount of heat generated by the energization current decreases, and the temperature rise decreases with an increase in heat capacity. Therefore, it is possible to obtain excellent energization performance.

本発明のガス絶縁母線用導体によれば、導体の一部分に中実又は肉厚の厚いパイプからなる高強度部を設けることにより、短絡電流の電磁力による変位量と地震振動による共振を抑制して機械的強度を高めると共に、良好な絶縁性能及び通電性能を発揮することができ、ガス絶縁母線の長尺化と小径化に寄与することができた。   According to the gas-insulated bus conductor of the present invention, the displacement due to the electromagnetic force of the short-circuit current and the resonance due to the earthquake vibration are suppressed by providing a high-strength portion made of a solid or thick pipe in a part of the conductor. As a result, it was possible to increase the mechanical strength and to exhibit good insulation performance and energization performance, contributing to the lengthening and diameter reduction of the gas insulated bus.

以下、本発明に係るガス絶縁母線用導体の実施形態について、図1〜図14を参照して具体的に説明する。なお、図15に示した従来例と同一部材に関しては同一符号を付して説明は省略する。   Hereinafter, embodiments of a gas insulated bus conductor according to the present invention will be described in detail with reference to FIGS. The same members as those in the conventional example shown in FIG.

(1)第1の実施形態
[構成]
図1に示すように、導体41Aは、中実形状の中央部材41aと、パイプ形状の両端部材4b、4cからなり、中央部材41aを銅材から構成した点に構成上の特徴がある。なお、中心部材41aと両端部材4b、4cは接合されている。
(1) First embodiment
[Constitution]
As shown in FIG. 1, the conductor 41A is composed of a solid center member 41a and pipe-shaped end members 4b and 4c, and is characterized in that the center member 41a is made of a copper material. The center member 41a and both end members 4b and 4c are joined.

[第1の実施形態の変形例の構成]
なお、第1の実施形態の変形例としては、中実部材を導体の中央部ではなく、両端部に設けることも可能である。すなわち、図2に示すように、導体41Bは、中実形状の両端部材41b、41cと、パイプ形状の中央部材4aからなり、両端部材41b、41cを銅材から構成した点に構成上の特徴がある。なお、中心部材4aと両端部材41b、41cは接合されている。
[Configuration of Modified Example of First Embodiment]
As a modification of the first embodiment, it is also possible to provide solid members at both ends instead of the central portion of the conductor. That is, as shown in FIG. 2, the conductor 41B is composed of solid end members 41b and 41c and a pipe-shaped center member 4a, and the end features 41b and 41c are made of copper. There is. The center member 4a and both end members 41b and 41c are joined.

[作用効果]
このように構成された第1の実施形態によれば、通電用の導体41A(又は導体41B)は、中央部材41a(又は両端部材41b、41c)を中実構成としたことで、固有振動数の低下を抑えることができ、地震時の共振を防ぐことができる。また、導体41A(又は導体41B)は、中実形状の中央部材41a(又は両端部材41b、41c)を有するので、導体41A(又は導体41B)を全てパイプで構成した場合に比べて、導体41A(又は導体41B)の機械的強度を強くすることができ、短絡時の短絡電流による電磁力による変位量を抑えることが可能である。
[Effect]
According to the first embodiment configured as described above, the current-carrying conductor 41A (or the conductor 41B) has the natural frequency because the central member 41a (or both end members 41b and 41c) has a solid configuration. Can be prevented and resonance during an earthquake can be prevented. Further, since the conductor 41A (or the conductor 41B) has a solid central member 41a (or both end members 41b and 41c), the conductor 41A is compared with the case where the conductor 41A (or the conductor 41B) is entirely constituted by pipes. The mechanical strength of (or the conductor 41B) can be increased, and the amount of displacement due to electromagnetic force due to a short-circuit current at the time of a short circuit can be suppressed.

また、機械的強度の上昇に伴い、電磁力による変位量が減ったことで、絶縁距離の確保が容易となり、たとえ金属容器1が小径化した場合でも、導体41A(又は導体41B)は優れた絶縁性能を維持することができる。さらに、中央部材41a(又は両端部材41b、41c)を中実とした分、導体41A(又は導体41B)の断面積は増えるので、通電電流による発熱量は減り、熱容量の増加と合わせて温度上昇が小さくなる。すなわち、導体41A(又は導体41B)は良好な通電性能を容易に得ることが可能となる。しかも、中央部材41a(又は両端部材41b、41c)だけを銅から構成したので、導体全体を銅から構成した場合に比べて経済的であると同時に、銅が良好な導電性を持つので、発熱・温度上昇を効率よく抑制することができる。   Further, as the mechanical strength increases, the amount of displacement due to the electromagnetic force decreases, so that it is easy to ensure the insulation distance, and the conductor 41A (or the conductor 41B) is excellent even when the diameter of the metal container 1 is reduced. Insulation performance can be maintained. Furthermore, since the cross-sectional area of the conductor 41A (or the conductor 41B) is increased by the amount of the central member 41a (or both end members 41b and 41c) being solid, the amount of heat generated by the energizing current is reduced, and the temperature rises as the heat capacity increases. Becomes smaller. That is, the conductor 41A (or the conductor 41B) can easily obtain good current-carrying performance. Moreover, since only the central member 41a (or both end members 41b and 41c) is made of copper, it is more economical than the case where the entire conductor is made of copper, and at the same time, copper has good conductivity, so it generates heat. -The temperature rise can be efficiently suppressed.

このような第1の実施形態によれば、中実で銅製の中央部材41a(又は両端部材41b、41c)を備えたことで、機械的強度・絶縁性能・通電性能に優れた導体41A(又は導体41B)を得ることができ、導体41A(又は導体41B)の支持スパンL(図1に図示)を延ばすことができる。その結果、ガス絶縁母線の長尺化及び小径化に関して、確実に対応可能である。   According to the first embodiment as described above, the conductor 41A (or the mechanical strength, the insulating performance, and the current-carrying performance) are excellent by providing the solid and central copper member 41a (or both end members 41b and 41c). The conductor 41B) can be obtained, and the support span L (shown in FIG. 1) of the conductor 41A (or the conductor 41B) can be extended. As a result, it is possible to reliably cope with an increase in the length and diameter of the gas insulated bus.

(2)第2の実施形態
[構成]
図3に示すように、導体42Aは、肉厚が厚いパイプ形状で、且つ銅材からなる中央部材42aと、パイプ形状の両端部材4b、4cとから構成され、中心部材4aと両端部材4b、4cは接合されている。
(2) Second embodiment
[Constitution]
As shown in FIG. 3, the conductor 42A has a thick pipe shape and is composed of a central member 42a made of a copper material and pipe-shaped end members 4b and 4c, and the center member 4a and both end members 4b, 4c is joined.

[第2の実施形態の変形例の構成]
第2の実施形態の変形例として、肉厚のパイプ形状部材を導体の中央部ではなく、両端部に設けることも可能である。すなわち、図4に示すように、導体42A(又は導体42B)は、肉厚が厚いパイプ形状で、且つ銅材からなる中央部材42b、42cと、パイプ形状の中央部材4aからなり、両端部材42b、42cを銅材から構成した点に構成上の特徴がある。なお、中心部材4aと両端部材42b、42cは接合されている。
[Configuration of Modified Example of Second Embodiment]
As a modification of the second embodiment, thick pipe-shaped members can be provided at both ends instead of the central portion of the conductor. That is, as shown in FIG. 4, the conductor 42A (or the conductor 42B) is a thick pipe-shaped central member 42b, 42c made of a copper material and a pipe-shaped central member 4a, and both end members 42b. , 42c is made of a copper material. The central member 4a and both end members 42b and 42c are joined.

[作用効果]
このように構成された第2の実施形態によれば、通電用の導体42A(又は導体42B)は、中央部材42a(又は両端部材42b、42c)のみを肉厚のパイプで構成することにより、固有振動数の低下を抑えることができ、地震時に共振する固有振動数にならず、高い機械的強度を確保することができる。と同時に、中央部材42a(又は両端部材42b、42c)よりも肉厚の薄いパイプで導体4全体を構成した場合に比べて、短絡時の短絡電流による電磁力に対する導体42A(又は導体42B)の機械的強度は強くなる。
[Effect]
According to the second embodiment configured as described above, the energizing conductor 42A (or the conductor 42B) is configured by forming only the central member 42a (or both end members 42b and 42c) with a thick pipe, A decrease in the natural frequency can be suppressed, and the natural frequency that resonates in the event of an earthquake is not achieved, and high mechanical strength can be ensured. At the same time, the conductor 42A (or the conductor 42B) with respect to the electromagnetic force due to the short-circuit current at the time of short-circuiting is compared with the case where the conductor 4 is entirely composed of a pipe having a smaller thickness than the central member 42a (or both-end members 42b and 42c) Mechanical strength is increased.

また、機械的強度が上がったことで電磁力による変位量も減るため、導体42A(又は導体42B)の絶縁性能が向上する。さらには、中央部材42a(又は両端部材42b、42c)が肉厚なので、導体42A(又は導体42B)の断面積が増えることになる。したがって、通電電流による発熱量が減って熱容量の増加と合わせて温度上昇は小さくなり、所望の通電性能を獲得できる。しかも、中央部材42a(又は両端部材42b、42c)だけを銅から構成したので、優れた経済性を確保しつつ、発熱・温度上昇を効率よく抑制することができる。   Moreover, since the amount of displacement due to electromagnetic force is reduced due to the increase in mechanical strength, the insulation performance of the conductor 42A (or conductor 42B) is improved. Furthermore, since the central member 42a (or both end members 42b and 42c) is thick, the cross-sectional area of the conductor 42A (or conductor 42B) increases. Accordingly, the amount of heat generated by the energization current is reduced, and the temperature rise is reduced as the heat capacity is increased. In addition, since only the central member 42a (or both end members 42b and 42c) is made of copper, heat generation and temperature rise can be efficiently suppressed while ensuring excellent economic efficiency.

このような第2の実施形態では、肉厚で銅製の中央部材42a(又は両端部材42b、42c)を備えたことにより、上記第1の実施形態と同じく、機械的強度・絶縁性能・通電性能に優れた長尺の導体42A(又は導体42B)を容易に得ることができ、長尺化及び小径化の進んだガス絶縁母線を獲得することが可能となる。   In the second embodiment as described above, by providing the thick copper center member 42a (or both end members 42b and 42c), the mechanical strength, the insulation performance, and the energization performance are the same as in the first embodiment. Thus, it is possible to easily obtain the long conductor 42A (or the conductor 42B), and it is possible to obtain a gas-insulated bus whose length and diameter have been reduced.

(3)第3の実施形態
[構成]
図5に示すように、導体43Aは、中央部材43aと、パイプ形状の両端部材4b、4cから構成されており、中央部材43aの内部にステンレス材又は鉄材からなる中実の内蔵部材7が固定された点に特徴がある。なお、中心部材43aと両端部材4b、4cは接合されている。
(3) Third embodiment
[Constitution]
As shown in FIG. 5, the conductor 43A is composed of a central member 43a and pipe-shaped end members 4b and 4c, and a solid built-in member 7 made of stainless steel or iron is fixed inside the central member 43a. There is a feature in the made point. The central member 43a and both end members 4b and 4c are joined.

[第3の実施形態の変形例の構成]
第3の実施形態の変形例としては、内蔵部材7を導体の中央部に入れるのではなく、両端部に入れるようにしてもよい。すなわち、図6に示すように、導体43Bは、両端部材43b、43c側に前記内蔵部材7を入れて固定した点に特徴がある。なお、中心部材4aと両端部材43b、43cは接合されている。
[Configuration of Modified Example of Third Embodiment]
As a modification of the third embodiment, the built-in member 7 may be placed at both ends instead of being placed at the center of the conductor. That is, as shown in FIG. 6, the conductor 43B is characterized in that the built-in member 7 is inserted and fixed on both end members 43b and 43c side. The center member 4a and both end members 43b and 43c are joined.

[作用効果]
以上のような第3の実施形態によれば、通電用の導体43A(又は導体43B)は、その中央部(又は両端部)の内部に、ステンレス材又は鉄材からなる中実の内蔵部材7を入れて固定するので、地震時に共振する固有振動数にならず、しかも、導体43A(又は導体43B)を全てパイプで構成した場合よりも、短絡電流の電磁力による変位量は少なくなり、機械的強度に優れた導体43A(又は導体43B)とすることができる。
[Effect]
According to the third embodiment as described above, the conductive conductor 43A (or the conductor 43B) has the solid built-in member 7 made of stainless steel or iron inside the central portion (or both ends). Since it is inserted and fixed, the natural frequency does not resonate at the time of the earthquake, and the displacement amount due to the electromagnetic force of the short-circuit current is smaller than the case where the conductor 43A (or the conductor 43B) is composed entirely of pipes. It can be set as the conductor 43A (or conductor 43B) excellent in intensity | strength.

電磁力による変位量が少ないので、導体43A(又は導体43B)は、高い絶縁性能を得ることができる。さらには、内蔵部材7を備えた分だけ、導体43A(又は導体43B)の断面積が増えており、通電電流による発熱量が減って、熱容量の増加と合わせて温度上昇が小さくなるといった利点がある。   Since the amount of displacement due to the electromagnetic force is small, the conductor 43A (or the conductor 43B) can obtain high insulation performance. Furthermore, the cross-sectional area of the conductor 43A (or the conductor 43B) is increased by the amount of the built-in member 7, and there is an advantage that the amount of heat generated by the energizing current is reduced and the temperature rise is reduced as the heat capacity is increased. is there.

このような第3の実施形態によれば、内蔵部材7が固定された中央部材43a(又は両端部材43b、43c)を備えたことで、上記第1及び第2の実施形態と同じく、機械的強度・絶縁性能・通電性能に優れた長尺の導体43A(又は導体43B)を容易に実現することができ、ガス絶縁母線の長尺化及び小径化に貢献することができる。また、内蔵部材7をステンレス材又は鉄材から構成しているため、銅材に比べて、軽量、安価で済み、組立作業性・経済性が格段に向上する。   According to the third embodiment, the central member 43a (or both end members 43b and 43c) to which the built-in member 7 is fixed is provided, so that the mechanical member is mechanically similar to the first and second embodiments. The long conductor 43A (or conductor 43B) excellent in strength, insulation performance, and current-carrying performance can be easily realized, and can contribute to the lengthening and diameter reduction of the gas insulation bus. Further, since the built-in member 7 is made of stainless steel or iron material, it is lighter and less expensive than copper material, and the assembly workability and economy are significantly improved.

(4)第4の実施形態
[構成]
図7に示すように、導体44は、外径が大きく且つ銅製であるパイプ形状の中央部材44aと、パイプ形状の両端部材4b、4cから構成され、中心部材44aと両端部材4b、4cは接合されている。
(4) Fourth embodiment
[Constitution]
As shown in FIG. 7, the conductor 44 is composed of a pipe-shaped center member 44a having a large outer diameter and made of copper, and pipe-shaped end members 4b and 4c. The center member 44a and both end members 4b and 4c are joined. Has been.

[作用効果]
このように構成された第4の実施形態によれば、通電用の導体44は、外径の大きいパイプ形状である中央部材44aを備えるといった極めて簡単な構成によって、上記第1〜第3の実施形態と同様の作用効果を獲得することができるので、経済的にも極めて有利である。
[Effect]
According to the fourth embodiment configured as described above, the current-carrying conductor 44 includes the central member 44a having a pipe shape with a large outer diameter, and thus the first to third implementations described above. Since the same effect as that of the form can be obtained, it is extremely advantageous economically.

(5)第5の実施形態
[構成]
図8に示すように、導体45は、中央部の外周に長尺パイプ8が設けられている点に特徴がある。長尺パイプ8の材料としては、ステンレス材、鉄材あるいはFRP材でもよく、また、不織布を含浸した構成であっても良い。
(5) Fifth embodiment
[Constitution]
As shown in FIG. 8, the conductor 45 is characterized in that a long pipe 8 is provided on the outer periphery of the central portion. The material of the long pipe 8 may be stainless steel, iron, or FRP, or may be impregnated with a nonwoven fabric.

[作用効果]
長尺パイプ8は、ステンレス材、鉄材あるいはFRP材、または、不織布を含浸したことで良好な機械的強度及び絶縁性能を有している。したがって、第5の実施形態では、導体45の中央部外周に、このように機械的強度及び絶縁性能に優れた長尺パイプ8を設けたことにより、短絡時の短絡電流による電磁力に対する導体の機械的強度は強くなり、導体の変位量も減るので絶縁性能も上がる。
[Effect]
The long pipe 8 has good mechanical strength and insulation performance because it is impregnated with stainless steel, iron or FRP material, or non-woven fabric. Therefore, in the fifth embodiment, the long pipe 8 having excellent mechanical strength and insulation performance is provided on the outer periphery of the central portion of the conductor 45, so that the conductor against electromagnetic force due to the short-circuit current at the time of short-circuiting is provided. The mechanical strength is increased and the amount of displacement of the conductor is reduced, so that the insulation performance is improved.

(6)第6の実施形態
[構成]
図9に示すように、導体46Aは、内径寸法が異なる複数の肉厚が厚いパイプからなる中央部材460aと、パイプ形状の両端部材4b、4cから構成されており、中心部材460aと両端部材4b、4cは接合されている。
(6) Sixth embodiment
[Constitution]
As shown in FIG. 9, the conductor 46A is composed of a central member 460a made of a plurality of thick pipes having different inner diameters, and pipe-shaped end members 4b and 4c. The center member 460a and the end members 4b 4c is joined.

[第6の実施形態の変形例の構成]
第6の実施形態の変形例としては、肉厚のパイプは内径寸法が異なるのではなく、外径寸法が異なるように構成することも可能である。すなわち、図10に示すように、導体46Bは、外径寸法が異なる複数の肉厚が厚いパイプからなる中央部材461aと、パイプ形状の両端部材4b、4cから構成されている。なお、中央部材460a、461aは、肉厚のパイプ形状ではなく、中実形状としても良い。
[Configuration of Modified Example of Sixth Embodiment]
As a modification of the sixth embodiment, the thick pipe may be configured not to have different inner diameter dimensions but different outer diameter dimensions. That is, as shown in FIG. 10, the conductor 46B is composed of a central member 461a composed of a plurality of thick pipes having different outer diameters and pipe-shaped end members 4b and 4c. The central members 460a and 461a may have a solid shape instead of a thick pipe shape.

[作用効果]
このように構成された第6の実施形態によれば、上述した、機械的強度・絶縁性能・通電性能の向上といった作用効果に加えて、次のような独自の作用効果がある。すなわち、導体46A(又は46B)の中央部に、内径(又は外径)寸法が異なる複数の肉厚が厚いパイプを設けたことで、固有振動数にばらつきを持たせて、地震振動による共振をアンバランスにすることができる。これにより、共振しづらくなり、機械的強度がいっそう向上するといった作用効果を発揮することができる。
[Effect]
According to the sixth embodiment configured as described above, in addition to the above-described operational effects such as improvement in mechanical strength, insulation performance, and energization performance, there are the following unique operational effects. That is, by providing a plurality of thick pipes with different inner diameters (or outer diameters) at the center of the conductor 46A (or 46B), the natural frequency varies and resonance due to seismic vibration occurs. Can be unbalanced. As a result, it is difficult to resonate, and it is possible to exert an effect that the mechanical strength is further improved.

(7)他の実施形態
本発明は、前期実施形態に限定されるものではなく、各部材の構成や形状、材質、配置箇所や配置数などは適宜変更可能であり、次のような実施形態も包含する。すなわち、図11に示すように外周部に数箇所(図11では4箇所)の凸部47aを設けた導体47や、図12に示すように内周部に数箇所(図12では8箇所)のリブ48aを有した導体48であってもよい。
(7) Other Embodiments The present invention is not limited to the previous embodiment, and the configuration, shape, material, arrangement location, arrangement number, and the like of each member can be changed as appropriate. Is also included. That is, as shown in FIG. 11, the conductor 47 provided with several convex portions 47a on the outer peripheral part (four places in FIG. 11), or several places (eight places in FIG. 12) on the inner peripheral part as shown in FIG. The conductor 48 having the rib 48a may be used.

さらには、対向側と繋がったリブ49aを内周側に設けた導体49であってもよい(図13参照)。これらの実施形態によれば、凸部47aやリブ48a、49aを設けたことにより、地震時に共振する固有振動数になり難くなり、機械的強度は強くなって、変位量も減るので絶縁性能も上がり、断面積が増えるため、温度上昇を抑えて通電性能も良好となる。   Furthermore, the conductor 49 which provided the rib 49a connected with the opposing side at the inner peripheral side may be sufficient (refer FIG. 13). According to these embodiments, the provision of the convex portions 47a and the ribs 48a and 49a makes it difficult for the natural frequency to resonate during an earthquake, the mechanical strength increases, the amount of displacement decreases, and the insulation performance also decreases. Since the cross-sectional area increases and the cross-sectional area increases, the temperature rise is suppressed and the energization performance is also improved.

また、図14に示した導体40は,内側に芯材40aを設け、この芯材40aの外側に芯材40aよりも導電率の高い被覆材40bを被覆している。このように構成された実施形態によれば、芯材40aの外側に導電率の高い被覆材40bを設けたことで、導体を全て単一のパイプ形状部材で構成した場合よりも、通電電流による発熱量が減り、温度上昇が小さくなって、優れた通電性能を発揮することができる。   Further, the conductor 40 shown in FIG. 14 is provided with a core material 40a on the inner side, and the outer surface of the core material 40a is covered with a coating material 40b having a higher conductivity than the core material 40a. According to the embodiment configured in this way, by providing the coating material 40b with high conductivity outside the core material 40a, the conductor is made by an energizing current rather than the case where all the conductors are configured by a single pipe-shaped member. The calorific value is reduced, the temperature rise is reduced, and excellent energization performance can be exhibited.

本発明の第1の実施形態を示す断面図。Sectional drawing which shows the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例の断面図。Sectional drawing of the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態を示す断面図。Sectional drawing which shows the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例を示す断面図。Sectional drawing which shows the modification of the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す断面図。Sectional drawing which shows the 3rd Embodiment of this invention. 本発明の第3の実施形態の変形例を示す断面図。Sectional drawing which shows the modification of the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す断面図。Sectional drawing which shows the 4th Embodiment of this invention. 本発明の第5の実施形態を示す断面図。Sectional drawing which shows the 5th Embodiment of this invention. 本発明の第5の実施形態の変形例を示す断面図。Sectional drawing which shows the modification of the 5th Embodiment of this invention. 本発明の第6の実施形態を示す断面図。Sectional drawing which shows the 6th Embodiment of this invention. 本発明の他の実施形態を示す正面断面図。Front sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す正面断面図。Front sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す正面断面図。Front sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す正面断面図。Front sectional drawing which shows other embodiment of this invention. 従来のガス絶縁母線の一例を示す断面図。Sectional drawing which shows an example of the conventional gas insulation bus-bar.

符号の説明Explanation of symbols

1…金属容器
2a、2b…絶縁スペーサ
3a、3b…接触子
4、40、41A、41B、42A、42B、43A、43B、44、45、46A、46B、47、48、49…導体
4a、41a、42a、43a、43a、44a、460a、461a…中央部材
4b、4c、41b、41c、42b、42c、43b、43c、41b、41c…両端部材
40a…芯材
40b…被覆材
47a…凸部
48a、49a…リブ
5a、5b…スライドコンタクト
6…絶縁ガス
7…内蔵部材
8…長尺パイプ
DESCRIPTION OF SYMBOLS 1 ... Metal container 2a, 2b ... Insulating spacer 3a, 3b ... Contact 4, 40, 41A, 41B, 42A, 42B, 43A, 43B, 44, 45, 46A, 46B, 47, 48, 49 ... Conductor 4a, 41a 42a, 43a, 43a, 44a, 460a, 461a ... Central members 4b, 4c, 41b, 41c, 42b, 42c, 43b, 43c, 41b, 41c ... Both end members 40a ... Core material 40b ... Covering material 47a ... Projection 48a 49a ... ribs 5a, 5b ... slide contact 6 ... insulating gas 7 ... built-in member 8 ... long pipe

Claims (13)

絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
一部分を中実部又は他の部分よりも肉厚の厚いパイプからなる高強度部とし、該他の部分をパイプとして、両者を接合したことを特徴とするガス絶縁母線用導体。
In the gas insulated bus conductor provided in a sealed metal container filled with an insulating gas as an insulating medium,
A gas-insulated bus conductor, characterized in that a part is a high-strength part made of a pipe thicker than a solid part or another part, and the other part is used as a pipe.
前記高強度部を銅材から構成したことを特徴とする請求項1に記載のガス絶縁母線用導体。   2. The gas insulated bus conductor according to claim 1, wherein the high-strength portion is made of a copper material. 前記高強度部にステンレス材又は鉄材からなる中実材料を入れて固定したことを特徴とする請求項1又は2に記載のガス絶縁母線用導体。   The gas insulated bus conductor according to claim 1 or 2, wherein a solid material made of stainless steel or iron is placed and fixed in the high-strength portion. 前記高強度部の外径を他の部分よりも大径としたことを特徴とする請求項1〜3のいずれか1項に記載のガス絶縁母線用導体。   4. The gas-insulated bus conductor according to claim 1, wherein an outer diameter of the high-strength portion is larger than that of other portions. 前記高強度部を、中央部に設けたことを特徴とする請求項1〜4のいずれか1項に記載のガス絶縁母線用導体。   The gas-insulated bus conductor according to any one of claims 1 to 4, wherein the high-strength portion is provided in a central portion. 前記高強度部を、両端部に設けたことを特徴とする請求項1〜4のいずれか1項に記載のガス絶縁母線用導体。   The gas-insulated bus conductor according to any one of claims 1 to 4, wherein the high-strength portions are provided at both ends. 絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
中央部外周に、ステンレス材、鉄材及びFRP材の少なくとも1つからなる長尺パイプを設けたことを特徴とするガス絶縁母線用導体。
In the gas insulated bus conductor provided in a sealed metal container filled with an insulating gas as an insulating medium,
A gas insulated bus conductor characterized in that a long pipe made of at least one of stainless steel, iron and FRP material is provided on the outer periphery of the central portion.
絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
中央部外周に、不織布を含浸する長尺パイプを設けたことを特徴とするガス絶縁母線用導体。
In the gas insulated bus conductor provided in a sealed metal container filled with an insulating gas as an insulating medium,
A gas insulated bus conductor characterized in that a long pipe impregnated with a nonwoven fabric is provided on the outer periphery of the central portion.
絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
中央部に、内径寸法又は外径寸法が異なる複数の肉厚パイプ又は中実部を設けたことを特徴とするガス絶縁母線用導体。
In the gas insulated bus conductor provided in a sealed metal container filled with an insulating gas as an insulating medium,
A gas insulated bus conductor characterized in that a plurality of thick pipes or solid portions having different inner diameters or outer diameters are provided in the center.
外周部に凸部を設けたことを特徴とする請求項1〜9のいずれか1項に記載のガス絶縁母線用導体。   The gas-insulated bus conductor according to any one of claims 1 to 9, wherein a convex portion is provided on the outer peripheral portion. 内周部にリブを設けたことを特徴とする請求項1〜10のいずれか1項に記載のガス絶縁母線用導体。   The gas insulating bus conductor according to any one of claims 1 to 10, wherein a rib is provided on an inner peripheral portion. 前記リブは対向した同士が繋がっていることを特徴とする請求項11に記載のガス絶縁母線用導体。   12. The gas insulated bus conductor according to claim 11, wherein the ribs are opposed to each other. 内側に芯材を設け、該芯材の外側に該芯材より導電率の高い被覆材を被覆したことを特徴とする請求項1〜12のいずれか1項に記載のガス絶縁母線用導体。
13. The gas-insulated bus conductor according to claim 1, wherein a core material is provided on the inner side, and a coating material having a higher conductivity than the core material is coated on the outer side of the core material.
JP2007336481A 2007-12-27 2007-12-27 Gas insulated bus conductor Active JP5075617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336481A JP5075617B2 (en) 2007-12-27 2007-12-27 Gas insulated bus conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336481A JP5075617B2 (en) 2007-12-27 2007-12-27 Gas insulated bus conductor

Publications (2)

Publication Number Publication Date
JP2009159757A true JP2009159757A (en) 2009-07-16
JP5075617B2 JP5075617B2 (en) 2012-11-21

Family

ID=40963150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336481A Active JP5075617B2 (en) 2007-12-27 2007-12-27 Gas insulated bus conductor

Country Status (1)

Country Link
JP (1) JP5075617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086918A1 (en) * 2010-01-13 2011-07-21 株式会社 東芝 Gas insulating bus bar

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071781U (en) * 1973-11-02 1975-06-24
JPS5116838Y1 (en) * 1969-05-21 1976-05-07
JPS52129986A (en) * 1976-04-23 1977-10-31 Toshiba Corp Piping bus
JPS5535895U (en) * 1979-09-04 1980-03-07
JPS6315119U (en) * 1986-07-15 1988-02-01
JPH01308114A (en) * 1988-06-07 1989-12-12 Toshiba Corp Gas insulated electric apparatus
JPH04197014A (en) * 1990-11-28 1992-07-16 Toshiba Corp Gas insulated bus
JPH0739049A (en) * 1993-07-23 1995-02-07 Hitachi Ltd Central conductor for gas insulated switchgear
JP2006014411A (en) * 2004-06-23 2006-01-12 Mitsubishi Electric Corp Gas insulated switchgear
JP2007274822A (en) * 2006-03-31 2007-10-18 Toshiba Corp Gas insulated instrument

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116838Y1 (en) * 1969-05-21 1976-05-07
JPS5071781U (en) * 1973-11-02 1975-06-24
JPS52129986A (en) * 1976-04-23 1977-10-31 Toshiba Corp Piping bus
JPS5535895U (en) * 1979-09-04 1980-03-07
JPS6315119U (en) * 1986-07-15 1988-02-01
JPH01308114A (en) * 1988-06-07 1989-12-12 Toshiba Corp Gas insulated electric apparatus
JPH04197014A (en) * 1990-11-28 1992-07-16 Toshiba Corp Gas insulated bus
JPH0739049A (en) * 1993-07-23 1995-02-07 Hitachi Ltd Central conductor for gas insulated switchgear
JP2006014411A (en) * 2004-06-23 2006-01-12 Mitsubishi Electric Corp Gas insulated switchgear
JP2007274822A (en) * 2006-03-31 2007-10-18 Toshiba Corp Gas insulated instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086918A1 (en) * 2010-01-13 2011-07-21 株式会社 東芝 Gas insulating bus bar
JP2011147242A (en) * 2010-01-13 2011-07-28 Toshiba Corp Gas-insulated bus
CN102714403A (en) * 2010-01-13 2012-10-03 株式会社东芝 Gas insulating bus bar

Also Published As

Publication number Publication date
JP5075617B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US4039990A (en) Sheet-wound, high-voltage coils
EP2728686A1 (en) Structure of three-phase integrated bus in gas insulated switchgear
JP5075617B2 (en) Gas insulated bus conductor
US9269475B2 (en) Gas-insulated bus bar
JP5425591B2 (en) Gas insulated switchgear
JP2011193658A (en) Conductor for gas-insulating bus
JP2014030282A (en) Three-phase gas-insulated bus
JP2005176536A (en) Gas-insulated switching device
JP5523903B2 (en) Gas insulated bus
JP2010029005A (en) Gas-oil direct connection three-phase integration type insulted partition apparatus for electric equipment
JPH0550913U (en) Gas insulated switchgear
US4458099A (en) Three-phase combined type gas insulated electrical apparatus
WO2010106916A1 (en) Integral three-phase gas insulated switchgear
JP3083516B1 (en) Pipeline transmission line
JP5944586B2 (en) Circuit breaker
EP2715762B1 (en) Vacuum interrupter
JP5695900B2 (en) Resonant circuit
CN113056862B (en) Multi-layer neutral bus
JP2004056927A (en) Gas isolation switching device
JP5084910B2 (en) Gas insulated switchgear
JP5159954B2 (en) Gas insulated bus
JP2825341B2 (en) Gas insulated busbar
RU2515275C1 (en) Gas-insulated power transmission line
JPS59149706A (en) Gas insulated switching device
JP2011083099A (en) Hermetically-sealed bus module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R151 Written notification of patent or utility model registration

Ref document number: 5075617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3